EP0050884B1 - Resonant chamber atomiser for liquids - Google Patents

Resonant chamber atomiser for liquids Download PDF

Info

Publication number
EP0050884B1
EP0050884B1 EP81201078A EP81201078A EP0050884B1 EP 0050884 B1 EP0050884 B1 EP 0050884B1 EP 81201078 A EP81201078 A EP 81201078A EP 81201078 A EP81201078 A EP 81201078A EP 0050884 B1 EP0050884 B1 EP 0050884B1
Authority
EP
European Patent Office
Prior art keywords
chamber
resonance
resonance chamber
fuel
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81201078A
Other languages
German (de)
French (fr)
Other versions
EP0050884A1 (en
Inventor
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0050884A1 publication Critical patent/EP0050884A1/en
Application granted granted Critical
Publication of EP0050884B1 publication Critical patent/EP0050884B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0692Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/34Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by ultrasonic means or other kinds of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle

Definitions

  • the present invention relates to a resonance chamber atomizer for liquids according to the first part of patent claim 1.
  • a prerequisite for residue-free combustion in liquid fuels is very fine atomization and intimate, uniform mixing with the amount of air required for combustion. If the atomization of the fuel is not sufficiently fine, a higher excess of air is a prerequisite for a reasonably satisfactory burnout, but this increases the thermal energy contained in the exhaust gases.
  • a number of atomizers are known from the patent literature, which take advantage of the fact that gas oscillations occur in oscillatable cavities, which generate pressure waves of high amplitudes, through which liquid particles contained in the gas are atomized. Examples of this are DE-A-1 501 863, US-A-3 779 460 and FR-A-2 176 212, which describe atomization devices with resonance or mixing chambers in the form of rotationally symmetrical cavities. These cavities are delimited by circular cylinder and circular truncated cone surfaces and are therefore relatively easy and inexpensive to manufacture as bodies of revolution. On the other hand, the atomizing efficiency of these devices leaves something to be desired, since the energy of the radially outward propagating and radially inwardly reflected pressure waves and thus the atomizing effect is weakened by interference.
  • US-A-3 779 460 is conceptually an atomizer for smaller outputs, which is evident from the small volume of the resonance chamber in relation to the external dimensions and the inflow cross section. This is rotationally symmetrical in the form of a thin disc, with a centrally arranged cap forming part of the reflective surface for the pressure waves, but at the same time constituting an obstacle that reduces the efficiency of the atomization by severely restricting the outlet cross section for the atomized fuel-air mixture .
  • the resonance chamber atomizer defined in the characterizing part of patent claim 1 originated from the task of creating an atomizer which is particularly suitable for oil burners of lower output and which, with a simpler construction and cheaper production, should offer an improved fuel efficiency compared to the current state and, in particular, the types mentioned above.
  • the invention makes use of the fact that gas vibrations with pressure waves of high amplitudes occur in vibrating cavities, which exert a strong atomizing effect on liquid particles contained in the gas.
  • FIG. 7 shows a variant of the embodiment according to FIG. 1.
  • FIG. 1 The principle will first be described with reference to the simplest arrangement of air nozzle, fuel nozzle and mixing chamber shown in FIG. 1, which is functionally designed here as a resonance chamber.
  • the fuel feed line 2 Located in the axis of the air duct 1 is the fuel feed line 2, the fuel nozzle 3 of which opens into the resonance chamber 4.
  • This resonance chamber 4 is a flat cuboid space, the height of which is perpendicular to the plane of the drawing equal to the mouth diameter of the air duct 1 at the entrance to the resonance chamber.
  • the fuel / air mixture atomized in the resonance chamber enters the combustion chamber through the burner nozzle 5 designed as a diffuser, where it is ignited.
  • Both the air nozzle 1 and the burner nozzle 5 are rectangular in cross section, the width of the nozzle perpendicular to the plane of the drawing at the transition into the resonance chamber being the same as the width of the resonance chamber. However, it is also possible for the cross section of these nozzles to pass from a rectangle at the narrowest point to an ellipse, circular or other cross section at its widest point.
  • the air jet When the air flows in from the air duct 1 into the resonance chamber 4, the air jet, the boundary region of which is designated by 6, together with the fuel jet 7 sucked out of the fuel nozzle 3 by a strong acoustic wave, the wavefront of which is designated by 8, into one half deflected the resonance chamber.
  • the primary wave runs with an almost constant amplitude in the resonance chamber back and forth across the axis of the burner nozzle and breaks up the incoming fuel jet to the extremely fine, intimately mixed mist mentioned, which in each case after the wave front has passed the inlet cross section of the burner nozzle is sucked into it.
  • FIG. 2 differs from that according to FIG. 1 only in that the fuel supply takes place via two fuel supply lines 12 arranged transversely to the axis of the air duct 10 in the resonance chamber 11, the nozzles 13 of which are in the border area of the air flow entering the resonance chamber flow out.
  • the variant shown in FIG. 3 differs from the two previous ones by a resonance chamber 14, in which the axes of the two halves 15 are inclined to the common axis of air duct 16 and burner nozzle 17.
  • the secondary waves are created on the end walls of the resonance chamber, which in some circumstances leads to a more complete overload of the secondary waves with the primary wave and causes an even better atomization of the fuel.
  • the burner is screwed onto the housing of the boiler using the fastening flange 18.
  • the burner housing 20 is fastened to the flange 18 by means of Allen screws 19, the resonance chamber 21 of which is sealed to the outside by cover 22.
  • the height of the resonance chamber 21, the cross section of which is rectangular parallel to the common axis of the air duct 23 and the burner nozzle 24, can be adjusted by two sliding pieces 25 in connection with an adjusting screw 26 each so that the best possible atomizing effect occurs when the pressure drop between the air duct inlet and the burner nozzle outlet is provided.
  • the two fuel supply lines 27, the free ends of which form the nozzles, project through bores in the covers 22 and in the sliders 25 into the resonance chamber 21 and are sealed off from the outside by O-rings 28. Sealing sleeves 29 are provided for sealing the set screws.
  • the air channel, the resonance chamber and the burner nozzle are designed as a rotating body. Accordingly, they are referred to as air ring channel 30, resonance ring chamber 31 and burner ring nozzle 32.
  • the fuel is supplied via a fuel feed line 33 into a fuel ring line 34 which has nozzles 35 distributed over the circumference at equal intervals.
  • the air conveyed by the blower reaches the air ring duct 30 through a rotationally symmetrical inlet funnel 36.
  • nozzles 35 To that of the nozzles 35 belongs an area of the resonance ring chamber in which the mechanism atomization proceeds as described above. These areas do not need to be physically separated from each other, but the cavity vibrations influence each other to some extent. This does not affect the atomization effect.
  • the variant shown in FIG. 7 differs from the embodiment according to FIG. 1 by spurious lips 37 provided at the entrance to the burner nozzle 5 at the top and bottom, which are particularly suitable for amplifying the secondary waves at weak blower pressures, as a result of which the amplitude of the cavity vibration and thus the atomizing Effect will be enhanced.
  • the resonance chamber can also be designed with an axial section corresponding to the embodiment according to FIG. 3.
  • the axial section then has, generally speaking, the shape of a substantially rectilinearly delimited polygon whose axis of symmetry 38, as shown in the upper half of FIG. 6, through the center of a fuel nozzle and the center 39 of the height of the burner ring nozzle 32, generally therefore Outlet channel, is determined at its inlet cross-section.
  • the fuel in such an annular combustion chamber, can also be fed into the region of the air jet emerging from the air ring duct instead of through a fuel ring line 34 through a plurality of radial lines which lead into the resonance chamber from outside or inside.
  • the exemplary embodiments described here showed the application of the atomization principle according to the invention to burner devices. However, it is by no means limited to these applications alone, but can be used in all atomizing apparatuses which require particularly fine atomization, for example in painting technology.
  • This resonance chamber atomizer compared to conventional ultrasonic atomizers is that it works perfectly even with a small overpressure. It can therefore be operated with a blower of comparatively low power and thereby generates vibration amplitudes that are higher than in conventional mechanical ultrasonic atomizers and can be compared with the amplitudes that can be achieved with conventional resonance chamber atomizers at high overpressure (1-2 atm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Special Spraying Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft einen Resonanzkammerzerstäuber für Flüssigkeiten nach dem ersten Teil des Patentanspruchs 1.The present invention relates to a resonance chamber atomizer for liquids according to the first part of patent claim 1.

Bei der Anwendung von Flüssigkeitszerstäubern für Ölfeuerungen kleiner Leistung mit den heute üblichen Mischeinrichtungen ist es ohne aufwendige Einrichtungen und dementsprechende Kosten nicht möglich, einen maximalen Ausbrand bei stöchiometrischem oder quasistöchiometrischem Brennstoff-Luft-Verhältnis zu erzielen. Infolgedessen ist die Ausnutzung des Brennstoffes nicht in dem Maße möglich, wie es bei den heutigen und noch mehr bei den künftig zu erwartenden Brennstoffpreisen wünschbar wäre.When using liquid atomizers for low-power oil firing systems with the usual mixing devices, it is not possible to achieve maximum burnout with a stoichiometric or quasi-stoichiometric fuel-air ratio without complex devices and corresponding costs. As a result, the use of fuel is not possible to the extent that would be desirable with today's and even more so with future fuel prices.

Voraussetzung für eine rückstandsfreie Verbrennung ist bei flüssigen Brennstoffen eine sehr feine Vernebelung und eine innige, gleichmäßige Vermischung mit der zur Verbrennung erforderlichen Luftmenge. Bei nicht genügend feiner Zerstäubung des Brennstoffes ist ein höherer Luftüberschuß Voraussetzung für einen einigermaßen befriedigenden Ausbrand, womit aber die in den Abgasen enthaltene Wärmeenergie zunimmt.A prerequisite for residue-free combustion in liquid fuels is very fine atomization and intimate, uniform mixing with the amount of air required for combustion. If the atomization of the fuel is not sufficiently fine, a higher excess of air is a prerequisite for a reasonably satisfactory burnout, but this increases the thermal energy contained in the exhaust gases.

Durch die feinere Zerstäubung und dementsprechend kleinerem Verbrennungsluftbedarf reduziert sich die in den Abgasen enthaltene Wärmeenergie, was eine bessere Ausnützung der Verbrennungswärme zur Folge hat.Due to the finer atomization and correspondingly smaller combustion air requirements, the thermal energy contained in the exhaust gases is reduced, which results in better utilization of the heat of combustion.

Eine solche feine Zerstäubung ist mit den üblichen Kleinbrennern für Haushaltsheizungen nicht möglich, was eine Reihe wirtschaftlicher betrieblicher Nachteile mit sich bringt. So ist es nicht möglich, den Brenner mit beliebig kleiner Brennstoffzufuhr, d. h., mit Teillast zu betreiben, da sonst wegen unvollkommener Verbrennung der Kamin verrußen und die Gefahr eines Kaminbrandes bestehen würde. Wegen des großen, für eine vollständige Verbrennung erforderlichen Luftüberschusses ist auch die Verbrennungstemperatur und damit auch die Abgastemperatur nicht hoch genug, um ein Unterschreiten des Taupunkts für das bei der unvollständigen Verbrennung entstehende S02 und damit eine Korrosion am Kesselende zu vermeiden.Such fine atomization is not possible with the usual small burners for domestic heating, which brings with it a number of economic operational disadvantages. So it is not possible to operate the burner with any small fuel supply, ie with partial load, otherwise the chimney would soot due to incomplete combustion and there would be a risk of a chimney fire. Because of the large excess of air required for complete combustion, the combustion temperature and therefore also the exhaust gas temperature is not high enough to avoid falling below the dew point for the S0 2 produced during incomplete combustion and thus preventing corrosion at the end of the boiler.

Aus der Patentliteratur ist zwar eine Reihe von Zerstäubern bekannt, die sich die Tatsache zunutze machen, daß in schwingungsfähigen Kavitäten Gasschwingungen auftreten, die Druckwellen hoher Amplituden erzeugen, durch die im Gas enthaltene Flüssigkeitsteilchen zerstäubt werden. Beispiele dafür sind die DE-A-1 501 863, die US-A-3 779 460 und die FR-A-2 176 212, die Zerstäubungseinrichtungen mit Resonanz- oder Mischkammern in Form rotationssymmetrischer Kavitäten beschreiben. Diese Kavitäten sind von Kreiszylinder- und Kreiskegelstumpfflächen begrenzt und demnach als Umdrehungskörper verhältnismäßig leicht und billig herzustellen. Andererseits läßt der Zerstäubungswirkungsgrad dieser Einrichtungen zu wünschen übrig, da die Energie der sich radial auswärts ausbreitenden und radial nach innen reflektierten Druckwellen und somit auch die Zerstäubungswirkung durch Interferenzen geschwächt wird.A number of atomizers are known from the patent literature, which take advantage of the fact that gas oscillations occur in oscillatable cavities, which generate pressure waves of high amplitudes, through which liquid particles contained in the gas are atomized. Examples of this are DE-A-1 501 863, US-A-3 779 460 and FR-A-2 176 212, which describe atomization devices with resonance or mixing chambers in the form of rotationally symmetrical cavities. These cavities are delimited by circular cylinder and circular truncated cone surfaces and are therefore relatively easy and inexpensive to manufacture as bodies of revolution. On the other hand, the atomizing efficiency of these devices leaves something to be desired, since the energy of the radially outward propagating and radially inwardly reflected pressure waves and thus the atomizing effect is weakened by interference.

Bei der genannten US-A-3 779 460 handelt es sich von der Konzeption her um einen Zerstäuber für kleinere Leistungen, was aus dem im Verhältnis zu den Außenabmessungen und zum Zuströmquerschnitt kleinen Volumen der Resonanzkammer hervorgeht. Diese ist rotationssymmetrisch in Form einer dünnen Scheibe, wobei eine zentral angeordnete Kappe einen Teil der Reflexionsfläche für die Druckwellen bildet, gleichzeitig aber einen Hinderniskörper darstellt, der den Wirkungsgrad der Zerstäubung mindert, indem er den Austrittsquerschnitt für das zerstäubte Brennstoff-Luft-Gemisch stark einschränkt.The aforementioned US-A-3 779 460 is conceptually an atomizer for smaller outputs, which is evident from the small volume of the resonance chamber in relation to the external dimensions and the inflow cross section. This is rotationally symmetrical in the form of a thin disc, with a centrally arranged cap forming part of the reflective surface for the pressure waves, but at the same time constituting an obstacle that reduces the efficiency of the atomization by severely restricting the outlet cross section for the atomized fuel-air mixture .

Aus der US-A-3 911 858 ist ferner eine von den obigen abweichende Bauform eines Ultraschallerzeugers bekannt, der in einem Längsschnitt auf einer Seite der Längsachse eine Resonanzkammer und auf der anderen Seite der Längsachse eine Wirbelkammer aufweist. Bei dieser Einrichtung fehlt eine Mischkammer, in der sich die Luft mit Brennstoff mischen kann. Die Zerstäubung der Flüssigkeit findet dabei erst nach ihrem Austritt aus der Düsen in der Luft statt. Eine Feinstzerstäubung eines Brennstoffes, wie sie für einen bestmöglichen Ausbrand Voraussetzung ist, dürfte wegen der erst nach dem Düsenaustritt erfolgenden Zerstäubung damit nicht möglich sein. Dies kann auch daraus geschlossen werden, daß als weitere Verwendungszwekke für diese Einrichtung Ultraschallreinigung, Entgasung und Homogenisierung von Flüssigkeiten genannt werden. Das heißt also, daß die Einrichtung nicht für eine Verwendung als Brennstoffzerstäuber optimiert ist.From US-A-3 911 858 a design of the ultrasound generator deviating from the above is also known which has a resonance chamber in a longitudinal section on one side of the longitudinal axis and a swirl chamber on the other side of the longitudinal axis. This device lacks a mixing chamber in which the air can mix with fuel. The liquid is atomized only after it has emerged from the nozzles in the air. A very fine atomization of a fuel, which is a prerequisite for the best possible burnout, should not be possible because of the atomization that takes place after the nozzle has emerged. This can also be concluded from the fact that ultrasound cleaning, degassing and homogenization of liquids are mentioned as further uses for this device. This means that the device is not optimized for use as a fuel atomizer.

Der im kennzeichnenden Teil des Patentanspruchs 1 definierte Resonanzkammerzerstäuber entstand aus der Aufgabe, einen besonders für Ölbrenner kleinerer Leistung geeigneten Zerstäuber zu schaffen, der bei einfacherem Aufbau und billigerer Herstellung eine dem heutigen Stand und insbesondere den obenerwähnten Bauarten gegenüber verbesserte Brennstoffausnützung bieten sollte.The resonance chamber atomizer defined in the characterizing part of patent claim 1 originated from the task of creating an atomizer which is particularly suitable for oil burners of lower output and which, with a simpler construction and cheaper production, should offer an improved fuel efficiency compared to the current state and, in particular, the types mentioned above.

Die Erfindung macht dabei wie die bekannten Bauarten von der Tatsache Gebrauch, daß in schwingungsfähigen Kavitäten Gasschwingungen mit Druckwellen hoher Amplituden auftreten, die auf im Gas enthaltene Flüssigkeitspartikel eine starke Zerstäubungswirkung ausüben.Like the known types, the invention makes use of the fact that gas vibrations with pressure waves of high amplitudes occur in vibrating cavities, which exert a strong atomizing effect on liquid particles contained in the gas.

Die Erfindung wird im folgenden unter Bezugnahme auf in der Zeichnung dargestellte Ausführungsbeispiele von Ölbrennern näher beschrieben. In der Zeichnung stellen darThe invention is described below with reference to exemplary embodiments of oil burners shown in the drawing. In the drawing show

Fig. 1 bis 3 in schematischer Darstellung drei Ausführungsformen des erfindungsgemäßen Zerstäubers mit verschiedenen Kombinationen für die Anordnung der Luft- und Brennstoffdüsen sowie der Mischkammern, die1 to 3 in a schematic representation three embodiments of the atomizer according to the invention with different combinations for the arrangement of the air and fuel nozzles and the mixing chambers

Fig. 4 und 5 ein Ausführungsbeispiel im Aufriß und Seitenriß, beide teilweise geschnitten,4 and 5 an embodiment in elevation and side view, both partially cut,

Fig. eine Ausführung in Form eines Ringbrenners, und dieAn embodiment in the form of a ring burner, and

Fig.7 eine Variante der Ausführung nach Fig. 1.7 shows a variant of the embodiment according to FIG. 1.

Das Prinzip sei zunächst anhand der in Fig. 1 gezeigten, einfachsten Anordnung von Luftdüse, Brennstoffdüse und Mischkammer, die hier funktionsmäßig als Resonanzkammer ausgebildet ist, beschrieben.The principle will first be described with reference to the simplest arrangement of air nozzle, fuel nozzle and mixing chamber shown in FIG. 1, which is functionally designed here as a resonance chamber.

In der Achse des Luftkanals 1 befindet sich die Brennstoffzuleitung 2, deren Brennstoffdüse 3 in die Resonanzkammer 4 mündet. Diese Resonanzkammer 4 ist ein flacher quaderförmiger Raum, dessen Höhe senkrecht zur Zeichenebene gleich dem Mündungsdurchmesser des Luftkanals 1 am Eintritt in die Resonanzkammer ist. Das in der Resonanzkammer zerstäubte Brennstoff/ Luft-Gemisch tritt durch die als Diffusor ausgebildete Brennerdüse 5 in den Brennraum ein, wo es gezündet wird. Sowohl die Luftdüse 1 als auch die Brennerdüse 5 sind im Querschnitt rechteckig, wobei die Düsenbreite senkrecht zur Zeichenebene am Übergang in die Resonanzkammer gleich ist der Breite der Resonanzkammer. Es ist aber auch möglich, daß der Querschnitt dieser Düsen von einem Rechteck an der engsten Stelle in einen Ellipsen-, Kreis- oder sonstigen Querschnitt an ihrer weitesten Stelle übergeht.Located in the axis of the air duct 1 is the fuel feed line 2, the fuel nozzle 3 of which opens into the resonance chamber 4. This resonance chamber 4 is a flat cuboid space, the height of which is perpendicular to the plane of the drawing equal to the mouth diameter of the air duct 1 at the entrance to the resonance chamber. The fuel / air mixture atomized in the resonance chamber enters the combustion chamber through the burner nozzle 5 designed as a diffuser, where it is ignited. Both the air nozzle 1 and the burner nozzle 5 are rectangular in cross section, the width of the nozzle perpendicular to the plane of the drawing at the transition into the resonance chamber being the same as the width of the resonance chamber. However, it is also possible for the cross section of these nozzles to pass from a rectangle at the narrowest point to an ellipse, circular or other cross section at its widest point.

In der als Resonanzkammer ausgebildeten Mischkammer treten Kavitätsschwingungen mit hohen Druckamplituden auf, die, wie eingangs erwähnt, eine besonders gute Zerstäubung des durch die Düse 3 mit der Luft in die Resonanzkammer eintretenden Brennstoffes bewirken.In the mixing chamber designed as a resonance chamber, cavity vibrations with high pressure amplitudes occur, which, as mentioned at the beginning, bring about a particularly good atomization of the fuel entering the resonance chamber through the nozzle 3 with the air.

Beim Einströmen der Luft aus dem Luftkanal 1 in die Resonanzkammer 4 wird der Luftstrahl, dessen Grenzbereich mit 6 bezeichnet ist, zusammen mit dem aus der Brennstoffdüse 3 herausgesaugten Brennstoffstrahl 7 durch eine starke akustische Welle, deren Wellenfront mit 8 bezeichnet ist, in die eine Hälfte der Resonanzkammer abgelenkt. Nach der Reflexion der Welle an der oberen Wandung trifft ihre Front, der sich zwischenzeitlich eine durch den Aufprall des Strahls auf einen stromabwärts gelegenen Wandteil erzeugte Wellenfront überlagert hat, mit erheblicher Wucht auf den bereits in mehr oder weniger feine Tröpfchen zerrissenen Brennstoffstrahl 7 und zerstäubt ihn zu einem äußerst feinen Nebel, der beim abermaligen Rücklauf der Wellenfront von deren Nachlauf nachgesaugt und, wie durch den Pfeil 9 angedeutet, durch die Brennerdüse 5 in den Brennraum gefördert wird, wo dieser feine Brennstoffnebel mit wesentlich kleinerem Luftüberschuß als bei konventionellen Brennern vollständig verbrannt wird. Im Gleichgewichtszustand wird also die Primärwelle laufend durch Sekundärwellen gespiesen, die durch den Aufprall des Strahls an den stromabwärts gelegenen Wandteilen der Resonanzkammer erzeugt werden.When the air flows in from the air duct 1 into the resonance chamber 4, the air jet, the boundary region of which is designated by 6, together with the fuel jet 7 sucked out of the fuel nozzle 3 by a strong acoustic wave, the wavefront of which is designated by 8, into one half deflected the resonance chamber. After the reflection of the wave on the upper wall, its front, which has in the meantime overlaid a wave front generated by the impact of the beam on a wall part located downstream, hits the fuel jet 7, which has already been torn into more or less fine droplets, with considerable force and atomizes it to an extremely fine mist, which is sucked in by the wake when the wave front returns and, as indicated by the arrow 9, is conveyed through the burner nozzle 5 into the combustion chamber, where this fine fuel mist is burned completely with a much smaller excess of air than with conventional burners . In the equilibrium state, the primary wave is continuously fed by secondary waves which are generated by the impact of the beam on the downstream wall parts of the resonance chamber.

Somit läuft also die Primärwelle mit fast gleichbleibender Amplitude in der Resonanzkammer quer zur Achse der Brennerdüse hin und her und zerschlägt dabei den eintretenden Brennstoffstrahl zu dem erwähnten, äußerst feinen, mit Luft innig vermischten Nebel, der jeweils nach dem Vorbeigang der Wellenfront am Eintrittsquerschnitt der Brennerdüse in diese hineingesaugt wird.Thus, the primary wave runs with an almost constant amplitude in the resonance chamber back and forth across the axis of the burner nozzle and breaks up the incoming fuel jet to the extremely fine, intimately mixed mist mentioned, which in each case after the wave front has passed the inlet cross section of the burner nozzle is sucked into it.

Die in Fig. 2 schematisch dargestellte Ausführungsform unterscheidet sich von jener nach Fig. 1 nur dadurch, daß die Brennstoffzufuhr über zwei quer zur Achse des Luftkanals 10 in der Resonanzkammer 11 angeordnete Brennstoffzuleitungen 12 erfolgt, deren Düsen 13 im Grenzbereich des in die Resonanzkammer eintretenden Luftstromes münden.The embodiment shown schematically in FIG. 2 differs from that according to FIG. 1 only in that the fuel supply takes place via two fuel supply lines 12 arranged transversely to the axis of the air duct 10 in the resonance chamber 11, the nozzles 13 of which are in the border area of the air flow entering the resonance chamber flow out.

Die in Fig. 3 gezeigte Variante unterscheidet sich von den beiden vorhergehenden durch eine Resonanzkammer 14, bei der die Achsen der beiden Hälften 15 geneigt zur gemeinsamen Achse von Luftkanal 16 und Brennerdüse 17 liegen. Die Sekundärwellen entstehen bei dieser Ausführung an den Endwänden der Resonanzkammer, was unter Umständen zu einer vollständigeren Überbelastung der Sekundärwellen mit der Primärwelle führt und eine noch bessere Zerstäubung des Brennstoffes bewirkt.The variant shown in FIG. 3 differs from the two previous ones by a resonance chamber 14, in which the axes of the two halves 15 are inclined to the common axis of air duct 16 and burner nozzle 17. In this embodiment, the secondary waves are created on the end walls of the resonance chamber, which in some circumstances leads to a more complete overload of the secondary waves with the primary wave and causes an even better atomization of the fuel.

Die Fig. 4 und 5 zeigen eine konkrete Ausführungsform nach dem Schema der Fig. 2. Mit dem Befestigungsflansch 18 wird der Brenner am Gehäuse des Heizkessels angeschraubt. Mittels Innensechskantschrauben 19 ist am Flansch 18 das Brennergehäuse 20 befestigt, dessen Resonanzkammer 21 durch Deckel 22 nach außen abgedichtet ist. Die Höhe der Resonanzkammer 21, deren Querschnitt parallel zur gemeinsamen Achse von Luftkanal 23 und Brennerdüse 24 rechteckig ist, kann durch zwei Gleitstücke 25 in Verbindung mit je einer Stellschraube 26 so eingestellt werden, daß beim vorgesehenen Druckgefälle zwischen Luftkanaleintritt und Brennerdüsenaustritt eine bestmögliche Zerstäuberwirkung auftritt. Die zwei Brennstoffzuleitungen 27, deren freie Enden die Düsen bilden, ragen durch Bohrungen in den Deckeln 22 und in den Gleitstücken 25 in die Resonanzkammer 21 und sind durch O-Ringe 28 gegen außen abgedichtet. Zur Abdichtung der Stellschrauben sind Dichtmanschetten 29 vorgesehen.4 and 5 show a specific embodiment according to the diagram of FIG. 2. The burner is screwed onto the housing of the boiler using the fastening flange 18. The burner housing 20 is fastened to the flange 18 by means of Allen screws 19, the resonance chamber 21 of which is sealed to the outside by cover 22. The height of the resonance chamber 21, the cross section of which is rectangular parallel to the common axis of the air duct 23 and the burner nozzle 24, can be adjusted by two sliding pieces 25 in connection with an adjusting screw 26 each so that the best possible atomizing effect occurs when the pressure drop between the air duct inlet and the burner nozzle outlet is provided. The two fuel supply lines 27, the free ends of which form the nozzles, project through bores in the covers 22 and in the sliders 25 into the resonance chamber 21 and are sealed off from the outside by O-rings 28. Sealing sleeves 29 are provided for sealing the set screws.

Bei dem in Fig. 6 schematisch dargestellten Ringbrenner, der nach dem gleichen Prinzip wie die vorstehend beschriebenen Zerstäuber arbeitet, sind der Luftkanal, die Resonanzkammer und die Brennerdüse als Rotationskörper ausgeführt. Sie werden dementsprechend als Luftringkanal 30, Resonanzringkammer 31 und Brennerringdüse 32 bezeichnet. Die Zuführung des Brennstoffes erfolgt über eine Brennstoffzuleitung 33 in eine Brennstoffringleitung 34, die über den Umfang in gleichen Abständen verteilte Düsen 35 aufweist.In the ring burner shown schematically in FIG. 6, which works on the same principle as the atomizers described above, the air channel, the resonance chamber and the burner nozzle are designed as a rotating body. Accordingly, they are referred to as air ring channel 30, resonance ring chamber 31 and burner ring nozzle 32. The fuel is supplied via a fuel feed line 33 into a fuel ring line 34 which has nozzles 35 distributed over the circumference at equal intervals.

Die vom Gebläse geförderte Luft gelangt durch einen rotationssymmetrischen Einlauftrichter 36 in den Luftringkanal 30.The air conveyed by the blower reaches the air ring duct 30 through a rotationally symmetrical inlet funnel 36.

Zu jener der Düsen 35 gehört ein Bereich der Resonanzringkammer, in dem der Mechanismus der Zerstäubung wie oben beschrieben abläuft. Diese Bereiche brauchen voneinander nicht materiell getrennt zu sein, wobei sich aber die Kavitätsschwingungen in gewisser Weise gegenseitig beeinflussen. Der Zerstäubungseffekt wird dadurch aber nicht beeinträchtigt.To that of the nozzles 35 belongs an area of the resonance ring chamber in which the mechanism atomization proceeds as described above. These areas do not need to be physically separated from each other, but the cavity vibrations influence each other to some extent. This does not affect the atomization effect.

Es ist natürlich auch möglich, die zu den einzelnen Düsen gehörenden Bereiche der Resonanzringkammer durch radiale Zwischenwände gegeneinander abzuschotten, so daß sich die Kavitätsschwingungen benachbarter Bereiche nicht beeinflussen. In der Brennerringdüse 32 vereinigen sich die aus den einzelnen, voneinander getrennten Bereichen austretenden Brenngemische zu einem zusammenhängenden ringförmigen Strahl.It is of course also possible to partition off the areas of the resonance ring chamber belonging to the individual nozzles by means of radial intermediate walls so that the cavity vibrations of adjacent areas do not influence one another. In the burner ring nozzle 32, the fuel mixtures emerging from the individual, separate areas combine to form a coherent annular jet.

Die in Fig. 7 dargestelte Variante unterscheidet sich von der Ausführung nach Fig. 1 durch am Eingang der Brennerdüse 5 oben und unten vorgesehene Störlippen 37, die sich besonders bei schwachen Gebläsedrücken zur Verstärkung der Sekundärwellen eignen, wodurch die Amplituden der Kavitätsschwingung und damit die zerstäubende Wirkung verstärkt werden.The variant shown in FIG. 7 differs from the embodiment according to FIG. 1 by spurious lips 37 provided at the entrance to the burner nozzle 5 at the top and bottom, which are particularly suitable for amplifying the secondary waves at weak blower pressures, as a result of which the amplitude of the cavity vibration and thus the atomizing Effect will be enhanced.

Dieselbe Wirkung erzeugen bei der Ausführung nach Fig. 3 mit schräg zur Strahlachse liegenden Hälften der Resonanzkammer die scharfen, im Querschnitt spitzwinkligen Kanten, die von den oberen und unteren Wänden der Brennerdüse und den zwei vorderen schrägen Wänden der Resonanzkammer gebildet werden.3 with halves of the resonance chamber lying obliquely to the beam axis produce the same effect, the sharp, cross-sectionally angular edges which are formed by the upper and lower walls of the burner nozzle and the two front oblique walls of the resonance chamber.

Bei einem Ringbrenner nach Fig. 6 kann die Resonanzkammer ebenfalls mit einem Axialschnitt entsprechend der Ausführung nach Fig. 3 ausgeführt werden. Der Axialschnitt hat dann, allgemein gesprochen, die Form eines im wesentlichen geradlinig begrenzten Vielecks, dessen Symmetrieachse 38, wie in der oberen Hälfte der Fig. 6 gezeigt, durch den Mittelpunkt einer Brennstoffdüse und den Mittelpunkt 39 der Höhe der Brennerringdüse 32, allgemein also des Austrittskanals, an seinem Eintrittsquerschnitt bestimmt ist.In the case of a ring burner according to FIG. 6, the resonance chamber can also be designed with an axial section corresponding to the embodiment according to FIG. 3. The axial section then has, generally speaking, the shape of a substantially rectilinearly delimited polygon whose axis of symmetry 38, as shown in the upper half of FIG. 6, through the center of a fuel nozzle and the center 39 of the height of the burner ring nozzle 32, generally therefore Outlet channel, is determined at its inlet cross-section.

Analog der Ausführung nach Fig. 2 kann bei einer solchen Ringbrennkammer der Brennstoff anstatt durch eine Brennstoffringleitung 34 auch durch eine Mehrzahl radialer, von außen bzw. von innen in die Resonanzkammer hineingeführter Leitungen in den Bereich des aus dem Luftringkanal austretenden Luftstrahles zugeführt werden.Analogously to the embodiment according to FIG. 2, in such an annular combustion chamber, the fuel can also be fed into the region of the air jet emerging from the air ring duct instead of through a fuel ring line 34 through a plurality of radial lines which lead into the resonance chamber from outside or inside.

Die hier beschriebenen Ausführungsbeispiele zeigten die Anwendung des erfindungsgemäßen Zerstäubungsprinzips auf Brennereinrichtungen. Es beschränkt sich jedoch keinesfalls auf diese Anwendungen allein, sondern kann bei allen Zerstäubungsapparaturen Anwendung finden, bei denen es auf besonders feine Vernebelung ankommt, beispielsweise in der Lackiertechnik.The exemplary embodiments described here showed the application of the atomization principle according to the invention to burner devices. However, it is by no means limited to these applications alone, but can be used in all atomizing apparatuses which require particularly fine atomization, for example in painting technology.

Der Vorteil dieses Resonanzkammerzerstäubers gegenüber konventionellen Ultraschallzerstäubern liegt vor allem darin, daß er bereits bei kleinem Überdruck einwandfrei arbeitet. Er läßt sich also mit einem Gebläse von vergleichsweise geringer Leistung betreiben und erzeugt dabei Schwingungsamplituden, die höher sind als bei konventionellen mechanischen Ultraschallzerstäubern und vergliechbar sind mit den Amplituden, die mit konventionellen Resonanzkammerzerstäubern bei hohem Überdruck (1-2 atü) erreicht werden.The main advantage of this resonance chamber atomizer compared to conventional ultrasonic atomizers is that it works perfectly even with a small overpressure. It can therefore be operated with a blower of comparatively low power and thereby generates vibration amplitudes that are higher than in conventional mechanical ultrasonic atomizers and can be compared with the amplitudes that can be achieved with conventional resonance chamber atomizers at high overpressure (1-2 atm).

Bezeichnungsliste:

Figure imgb0001
List of designations:
Figure imgb0001

Claims (6)

1. Resonance chamber atomiser for liquids, with lines for feeding a gas used for atomising, and liquid to be atomised, into a mixing chamber for these two media, the ends of the feed lines for the liquid leading into the mixing chamber and being formed as nozzles, and with an outlet channel, leading form the mixing chamber to the outside, for the atomised mixture, the geometrical axes of the feed line for the gas and of the outlet channel for the atomised mixture coinciding, characterised in that the mixing chamber is formed as a resonance chamber (4, 11, 14, 21, 31) of essentially flat, parallelepipedal shape which extends symmetrically on either side from the common geometrical axis of the feed line (1, 10, 16, 23, 30) for the gas and of the outlet channel (5, 17,24,32).
2. Resonance chamber atomiser according to claim 1, characterised in that the resonance chamber (4, 11, 21) has the form of a shallow rectangular prism.
3. Resonance chamber atomiser according to claim 2, characterised by spoiler lips (37) on the two opposite edges of the inlet cross-section of an outlet chamber formed as a burner nozzle (5), the spoiler lips being formed by the penetration of the burner nozzle (5) and one wall of the resonance chamber (4).
4. Resonance chamber atomiser according to claim 1, characterised in that the shape of the resonance chamber (14) is a parallelepiped, the cross-section of which is composed of two trapeziums with unequal lateral sides, of which the lateral sides of one kind are at right angles to the mutually parallel sides and the other lateral sides coincide.
5. Resonance chamber atomiser for oil burners, having an air ring channel (30) for the combustion air used for atomising, and a fuel ring main (34) arranged within the air ring channel (30) and feeding the oil to a mixing chamber for the said two media, a plurality of fuel nozzles (35) being provided in the fuel ring main (34) for the oil and distributed over the central periphery thereof and leading into the mixing chamber, and having an annular burner ring nozzle (32), leading from the mixing chamber to the outside, for the atomised fuel mixture, the mean diameters of the air ring channel (30) and the burner ring nozzle (35) being equal and coaxial, characterised in that the mixing chamber is formed as a resonance ring chamber (31), the generating axial section of which has the shape of a symmetrical polygon, the symmetry axis (38) of which runs through the midpoint of the outlet cross-section of a fuel nozzle (35) and parallel to the axis of the resonance chamber atomiser.
6. Resonance chamber atomiser according to claim 5, characterised in that the generating axial section of the resonance ring chamber (31) is a rectangle.
EP81201078A 1980-10-29 1981-09-29 Resonant chamber atomiser for liquids Expired EP0050884B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8032/80 1980-10-29
CH803280 1980-10-29

Publications (2)

Publication Number Publication Date
EP0050884A1 EP0050884A1 (en) 1982-05-05
EP0050884B1 true EP0050884B1 (en) 1984-10-31

Family

ID=4334106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81201078A Expired EP0050884B1 (en) 1980-10-29 1981-09-29 Resonant chamber atomiser for liquids

Country Status (4)

Country Link
US (1) US4458842A (en)
EP (1) EP0050884B1 (en)
CA (1) CA1178880A (en)
DE (1) DE3166989D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE458799B (en) * 1983-12-02 1989-05-08 Insako Ab SETTING AND DEVICE FOR COMBUSTION OF FLUID BRADES
DE3714408A1 (en) * 1987-04-30 1988-11-10 Bbc Brown Boveri & Cie DUAL BURNER DEVICE WITH A FUEL OIL SPRAYER
JP2547436B2 (en) * 1988-04-11 1996-10-23 富士通株式会社 PLA control system
FR2666751B1 (en) * 1990-09-13 1995-03-03 Cesa Catherine IONIZATION DEVICE.
AUPO126596A0 (en) 1996-07-26 1996-08-22 Resmed Limited A nasal mask and mask cushion therefor
US6581856B1 (en) * 1998-11-06 2003-06-24 Bowles Fluidics Corporation Fluid mixer
CN108386884B (en) * 2018-03-07 2023-01-03 佛山市云米电器科技有限公司 Resonance type oil smoke filter screen
US20230323903A1 (en) * 2020-08-14 2023-10-12 Board Of Regents, The University Of Texas System Tunable, Pulsatile, and 3-Dimensional Fluidic Oscillator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB945692A (en) * 1960-09-02 1964-01-08 Lucas Industries Ltd Atomisers
GB1002523A (en) * 1963-01-23 1965-08-25 Ultrasonic Ltd Improvements relating to the production of aerosols and the like
US3334657A (en) * 1963-10-28 1967-08-08 Smith Adjustable fluid mixing devices
US3326467A (en) * 1965-12-20 1967-06-20 William K Fortman Atomizer with multi-frequency exciter
DE1501863B2 (en) * 1966-11-12 1972-06-08 Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart OIL BURNER
US3779460A (en) * 1972-03-13 1973-12-18 Combustion Equip Ass Acoustic nozzle
FR2176212A5 (en) * 1972-03-14 1973-10-26 Inst Politehnic Cluj
US3911858A (en) * 1974-05-31 1975-10-14 United Technologies Corp Vortex acoustic oscillator
US4240293A (en) * 1979-05-21 1980-12-23 Hughes Sciences Group, Inc. Vortex generating device
US4205786A (en) * 1977-12-05 1980-06-03 Antonenko Vladimir F Atomizing device
US4241877A (en) * 1978-10-16 1980-12-30 Hughes Sciences Group, Inc. Stable vortex generating device
SU775514A1 (en) * 1979-01-15 1980-10-30 Предприятие П/Я Р-6837 Acoustic nozzle

Also Published As

Publication number Publication date
DE3166989D1 (en) 1984-12-06
US4458842A (en) 1984-07-10
CA1178880A (en) 1984-12-04
EP0050884A1 (en) 1982-05-05

Similar Documents

Publication Publication Date Title
DE2524887C2 (en) Combustion device for burning a fuel by means of a pressurized fluid and an additive
EP0213329B1 (en) Pulverizing device
DE2345282B2 (en) Combustion device for gas turbine engines
DE2446398A1 (en) AXIAL SWIRL CARBURETOR WITH CENTRAL INJECTION
DE3001774A1 (en) HYPERBOLIC FREQUENCY MODULATION FOR AERO- / HYDRODYNAMIC FLOW SYSTEMS
DE2953648C2 (en) Liquid fuel burners
DE1751648C2 (en) burner
DE1926295A1 (en) Combustion chamber for jet engines
EP0050884B1 (en) Resonant chamber atomiser for liquids
DE2356863C2 (en) Liquid fuel burners
EP3168533B1 (en) Spray nozzle
EP0718550A1 (en) Injection nozzle
DE3244854A1 (en) BURNER
EP0924459A1 (en) Method and apparatus for injecting a mixture of fuel end liquid into a combustor
DE1964040C2 (en) Atomizing burner for liquid fuel with a sound vibration generator
DE2150893C2 (en) Swing burner device
CH670296A5 (en) Gas turbine fuel nozzle - has externally-supported premixing chamber for liq. fuel and air
DE2712564A1 (en) BURNERS FOR LIQUID FUEL
EP0496016A1 (en) High pressure spray nozzle
DE1551648C3 (en) Atomizing burners for liquid fuel
EP0043908B1 (en) Spray nozzle for continuous fuel injection
DE19854382B4 (en) Method and device for atomizing liquid fuel for a firing plant
DE2554483C2 (en) Burner nozzle for oil and / or fuel gas with a Hartmann sound vibration generator
EP0072950A3 (en) Method of vaporising and combusting liquid fuels, and burner therefor
DE2436795A1 (en) BURNERS FOR LIQUID FUEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB SE

17P Request for examination filed

Effective date: 19820925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB LI SE

REF Corresponds to:

Ref document number: 3166989

Country of ref document: DE

Date of ref document: 19841206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890930

Ref country code: CH

Effective date: 19890930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930817

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 81201078.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940929

EUG Se: european patent has lapsed

Ref document number: 81201078.3