EP0051529B1 - Control device for the regulation of the optimal conducting time of an ignition coil for an internal-combustion engine - Google Patents

Control device for the regulation of the optimal conducting time of an ignition coil for an internal-combustion engine Download PDF

Info

Publication number
EP0051529B1
EP0051529B1 EP81401701A EP81401701A EP0051529B1 EP 0051529 B1 EP0051529 B1 EP 0051529B1 EP 81401701 A EP81401701 A EP 81401701A EP 81401701 A EP81401701 A EP 81401701A EP 0051529 B1 EP0051529 B1 EP 0051529B1
Authority
EP
European Patent Office
Prior art keywords
signal
counter
time
coil
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401701A
Other languages
German (de)
French (fr)
Other versions
EP0051529A1 (en
Inventor
Jean-Luc Mate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
RENIX ELECTRONIQUE SA
Original Assignee
Siemens Automotive SA
RENIX ELECTRONIQUE SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Automotive SA, RENIX ELECTRONIQUE SA filed Critical Siemens Automotive SA
Publication of EP0051529A1 publication Critical patent/EP0051529A1/en
Application granted granted Critical
Publication of EP0051529B1 publication Critical patent/EP0051529B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques

Definitions

  • the present invention relates to an ignition coil control device with optimal conduction time regulation for an internal combustion engine.
  • the spark which causes the ignition of the compressed explosive mixture inside a cylinder of an internal combustion engine is produced by the breakdown of the electric current flowing in the primary of a coil and thereby causing an overvoltage. in high school connected to candles.
  • the primary electrical circuit of the coil must therefore remain closed for a sufficient time, greater than or at least equal to the time required to fill the current necessary to obtain the nominal energy in said coil.
  • US-A-4,018,202 attempts to solve this problem using an ignition coil control device with optimal conduction time regulation comprising means for strictly measuring the time of each ignition cycle. necessary for obtaining the nominal energy at the terminals of the coil and means for calculating from said measured time and the angular location signal an optimal conduction time to control the conduction of the coil at the next ignition cycle.
  • These means include a position counter which, at each ignition cycle, is incremented by the angular tracking signal and a preloaded speed counter which is decremented at each period by a clock signal by this same angular tracking signal .
  • a comparator causes the coil to go into conduction by means of a rocker which is brought back to zero at the instant of ignition.
  • the conduction time strictly necessary to obtain the nominal energy across the coil is detected by a current limiting amplifier and this time is used to adjust the period of the clock signal during which the speedometer is counted down.
  • Such a device implies that the toothed crown integral in rotation with the crankshaft and used to generate the angular tracking signal has a high number of teeth, otherwise the resolution of the angular tracking signal would be insufficient to measure the speed during each period of the signal. clock and to ensure ignition with the required precision, which is generally of the order of a degree.
  • experience shows that it is practically impossible to produce crowns with hundreds of teeth industrially at an acceptable cost.
  • the device described in US-A-4,018,202 is not applicable to an ignition computer having a transfer function of the aforementioned type. Indeed, if the angular location signal is used to increment and decrement the two counters, the number of angular fractions read during a clock signal period will be insufficient to obtain a correct image of the engine accelerations or decelerations, whereas if the interpolation signal is used, the absence of angular position adjustment during an ignition cycle may lead to major errors under the same conditions.
  • US-A-3,908,616 and WO-A-80.02,862 describe devices for regulating the conduction time of an ignition coil which both use targets linked in rotation to the engine crankshaft and associated with sensors providing two angular location signals at each cycle, for example at each half-turn in the case of a four-cylinder engine.
  • This low number of identified angular positions requires the use of electronic devices which do not allow the instantaneous angular position of the crankshaft to be known with sufficient precision in the event of strong acceleration or deceleration of the engine.
  • the devices of these last two patents do not provide for regulation of the conduction time based on the measurement, at each ignition cycle, of the time strictly necessary for obtaining the nominal energy at the terminals of the coil.
  • the optimal conduction time of the coil is recalculated at each TSD period of the angular tracking signal, and it is the last calculated value which will be taken into account by the ignition computer to control the conduction of the coil on the next ignition cycle.
  • This calculated value being equal to and n being the fixed number of interpolation signals appearing at each TSD period, it can be seen that the ratio between t c calculated and t c measured only depends on the choice of the TH 1 / TH 2 ratio.
  • the first counter is preloaded by a loading signal with a number nt, the optimal conduction time calculated by the device being:
  • the signal illustrated in line L 1 in FIG. 1 is the same as that illustrated in line L 11 in FIG. 2.
  • the scales are different.
  • t c conditioned by the value of the battery voltage, the eigenvalue of the self-inductance of the ignition coil and the apparent resistance of the charging circuit, remains constant from one half-turn to the next.
  • the only fundamental quantity at the input of the device according to the invention is therefore the time t c which makes it possible to continuously recalculate the number of angular fractions N to be supplied to the output stage of the computer in order to reconstruct the time t c at best, whatever the instantaneous speed of rotation of the motor.
  • FIG. 3 is an equivalent diagram of the output stage of a digital ignition advance computer usable in association with the control device according to the present invention.
  • the output stage of the computer comprises a counter-accumulator 100 connected by inputs 104 to the outputs of a memory which has not been represented to receive an angular digital value No representative of it advance to beget.
  • the counter-accumulator 100 also has a loading-106 input connected to a sequencer not shown and an input of L 1 count 105 by which it receives the signal TSD illustrated in the line. L 1 of the Figure 1.
  • Half of the most significant outputs 108 of the counter-accumulator 100 are connected as inputs on the adder 101 already encountered and all of the outputs 108 of the counter-accumulator 100 are connected, moreover, as inputs on a door.
  • the flip-flop 103 directly supplies on its output conductor 110 the command signal of the coil as illustrated in line L 16 of FIG. 2.
  • the result of the addition made at 101 between the number N and the content of the angular counter 100 causes the instant of conduction N ⁇ TSD before the instant of ignition.
  • the number N is therefore found to be directly equal to the number of angular fractions or periods of the angular locating signal illustrated in line L 11 of FIG. 2 which separates the instant of conduction from the instant of ignition.
  • two conductors 37 and 38 leave in the direction of a logic block 36.
  • the conductor 37 transmits the signals successive ignition as shown in Figure 2, line L 16 and in Figure 5, line L 2 '.
  • the conductor 38 transmits the regulation signals as shown in FIG. 2, line L 15 and in FIG. 5, line L 3 '.
  • Line L 1 ' Figure 5 represents two successive TDCs.
  • the logic block 36 is connected by a first output 39 to an input of a logic gate 32 with AND function in order to transmit to it a signal illustrated on line L4 ′, FIG.
  • the second input 34 of logic gate 32 is attacked by a clock H 2 of period TH 2 corresponding to the illustration of line L5', Figure 5.
  • the pulses present on output 33 of gate logic 32 with AND function and which are represented on line L 7 'of FIG. 5 penetrate inside a counter 1 by its clock input connected to the conductor 33.
  • the logic block 36 is connected by a second output 41 to the reset input of counter 1 which receives a pulse as shown in line L 6 ′ in FIG. 5 before the reception of the pulses from logic gate 32 with AND function.
  • the counter 1 presents on its outputs 5 a number NA defined as follows:
  • a comparator 6 is attacked, on the one hand, by the outputs 5 of the first counter 1, on the other hand, by the outputs 12 of a second counter 9 whose clock input 10 is connected to the output of a door logic 13 with AND function.
  • This logic gate 13 is attacked on its input 15 by a signal for the start of synchronous counting of the angular location signal as shown in line L 1 "of FIG. 6 and on its second input 4 by a clock H 1 of period TH 1.
  • These are the pulses present on the output 10 of the logic gate 13 which increment the counter 9 by its clock input itself having been reset to zero by its input 11 thanks to a synchronous pulse of the angular tracking signal and preceding the arrival of the first pulse present on input 15.
  • the clock input 19 of a D type flip-flop 17 receives the counting start signal at the same time as the input 15 of the logic gate 13 and thus switches its output Q20 to the high state as shown in the line L 2 "in FIG. 6.
  • the output 7 of comparator 6 is activated and sets the flip-flop to zero 17.
  • the resulting signal illustrated in line L2 "of FIG. 6 of duration t o NB - TH, is applied to the input 20 of a logic gate 21 with AND function.
  • the second input 22 of the logic gate 21 is activated by pulses of period TSD / n illustrated in line L 3 ", FIG. 6.
  • this interpolation signal can be generated in accordance with the teaching of FR-A-2 446 467 filed on January 9, 1979 in the name of the Régie Nationale des Usines Renault for “process and apparatus for locating the angular position of a part with a rotating movement •.
  • the line L 4 "in FIG. 6 illustrates the number of pulses of period TDS / n passed through the measurement window illustrated in line L 2 "in figure 6.
  • the technician can give the ratio n - (TH 1 / TH 2 ) any value he deems useful and in particular the value one which leads to the permanent obtaining of the equation:
  • the control device which is the subject of the present invention makes it possible, during the initialization phase of starting the vehicle, to program, for the first ignition which is generated, a constant conduction time equal to the maximum conduction time encountered in extreme conditions. Operating.
  • the initialization signal emitted by the computer 2 of FIG. 4 arrives, by a conductor 43, at a first input of a logic gate 42 with OR function which activates by its output 45 the loading input of the counter 1.

Description

La présente invention est relative à un dispositif de commande de bobine d'allumage à régulation de temps de conduction optimal pour moteur à explosion.The present invention relates to an ignition coil control device with optimal conduction time regulation for an internal combustion engine.

L'étincelle qui provoque l'allumage du mélange explosif comprimé à l'intérieur d'un cylindre d'un moteur à explosion est produite par la rupture du courant électrique circulant au primaire d'une bobine et engendrant, de ce fait, une surtension au secondaire branché aux bougies. Le circuit électrique primaire de la bobine doit donc rester fermé pendant un temps suffisant, supérieur ou au moins égal au temps de remplissage du courant nécessaire à l'obtention de l'énergie nominale dans ladite bobine.The spark which causes the ignition of the compressed explosive mixture inside a cylinder of an internal combustion engine is produced by the breakdown of the electric current flowing in the primary of a coil and thereby causing an overvoltage. in high school connected to candles. The primary electrical circuit of the coil must therefore remain closed for a sufficient time, greater than or at least equal to the time required to fill the current necessary to obtain the nominal energy in said coil.

Sur les allumages dits transistorisés, où le classique rupteur mécanique est remplacé par un capteur de position qui commande un transistor de puissance, le temps d'ouverture du circuit primaire est constant et égal au temps minimal nécessaire à la production de l'étincelle. Cette solution, de même que la solution mécanique offre un inconvénient majeur relativement à la consommation de courant aux faibles vitesses, comparé au courant strictement nécessaire au remplissage en énergie suffisant à la bobine.On so-called transistorized ignitions, where the classic mechanical switch is replaced by a position sensor which controls a power transistor, the opening time of the primary circuit is constant and equal to the minimum time necessary for producing the spark. This solution, like the mechanical solution, offers a major drawback relative to the current consumption at low speeds, compared to the current strictly necessary for filling the coil with sufficient energy.

Une autre solution consiste à commander la bobine durant un temps de conduction constant quelle que soit la vitesse de rotation du moteur. Si ce temps est strictement égal au temps de remplissage nécessaire à la bobine, on est conduit à la consommation minimale de courant par le circuit d'allumage. Une solution de ce genre, appliquée à un allumage « tout électronique où l'organe de puissance à transistor est commandé par un calculateur qui détermine à tout moment l'angle d'avance à l'allumage, a fait l'objet du FR-A-2 358 564 déposé le 15 juillet 1976 au nom de la Régie nationale des usines RENAULT pour « dispositif de commande de bobine d'allumage pour moteur à explosion à temps de conduction constant •. Cette solution présente l'avantage de l'ajustement paramétré du temps de conduction constant grâce à l'utilisation d'un réseau logique programmable (PLA). Toutefois, elle ne permet pas de s'affranchir de tous les paramètres tels que la tension de la batterie, la température ou autres qui influent sur l'intensité du courant dans la bobine et, par conséquent, sur le temps nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine.Another solution consists in controlling the coil during a constant conduction time whatever the rotation speed of the motor. If this time is strictly equal to the filling time necessary for the coil, we are led to the minimum current consumption by the ignition circuit. A solution of this kind, applied to an all-electronic ignition where the transistor power unit is controlled by a computer which determines the advance angle at ignition at all times, was the subject of FR- A-2 358 564 filed on July 15, 1976 in the name of the Régie nationale des plants RENAULT for "ignition coil control device for combustion engine with constant conduction time •. This solution has the advantage of the parameterized adjustment of the constant conduction time thanks to the use of a programmable logic network (PLA). However, it does not make it possible to overcome all the parameters such as the battery voltage, the temperature or others which influence the intensity of the current in the coil and, consequently, on the time necessary for obtaining of nominal energy across the coil.

Le brevet US-A-4 018 202 tente de résoudre ce problème à l'aide d'un dispositif de commande de bobine d'allumage à régulation de temps de conduction optimal comprenant des moyens pour mesurer à chaque cycle d'allumage le temps strictement nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine et des moyens pour calculer à partir dudit temps mesuré et du signal de repérage angulaire un temps de conduction optimal pour commander la conduction de la bobine au cycle d'allumage suivant.US-A-4,018,202 attempts to solve this problem using an ignition coil control device with optimal conduction time regulation comprising means for strictly measuring the time of each ignition cycle. necessary for obtaining the nominal energy at the terminals of the coil and means for calculating from said measured time and the angular location signal an optimal conduction time to control the conduction of the coil at the next ignition cycle.

Ces moyens comprennent un compteur de position qui, à chaque cycle d'allumage, est incrémenté par le signal de repérage angulaire et un compteur de vitesse préchargé qui est décrémenté à chaque période d'un signal d'horloge par ce même signal de repérage angulaire.These means include a position counter which, at each ignition cycle, is incremented by the angular tracking signal and a preloaded speed counter which is decremented at each period by a clock signal by this same angular tracking signal .

Lorsque les contenus des deux compteurs sont devenus égaux, un comparateur provoque la mise en conduction de la bobine par l'intermédiaire d'une bascule qui est ramenée à zéro à l'instant de l'allumage. Le temps de conduction strictement nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine est détecté par un amplificateur limiteur de courant et ce temps sert à ajuster la période du signal d'horloge pendant laquelle le compteur de vitesse est décompté.When the contents of the two counters have become equal, a comparator causes the coil to go into conduction by means of a rocker which is brought back to zero at the instant of ignition. The conduction time strictly necessary to obtain the nominal energy across the coil is detected by a current limiting amplifier and this time is used to adjust the period of the clock signal during which the speedometer is counted down.

Un tel dispositif implique que la couronne dentée solidaire en rotation du vilebrequin et servant à générer le signal de repérage angulaire présente un nombre élevé de dents, faute de quoi la résolution du signal de repérage angulaire serait insuffisante pour mesurer la vitesse pendant chaque période du signal d'horloge et pour assurer l'allumage avec la précision demandée, qui est généralement de l'ordre du degré. Or, l'expérience montre qu'il est pratiquement impossible de réaliser industriellement à un coût acceptable des couronnes présentant centaines de dents.Such a device implies that the toothed crown integral in rotation with the crankshaft and used to generate the angular tracking signal has a high number of teeth, otherwise the resolution of the angular tracking signal would be insufficient to measure the speed during each period of the signal. clock and to ensure ignition with the required precision, which is generally of the order of a degree. However, experience shows that it is practically impossible to produce crowns with hundreds of teeth industrially at an acceptable cost.

C'est la raison pour laquelle il est connu dans de nombreux calculateurs d'allumage électronique de recourir à des couronnes ne présentant que quelques dizaines de dents tout en réalisant une interpolation électronique du signal de référence angulaire pour obtenir la précision angulaire voulue pour l'allumage. Dans les calculateurs de ce type, l'angle d'avance à l'allumage est exprimé sous forme de la somme d'un nombre entier de dents ou périodes du signal repérage angulaire et d'une fraction de dent ou période représentée par un nombre de périodes du signal d'interpolation. De son côté, l'angle de conduction de la bobine, dont la précision est moins critique, est exprimé en nombre de périodes du signal de repérage angulaire, de sorte qu'un tel calculateur a une fonction de transfert de la forme te engendré - N TSD + 6 OÙ :

  • - te engendré est le temps de conduction de la bobine,
  • - N est un nombre de fractions angulaires ou périodes du signal de repérage angulaire de période TSD, et
  • - s est une quantité faible liée à la différence de résolution entre l'angle d'avance à l'allumage et l'angle de conduction de la-bobine.
This is the reason why it is known in many electronic ignition computers to use crowns having only a few tens of teeth while performing electronic interpolation of the angular reference signal to obtain the desired angular precision for the ignition. In calculators of this type, the ignition advance angle is expressed as the sum of an integer number of teeth or periods of the angular tracking signal and a fraction of tooth or period represented by a number of periods of the interpolation signal. For its part, the conduction angle of the coil, the accuracy of which is less critical, is expressed in number of periods of the angular location signal, so that such a computer has a transfer function of the form t e generated - N TSD + 6 WHERE:
  • - t e generated is the conduction time of the coil,
  • N is a number of angular fractions or periods of the angular location signal of period TSD, and
  • - s is a small quantity linked to the difference in resolution between the ignition advance angle and the conduction angle of the coil.

Or, le dispositif décrit au brevet US-A-4 018 202 n'est pas applicable à un calculateur d'allumage ayant une fonction de transfert du type précité. En effet, si l'on utilise le signal de repérage angulaire pour incrémenter et décrémenter les deux compteurs, le nombre de fractions angulaires lues pendant une période de signal d'horloge sera insuffisant pour obtenir une image correcte des accélérations ou décélérations du moteur, alors que si on exploite le signal d'interpolation, l'absence de recalage de la position angulaire au cours d'un cycle d'allumage pourra entraîner dans les mêmes conditions des erreurs importantes. Une autre raison de l'incompatibilité du dispositif conforme au brevet US-A-4018202 avec un calculateur d'allumage ayant la fonction de transfert précitée tient au fait que ce dernier travaille sur des angles et doit être chargé avant chaque cycle d'allumage avec un temps de conduction de bobine traduit sous forme d'une valeur angulaire fonction de la vitesse rotation du moteur, alors que le dispositif du brevet US ci-dessus génère directement un temps de conduction au cours du cycle d'allumage considéré.However, the device described in US-A-4,018,202 is not applicable to an ignition computer having a transfer function of the aforementioned type. Indeed, if the angular location signal is used to increment and decrement the two counters, the number of angular fractions read during a clock signal period will be insufficient to obtain a correct image of the engine accelerations or decelerations, whereas if the interpolation signal is used, the absence of angular position adjustment during an ignition cycle may lead to major errors under the same conditions. Another reason for the incompatibility of the device in accordance with patent US-A-4018202 with an ignition computer having the aforementioned transfer function is that the latter works on angles and must be charged before each ignition cycle with a coil conduction time translated in the form of an angular value as a function of the engine rotation speed, while the device of the above US patent directly generates a conduction time during the ignition cycle considered.

D'autre part, la solution consistant à faire varier la fréquence d'horloge servant à échantillonner le signal vitesse pour tenir compte des variations du temps nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine mesuré à chaque cycle d'allumage apparaît complexe et coûteuse en composants.On the other hand, the solution consisting in varying the clock frequency used to sample the speed signal to take account of the variations in the time necessary for obtaining the nominal energy at the terminals of the coil measured at each cycle of ignition appears complex and costly in components.

Enfin, les brevets US-A-3 908 616 et WO-A-80.02 862 décrivent des dispositifs de régulation du temps de conduction d'une bobine d'allumage qui utilisent tous deux des cibles liées en rotation au vilebrequin du moteur et associées à des capteurs fournissant deux signaux de repérage angulaire à chaque cycle, par exemple à chaque demi-tour dans le cas d'un moteur à quatre cylindres. Ce faible nombre de positions angulaires identifiées nécessite de recourir à des artifices électroniques qui ne permettent pas de connaître avec une précision suffisante la position angulaire instantanée du vilebrequin en cas de fortes accélérations ou décélérations du moteur. En outre, les dispositifs de ces deux derniers brevets ne prévoient pas une régulation du temps de conduction basée sur la mesure, à chaque cycle d'allumage, du temps strictement nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine.Finally, US-A-3,908,616 and WO-A-80.02,862 describe devices for regulating the conduction time of an ignition coil which both use targets linked in rotation to the engine crankshaft and associated with sensors providing two angular location signals at each cycle, for example at each half-turn in the case of a four-cylinder engine. This low number of identified angular positions requires the use of electronic devices which do not allow the instantaneous angular position of the crankshaft to be known with sufficient precision in the event of strong acceleration or deceleration of the engine. In addition, the devices of these last two patents do not provide for regulation of the conduction time based on the measurement, at each ignition cycle, of the time strictly necessary for obtaining the nominal energy at the terminals of the coil.

L'invention vise à fournir un dispositif de commande de bobine d'allumage basé, comme celui décrit au brevet US-A-4 018 202, sur la mesure à chaque cycle d'allumage du temps strictement nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine, tout en étant compatible avec un calculateur ayant une fonction de transfert de la forme tc engendré = N. TSD + ε, c'est-à-dire dans lequel le temps de conduction est exprimé, à la valeur s près, sous forme d'un nombre entier de divisions angulaires telles que des dents de la couronne liée au vilebrequin du moteur.The invention aims to provide an ignition coil control device based, such as that described in patent US-A-4,018,202, on the measurement at each ignition cycle of the time strictly necessary for obtaining the nominal energy at the terminals of the coil, while being compatible with a computer having a transfer function of the form t c generated = N. TSD + ε, that is to say in which the conduction time is expressed, at the value s near, in the form of an integer number of angular divisions such as teeth of the crown linked to the crankshaft of the engine.

A cet effet, l'invention a pour objet un dispositif de commande de bobine d'allumage à régulation de temps de conduction optimal associé à l'étage de sortie d'un calculateur d'avance à l'allumage pour moteur à explosion produisant un signal de repérage angulaire de période TSD correspondant à un repère angulaire tel qu'une dent de la couronne du démarreur associée au moteur, comprenant des moyens pour mesurer à chaque cycle d'allumage le temps tc mesuré strictement nécessaire à l'obtention de l'énergie nominale aux bornes de la bobine et des moyens pour calculer à partir dudit temps tc mesuré et du signal de repérage angulaire un temps de conduction optimal tc pour commander la conduction de la bobine au cycle d'allumage suivant, caractérisé en ce que ledit dispositif comprend une première horloge de période TH2, un premier compteur incrémenté par la première horloge pendant le temps tc mesuré jusqu'à un nombre NA tel que :

Figure imgb0001
une seconde horloge de période TH,, un second compteur incrémenté, à chaque période TSD du signal de repérage angulaire, par la seconde horloge pendant un temps to = NB - TH1 tel que NB = NA, et un troisième compteur incrémenté pendant le temps to par un signal d'interpolation de période TSD/n jusqu'à un nombre
Figure imgb0002
de telle sorte que le temps de conduction optimal calculé par le dispositif est :
Figure imgb0003
ledit nombre N étant transmis à l'étage de sortie du calculateur qui engendre un temps de conduction :
Figure imgb0004
où ε est une quantité faible et connue.To this end, the subject of the invention is an ignition coil control device with optimal conduction time regulation associated with the output stage of an ignition advance computer for an internal combustion engine producing a TSD period angular location signal corresponding to an angular reference such as a tooth in the starter crown associated with the engine, comprising means for measuring the time t c measured at each ignition cycle strictly necessary for obtaining the nominal energy at the terminals of the coil and means for calculating from said measured time t c and the angular location signal an optimal conduction time t c for controlling the conduction of the coil at the following ignition cycle, characterized in that that said device comprises a first clock of period TH 2 , a first counter incremented by the first clock during the time t c measured up to a number NA such that:
Figure imgb0001
a second clock of period TH ,, a second counter incremented, at each period TSD of the angular location signal, by the second clock for a time t o = NB - TH 1 such that NB = NA, and a third counter incremented during the time t o by an interpolation signal of period TSD / n up to a number
Figure imgb0002
so that the optimal conduction time calculated by the device is:
Figure imgb0003
said number N being transmitted to the output stage of the computer which generates a conduction time:
Figure imgb0004
where ε is a small and known quantity.

Avec un tel dispositif, le temps de conduction optimal de la bobine est recalculé à chaque période TSD du signal de repérage angulaire, et c'est la dernière valeur calculée qui sera prise en compte par le calculateur d'allumage pour commander la conduction de la bobine au cycle d'allumage suivant. Cette valeur calculée étant égale à

Figure imgb0005
et n étant le nombre fixe de signaux d'interpolation apparaissant à chaque période TSD, on constate que le rapport entre tc calculé et tc mesuré ne dépend que du choix du rapport TH1/TH2.With such a device, the optimal conduction time of the coil is recalculated at each TSD period of the angular tracking signal, and it is the last calculated value which will be taken into account by the ignition computer to control the conduction of the coil on the next ignition cycle. This calculated value being equal to
Figure imgb0005
and n being the fixed number of interpolation signals appearing at each TSD period, it can be seen that the ratio between t c calculated and t c measured only depends on the choice of the TH 1 / TH 2 ratio.

Suivant une caractéristique de l'invention, le premier compteur est préchargé par un signal de chargement avec un nombre nt, le temps de conduction optimal calculé par le dispositif étant :

Figure imgb0006
According to a characteristic of the invention, the first counter is preloaded by a loading signal with a number nt, the optimal conduction time calculated by the device being:
Figure imgb0006

D'autres caractéristiques ressortiront de la description qui suit et qui n'est donnée qu'à titre d'exemple. A cet effet, on se reportera aux dessins joints dans lesquels :

  • les figures 1 et 2 représentent un ensemble de signaux permettant de situer le problème résolu par la présente invention ;
  • la figure 3 est un schéma équivalent à l'étage de sortie d'un calculateur numérique d'avance à l'allumage qu'il convient d'utiliser en association avec le dispositif de commande selon la présente invention ;
  • la figure 4 représente schématiquement un exemple de réalisation d'un dispositif de commande conforme à la présente invention ;
  • les figures 5 et 6 représentent divers chronogrammes de signaux présents dans le circuit de l'invention et facilitant la compréhension du fonctionnement de ce dernier.
Other characteristics will emerge from the description which follows and which is given only by way of example. For this purpose, reference is made to the accompanying drawings in which:
  • Figures 1 and 2 show a set of signals for locating the problem solved by the present invention;
  • FIG. 3 is a diagram equivalent to the output stage of a digital ignition advance computer which should be used in association with the control device according to the present invention;
  • FIG. 4 schematically represents an exemplary embodiment of a control device according to the present invention;
  • Figures 5 and 6 show various timing diagrams of signals present in the circuit of the invention and facilitating the understanding of the operation of the latter.

Le chronogramme de la figure 1 montre :

  • à la ligne L1 le signal de repérage angulaire de période TSD ;
  • à la ligne L2 le courant traversant la bobine ;
  • à la ligne L3 l'évolution du contenu NA d'un compteur de mesure du temps tc strictement nécessaire pour obtenir l'énergie nominale aux bornes de la bobine ;
  • à la ligne L4 la fenêtre de mesure angulaire de durée to proportionnelle à la mesure du temps tc strictement nécessaire, générée à chaque fraction du signal de repérage, grâce à l'incrémentation d'un compteur dont le contenu NB est en permanence comparé au contenu NA du compteur de temps ;
  • à la ligne Ls, l'évolution du nombre N obtenu par comptage d'un signal d'interpolation de résolution n fois plus élevée que le signal de la ligne L1 durant la fenêtre de la ligne L4.
The timing diagram in Figure 1 shows:
  • at line L 1 the angular tracking signal of period TSD;
  • at line L 2 the current passing through the coil;
  • on line L 3 the evolution of the content NA of a time measurement counter t c strictly necessary to obtain the nominal energy at the terminals of the coil;
  • at line L 4 the angular measurement window of duration t o proportional to the measurement of time t c strictly necessary, generated at each fraction of the locating signal, thanks to the incrementation of a counter whose NB content is permanently compared to the NA content of the time counter;
  • at line L s , the evolution of the number N obtained by counting an interpolation signal of resolution n times higher than the signal of line L 1 during the window of line L 4 .

A la figure 2, on a représenté successivement :

  • à la ligne L11 le signal désigné par la suite TSD et qui est le signal dent ou signal de repérage angulaire issu de la couronne du démarreur et fourni par l'intermédiaire d'un capteur de proximité ;
  • à la ligne L12' deux points morts hauts (PMH) successifs ;
  • à la ligne L13, la forme du courant au travers du circuit primaire de la bobine d'allumage ;
  • à la ligne L14, l'instant de déclenchement de l'étincelle d'allumage ;
  • à la ligne L15' un signal de régulation correspondant au temps de régulation « treg à à la ligne L13 et, à la ligne L16' le signal d'allumage en sortie du calculateur sur son conducteur 110 à la figure 3.
In FIG. 2, there is shown successively:
  • at line L 11 the signal subsequently designated TSD and which is the tooth signal or angular location signal from the starter ring and supplied by means of a proximity sensor;
  • at line L 12 ' two successive top dead centers (TDCs);
  • at line L 13 , the shape of the current through the primary circuit of the ignition coil;
  • at line L 14 , the instant of ignition spark ignition;
  • at line L 15 ′ a regulation signal corresponding to the regulation time “treg at at line L 13 and at line L 16 ′ the ignition signal at the output of the computer on its conductor 110 in FIG. 3.

Le signal illustré à la ligne L1 de la figure 1 est le même que celui illustré à la ligne L11 de la figure 2. Les échelles sont différentes.The signal illustrated in line L 1 in FIG. 1 is the same as that illustrated in line L 11 in FIG. 2. The scales are different.

Le dispositif objet de l'invention est prévu pour minimiser dans la génération du signal d'alimentation du circuit primaire de la bobine d'allumage, ligne L13' figure 2, le temps « treg » dit de régulation du courant primaire de la bobine. Dans celui-ci, a2 représente le temps de conduction effectivement généré à chaque demi-tour To du moteur et se décomposant comme suit :

  • - tc: temps de conduction strictement nécessaire à l'obtention du courant nominal au travers de la bobine,
  • - treg : temps de régulation durant lequel on maintient le courant nominal au travers de la bobine jusqu'à l'apparition de l'instant d'allumage représenté à la ligne L,4 et durant lequel le dispositif de commande de puissance doit dissiper une énergie non négligeable afin d'assurer cette régulation.
The device which is the subject of the invention is intended to minimize, in the generation of the supply signal of the primary circuit of the ignition coil, line L 13 'in FIG. 2, the time "treg" said to regulate the primary current of the coil . In this one, a2 represents the conduction time actually generated at each half-turn T o of the motor and broken down as follows:
  • - t c : conduction time strictly necessary to obtain the nominal current through the coil,
  • - treg: regulation time during which the nominal current is maintained through the coil until the appearance of the ignition instant shown on line L, 4 and during which the power control device must dissipate a significant energy to ensure this regulation.

C'est la mesure du temps strictement nécessaire durant un demi-tour To qui, par l'intermédiaire du dispositif de commande suivant la présente invention, doit permettre au demi-tour suivant d'appliquer sur les entrées 107 d'un additionneur 101 de l'étage de sortie du calculateur illustré à la figure 3, la valeur optimale N : nombre de fractions angulaires ou périodes du signal de repérage angulaire, conduisant à engendrer un temps total a2 voisin de to et inférieur à To.It is the measurement of the time strictly necessary during a half-turn T o which, by means of the control device according to the present invention, must allow the following half-turn to apply to the inputs 107 of an adder 101 of the output stage of the computer illustrated in FIG. 3, the optimal value N: number of angular fractions or periods of the angular tracking signal, leading to generate a total time a2 close to t o and less than T o .

Il est admis que tc, conditionné par la valeur de la tension batterie, la valeur propre de la self- inductance de la bobine d'allumage et la résistance apparente du circuit de charge, reste constant d'un demi-tour au suivant.It is accepted that t c , conditioned by the value of the battery voltage, the eigenvalue of the self-inductance of the ignition coil and the apparent resistance of the charging circuit, remains constant from one half-turn to the next.

La seule grandeur fondamentale en entrée du dispositif selon l'invention est donc le temps tc qui permet de recalculer en permanence le nombre de fractions angulaires N à fournir à l'étage de sortie du calculateur afin de reconstituer le temps tc au mieux, quelle que soit la vitesse instantanée de rotation du moteur.The only fundamental quantity at the input of the device according to the invention is therefore the time t c which makes it possible to continuously recalculate the number of angular fractions N to be supplied to the output stage of the computer in order to reconstruct the time t c at best, whatever the instantaneous speed of rotation of the motor.

La figure 3 est un schéma équivalent de l'étage de sortie d'un calculateur numérique d'avance à l'allumage utilisable en association avec le dispositif de commande suivant la présente invention.FIG. 3 is an equivalent diagram of the output stage of a digital ignition advance computer usable in association with the control device according to the present invention.

Suivant la représentation de la figure 3, l'étage de sortie du calculateur comprend un compteur-accumulateur 100 relié par des entrées 104 aux sorties d'une mémoire qui n'a pas été représentée pour en recevoir une valeur numérique angulaire No représentative de l'avance à engendrer. Le compteur-accumulateur 100 possède, en outre, une entrée de-chargement-106 reliée à un séquenceur non représenté et une entrée de L1 comptage 105 par laquelle il reçoit le signal TSD illustré à la ligne. L1 de la figure 1. La moitié des sorties de plus haut poids 108 du compteur-accumulateur 100 est reliée en entrées sur l'additionneur 101 déjà rencontré et la totalité des sorties 108 du compteur-accumulateur 100 est connectée, par ailleurs, en entrées sur une porte logique 102 à fonction ET dont la sortie 111 est connectée à l'entrée de retour à zéro d'une bascule 103 dont l'entrée d'activation est reliée au conducteur 109 de sortie de l'additionneur-comparateur 101 qui est de capacité limitée et qui, quand il y a débordement, émet une impulsion sur son conducteur 109 pour actionner la bascule 103. La bascule 103 fournit directement sur son conducteur de sortie 110 le signal de commande de la bobine tel qu'il est illustré à la ligne L16 de la figure 2. Le résultat de l'addition effectuée en 101 entre le nombre N et le contenu du compteur angulaire 100 provoque l'instant de mise en conduction N· TSD avant l'instant d'allumage. Le nombre N se trouve donc être directement égal au nombre de fractions angulaires ou périodes du signal de repérage angulaire illustré à la ligne L11 de la figure 2 qui sépare l'instant de mise en conduction de l'instant d'allumage.According to the representation of FIG. 3, the output stage of the computer comprises a counter-accumulator 100 connected by inputs 104 to the outputs of a memory which has not been represented to receive an angular digital value No representative of it advance to beget. The counter-accumulator 100 also has a loading-106 input connected to a sequencer not shown and an input of L 1 count 105 by which it receives the signal TSD illustrated in the line. L 1 of the Figure 1. Half of the most significant outputs 108 of the counter-accumulator 100 are connected as inputs on the adder 101 already encountered and all of the outputs 108 of the counter-accumulator 100 are connected, moreover, as inputs on a door. logic 102 with AND function whose output 111 is connected to the return to zero input of a flip-flop 103 whose activation input is connected to the output conductor 109 of the adder-comparator 101 which is of limited capacity and which, when there is overflow, emits a pulse on its conductor 109 to actuate the flip-flop 103. The flip-flop 103 directly supplies on its output conductor 110 the command signal of the coil as illustrated in line L 16 of FIG. 2. The result of the addition made at 101 between the number N and the content of the angular counter 100 causes the instant of conduction N · TSD before the instant of ignition. The number N is therefore found to be directly equal to the number of angular fractions or periods of the angular locating signal illustrated in line L 11 of FIG. 2 which separates the instant of conduction from the instant of ignition.

La figure 3 est l'équivalent de l'étage de sortie du calculateur d'avance à l'allumage tel qu'il a été décrit dans le FR-A-2 237 421 déposé le 9 octobre 1975 par la Régie nationale des usines RENAULT pour « procédé et dispositif de commande électronique d'allumage pour un moteur à combustion interne ». D'une façon plus générale, on peut dire que l'étage de sortie de tout calculateur d'avance à l'allumage ayant une fonction de transfert de la forme : tc = N · TSD + e dans laquelle ε est une quantité faible et connue, toutes les autres quantités ayant été précédemment définies, est satisfaisant pour être associé au dispositif de commande suivant la présente invention qui va être décrit maintenant en liaison avec la figure 4.Figure 3 is the equivalent of the output stage of the ignition advance computer as described in FR-A-2 237 421 filed on October 9, 1975 by the Régie nationale des plants RENAULT for "electronic ignition control method and device for an internal combustion engine". More generally, we can say that the output stage of any ignition advance computer having a transfer function of the form: t c = N · TSD + e in which ε is a small quantity and known, all the other quantities having been previously defined, is satisfactory for being associated with the control device according to the present invention which will now be described in conjunction with FIG. 4.

Suivant la représentation de la figure 4 de l'étage de sortie du calculateur 2 tel que représenté et décrit en liaison avec la figure 3 partent deux conducteurs 37 et 38 en direction d'un bloc logique 36. Le conducteur 37 transmet les signaux d'allumage successifs tels que représentés à la figure 2, ligne L16 et à la figure 5, ligne L2'. Le conducteur 38 transmet les signaux de régulation tels que représentés à la figure 2, ligne L15 et à la figure 5, ligne L3'. La ligne L1' figure 5 représente deux PMH successifs. Le bloc logique 36 est connecté par une première sortie 39 à une entrée d'une porte logique 32 à fonction ET pour lui transmettre un signal illustré ligne L4', figure 5 et qui est représentatif du temps de conduction strictement nécessaire à la bobine, ci-après appelé tc mesuré' La seconde entrée 34 de la porte logique 32 est attaquée par une horloge H2 de période TH2 répondant à l'illustration de la ligne L5', figure 5. Les impulsions présentes sur la sortie 33 de la porte logique 32 à fonction ET et qui sont représentées à la ligne L7' de la figure 5 pénètrent à l'intérieur d'un compteur 1 par son entrée horloge reliée au conducteur 33. Le bloc logique 36 est relié par une seconde sortie 41 à l'entrée de remise à zéro du compteur 1 qui reçoit une impulsion telle que représentée à la ligne L6' de la figure 5 préalablement à la réception des impulsions en provenance de la porte logique 32 à fonction ET. A la fin du temps tc mesuré (ligne L4', fig.5), le compteur 1 présente sur ses sorties 5 un nombre NA défini comme suit :

Figure imgb0007
According to the representation of FIG. 4 of the output stage of the computer 2 as shown and described in connection with FIG. 3, two conductors 37 and 38 leave in the direction of a logic block 36. The conductor 37 transmits the signals successive ignition as shown in Figure 2, line L 16 and in Figure 5, line L 2 '. The conductor 38 transmits the regulation signals as shown in FIG. 2, line L 15 and in FIG. 5, line L 3 '. Line L 1 'Figure 5 represents two successive TDCs. The logic block 36 is connected by a first output 39 to an input of a logic gate 32 with AND function in order to transmit to it a signal illustrated on line L4 ′, FIG. 5 and which is representative of the conduction time strictly necessary for the coil, ci -after called measured tc ' The second input 34 of logic gate 32 is attacked by a clock H 2 of period TH 2 corresponding to the illustration of line L5', Figure 5. The pulses present on output 33 of gate logic 32 with AND function and which are represented on line L 7 'of FIG. 5 penetrate inside a counter 1 by its clock input connected to the conductor 33. The logic block 36 is connected by a second output 41 to the reset input of counter 1 which receives a pulse as shown in line L 6 ′ in FIG. 5 before the reception of the pulses from logic gate 32 with AND function. At the end of the measured time t c (line L 4 ', fig. 5), the counter 1 presents on its outputs 5 a number NA defined as follows:
Figure imgb0007

Un comparateur 6 est attaqué, d'une part, par les sorties 5 du premier compteur 1, d'autre part, par les sorties 12 d'un second compteur 9 dont l'entrée horloge 10 est connectée à la sortie d'une porte logique 13 à fonction ET. Cette porte logique 13 est attaquée sur son entrée 15 par un signal de début de comptage synchrone du signal de repérage angulaire tel que représenté à la ligne L1" de la figure 6 et sur sa seconde entrée 4 par une horloge H1 de période TH1. Ce sont les impulsions présentes sur la sortie 10 de la porte logique 13 qui incrémentent le compteur 9 par son entrée horloge lui-même ayant été remis à zéro par son entrée 11 grâce à une impulsion synchrone du signal de repérage angulaire et précédant l'arrivée de la première impulsion présente sur l'entrée 15.A comparator 6 is attacked, on the one hand, by the outputs 5 of the first counter 1, on the other hand, by the outputs 12 of a second counter 9 whose clock input 10 is connected to the output of a door logic 13 with AND function. This logic gate 13 is attacked on its input 15 by a signal for the start of synchronous counting of the angular location signal as shown in line L 1 "of FIG. 6 and on its second input 4 by a clock H 1 of period TH 1. These are the pulses present on the output 10 of the logic gate 13 which increment the counter 9 by its clock input itself having been reset to zero by its input 11 thanks to a synchronous pulse of the angular tracking signal and preceding the arrival of the first pulse present on input 15.

L'entrée horloge 19 d'une bascule 17 de type D reçoit le signal de début de comptage en même temps que l'entrée 15 de la porte logique 13 et fait ainsi passer sa sortie Q20 à l'état haut comme représenté à la ligne L2" de la figure 6. Lorsque le contenu du compteur 9 atteint une valeur : NB = NA, au bout d'un temps, to = NB - TH, la sortie 7 du comparateur 6 est activée et met à zéro la bascule 17. Le signal résultant illustré à la ligne L2" de la figure 6 de durée to = NB - TH, est appliqué sur l'entrée 20 d'une porte logique 21 à fonction ET. La seconde entrée 22 de la porte logique 21 est activée par des impulsions de période TSD/n illustrées à la ligne L3", figure 6. Fréquence multiple n du signal de repérage angulaire TSD, ce signal d'interpolation peut être engendré conformément à l'enseignement du FR-A-2 446 467 déposé le 9 janvier 1979 au nom de la Régie Nationale des Usines Renault pour « procédé et appareil de repérage de la position angulaire d'une pièce animée d'un mouvement de rotation •.The clock input 19 of a D type flip-flop 17 receives the counting start signal at the same time as the input 15 of the logic gate 13 and thus switches its output Q20 to the high state as shown in the line L 2 "in FIG. 6. When the content of counter 9 reaches a value: NB = NA, after a time, t o = NB - TH, the output 7 of comparator 6 is activated and sets the flip-flop to zero 17. The resulting signal illustrated in line L2 "of FIG. 6 of duration t o = NB - TH, is applied to the input 20 of a logic gate 21 with AND function. The second input 22 of the logic gate 21 is activated by pulses of period TSD / n illustrated in line L 3 ", FIG. 6. Multiple frequency n of the angular location signal TSD, this interpolation signal can be generated in accordance with the teaching of FR-A-2 446 467 filed on January 9, 1979 in the name of the Régie Nationale des Usines Renault for “process and apparatus for locating the angular position of a part with a rotating movement •.

Les impulsions sortant de la porte logique 21 à fonction ET dont le nombre est égal à N = to/(TSD/n) pénètrent par son entrée horloge 24 à l'intérieur d'un compteur 25 préalablement remis à zéro par son entrée 26 par le même signal que celui appliqué au compteur 9 par son entrée 11. Le résultat du comptage N apparaît sur les sorties 28 du compteur 25 et est chargé dans une mémoire 29 qui est activée sur son entrée de chargement 30 par un signal synchrone du signal de repérage angulaire précédant l'impulsion de remise à zéro des compteurs 9 et 25. C'est ce même nombre N présent sur les sorties 31 de la mémoire 29 qui est appliqué aux entrées 107 de l'étage de sortie du calculateur électronique 2 tel qu'il a été explicité à l'aide de la figure 3.The pulses exiting from the logic gate 21 with AND function, the number of which is equal to N = t o / (TSD / n) penetrate by its clock input 24 inside a counter 25 previously reset by its input 26 by the same signal as that applied to counter 9 by its input 11. The counting result N appears on the outputs 28 of counter 25 and is loaded into a memory 29 which is activated on its loading input 30 by a synchronous signal signal of angular tracking preceding the reset pulse of the counters 9 and 25. It is this same number N present on the outputs 31 of the memory 29 which is applied to the inputs 107 of the output stage of the electronic computer 2 such that it has been explained using Figure 3.

La ligne L4" à la figure 6 illustre le nombre d'impulsions de période TDS/n passées au travers de la fenêtre de mesure illustrée à la ligne L2" de la figurer 6.The line L 4 "in FIG. 6 illustrates the number of pulses of period TDS / n passed through the measurement window illustrated in line L 2 "in figure 6.

Le temps de conduction calculé est donc égal à.

Figure imgb0008
or:
Figure imgb0009
d'où
Figure imgb0010
et
Figure imgb0011
Figure imgb0012
The calculated conduction time is therefore equal to.
Figure imgb0008
gold:
Figure imgb0009
from where
Figure imgb0010
and
Figure imgb0011
Figure imgb0012

Le technicien peut donner au rapport n - (TH1/TH2) toute valeur qu'il juge utile et notamment la valeur un qui conduit à l'obtention permanente de l'équation :

Figure imgb0013
The technician can give the ratio n - (TH 1 / TH 2 ) any value he deems useful and in particular the value one which leads to the permanent obtaining of the equation:
Figure imgb0013

Le dispositif décrit autorise l'implantation de deux nombres de préchargement ou offsets dans les compteurs 1 et 25 de la figure 4 qui s'explicitent comme suit :

  • Préchargement d'une valeur nt dans le compteur 1 par son entrée 41.
  • Préchargement d'une valeur nd dans le compteur 25 par son entrée 26. On obtient en sortie :
    Figure imgb0014
The device described authorizes the installation of two preloading numbers or offsets in the counters 1 and 25 of FIG. 4 which are explained as follows:
  • Preloading of a value nt in counter 1 by its input 41.
  • Preloading of a value nd in the counter 25 by its input 26. We obtain at output:
    Figure imgb0014

On remarque que si l'entrée 41 du compteur 1 et l'entrée 26 du compteur 25 correspondent à leurs entrées de remise à zéro, la fonction de sortie est décrite par l'équation (1) ci-dessus.Note that if the input 41 of the counter 1 and the input 26 of the counter 25 correspond to their reset inputs, the output function is described by equation (1) above.

Le dispositif de commande objet de la présente invention permet, durant la phase d'initialisation de démarrage du véhicule, de programmer, pour le premier allumage qui est engendré, un temps de conduction constant et égal au temps de conduction maximal rencontré dans les conditions extrêmes de fonctionnement.The control device which is the subject of the present invention makes it possible, during the initialization phase of starting the vehicle, to program, for the first ignition which is generated, a constant conduction time equal to the maximum conduction time encountered in extreme conditions. Operating.

Le signal d'initialisation émis par le calculateur 2 de la figure 4 parvient, par un conducteur 43, à une première entrée d'une porte logique 42 à fonction OU qui active par sa sortie 45 l'entrée de chargement du compteur 1.The initialization signal emitted by the computer 2 of FIG. 4 arrives, by a conductor 43, at a first input of a logic gate 42 with OR function which activates by its output 45 the loading input of the counter 1.

n max = te max/TH2 conduit si l'on pose δi = 1 et δ i = 0 durant la phase d'initialisation à engendrer en sortie du calculateur 2.

Figure imgb0015
n max = t e max / TH 2 conduct if we set δ i = 1 and δ i = 0 during the initialization phase to be generated at the output of the computer 2.
Figure imgb0015

Il est possible d'intégrer au sein du dispositif suivant l'invention une fonction de sécurité ; au cas où l'information relative au palier de régulation représentée à la ligne L15 de la figure 2 viendrait à manquer. L'entrée 38 du bloc logique 36 n'ayant pas détecté la présence de ce dernier signal, ledit bloc logique 36 engendre sur une troisième sortie 44 une impulsion de chargement qui est transmise au compteur 1 par l'intermédiaire de la même porte logique 42 à fonction OU précédemment rencontrée.It is possible to integrate within the device according to the invention a security function; in the event that the information relating to the regulation level shown in line L 15 of FIG. 2 is missing. The input 38 of the logic block 36 not having detected the presence of this last signal, said logic block 36 generates on a third output 44 a loading pulse which is transmitted to the counter 1 via the same logic gate 42 with OR function previously encountered.

Si l'on pose δP = 1 et δ P = 0 au moment où l'on perd l'information de régulation sur le conducteur 38, on peut écrire à la sortie du calculateur 2 :

Figure imgb0016
If we set δ P = 1 and δ P = 0 when the regulation information on conductor 38 is lost, the output of computer 2 can be written:
Figure imgb0016

Claims (11)

1. Ignition coil control device with optimum conduction time regulation associated with the output stage (2) of an ignition advance computer for an internal combustion engine, producing an angular reference signal having a period TSD corresponding to an angular reference marking such as a tooth on the starter motor ring which is associated with the engine, comprising means (32, 45) for measuring in each ignition cycle the time tc measured which is strictly necessary for producting the nominal energy at the terminals of the coil and means (1, 6, 9, 17, 25) for computing from said time tc measured and the angular reference signal an optimum conduction time tc calcuted for controlling conduction of the coil in the following ignition cycle, characterised in that said device comprises a first clock (H2) having a period TH2, a first counter (1) which is incremented by the first clock (H2) during the time tc measured to a number NA such that:
Figure imgb0025
a second clock (H1) having a period TH1' a second counter (9) which is incremented in each period TSD of the angular reference signal by the second clock (Hi) for a time to = NB · TH1 such that NB = NA, and a third counter (25) which is incremented during the time to by an interpolation signal having a period TSD/n to a number
Figure imgb0026
such that the optimum conduction time calculated by the device is :
Figure imgb0027
said number N being transmitted to the output stage of the computer (2) which generates a conduction time:
Figure imgb0028
wherein e is a small known quantity.
2. A device according to claim 1, characterised in that the first counter (1) is preloaded by a loading signal with a number nt, the optimum conduction time calculated by the device being :
Figure imgb0029
3. A device according to claim 2 characterised in that the measuring means (32-45) comprise a logic block (36) connected by two of its inputs (37-38) to two outputs of the output stage of the computer (2) for respectively receiving therefrom the coil conduction signal (37) and a regulation signal (38) which is active, when the nominal energy is attained at the terminals of the coil, the logic block (36) supplying at a first output (39) to a logic AND-gate (32) a counting authorisation signal which is equal in duration to said time tc measured necessary for producting the nominal energy at the terminals of the coil and, at a second output (41), to the first counter (1), the loading signal preceding the counting authorisation signal, the logic AND-gate (32) being connected by a second input (34) to the first clock (A2) and by its output to the clock input (33) of the first counter (1).
4. A device according to claim 3, characterised in that the logic block (36) is connected by a third output (44) to a first input of a logic OR-gate (42) for supplying a loading pulse to an input (45) of the first counter (1) in the absence of the regulation signal, a second input (43) of the logic OR-gate (42) being connected to an output of the computer (2) to receive therefrom an initialisation signal in the initialisation phase corresponding to the first igintion cycle.
5. A device according to claim 4, characterised in that, in the first ignition produced, the first counter (1) is preloaded by the computer (2) by way of the logic OR-gate (42) with a number n max. such that the optimum calculated conduction time is :
Figure imgb0030
wherein δi = 1 and δ = 0 during said initialisation phase.
6. A device according to claim 5 characterised in that, in the absence of the coil regulating signal, said loading pulse supplied to the first counter (1) by the logic block (36) is such that the calculated optimum conduction time is :
Figure imgb0031
wherein 8p = 1 and δ P = 0 at the time at which the coil regulating information is lost.
7. A device according to any one of claims 1 to 6 characterised in that the third counter (25) is preloadedby an input (26) with a value nd such that said number N transmitted to the output stage of the computer (2) is increased by the value nd and that the calculated condution time tc calculated is increased by the value nd - TSD.
8. A device according to any one of claims 1 to 7 characterised in that it comprises a logic comparator (6) connected on the one hand to the outputs (5) of the first counter (1) and on the other hand to the outputs (12) of the second counter (9) and whose output (7) is connected to the zero resetting input of a D-type flip-flop (17) whose clock input (19) receives a signal which is synchronous with each rising edge of the angular reference signal and whose output is reset to zero by the comparator (6) at the end of the time to = NB - TH1 such that NB = NA, a second AND-gate (21) connected by way of one of its inputs to the output of the D-type flip-flop (17) and receiving at its other input (22) the interpolation signal of period TSD/n the output of the second AND-gate (21) being connected to the third counter (25), and a memory (29) connected between the third counter (25) and the output stage of the computer (2) and in which the calculated number N is stored.
9. A device according to any one of the preceding claims characterised in that the clock inputs (33, 10 and 24 for authorising counting of the periods TH2, TH1 and TSD/n by the first, second and third counters (1, 9, 25) respectively determine the value of the ratio :
Figure imgb0032
10. A device according to claims 3, 4 and 7 characterised in that the loading inputs (41, 45 and 26) of the first and third counters (1, 25) determine the value of the numbers nt, n max. and nd, which may be between zero and the maximum capacity of the counters (1, 26) used.
EP81401701A 1980-11-04 1981-10-27 Control device for the regulation of the optimal conducting time of an ignition coil for an internal-combustion engine Expired EP0051529B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8023509A FR2493412A1 (en) 1980-11-04 1980-11-04 OPTIMAL CONDUCTION TIME CONTROL IGNITION COIL CONTROL DEVICE FOR EXPLOSION ENGINE
FR8023509 1980-11-04

Publications (2)

Publication Number Publication Date
EP0051529A1 EP0051529A1 (en) 1982-05-12
EP0051529B1 true EP0051529B1 (en) 1985-08-28

Family

ID=9247649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401701A Expired EP0051529B1 (en) 1980-11-04 1981-10-27 Control device for the regulation of the optimal conducting time of an ignition coil for an internal-combustion engine

Country Status (8)

Country Link
US (1) US4469081A (en)
EP (1) EP0051529B1 (en)
JP (1) JPS57131863A (en)
DE (1) DE3172057D1 (en)
ES (1) ES506800A0 (en)
FR (1) FR2493412A1 (en)
MX (1) MX153785A (en)
PT (1) PT73923B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279772A (en) * 1985-06-04 1986-12-10 Nippon Denso Co Ltd Ignition control device of internal-combustion engine
FR2589654B1 (en) * 1985-10-30 1993-09-10 Bendix Electronics Sa METHOD AND DEVICE FOR THE SIMULTANEOUS TRANSMISSION OF TWO INFORMATION ON THE SAME ELECTRIC LINE FOLLOWING OPPOSITE SENSES
US4933861A (en) * 1988-10-03 1990-06-12 Ford Motor Company Ignition system with feedback controlled dwell
US5628292A (en) * 1996-04-01 1997-05-13 Ford Motor Company Method and system for generating an engine position dependent output control signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908616A (en) * 1972-12-18 1975-09-30 Hitachi Ltd Ignition device for use in internal combustion engine
US4018202A (en) * 1975-11-20 1977-04-19 Motorola, Inc. High energy adaptive ignition via digital control
WO1980002862A1 (en) * 1979-06-15 1980-12-24 Motorola Inc Dwell circuitry for an ingnition control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1548039A (en) * 1975-10-09 1979-07-04 Renault Electronic control of the ignition system of an internal combustion engine
FR2358564A1 (en) * 1976-07-15 1978-02-10 Renault Electronic ignition system for IC engine - has calculator which determines at each instant in time exact ignition advance angle
DE2803556A1 (en) * 1978-01-27 1979-08-02 Bosch Gmbh Robert DEVICE FOR CONTROLLING THE KEY RATIO OF A SIGNAL SEQUENCE WITH CHANGEABLE FREQUENCY
JPS5578169A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Electronic control type ignition device for internal combustion engine
JPS5584858A (en) * 1978-12-18 1980-06-26 Nippon Denso Co Ltd Engine control
FR2446467A1 (en) * 1979-01-09 1980-08-08 Renault METHOD AND APPARATUS FOR TRACKING THE ANGULAR POSITION OF A WORKPIECE OF A ROTATION MOTION
JPS55109760A (en) * 1979-02-19 1980-08-23 Hitachi Ltd Electronic ignition control
FR2451471A1 (en) * 1979-03-16 1980-10-10 Thomson Csf Electronic ignition timing system for IC engines - uses digital electronic circuits to control firing timing based on data on crankshaft position and speed
JPS55142965A (en) * 1979-04-25 1980-11-07 Hitachi Ltd Control method of engine ignition timing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908616A (en) * 1972-12-18 1975-09-30 Hitachi Ltd Ignition device for use in internal combustion engine
US4018202A (en) * 1975-11-20 1977-04-19 Motorola, Inc. High energy adaptive ignition via digital control
WO1980002862A1 (en) * 1979-06-15 1980-12-24 Motorola Inc Dwell circuitry for an ingnition control system

Also Published As

Publication number Publication date
EP0051529A1 (en) 1982-05-12
FR2493412B1 (en) 1984-09-14
PT73923B (en) 1983-02-18
FR2493412A1 (en) 1982-05-07
MX153785A (en) 1987-01-09
ES8300181A1 (en) 1982-10-01
PT73923A (en) 1981-12-01
JPS57131863A (en) 1982-08-14
DE3172057D1 (en) 1985-10-03
JPH0353467B2 (en) 1991-08-15
ES506800A0 (en) 1982-10-01
US4469081A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
FR2526944A1 (en) INSTALLATION FOR AUTOMATICALLY PERFORMING THE DIAGNOSIS OF A FOUR-STROKE INTERNAL COMBUSTION ENGINE
EP0013846B1 (en) Method of and apparatus for determining the angular position of a rotating member
FR2740509A1 (en) ADAPTATION METHOD FOR CORRECTING THE TOLERANCE VARIATIONS OF A WHEEL-TRANSMITTER
FR2486161A1 (en) METHOD AND SYSTEM FOR ADJUSTING THE IGNITION ADVENT OF AN ENGINE BASED ON THE PRESENCE OR ABSENCE OF CLICKS OR COGNITION IN THIS ENGINE
FR2910970A1 (en) METHOD AND DEVICE FOR DETERMINING THE ROTATION SPEED OF A TREE
WO2016165829A1 (en) Method and device for detecting reverse rotation of an internal combustion engine
CH625596A5 (en)
CH627392A5 (en) PROCESS FOR ACHIEVING A DETERMINED MACHINING SIDE DURING EROSIVE SPARKING MACHINING.
EP0051529B1 (en) Control device for the regulation of the optimal conducting time of an ignition coil for an internal-combustion engine
EP0102273B1 (en) Ignition and fuel injection control apparatus for an internal-combustion engine
FR2543221A1 (en) METHOD AND DEVICE FOR DETERMINING THE INJECTION TIME IN INTERNAL COMBUSTION ENGINES DURING THE STARTING PROCESS
FR2562953A1 (en) METHOD AND APPARATUS FOR ADJUSTING AN INTERNAL COMBUSTION ENGINE
WO1979000808A1 (en) Device for measuring the frequency of a pulse generator and digital control system comprising such a device
EP0589465A1 (en) Analogical timepiece with mode changeover warning means
EP0043053B1 (en) Electronic-ignition control method, and apparatus
FR2937684A1 (en) False teeth period determining method for crankshaft of internal combustion engine, involves estimating period of false teeth by adding corrective term function of difference between periods of two row teeth, to period of one of row teeth
EP0029374B1 (en) Signal generator for correcting the ignition advance angle as a function of knocking
FR2566912A1 (en) METHOD FOR MEASURING, BY ELECTRONIC MEANS, THE ACTUAL SPEED OF ROTATION OF A PISTON ENGINE
FR2618576A1 (en) DEVICE FOR RELEASING EVENT IN PHASE WITH ANGULAR POSITION OF A ROTARY ORGAN AND ITS APPLICATION
EP0128817B1 (en) Process for adjusting and measuring the ageing of an internal-combustion engine
EP0033280A2 (en) Device for controlling the ignition transformer in an internal-combustion engine, comprising an electronic advance calculator
FR2459467A1 (en) Work diagram characteristics measuring appts. for e.g. IC engine - has inputs indicating crankshaft rotation angle and top dead centre positions with cylinder pressure sensors connected to analysis unit
EP0076780A1 (en) Process for reducing the consumption of a stepping motor, and device to carry out this process
EP0155425B1 (en) Fuel cut-off and resetting device in the deceleration phases of an internal-combustion engine
EP1240482B1 (en) Method and device for converting a physical quantity measured by a measuring apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811030

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 3172057

Country of ref document: DE

Date of ref document: 19851003

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901019

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: RENIX ELECTRONIQUE S.A.

Effective date: 19911031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931022

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941028

EAL Se: european patent in force in sweden

Ref document number: 81401701.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 81401701.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950918

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951218

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961027

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701