EP0052577B1 - Anchorage for a cathode bar - Google Patents
Anchorage for a cathode bar Download PDFInfo
- Publication number
- EP0052577B1 EP0052577B1 EP81810401A EP81810401A EP0052577B1 EP 0052577 B1 EP0052577 B1 EP 0052577B1 EP 81810401 A EP81810401 A EP 81810401A EP 81810401 A EP81810401 A EP 81810401A EP 0052577 B1 EP0052577 B1 EP 0052577B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- groove
- cathode
- cathode element
- iron
- bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001018 Cast iron Inorganic materials 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 239000004411 aluminium Substances 0.000 claims abstract 2
- 230000004927 fusion Effects 0.000 claims abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 48
- 239000003245 coal Substances 0.000 description 26
- 229910052742 iron Inorganic materials 0.000 description 24
- 229910001060 Gray iron Inorganic materials 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
Definitions
- the invention relates to a cathode element for a melt flow electrolysis cell, in particular for the production of aluminum, with a carbon block, by anchoring a cathode bar in a groove, in each side wall of this groove a recess extending over the entire length of a block for receiving a Space between the ingot and groove filling cast iron shell is formed.
- the carbon bottom of the electrolytic cells consists of cathode elements, in which a continuous iron bar or a bar separated in the middle is arranged.
- the electrical contact resistance between iron bar and coal block must be as small as possible.
- the coal blocks and the iron bars are found in conventional electrolysis cells in various dimensions in terms of width, height, length and groove shape.
- the iron bars inserted into the groove of the coal block are connected to the coal by casting with cast iron.
- the iron bars placed in the groove are preheated together with the coal and cooled after pouring to the ambient temperature. Since the thermal expansion or contraction of iron is approximately four times greater than that of coal, a gap is created when the coal and cast iron cool down. If the cathode element provided with an iron bar is installed in an electrolysis cell, the gap only closes when the temperature rises when the electrolysis cell is started up, which creates an electrical and mechanical contact between iron and coal.
- the iron bar which is expanding more rapidly, can act so strongly on the carbon of the cathode elements that cracks can occur in the longitudinal direction of the cathode.
- the closing of the gap i.e.
- the pressing of the cathode bar against the coal when the cell is started up depends on various parameters, for example the shape of the coal block (groove) and the iron bar, the preheating temperature of iron and coal, the type of preheating, the composition and the pouring temperature of the cast iron.
- a groove is arranged in a coal block, which is dovetail-shaped in cross section. An iron bar is stored in this groove and anchored in the coal block with the help of cast-in gray cast iron.
- a disadvantage of such anchoring of the cathode bars is that the gap between the gray cast iron and the walls of the dovetail groove of the carbon block, which occurs when the gray cast iron and the ingot cool down due to faster contraction, is sufficient to cause a slight displacement of the inserted into the groove
- the cathode element is rotated from the pouring position into the working position and / or the electrode block is shaken during transport or when the joint and on-board ramming compound is stomped.
- the gap between the gray cast iron and the walls of the dovetail groove narrows inadmissibly, i.e. it wedges, and the iron blows up the coal, which expands about four times less, as it warms up.
- the wedged iron in the dovetail groove can hardly be returned to its original position due to the large coefficient of friction between iron and coal.
- the gap between the bottom surface of the groove and the iron that has slipped down remains and leads to poor electrical contact and thus to energy losses. These losses are exacerbated by longitudinal cracks or even broken rags in the coal block, and the risk of damage from penetrating aluminum during operation increases by leaps and bounds.
- DE-OS 2405461 proposes a groove shape that keeps the cast ingot in the poured position during all these processes and therefore does not allow wedging to occur. At least one recess is arranged in each side wall of the groove, which is used to anchor at least one elevation of the cast iron jacket surrounding the ingot. The slipping ability of the ingot in the longitudinal direction (especially with longer blocks) is satisfactory but not completely, although the forces remain well below the crack value of the coal and thus a breakout is prevented.
- the inventor has therefore set himself the task of creating a cathode element which has an anchor for a cathode bar in a groove of a carbon block, which does not suffer any damage during and after casting, has an iron-carbon transition with a small electrical voltage drop, economically is and has a relatively good slip ability in the longitudinal direction.
- the object is achieved according to the invention in that in the working position the recess of the upper region of the groove forms inclined surfaces widening in the direction of the groove opening, which at their lower end merge into approximately horizontal bearing surfaces ending on the corresponding side surface of the groove.
- the correctly cast iron bar with a rectangular or square cross-section can sag in the pouring position at most by the amount of shrinkage of the iron after cooling. This creates a gap in the area of the inclined surfaces, the contact surfaces and the vertical side surfaces of the groove.
- the cathode elements rotated in the working position are installed, but at the latest when the joint and board ramming compound is pounded in, the cast ingot slides back into the same position as in the pouring position.
- the cathode elements are heated to working temperature, whereby both the iron ingot and the cast iron expand more than the coal. Due to the thermal expansion, the iron is optimally pressed into the conical shape of the upper part (working position) and ensures good electrical contact between iron and carbon.
- the approximately horizontal contact surface acts as an abutment.
- the upper part of the groove in the working position is recessed in such a way that the slidability in the longitudinal direction is also sufficient when the ingot is cast in.
- the approximately horizontal contact surface for the cast-in cathode bar expediently runs parallel to the bottom or top surface of the coal block provided with the groove.
- the height of the inclined surfaces widening in the direction of the groove opening is preferably 40 to 70% of the groove depth. If these inclined surfaces are too small, the effect according to the invention cannot develop fully. If the height is too high, on the other hand, there is a risk that cracks will form when the cell is heated to the working temperature or that the part of the coal block lying below the contact surface will be broken out. For these reasons relating to stability, the widening inclined surfaces, preferably after rounding, are connected directly to the bottom surface of the groove.
- the distance of the approximately horizontal contact surface from the grooved bottom surface of the coal block is therefore at least 30% of the groove depth.
- the angle of inclination of the inclined surfaces with respect to the vertical is preferably 3 to 15 °, both in the pouring and in the working position.
- the cathode elements rotated in the working position are assembled in the usual way to form a carbon floor, the cast ingot cannot wedge in the groove.
- FIG. 1 shows a cathode bar 11 cast into a carbon block 10 in the poured-in position, but the cathode element formed has already cooled down.
- the groove 12 recessed in the carbon block 10 has contracted less than the cathode bar 11 and the surrounding cast iron layer 13.
- a gap 17 is formed between the widening in the direction of the groove opening, i. conical inclined surfaces 14, the vertical side surfaces 15 and the bearing surfaces 16 on the one hand, and the cast iron jacket 13 on the other hand.
- the cast cathode bar 11 is sagged below the plane of the bottom surface 18. In contrast to the cover surface 20, this surface does not come into contact with the liquid metal in the working electrolysis bath.
- the angle of inclination of the inclined surfaces with respect to the vertical is denoted by a.
- the iron bar 11 has slipped so that the lower side of the cast iron - as before the contraction of iron and coal - lies in the area of the plane of the bottom surface 18 of the coal block 10.
- the gap 17 now extends over the area of the vertical side walls 15, the inclined surfaces 14, the rounding 22 and the bottom surface 24 of the groove 12.
- the cast iron 13 lies on the bearing surface 16 and prevents the cast iron and side surfaces of the groove from jamming.
- the support surface 16 acts as an abutment, the cast iron 13 is pressed against the coal in such a way that a good electrical contact resistance arises.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrolytic Production Of Metals (AREA)
- Dowels (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Cold Cathode And The Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Kathodenelement für eine Schmelzflusselektrolysezelle, insbesondere zur Herstellung von Aluminium, mit einem Kohleblock, indem ein Kathodenbarren in einer Nut verankert wird, wobei in jeder Seitenwand dieser Nut eine sich über die ganze Länge eines Blockes erstreckende Ausnehmung zur Aufnahme eines den Raum zwischen Barren und Nut ausfüllenden Gusseisenmantels ausgebildet ist.The invention relates to a cathode element for a melt flow electrolysis cell, in particular for the production of aluminum, with a carbon block, by anchoring a cathode bar in a groove, in each side wall of this groove a recess extending over the entire length of a block for receiving a Space between the ingot and groove filling cast iron shell is formed.
Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An diesen Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet. Die Elektrolyse findet in einem Temperaturbereich von etwa 940 bis 970°C statt.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes which consist of amorphous carbon in conventional processes are immersed in the melt. At these carbon anodes, the electrolytic decomposition of the aluminum oxide produces oxygen, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis takes place in a temperature range of approximately 940 to 970 ° C.
Der Kohleboden der Elektrolysezellen besteht aus Kathodenelementen, in welchen ein durchgehender oder ein in der Mitte getrennter Eisenbarren angeordnet ist. Um zu einer optimalen Stromausbeute der Zelle beizutragen, muss der elektrische Übergangswiderstand zwischen Eisenbarren und Kohleblock möglichst klein sein.The carbon bottom of the electrolytic cells consists of cathode elements, in which a continuous iron bar or a bar separated in the middle is arranged. In order to contribute to an optimal current efficiency of the cell, the electrical contact resistance between iron bar and coal block must be as small as possible.
Die Verbindung zwischen Kohleblock und Eisenbarren kann auf verschiedene Arten erfolgen, beispielsweise durch
- - Einstampfen mit einer Stampfmasse
- - Eingiessen mit Gusseisen
- - Einkleben.
- - Pounding with a pounding compound
- - Pour in with cast iron
- - Glue in.
Die Kohleblöcke und die Eisenbarren finden sich in herkömmlichen Elektrolysezellen in verschiedensten Dimensionen in bezug auf Breite, Höhe, Länge und Nutform.The coal blocks and the iron bars are found in conventional electrolysis cells in various dimensions in terms of width, height, length and groove shape.
Beim Erstellen von Bodenkohleelementen bzw. von Kathodenelementen ist heute die Technik des Eingiessens weit verbreitet. Die in die Nut des Kohleblockes eingelegten Eisenbarren werden durch Umgiessen mitGusseisen mitderKohle verbunden. Die in die Nut eingelegten Eisenbarren werden gemeinsam mit der Kohle vorgewärmt und nach dem Eingiessen auf die Umgebungstemperatur abgekühlt. Da die Wärmedehnung bzw. -kontraktion von Eisen ungefähr viermal grösser ist als diejenige von Kohle, entsteht bei der Abkühlung zwischen Kohle und Gusseisen ein Spalt. Ist das mit einem Eisenbarren versehene Kathodenelement in eine Elektrolysezelle eingebaut, so schliesst sich der Spalt erst während des Temperaturanstiegs bei der Inbetriebnahme der Elektrolysezelle, womit ein elektrischer und mechanischer Kontakt zwischen Eisen und Kohle entsteht.Nowadays, the technique of pouring in is widespread when creating charcoal elements or cathode elements. The iron bars inserted into the groove of the coal block are connected to the coal by casting with cast iron. The iron bars placed in the groove are preheated together with the coal and cooled after pouring to the ambient temperature. Since the thermal expansion or contraction of iron is approximately four times greater than that of coal, a gap is created when the coal and cast iron cool down. If the cathode element provided with an iron bar is installed in an electrolysis cell, the gap only closes when the temperature rises when the electrolysis cell is started up, which creates an electrical and mechanical contact between iron and coal.
Wird der durch die Kontraktion gebildete Spalt vor dem Erreichen der Arbeitstemperatur geschlossen, so kann der sich schneller ausdehnende Eisenbarren derart stark auf die Kohle der Kathodenelemente einwirken, dass in Längsrichtung der Kathode Risse entstehen können.If the gap formed by the contraction is closed before reaching the working temperature, the iron bar, which is expanding more rapidly, can act so strongly on the carbon of the cathode elements that cracks can occur in the longitudinal direction of the cathode.
Das Schliessen des Spaltes, d.h. das Anpressen des Kathodenbarrens an die Kohle bei Inbetriebnahme der Zelle, hängt von verschiedenen Parametern ab, beispielsweise von der Form des Kohleblockes (Nut) und des Eisenbarrens, der Vorwärmtemperatur von Eisen und Kohle, der Vorwärmungsart, der Zusammensetzung und Eingiesstemperatur des Gusseisens. Häufig wird in einem Kohleblock eine Nut angeordnet, die im Querschnitt schwalbenschwanzförmig ausgebildet ist. In diese Nut wird ein Eisenbarren eingelagert und mit Hilfe von eingegossenem Grauguss im Kohleblock verankert. Als nachteilig hat sich jedoch bei einer derartigen Verankerung der Kathodenbarren erwiesen, dass der bei Abkühlung durch schnellere Kontraktion des Graugusses und des Barrens entstehende Spalt zwischen dem Grauguss und den Wänden der Schwalbenschwanznut des Kohleblockes genügt, um eine geringfügige Verschiebung des in die Nut eingesetzten, von Grauguss umschlossenen Eisenbarrens erfolgen zu lassen, wenn beispielsweise das Kathodenelement von der Eingiess- in die Arbeitslage gedreht und/oder der Elektrodenblock beim Transport oder beim Verstampfen der Fugen- und Bordstampfmasse erschüttert wird. Dabei verengt sich der Spalt zwischen dem Grauguss und den Wänden der Schwalbenschwanznut unzulässig, d.h. er verkeilt sich, und das Eisen sprengt beim Aufwärmen die sich ungefähr viermal weniger ausdehnende Kohle.The closing of the gap, i.e. The pressing of the cathode bar against the coal when the cell is started up depends on various parameters, for example the shape of the coal block (groove) and the iron bar, the preheating temperature of iron and coal, the type of preheating, the composition and the pouring temperature of the cast iron. Often a groove is arranged in a coal block, which is dovetail-shaped in cross section. An iron bar is stored in this groove and anchored in the coal block with the help of cast-in gray cast iron. A disadvantage of such anchoring of the cathode bars, however, is that the gap between the gray cast iron and the walls of the dovetail groove of the carbon block, which occurs when the gray cast iron and the ingot cool down due to faster contraction, is sufficient to cause a slight displacement of the inserted into the groove To allow gray cast iron enclosed ingot to take place if, for example, the cathode element is rotated from the pouring position into the working position and / or the electrode block is shaken during transport or when the joint and on-board ramming compound is stomped. The gap between the gray cast iron and the walls of the dovetail groove narrows inadmissibly, i.e. it wedges, and the iron blows up the coal, which expands about four times less, as it warms up.
Das in der Schwalbenschwanznut verkeilte Eisen kann wegen dem grossen Reibungskoeffizienten zwischen Eisen und Kohle kaum mehr in die Ausgangslage zurückgebracht werden. Der Spalt zwischen der Bodenfläche der Nut und dem nach unten gerutschten Eisen bleibt und führt zu einem schlechten elektrischen Kontakt und damit zu Energieverlusten. Diese Verluste werden durch Längsrisse oder gar abgebrochene Lappen im Kohleblock verstärkt, und die Gefahr von Beschädigungen durch eindringendes Aluminium während des Betriebs vergrössert sich sprunghaft.The wedged iron in the dovetail groove can hardly be returned to its original position due to the large coefficient of friction between iron and coal. The gap between the bottom surface of the groove and the iron that has slipped down remains and leads to poor electrical contact and thus to energy losses. These losses are exacerbated by longitudinal cracks or even broken rags in the coal block, and the risk of damage from penetrating aluminum during operation increases by leaps and bounds.
In der DE-OS 2405461 wird eine Nutform vorgeschlagen, die bei allen diesen Vorgängen den eingegossenen Barren in Eingiesslage hält und daher keine Verkeilung vorkommen lässt. In jeder Seitenwand der Nut ist mindestens eine Ausnehmung angeordnet, welche der Verankerung von mindestens einer Erhebung des den Barren umschliessenden Gusseisenmantels dient. Die Rutschfähigkeit des Barrens in Längsrichtung (besonders bei längeren Blöcken) befriedigt jedoch nicht vollkommen, obwohl die Kräfte deutlich unterhalb des Risswertes der Kohle bleiben und damit ein Ausbrechen verhindert wird.DE-OS 2405461 proposes a groove shape that keeps the cast ingot in the poured position during all these processes and therefore does not allow wedging to occur. At least one recess is arranged in each side wall of the groove, which is used to anchor at least one elevation of the cast iron jacket surrounding the ingot. The slipping ability of the ingot in the longitudinal direction (especially with longer blocks) is satisfactory but not completely, although the forces remain well below the crack value of the coal and thus a breakout is prevented.
Der Erfinder hat sich deshalb die Aufgabe gestellt, ein Kathodenelement zu schaffen, das eine Verankerung für einen Kathodenbarren in einer Nut eines Kohleblockes aufweist, das bei und nach dem Eingiessen keine Schäden erleidet, einen Übergang Eisen-Kohle mit kleinem elektrischen Spannungsabfall aufweist, wirtschaftlich herzustellen ist und in Längsrichtung eine verhältnismässig gute Rutschfähigkeit aufweist.The inventor has therefore set himself the task of creating a cathode element which has an anchor for a cathode bar in a groove of a carbon block, which does not suffer any damage during and after casting, has an iron-carbon transition with a small electrical voltage drop, economically is and has a relatively good slip ability in the longitudinal direction.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass in Arbeitslage die Ausnehmung des oberen Bereichs der Nut in Richtung der Nutöffnung ausweitende Schrägflächen bildet, die an deren unterem Ende in ungefähr horizontale, an der entsprechenden Seitenfläche der Nut endende Auflageflächen übergehen.The object is achieved according to the invention in that in the working position the recess of the upper region of the groove forms inclined surfaces widening in the direction of the groove opening, which at their lower end merge into approximately horizontal bearing surfaces ending on the corresponding side surface of the groove.
Der korrekt eingegossene Eisenbarren von rechteckigem bzw. quadratischem Querschnitt kann in der Eingiesslage bis nach dem Abkühlen höchstens um das Schrumpfungsmass des Eisens absacken. Dabei entsteht im Bereich der Schrägflächen, der Auflageflächen und der vertikalen Seitenflächen der Nut ein Spalt. Beim Einbau der in Arbeitslage gedrehten Kathodenelemente, jedoch spätestens beim Einstampfen der Fugen- und Bordstampfmasse, rutscht der eingegossene Barren wieder in dieselbe Position wie bei der Eingiesslage. Bei Inbetriebnahme der Elektrolysezelle werden die Kathodenelemente auf Arbeitstemperatur aufgeheizt, wobei sich sowohl der Eisenbarren als auch das eingegossene Eisen stärker ausdehnen als die Kohle. Das Eisen wird durch die thermische Ausdehnung optimal in die konische Form des oberen Teiles (Arbeitsstellung) gepresst und bewirkt einen guten elektrischen Kontakt zwischen Eisen und Kohlenstoff. Die ungefähr horizontale Auflagefläche wirkt dabei als Widerlager.The correctly cast iron bar with a rectangular or square cross-section can sag in the pouring position at most by the amount of shrinkage of the iron after cooling. This creates a gap in the area of the inclined surfaces, the contact surfaces and the vertical side surfaces of the groove. When the cathode elements rotated in the working position are installed, but at the latest when the joint and board ramming compound is pounded in, the cast ingot slides back into the same position as in the pouring position. When the electrolytic cell is started up, the cathode elements are heated to working temperature, whereby both the iron ingot and the cast iron expand more than the coal. Due to the thermal expansion, the iron is optimally pressed into the conical shape of the upper part (working position) and ensures good electrical contact between iron and carbon. The approximately horizontal contact surface acts as an abutment.
Der in Arbeitslage obere Teil der Nut ist derart ausgespart, dass bei eingegossenem Barren auch die Rutschfähigkeit in Längsrichtung hinreichend ist.The upper part of the groove in the working position is recessed in such a way that the slidability in the longitudinal direction is also sufficient when the ingot is cast in.
Zweckmässig verläuft die ungefähr horizontale Auflagefläche für den eingegossenen Kathodenbarren parallel zu der mit der Nut versehenen Boden- bzw. der Deckfläche des Kohleblockes.The approximately horizontal contact surface for the cast-in cathode bar expediently runs parallel to the bottom or top surface of the coal block provided with the groove.
Die Höhe der sich in Richtung der Nutöffnung ausweitenden Schrägflächen, beträgt vorzugsweise 40 bis 70% der Nuttiefe. Bei zu kleiner Höhe dieser Schrägflächen kann sich die erfindungsgemässe Wirkung nicht vollständig entfalten. Bei zu grosser Höhe dagegen besteht die Gefahr, dass beim Erwärmen der Zelle auf Arbeitstemperatur Risse entstehen oder sogar der unterhalb der Auflagefläche liegende Teil des Kohleblockes ausgebrochen wird. Aus diesen die Stabilität betreffenden Gründen werden die ausweitenden Schrägflächen, vorzugsweise nach einer Abrundung, direkt an die Bodenfläche der Nut angeschlossen.The height of the inclined surfaces widening in the direction of the groove opening is preferably 40 to 70% of the groove depth. If these inclined surfaces are too small, the effect according to the invention cannot develop fully. If the height is too high, on the other hand, there is a risk that cracks will form when the cell is heated to the working temperature or that the part of the coal block lying below the contact surface will be broken out. For these reasons relating to stability, the widening inclined surfaces, preferably after rounding, are connected directly to the bottom surface of the groove.
Der Abstand der ungefähr horizontalen Auflagefläche von der mit der Nut versehenen Bodenfläche des Kohleblockes beträgt also mindestens 30% der Nuttiefe.The distance of the approximately horizontal contact surface from the grooved bottom surface of the coal block is therefore at least 30% of the groove depth.
Der Neigungswinkel der Schrägflächen in bezug auf die Vertikale beträgt - sowohl in Eingiesswie auch in Arbeitslage - bevorzugt 3 bis 15°.The angle of inclination of the inclined surfaces with respect to the vertical is preferably 3 to 15 °, both in the pouring and in the working position.
Bei zu grossem Winkel zwischen Schrägfläche und Vertikale würden die Kohleblöcke zu stark geschwächt, die Kontraktion des eingegossenen Eisens wäre zu gross, und der Barren könnte sich beim Eingiessen infolge zu starker Aufheizung in Längsrichtung verbiegen. Bei einem zu kleinen Winkel dagegen wäre die Auflagefläche zu klein. Der zur Erzeugung eines guten elektrischen Kontaktes zwischen Eisen und Kohlenstoff notwendige Auflagedruck könnte einen kleinen Absatz abreissen.If the angle between the inclined surface and the vertical were too great, the coal blocks would be weakened too much, the contraction of the cast iron would be too great, and the ingot could bend in the longitudinal direction when poured in due to excessive heating. If the angle were too small, however, the contact surface would be too small. The contact pressure required to produce good electrical contact between iron and carbon could tear off a small paragraph.
Die in Arbeitslage gedrehten Kathodenelemente werden in üblicher Weise zu einem Kohleboden zusammengefügt, der eingegossene Barren kann sich dabei in der Nut nicht verkeilen.The cathode elements rotated in the working position are assembled in the usual way to form a carbon floor, the cast ingot cannot wedge in the groove.
Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Die schematischen Vertikalschnitte zeigen:
- Fig. 1 ein ausgekühltes Kathodenelement in Eingiesslage
- Fig. 2 ein in Arbeitslage gedrehtes kaltes Kathodenelement.
- Fig. 1 shows a cooled cathode element in the pouring position
- Fig. 2 is a cold cathode element rotated in the working position.
Fig. 1 zeigt einen in einen Kohleblock 10 eingegossenen Kathodenbarren 11 in Eingiesslage, das gebildete Kathodenelement ist jedoch schon ausgekühlt. Die im Kohleblock 10 ausgesparte Nut 12 hat sich weniger kontrahiert als der Kathodenbarren 11 und die ihn umgebende Gusseisenschicht 13. Zwischen den in Richtung der Nutöffnung ausweitenden, d.h. konischen Schrägflächen 14, den vertikalen Seitenflächen 15 und den Auflageflächen 16 einerseits, sowie dem Gusseisenmantel 13 andererseits bildet sich ein Spalt 17. Der eingegossene Kathodenbarren 11 ist unter die Ebene der Bodenfläche 18 abgesackt. Diese Fläche kommt, im Gegensatz zu der Deckfläche 20, in der arbeitenden Elektrolysewanne nicht in Kontakt mit dem flüssigen Metall.1 shows a
Die Bodenfläche 24 der eine Tiefe t aufweisenden Nut 12 geht in einer Abrundung 22 in die konischen Schrägflächen 14 über, welche ihrerseits eine Höhe h aufweisen. Der Neigungswinkel der Schrägflächen gegenüber der Vertikalen ist mit a bezeichnet.The
Beim in Fig. 2 dargestellten, in Arbeitsposition gedrehten Kathodenelement ist der Eisenbarren 11 so abgerutscht, dass die untere Seite des Gusseisens - wie vor der Kontraktion von Eisen und Kohle - im Bereich der Ebene der Bodenfläche 18 des Kohleblockes 10 liegt. Der Spalt 17 erstreckt sich nunmehr über den Bereich der vertikalen Seitenwände 15, der Schrägflächen 14, der Abrundung 22 und der Bodenfläche 24 der Nut 12. Das Gusseisen 13 liegt auf der Auflagefläche 16 und verhindert, dass sich Gusseisen und Seitenflächen der Nut verklemmen.In the cathode element rotated into the working position shown in FIG. 2, the
Beim Aufwärmen des Kathodenelementes auf Arbeitstemperatur wirkt die Auflagefläche 16 als Widerlager, das Gusseisen 13 wird derart gegen die Kohle gepresst, dass ein guter elektrischer Übergangswiderstand entsteht.When warming up the cathode element Working temperature, the
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH856580 | 1980-11-19 | ||
CH8565/80 | 1980-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0052577A1 EP0052577A1 (en) | 1982-05-26 |
EP0052577B1 true EP0052577B1 (en) | 1984-02-15 |
Family
ID=4342017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81810401A Expired EP0052577B1 (en) | 1980-11-19 | 1981-10-07 | Anchorage for a cathode bar |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0052577B1 (en) |
AT (1) | ATE6273T1 (en) |
AU (1) | AU545284B2 (en) |
CA (1) | CA1190515A (en) |
NO (1) | NO154433C (en) |
NZ (1) | NZ198976A (en) |
YU (1) | YU272781A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4443160A1 (en) * | 1994-12-05 | 1996-06-13 | Kloeckner Humboldt Deutz Ag | Joint between anode rod end pin and carbon@ anode block |
EP3546620B1 (en) * | 2013-04-26 | 2021-12-22 | Tokai COBEX GmbH | Cathode assembly having a cathode block having a slot with varying depth and a securing system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2322284A (en) * | 1983-01-31 | 1984-08-02 | Swiss Aluminium Ltd. | Means of anchorage of anode joins in a carbon anode |
FR2606428B1 (en) * | 1986-11-10 | 1989-02-03 | Pechiney Aluminium | METHOD AND DEVICE FOR SEALING, UNDER PRESSURE, CATHODE RATES |
DE102011004009A1 (en) * | 2011-02-11 | 2012-08-16 | Sgl Carbon Se | Cathode arrangement and cathode block with a guide groove having a groove |
GB2542150A (en) * | 2015-09-09 | 2017-03-15 | Dubai Aluminium Pjsc | Cathode assembly for electrolytic cell suitable for the Hall-Héroult process |
CN108971675B (en) * | 2018-08-27 | 2020-01-10 | 焦作和信冶金科技有限责任公司 | Mechanical assembly method of electrolytic aluminum cathode |
CN115058742B (en) * | 2022-07-06 | 2024-10-29 | 兰州理工大学 | Aluminum carbon direct-connection anode working group for aluminum electrolysis cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH544578A (en) * | 1973-02-09 | 1973-11-30 | Alusuisse | Electrode block for an electrolysis cell with a current conducting bar in a groove in the electrode block |
FR2318244A1 (en) * | 1975-07-17 | 1977-02-11 | Savoie Electrodes Refactaires | PROCESS FOR JOINING METAL BARS WITH CARBON BLOCKS |
-
1981
- 1981-10-07 EP EP81810401A patent/EP0052577B1/en not_active Expired
- 1981-10-07 AT AT81810401T patent/ATE6273T1/en not_active IP Right Cessation
- 1981-11-04 AU AU77089/81A patent/AU545284B2/en not_active Ceased
- 1981-11-16 NZ NZ198976A patent/NZ198976A/en unknown
- 1981-11-17 NO NO813888A patent/NO154433C/en unknown
- 1981-11-18 CA CA000390380A patent/CA1190515A/en not_active Expired
- 1981-11-19 YU YU02727/81A patent/YU272781A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4443160A1 (en) * | 1994-12-05 | 1996-06-13 | Kloeckner Humboldt Deutz Ag | Joint between anode rod end pin and carbon@ anode block |
EP3546620B1 (en) * | 2013-04-26 | 2021-12-22 | Tokai COBEX GmbH | Cathode assembly having a cathode block having a slot with varying depth and a securing system |
Also Published As
Publication number | Publication date |
---|---|
ATE6273T1 (en) | 1984-03-15 |
NO154433C (en) | 1986-09-17 |
CA1190515A (en) | 1985-07-16 |
YU272781A (en) | 1983-12-31 |
AU7708981A (en) | 1982-05-27 |
NO154433B (en) | 1986-06-09 |
AU545284B2 (en) | 1985-07-11 |
EP0052577A1 (en) | 1982-05-26 |
NZ198976A (en) | 1985-04-30 |
NO813888L (en) | 1982-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0052577B1 (en) | Anchorage for a cathode bar | |
DE4118304A1 (en) | ELECTROLYSIS CELL FOR ALUMINUM EFFICIENCY | |
DE2405461C3 (en) | Anchoring for a current conducting bar in a groove of an electrode formed from a carbon block | |
DE2631673B2 (en) | CATHODE ELEMENT FOR ELECTROLYSIS CELLS, IN PARTICULAR FOR ALUMINUM ELECTROLYSIS | |
DE3110490A1 (en) | MELT FLOW ELECTROLYSIS CELL FOR THE PRODUCTION OF ALUMINUM | |
EP0117842B1 (en) | Fixation of anode studs or spades in a carbon anode | |
EP3472373B1 (en) | Cathode block having a slot geometry | |
CH649317A5 (en) | ELECTROLYSIS CELL WITH COMPENSATED MAGNETIC FIELD COMPONENTS. | |
DE3044676C2 (en) | Anchoring for a cathode bar | |
EP2989235B1 (en) | Cathode block having a slot with varying depth and a securing system | |
DE2731908C2 (en) | Method and apparatus for producing aluminum | |
EP0099331B1 (en) | Aluminium electrolysis cell pot | |
DE3135083C1 (en) | Electrolytic pot for producing aluminium by means of molten-salt electrolysis and method for employing the iron bars | |
CH647820A5 (en) | BOTTOM OF A MELTFLOW ELECTROLYSIS CELL. | |
DE3538016C2 (en) | ||
EP0197003A1 (en) | Electrolysis vat for the production of aluminium | |
DE2833381A1 (en) | Electrolysis cell for winning aluminium - where carbon cathode hearth is connected to bus=bars via spaced graphite pegs increasing the efficiency of aluminium prodn. | |
DE898817C (en) | Furnace for direct fused aluminum electrolysis | |
CH663624A5 (en) | Cathode element of a cathode vessel for producing aluminium | |
WO2012107403A1 (en) | Cathode assembly comprising a surface-profiled cathode block having variable groove depth | |
DE2503635C3 (en) | Method for controlling the thickness of the side rims in an electrolytic cell for the production of aluminum | |
DE1758306A1 (en) | Electrolysis cell for the production of aluminum | |
DE1592015C (en) | Anode for diaphragm cell | |
CH661290A5 (en) | Carbon lining of a molten-salt electrolysis cell or of a foundry furnace | |
DE2735435A1 (en) | Pot-shell for electrolytic aluminium reduction cell - with stiffeners disposed against walls which act as cooling ribs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19820616 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 6273 Country of ref document: AT Date of ref document: 19840315 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840910 Year of fee payment: 4 Ref country code: CH Payment date: 19840910 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840930 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860912 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19861031 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19871007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19871008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19871031 Ref country code: CH Effective date: 19871031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19880501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881118 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81810401.0 Effective date: 19880707 |