EP0056487B1 - Process for the hydrogenation of coal - Google Patents

Process for the hydrogenation of coal Download PDF

Info

Publication number
EP0056487B1
EP0056487B1 EP81110725A EP81110725A EP0056487B1 EP 0056487 B1 EP0056487 B1 EP 0056487B1 EP 81110725 A EP81110725 A EP 81110725A EP 81110725 A EP81110725 A EP 81110725A EP 0056487 B1 EP0056487 B1 EP 0056487B1
Authority
EP
European Patent Office
Prior art keywords
heat
coal
gas
mixing
mixing stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110725A
Other languages
German (de)
French (fr)
Other versions
EP0056487A3 (en
EP0056487A2 (en
Inventor
Helmut Dr. Romberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarbergwerke AG
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0056487A2 publication Critical patent/EP0056487A2/en
Publication of EP0056487A3 publication Critical patent/EP0056487A3/en
Application granted granted Critical
Publication of EP0056487B1 publication Critical patent/EP0056487B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent

Definitions

  • Direct heat exchange between reaction vapors and coal pulp would offer advantages.
  • the mixing section required for direct heat exchange is less sensitive to distribution problems of the two-phase mixture, and there is no risk of cracking on overheated heat exchanger surfaces.
  • the use of hydrogen as an essential component of the heat transfer gas also guarantees that the coal pulp is always heated in the presence of hydrogen.
  • the gases and vapors flowing from the reaction were cooled to a temperature not below 350 ° C., preferably to a temperature between 380 and 440 ° C., in particular 390 to 410 ° C.
  • high-boiling oils are separated in an intermediate separator.
  • a preheating section at lower temperatures is required, in which the coal slurry is preheated.
  • the reaction gas is cooled to temperatures lower than 350 ° C. When cooling below 350 ° C, however, an excessive amount of the reaction products would fail and be fed back to the reactor with the coal pulp.
  • This accumulation of the reaction products in the coal slurry and in the reaction zone is prevented by the reaction products being previously removed from the reaction gases in a cold separator at about room temperature.
  • the remaining gas, freed from the oil vapor, is then heated in countercurrent with the product-laden gas flowing to the cold separator in a heat exchanger, the gas flowing to the cold separator being cooled.
  • This heated gas, freed from the product can now serve as a heat transfer medium and supply the necessary heat to the coal pulp in direct heat exchange. If additional heat is required to cover a peak demand, the product-free gas can be heated with this external heat without the heat-transferring surfaces cracking or covering with carbon.
  • the advantage of the procedure according to the invention consists essentially in the fact that only clean gases enter the heat exchanger for the external heat supply, while the coal pulp is heated by direct heating in multiphase mixing sections which are considerably simpler in terms of equipment and therefore cheaper without the risk of cracking Laying individual pipes and overheating on the heat exchanger surfaces.
  • the coal pulp is always heated in the presence of hydrogen.
  • the effect of the countercurrent principle can largely be achieved by suitable selection of the number of stages of direct heating.
  • the mixing stages which are operated at temperatures below 400 ° C. and to which the heat is supplied by gas from which the product has already condensed, can also be designed as countercurrent apparatuses in order to achieve even better heat utilization.
  • the advantage of the process according to the invention is that the coal pulp, which is difficult to treat, is brought to the reactor inlet temperature by direct mixing with gases from the process, the external heat supply, in contrast to a single-stage circuit, usually being completely eliminated or at least being kept considerably smaller.
  • the multi-stage direct mixing is made possible by separating the gas from the product of value after the first mixing section, so that no product can fail in the colder mixing stages.
  • Only through the multi-stage direct mixing can the known advantages of direct heating compared to indirect heating in shell and tube heat exchangers be optimally used: With direct heating in a mixing section, the problem of distributing the pulp in the heat exchanger can be solved much better, especially with very large appliances, than with indirect appliances Heat exchange, in which dead zones can easily form, which are harmful to the product and occupy the exchange surfaces. This is the main advantage over indirect heat exchange in counterflow. Much simpler apparatuses than shell-and-tube heat exchangers can be used as mixing sections for direct heat exchange, especially at high pressure.
  • Direct mixing makes it possible to use coal that has not been pre-dried.
  • the expelled water vapor and other low boilers are not passed through the reactor, but are discharged directly via a cold separator.
  • the coal Even when predried, the coal still contains a significant proportion of water, which increases the reaction pressure as steam in the reactor. In the case of direct heating, this amount of water is also removed together with the volatile constituents of the coal and of the grinding oil in front of the reactor, so that the reaction pressure can be lower by the partial pressures of these low boilers.
  • the slurry is fed into the reactor with the pump (6).
  • the hydrogen required for the hydrogenation namely fresh hydrogen and the process-related circulating hydrogen, enters the reactor (21).
  • This gas stream is heated with heat recovery in the heat exchangers (19) and (15).
  • the heat exchanger (12) is additionally provided in order to be able to supply any external heat that may be required.
  • the reactor gas separated in the intermediate separator (7) is cooled in the heat exchangers (14) and (15) in a heat network and brought close to room temperature; the cold separator oil condenses out and can be separated in the cold separator (16) (stream (17)).
  • the product-free gas which is heated in the heat exchanger (14) with heat recovery and - if there is a need for external heat - in the heat exchanger (11), reaches the mixing section (2), where it is mixed with the coal pulp entering the system (1).
  • the mash is heated.
  • the coal pulp (1) is preheated in stage (2) from 100 ° C to 230 ° C, in the other mixing stage (8) it is then heated to the necessary temperature of 400 ° C.
  • the need for external heat can be brought to zero through consistent use of the heat network, which requires corresponding exchange areas.
  • a partial flow (20) can be branched off from the gas flow that is to be led to gas purification behind the separator (22) and with the help of the circulating gas compressor (18) be pumped via (14) and (11) to stage (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

Bei dem bekannten Verfahren zum Hydrieren von Kohle hängt die Wirtschaftlichkeit weitgehend von der Ausnutzung der im Verfahren anfallenden Reaktionswärme ab. Üblicherweise wird der Wärmeinhalt der dem Reaktor entströmenden Reaktionsdämpfe benutzt, um in Rohrbündelwärmeaustauschern im Gegenstrom den Kohlebrei für die Reaktion aufzuheizen. Dabei entstehen große Probleme durch Verkrusten der Wärmeaustauscherflächen und durch Verteilungsschwierigkeiten der zweiphasigen Mischung auf der Breiseite, die um so erheblicher werden, je größer die Apparatedimensionen sind.In the known process for the hydrogenation of coal, the economy largely depends on the utilization of the heat of reaction generated in the process. The heat content of the reaction vapors flowing out of the reactor is usually used to heat the coal slurry for the reaction in countercurrent in shell-and-tube heat exchangers. Large problems arise from encrustation of the heat exchanger surfaces and from difficulties in distributing the two-phase mixture on the slurry side, which become more significant the larger the dimensions of the apparatus.

Der direkte Wärmeaustausch zwischen Reaktionsdämpfen und Kohlebrei würde Vorteile bieten. Die für den direkten Wärmeaustausch benötigte Mischstrecke ist weniger empfindlich gegen Verteilungsprobleme des zweiphasigen Gemischs, und es besteht keine Gefahr der Vercrackung an überhitzten Wärmeaustauscherflächen. Durch die Benutzung des Wasserstoffs als wesentlicher Bestandteil des Wärmeträgergases ist auch die Gewähr gegeben, daß die Aufheizung des Kohlebreis stets in Gegenwart von Wasserstoff erfolgt.Direct heat exchange between reaction vapors and coal pulp would offer advantages. The mixing section required for direct heat exchange is less sensitive to distribution problems of the two-phase mixture, and there is no risk of cracking on overheated heat exchanger surfaces. The use of hydrogen as an essential component of the heat transfer gas also guarantees that the coal pulp is always heated in the presence of hydrogen.

Aus der DE-C-669660 ist ein Verfahren zum Hydrieren von Kohle bekannt, wobei ein direkter Wärmeaustausch in einer Stufe oder über einen begrenzten Temperaturbereich in einem Gegenstromapparat durchgeführt wird. In beiden Fällen kondensiert ein Teil der dampfförmigen Reaktionsprodukte im Kohlebrei aus ; dadurch wird die Anwendung des Prinzips des direkten Wärmeaustausches auf ein verhältnismäßig hohes Temperaturniveau begrenzt. Eine weitgehende Rückgewinnung der Wärme durch direkten Austausch ist auf diese Weise nicht möglich.From DE-C-669660 a method for hydrogenating coal is known, wherein a direct heat exchange is carried out in one step or over a limited temperature range in a countercurrent apparatus. In both cases, some of the vaporous reaction products condense out in the pulp; this limits the application of the principle of direct heat exchange to a relatively high temperature level. Extensive heat recovery through direct exchange is not possible in this way.

Es wurde nun gefunden, daß man eine bessere Ausnutzung der Reaktionswärme erzielt, wenn man zumindest einen Teil der bei der Hydrierung anfallenden heißen Gase und Dämpfe mit dem Kohlebrei mehrstufig innig vermischt und nach der ersten Mischstufe die Gase vom Produkt befreit und die produktfreien Gase, insbesondere Wasserstoff, als Wärmeträger benutzt.It has now been found that better utilization of the heat of reaction can be achieved if at least some of the hot gases and vapors resulting from the hydrogenation are intimately mixed with the pulp in several stages and after the first mixing stage the gases are freed from the product and the product-free gases, in particular Hydrogen, used as a heat transfer medium.

Bei dem erfindungsgemäßen Hydrierverfahren wurden in einer ersten Mischstufe die aus der Reaktion strömenden Gase und Dämpfe auf eine Temperatur nicht unter 350 °C, bevorzugt auf eine Temperatur zwischen 380 und 440 °C, insbesondere 390 bis 410 °C abgekühlt. Danach erfolgt die Abtrennung hochsiedender Öle in einem Zwischenabscheider. Um diese Temperatur im Zwischenabscheider zu erreichen, ist eine Vorheizstrecke bei niedrigeren Temperaturen nötig, in der der Kohlebrei vorgeheizt wird. Beim direkten Wärmeaustausch wird dabei das Reaktionsgas auf tiefere Temperaturen als 350 °C abgekühlt. Beim Abkühlen unter 350 °C würde hier jedoch eine zu große Menge der Reaktionsprodukte ausfallen und dem Reaktor mit dem Kohlebrei wieder zugeführt werden. Diese Anreicherung der Reaktionsprodukte im Kohlebrei und in der Reaktionszone wird dadurch verhindert, daß die Reaktionsprodukte vorher aus den Reaktionsgasen in einem Kaltabscheider bei etwa Raumtemperatur ausgeschleust werden. Das verbleibende, vom Öldampf befreite Gas wird nunmehr im Gegenstrom mit dem dem Kaltabscheider zuströmenden, produktbeladenen Gas in einem Wärmeaustauscher wieder aufgeheizt, wobei das dem Kaltabscheider zuströmende Gas abgekühlt wird. Dieses aufgeheizte, vom Produkt befreite Gas kann jetzt als Wärmeträger dienen und im direkten Wärmeaustausch dem Kohlebrei die nötige Wärme zuführen. Wird zur Deckung eines Spitzenbedarfs zusätzlich Fremdwärme benötigt, so kann das produktfreie Gas mit dieser Fremdwärme aufgeheizt werden, ohne daß die wärmeübertragenden Flächen vercracken oder sich mit Kohlenstoff belegen.In the hydrogenation process according to the invention, in a first mixing stage, the gases and vapors flowing from the reaction were cooled to a temperature not below 350 ° C., preferably to a temperature between 380 and 440 ° C., in particular 390 to 410 ° C. Then high-boiling oils are separated in an intermediate separator. In order to reach this temperature in the intermediate separator, a preheating section at lower temperatures is required, in which the coal slurry is preheated. With direct heat exchange, the reaction gas is cooled to temperatures lower than 350 ° C. When cooling below 350 ° C, however, an excessive amount of the reaction products would fail and be fed back to the reactor with the coal pulp. This accumulation of the reaction products in the coal slurry and in the reaction zone is prevented by the reaction products being previously removed from the reaction gases in a cold separator at about room temperature. The remaining gas, freed from the oil vapor, is then heated in countercurrent with the product-laden gas flowing to the cold separator in a heat exchanger, the gas flowing to the cold separator being cooled. This heated gas, freed from the product, can now serve as a heat transfer medium and supply the necessary heat to the coal pulp in direct heat exchange. If additional heat is required to cover a peak demand, the product-free gas can be heated with this external heat without the heat-transferring surfaces cracking or covering with carbon.

Der Vorteil der erfindungsgemäßen Verfahrensweise besteht im wesentlichen darin, daß in den Wärmeaustauscher für die Fremdwärmezufuhr nur saubere Gase gelangen, während der Kohlebrei durch Direktaufheizung in mehrphasigen Mischstrecken aufgeheizt wird, die apparativ wesentlich einfacher und somit billiger sind, ohne daß die Gefahr von Vercrackungen, von Verlegungen einzelner Rohre und von Überhitzung an den Wärmeaustauscherflächen besteht. Dabei geschieht die Aufheizung des Kohlebreies stets in Gegenwart von Wasserstoff. Durch geeignete Wahl der Zahl der Stufen der direkten Aufheizung kann die Wirkung des Gegenstromprinzips weitgehend erreicht werden. Man kann auch die Mischstufen, die bei Temperaturen unter 400 °C betrieben werden und denen die Wärme durch Gas zugeführt wird, aus dem bereits das Produkt auskondensiert ist, als Gegenstromapparate ausbilden, um eine noch bessere Wärmeausnutzung zu erzielen.The advantage of the procedure according to the invention consists essentially in the fact that only clean gases enter the heat exchanger for the external heat supply, while the coal pulp is heated by direct heating in multiphase mixing sections which are considerably simpler in terms of equipment and therefore cheaper without the risk of cracking Laying individual pipes and overheating on the heat exchanger surfaces. The coal pulp is always heated in the presence of hydrogen. The effect of the countercurrent principle can largely be achieved by suitable selection of the number of stages of direct heating. The mixing stages, which are operated at temperatures below 400 ° C. and to which the heat is supplied by gas from which the product has already condensed, can also be designed as countercurrent apparatuses in order to achieve even better heat utilization.

Beim indirekten Wärmeaustausch zwischen dem Gas aus dem Reaktor, das dem Kaltabscheider zuströmt und das Produkt enthält, und dem vom Produkt befreiten Restgas geht ein Teil des nutzbaren Wärmeinhaltes (z. B. die Kondensationswärme) für die Regeneration verloren. Wenn man auch diese Wärme im Verfahren ausnutzen will, so muß die Masse des Restgases vergrößert werden. Das ist leicht möglich, wenn das auf Raumtemperatur abgekühlte Abgas aus der Kohlebreivorheizung, das zur Gasreinigung gehen soll, geteilt, ein Teilstrom entnommen und dieser dem Wärmeträgergas zugemischt wird (Kreislaufschaltung).In the indirect heat exchange between the gas from the reactor, which flows into the cold separator and contains the product, and the residual gas freed from the product, part of the usable heat content (e.g. the heat of condensation) is lost for the regeneration. If you want to use this heat in the process, the mass of the residual gas must be increased. This is easily possible if the exhaust gas cooled to room temperature from the coal preheater, which is to be used for gas cleaning, is divided, a partial stream is removed and this is mixed with the heat transfer gas (circuit circuit).

Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß der schwer zu behandelnde Kohlebrei durch direkte Vermischung mit Gasen aus dem Verfahren auf die Reaktoreintrittstemperatur gebracht wird, wobei die Fremdwärmezufuhr im Gegensatz zu einer einstufigen Schaltung meist ganz entfallen oder zumindest wesentlich kleiner gehalten werden kann.The advantage of the process according to the invention is that the coal pulp, which is difficult to treat, is brought to the reactor inlet temperature by direct mixing with gases from the process, the external heat supply, in contrast to a single-stage circuit, usually being completely eliminated or at least being kept considerably smaller.

Die mehrstufige direkte Vermischung wird dadurch möglich, daß nach der ersten Mischstrecke das Gas vom Wertprodukt getrennt wird, so daß in den kälteren Mischstufen kein Produkt mehr ausfallen kann. Erst durch die mehrstufige direkte Vermischung lassen sich die bekannten Vorteile der Direktaufheizung gegenüber der indirekten Aufheizung in Rohrbündelwärmeübertragern optimal nutzen : Bei der Direktaufheizung in einer Mischstrecke läßt sich das Problem der Verteilung des Kohlebreies im Wärmeaustauscher vor allem bei sehr großen Apparaten wesentlich besser lösen als bei indirektem Wärmeaustausch, bei dem sich leicht Totzonen bilden können, die produktschädlich werden und die Austauschflächen belegen. Das ist der Hauptvorteil gegenüber indirektem Wärmeaustausch im Gegenstrom. Als Mischstrecken für direkten Wärmeaustausch können wesentlich einfachere Apparate als Rohrbündelwärmeübertrager eingesetzt werden, vor allem bei Hochdruck.The multi-stage direct mixing is made possible by separating the gas from the product of value after the first mixing section, so that no product can fail in the colder mixing stages. Only through the multi-stage direct mixing can the known advantages of direct heating compared to indirect heating in shell and tube heat exchangers be optimally used: With direct heating in a mixing section, the problem of distributing the pulp in the heat exchanger can be solved much better, especially with very large appliances, than with indirect appliances Heat exchange, in which dead zones can easily form, which are harmful to the product and occupy the exchange surfaces. This is the main advantage over indirect heat exchange in counterflow. Much simpler apparatuses than shell-and-tube heat exchangers can be used as mixing sections for direct heat exchange, especially at high pressure.

Die Direktvermischung ermöglicht es, auch nicht vorgetrocknete Kohle einzusetzen. Der ausgetriebene Wasserdampf und andere Leichtsieder werden nicht durch den Reaktor geführt, sondern direkt über einen Kaltabscheider ausgeschleust. Selbst bei Vortrocknung enthält die Kohle noch einen nennenswerten Anteil an Wasser, das als Dampf im Reaktor den Reaktionsdruck erhöht. Bei der Direktaufheizung wird auch diese Wassermenge zusammen mit den flüchtigen Bestandteilen der Kohle und des Anreiböles vor dem Reaktor abgeführt, so daß der Reaktionsdruck um die Partialdrücke dieser Leichtsieder niedriger sein kann.Direct mixing makes it possible to use coal that has not been pre-dried. The expelled water vapor and other low boilers are not passed through the reactor, but are discharged directly via a cold separator. Even when predried, the coal still contains a significant proportion of water, which increases the reaction pressure as steam in the reactor. In the case of direct heating, this amount of water is also removed together with the volatile constituents of the coal and of the grinding oil in front of the reactor, so that the reaction pressure can be lower by the partial pressures of these low boilers.

Im folgenden wird anhand der Abbildung eine kurze Verfahrensbeschreibung am Beispiel der zweistufigen direkten Aufheizung des Kohlebreies im Verfahren zum Hydrieren von Kohle gegeben :

  • Die aus dem Hydrierreaktor (9) abströmenden Brüden (10) werden, nachdem sie im Heißabscheider (13) vom flüssigen Abschlamm getrennt worden sind, in der Mischstrecke (8) mit dem Kohlebrei innig vermischt, so daß sich eine Mischungstemperatur von etwa 400 °C einstellt. Sodann werden Kohlebrei und Gas im Zwischenabscheider (7) getrennt.
In the following, a brief description of the process is given based on the illustration using the example of two-stage direct heating of the coal pulp in the process for hydrogenating coal:
  • The vapors (10) flowing out of the hydrogenation reactor (9), after they have been separated from the liquid sludge in the hot separator (13), are intimately mixed with the coal slurry in the mixing section (8), so that a mixing temperature of about 400 ° C. sets. Then coal pulp and gas are separated in the intermediate separator (7).

Der Brei wird mit der Pumpe (6) in den Reaktor gefördert. Gleichzeitig mit dem Kohlebrei tritt der für die Hydrierung nötige Wasserstoff, nämlich Frischwasserstoff und der verfahrensbedingte Kreislaufwasserstoff in den Reaktor ein (21). Dieser Gasstrom wird unter Wärmerückgewinnung in den Wärmeaustauschern (19) und (15) aufgeheizt. Der Wärmeaustauscher (12) ist zusätzlich vorgesehen, um im Bedarfsfalle etwa erforderliche Fremdwärme zuführen zu können.The slurry is fed into the reactor with the pump (6). At the same time as the coal pulp, the hydrogen required for the hydrogenation, namely fresh hydrogen and the process-related circulating hydrogen, enters the reactor (21). This gas stream is heated with heat recovery in the heat exchangers (19) and (15). The heat exchanger (12) is additionally provided in order to be able to supply any external heat that may be required.

Das im Zwischenabscheider (7) abgetrennte Reaktorgas wird in den Wärmeaustauschern (14) und (15) im Wärmeverbund abgekühlt und nahe auf Raumtemperatur gebracht ; dabei kondensiert das Kaltabscheideröl aus und kann im Kaltabscheider (16) abgetrennt werden (Strom (17)).The reactor gas separated in the intermediate separator (7) is cooled in the heat exchangers (14) and (15) in a heat network and brought close to room temperature; the cold separator oil condenses out and can be separated in the cold separator (16) (stream (17)).

Das produktfreie Gas, das im Wärmeaustauscher (14) unter Wärmerückgewinnung und - bei eventuellem Fremdwärmebedarf - im Wärmeübertrager (11) aufgeheizt wird, gelangt zur Mischstrecke (2), wo es mit dem in das System eintretenden Kohlebrei (1) vermischt wird. Dabei wird die Maische erwärmt.The product-free gas, which is heated in the heat exchanger (14) with heat recovery and - if there is a need for external heat - in the heat exchanger (11), reaches the mixing section (2), where it is mixed with the coal pulp entering the system (1). The mash is heated.

Beispielhaft wird der Kohlebrei (1) in Stufe (2) von 100°C auf 230 °C vorgewärmt, in der anderen Mischstufe (8) erfolgt dann die Aufheizung auf die notwendige Temperatur von 400 °C. Durch konsequente Nutzung des Wärmeverbundes, das bedingt entsprechende Austauschflächen, kann der Bedarf an Fremdwärme auf Null gebracht werden.For example, the coal pulp (1) is preheated in stage (2) from 100 ° C to 230 ° C, in the other mixing stage (8) it is then heated to the necessary temperature of 400 ° C. The need for external heat can be brought to zero through consistent use of the heat network, which requires corresponding exchange areas.

Bei der Erwärmung des Kohlebreies in der Vorheizstufe (2) werden Leichtsieder, z. B. Wasser, frei, diese werden zusammen mit dem Aufheizgas im Abscheider (3) von der Maische getrennt. Während der Kohlebrei mit Hilfe der Breipumpe (5) zur Vorheizstrecke (8) gepumpt wird, geht der Gasstrom (4) unter Abkühlung im Wärmeaustauscher (19) zum Abscheider (22). Unter Raumtemperatur wird hier das auskondensierte Wasser zusammen mit anderen Leichtsiedern abgeschieden.When the coal pulp is heated in the preheating stage (2), low boilers, e.g. B. water, free, these are separated from the mash together with the heating gas in the separator (3). While the pulp is pumped to the preheating section (8) with the aid of the slurry pump (5), the gas stream (4) goes to the separator (22) while cooling in the heat exchanger (19). The condensed water is separated off here together with other low boilers below room temperature.

Soll zum besseren Wärmerückgewinn der durch die Austauschstufe (2) geleitete interne Kreisgasstrom vergrößert werden, so kann hinter dem Abscheider (22) von dem Gasstrom, der zur Gasreinigung geführt werden soll, ein Teilstrom (20) abgezweigt und mit Hilfe des Kreisgaskompressors (18) über (14) und (11) zur Stufe (2) gepumpt werden.If, for better heat recovery, the internal circulating gas flow passed through the exchange stage (2) is to be increased, a partial flow (20) can be branched off from the gas flow that is to be led to gas purification behind the separator (22) and with the help of the circulating gas compressor (18) be pumped via (14) and (11) to stage (2).

Claims (6)

1. A process for hydrogenating coal which has been slurried with oils in particular, by bringing the coal slurry to the reaction pressure by pumping, heating the slurry and catalytically hydrogenating it with hydrogen, some or all of the hot gases and vapors which form during the hydrogenation being intimately re-mixed with the coal slurry, wherein the mixing of the hot gases and vapors with the coal slurry takes place in a plurality of stages and, after the first mixing stage, the gases are freed from the product and the product-free gases, especially hydrogen, are used as a thermal medium.
2. A process as claimed in claim 1, wherein, after the first mixing stage, heat exchange between the gas and the coal slurry is effected in countercurrent.
3. A process as claimed in claims 1 and 2, wherein the first mixing stage is operated at not less than 350 °C.
4. A process as claimed in claims 1 and 2, wherein the first mixing stage is operated at from 380 to 440 °C.
5. A process as claimed in claims 1 and 2, wherein the first mixing stage is operated at from 390 to 410 °C.
6. A process as claimed in claims 1 to 5, wherein the amount of gas, consisting essentially of hydrogen, which serves as the thermal medium is increased by recycling a part-stream so as to permit better utilization of the heat of reaction and to minimize any additionally required external heat.
EP81110725A 1981-01-20 1981-12-23 Process for the hydrogenation of coal Expired EP0056487B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813101598 DE3101598A1 (en) 1981-01-20 1981-01-20 METHOD FOR HYDROGENATING COAL
DE3101598 1981-01-20

Publications (3)

Publication Number Publication Date
EP0056487A2 EP0056487A2 (en) 1982-07-28
EP0056487A3 EP0056487A3 (en) 1983-06-22
EP0056487B1 true EP0056487B1 (en) 1985-11-21

Family

ID=6122930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110725A Expired EP0056487B1 (en) 1981-01-20 1981-12-23 Process for the hydrogenation of coal

Country Status (3)

Country Link
US (1) US4468315A (en)
EP (1) EP0056487B1 (en)
DE (2) DE3101598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067026A1 (en) * 2015-10-23 2017-04-27 北京中科诚毅科技发展有限公司 Method for preprocessing raw materials of slurry bed hydrogenation process, design method for same, and uses thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3246609A1 (en) * 1982-12-16 1984-06-20 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken METHOD FOR HYDROGENATING COAL
DE3438330C2 (en) * 1983-11-05 1987-04-30 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Process for liquefying coal
EP0177676B1 (en) * 1984-09-13 1992-03-04 Ruhrkohle Aktiengesellschaft Process carried out by heat recuperation for suspension hydrogenation with integrated gas phase hydrogenation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876009A (en) * 1926-02-06 1932-09-06 Standard Ig Co Conversion of solid fuels and products derived therefrom or other carbonaceous materials into valuable products
DE669660C (en) * 1934-07-07 1938-12-31 I G Farbenindustrie Akt Ges Process for the production of liquid hydrocarbon oils by pressure hydrogenation of solid carbonaceous substances
US4113602A (en) * 1976-06-08 1978-09-12 Exxon Research & Engineering Co. Integrated process for the production of hydrocarbons from coal or the like in which fines from gasifier are coked with heavy hydrocarbon oil
DE2654635B2 (en) * 1976-12-02 1979-07-12 Ludwig Dr. 6703 Limburgerhof Raichle Process for the continuous production of hydrocarbon oils from coal by cracking pressure hydrogenation
DE2711105C2 (en) * 1977-03-15 1984-05-24 Saarbergwerke AG, 6600 Saarbrücken Process for converting coal into hydrocarbons which are liquid under normal conditions
US4222844A (en) * 1978-05-08 1980-09-16 Exxon Research & Engineering Co. Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
US4189375A (en) * 1978-12-13 1980-02-19 Gulf Oil Corporation Coal liquefaction process utilizing selective heat addition
US4297200A (en) * 1980-01-18 1981-10-27 Briley Patrick B Method for hydroconversion of solid carbonaceous materials
DE3042984C2 (en) * 1980-11-14 1986-06-26 Saarbergwerke AG, 6600 Saarbrücken Process for hydrogenating coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067026A1 (en) * 2015-10-23 2017-04-27 北京中科诚毅科技发展有限公司 Method for preprocessing raw materials of slurry bed hydrogenation process, design method for same, and uses thereof

Also Published As

Publication number Publication date
US4468315A (en) 1984-08-28
EP0056487A3 (en) 1983-06-22
DE3101598A1 (en) 1982-08-26
DE3173032D1 (en) 1986-01-02
EP0056487A2 (en) 1982-07-28

Similar Documents

Publication Publication Date Title
DE2352561A1 (en) PROCEDURE FOR DRAINING THE COMPRESSION HEAT ARISING FROM THE COMPRESSION OF A GAS OR GAS MIXTURE
DE3137751A1 (en) METHOD FOR PRODUCING GASOLINE HYDROCARBONS FROM METHANOL
DE2726302A1 (en) PROCESS AND SYSTEM FOR WASTE WATER CLEANING
DE2713359A1 (en) PROCESS FOR THE FRACTIONATION OF CRACK GASES WITH THE HELP OF REFRIGERATION TECHNOLOGY
EP0058327A2 (en) Process for the continuous preparation of hydrocarbon oils from coal by pressure hydrogenation
EP0056487B1 (en) Process for the hydrogenation of coal
EP0272378B1 (en) Process and device for cooling cracking gases
EP3115336A1 (en) Method and plant for the cooling of synthesis gas
DE4230266A1 (en) Method and device for heat recovery in the chemical degradation of sewage sludge or waste water
DE3630162A1 (en) METHOD FOR THE PRODUCTION OF MONOMERAL VINYL CHLORIDE BY CRACKING DICHLORETHANE AND A PLANT SUITABLE FOR THIS
DE2925720A1 (en) METHOD FOR PRODUCING VINYL CHLORIDE BY THERMAL CLEAVING 1,2-DICHLORETHANE
DE2554742B2 (en) Process for the pretreatment of raw gas
DD235563A5 (en) PROCESS FOR COOLING OR ATTACHING A GAS
DE926485C (en) Processes and devices for fractional distillation
DE3236985C2 (en)
EP1703201B1 (en) Process for heat transfer
DE1914448C2 (en) Method and device for oxidizing cyclohexane to cyclohexanes and / or cyclohexanol
DE2945352A1 (en) METAL OF COAL HYDRATION
EP0609191B1 (en) Apparatus for the thermal cracking of a mixture of liquid and gaseous hydrocarbons
DE571597C (en) Method and device for distilling petroleum
DE631728C (en) Process for the decomposition of hydrocarbon oils under pressure
DE553046C (en) Process for the continuous distillation of hydrocarbon oils
RU2063997C1 (en) Method for oil refining
DE1767230C3 (en) Process and device for the recovery of heat from the reaction in the catalytic synthesis of ammonia and methanol
AT278218B (en) Process Device for the fractional condensation of gases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19820717

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3173032

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861231

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: SAARBERGWERKE AKTIENGESELLSCHAFT TE SAARBRUECKEN,

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19881231

BERE Be: lapsed

Owner name: SAARBERGWERKE A.G.

Effective date: 19881231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST