EP0050232B1 - Method of inhibiting a fire propagation in a solid fuel feed duct from a combustion furnace, and furnace for carrying out said method - Google Patents

Method of inhibiting a fire propagation in a solid fuel feed duct from a combustion furnace, and furnace for carrying out said method Download PDF

Info

Publication number
EP0050232B1
EP0050232B1 EP81107552A EP81107552A EP0050232B1 EP 0050232 B1 EP0050232 B1 EP 0050232B1 EP 81107552 A EP81107552 A EP 81107552A EP 81107552 A EP81107552 A EP 81107552A EP 0050232 B1 EP0050232 B1 EP 0050232B1
Authority
EP
European Patent Office
Prior art keywords
feed
heat exchanger
water
fire
vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107552A
Other languages
German (de)
French (fr)
Other versions
EP0050232A3 (en
EP0050232A2 (en
Inventor
Hans Grossniklaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81107552T priority Critical patent/ATE7331T1/en
Publication of EP0050232A2 publication Critical patent/EP0050232A2/en
Publication of EP0050232A3 publication Critical patent/EP0050232A3/en
Application granted granted Critical
Publication of EP0050232B1 publication Critical patent/EP0050232B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C4/00Flame traps allowing passage of gas but not of flame or explosion wave
    • A62C4/04Flame traps allowing passage of gas but not of flame or explosion wave in flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements

Definitions

  • the invention relates to a method for preventing the spread of fire on the feed path leading to the firebox of a firing system for solid fuel and a firing system for carrying out the method according to the preambles of claims 1 and 5.
  • the fire is prevented from spreading on the feed path if the fire cannot spread over the entire feed path beyond the section of the feed path opening into the firebox.
  • the object of the invention is to prevent the fire from spreading on the feed path without noticeably affecting the combustion in the combustion chamber.
  • the water vapor directed into the fuel on the feed path does two things. First, it penetrates evenly into the entire fuel so that its moisture content is increased. Second, it increases the humidity on the supply route. This means that the conditions for the fire to spread in the supply channel are no longer present.
  • the combustion in the combustion chamber is not affected, at least not noticeably, because the temperatures are very high and sufficient fresh air is supplied so that the fuel, which is moist but not soaked, burns well.
  • the water vapor can be fed continuously or periodically intermittently. However, it is expediently only supplied if a predetermined temperature on the supply path is exceeded. This happens if the fire detects the fuel at the end of the feed path and begins to spread along the feed path. If, for example, wood is used as fuel, this is the case when the wood supplied is very dry, so that the fire spreads faster than the wood is supplied. On the other hand, if, for example, freshly cut wood is fed in, the rate of spread (burn-back speed) of the fire is lower than the rate of conveyance of the wood, the fire cannot spread over the feed path and the predetermined temperature is not exceeded.
  • a predetermined temperature on the supply path is exceeded. This happens if the fire detects the fuel at the end of the feed path and begins to spread along the feed path. If, for example, wood is used as fuel, this is the case when the wood supplied is very dry, so that the fire spreads faster than the wood is supplied. On the other hand, if, for example, freshly cut wood is fed in, the rate
  • each time after the predetermined temperature is exceeded only a small amount of water is evaporated in a burst.
  • the amount of water is only so large that the spread of the fire is prevented. To do this, it is sufficient to moisten the wood in such a way that the rate of fire spread is less than the speed of the minimum fuel flow required to maintain the fire in the combustion chamber, which is maintained during operation of the plant when no heat is required.
  • the system shown is a wood-burning system for central heating with automatic loading of the combustion chamber. It has a container 1 for the wood, which has an opening 2 reinforced at the bottom in a side wall, which opens into a feed channel 4 leading to the combustion chamber 3. A plunger which is moved back and forth in the container 1 (not shown) breaks the wood at the opening 2 and pushes it into the feed channel 4. This is explained in detail in US Pat. No. 4,185,567.
  • the combustion chamber 3 is located in a combustion chamber 5, not shown in detail, the details of which are described in US Pat. No. 4,181,082.
  • One connected to the water supply network ne water pipe 6 leads via a valve 7 which can be actuated by means of a pressure membrane and a heat exchanger 8 to a heat exchanger 9 in which the water is evaporated.
  • a steam supply line 10 connected to the heat exchanger 9 conducts the generated steam to an opening 11 in the wall of the rear of the two pipe sections 12, 13 forming the supply channel 4.
  • the heat exchanger 8 sits on the rear end of the pipe section 12 flanged to the pipe section 13. It consists of a metal block 14 screwed onto the wall of the pipe section 12, which stores the heat transferred from the pipe wall and transfers it to the water flowing through its bore 15 .
  • the heat exchanger 9 sits on the front end of the pipe section 12 flanged to the combustion chamber 5. It also has a metal block 19 screwed onto the wall of the pipe section 12, which stores the heat transferred from the pipe wall.
  • a pipe section 20 is welded onto the metal block 19 and is closed by a screw-off cover 21. The water line 6 and the steam supply line 10 open at a distance above the metal block 19 forming the bottom of the heat exchanger 9 into the upper part of the pipe section 20.
  • connection bores for the lines 6 and 10 are arranged in the upper part of the pipe section 20 Avoided that the lime precipitating during the evaporation of the water supplied through the water line 6 and settling on the metal block 19 in the lower part of the pipe section 20 clogs the connection bores.
  • the lid 21 can be unscrewed so that the heat exchanger 9 is cleaned, i.e. H. the lime can be removed.
  • An asbestos intermediate ring 16, 16 ' is arranged between the flanges of the combustion chamber wall 5 and the pipe section 12 and the two pipe sections 12, 13.
  • the asbestos ring 16 prevents the pipe section 12 from heating up too much as a result of heat conduction from the combustion chamber wall 5 and thereby promoting the spread of fire into the pipe section 12.
  • the asbestos ring 16 ′ prevents the rear end of the pipe section 12 from being cooled down significantly by dissipation of the heat into the pipe section 13 and thereby the operation of the heat exchanger 8 described below being impaired.
  • the heating of the water in the heat exchanger 8 is indeed desirable because the heat exchanger 9 can then heat and evaporate the water more quickly to the boiling point, but it is not the actual purpose of the heat exchanger 8. Rather, it works with an expansion material temperature sensor 17 and the membrane valve 7 so that it opens when a certain temperature is exceeded and closes again after flowing through a certain amount of water.
  • the container of the temperature sensor 17 containing the expansion fluid is seated in a second bore of the heat exchanger block 14 parallel to the bore 15.
  • a capillary tube 18 connects the probe 17 to the membrane valve 7, so that it opens after a predetermined temperature is exceeded and after the temperature falls below the Temperature closes again. Since the heat exchanger 8 is cooled by the water flowing through it, the temperature drop which causes the valve 7 to close occurs after a certain amount of water has flowed through the heat exchanger 8.
  • the method according to the invention is particularly suitable for wood-fired systems of the type described above, in which splintered wood is supplied because the steam easily penetrates into the air spaces created during the splitting and the wood is continuously moistened.
  • the application of the method according to the invention is in no way limited to such wood-fired systems.
  • the method is, for example, just as well suitable for the known wood-burning systems in which wood is processed into a small-sized conveyed material in a comminution system and is fed to the combustion chamber by means of a screw conveyor arranged in a feed pipe.
  • other solid materials can also be considered as fuel, e.g. B. coal, the problem of fire spreading in wood arises in particular because the moisture content fluctuates greatly depending on the wood used.
  • the generation of the steam in the heat exchanger 9 has the advantage that the waste heat generated during combustion at the outlet of the supply channel is used for the evaporation of the water.
  • the steam could also be by means of a z. B. electrically heated evaporator, for. B. a steam boiler.
  • the temperature sensor 17 and the valve 7 controlled by this a certain, small and, in addition, preheated amount of water is emitted to the heat exchanger 9 in a very simple manner when the predetermined temperature is exceeded, which evaporates this metered amount of water in a burst.
  • the temperature sensor 17 or a control device connected to it could open the valve 7 even when an upper temperature limit is exceeded and only close again after a significant drop in temperature when the temperature falls below a lower temperature limit.
  • the amount of water to be evaporated could also be metered in in other ways, e.g. B. could be provided a timer that opens the valve after triggering by a temperature sensor during a preselected time period according to the desired amount of water.
  • the fact that the steam supply line 10 opens into the rear part 13 of the supply duct 4 ensures that the steam is distributed evenly throughout the duct. If the feed line 10 would open into the end of the feed channel 4 connected to the combustion chamber 5, part of the steam could u. U. escape into the firebox 3.
  • the arrangement of the steam supply opening 11 in the rear channel part 13 - at a distance from the fire chamber entrance which is a multiple of the channel diameter - furthermore ensures that the fire does not spread throughout, even if there is an explosive expansion into the front end of the supply channel Feed channel spreads out, because then in rapid succession steam bursts into the not yet burning wood in the rear part and this is moistened so strongly that a further spread of the fire is impossible.
  • a nozzle can also be provided at the outlet of the opening 11 in order to distribute the steam in the feed channel at an even higher speed. Furthermore, in the case of very long supply channels, a plurality of steam supply lines could be provided, or a steam supply line could open into the supply channel at several points in order to reliably supply the supply channel with steam over the entire length.
  • the heat exchanger 8 can be omitted if the temperature sensor 17 is arranged in a bore in the metal block 19 of the heat exchanger 9 and this is mounted on the supply duct 4. On the other hand, the heat exchanger 8 with the temperature sensor 17 at the front end of the supply channel 4 and the heat exchanger 9 could be mounted on or in the combustion chamber 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Solid-Fuel Combustion (AREA)
  • Telephonic Communication Services (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Road Paving Structures (AREA)
  • Tires In General (AREA)
  • Control Of Combustion (AREA)
  • Railway Tracks (AREA)
  • Braking Arrangements (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Glass Compositions (AREA)

Abstract

The furnace has a feeding channel (4) through which firewood is transported into a fire chamber (3). A steam pipe (10) leads into the channel (4). Through said pipe (10), steam is introduced into the solid fuel material in bursts as soon as a certain temperature is exceeded within the said channel (4). The steam increases the humidity in the air and the moisture of the firewood, thereby reliably preventing a spreading of the fire within the feeding channel (4), without simultaneously impairing combustion within the fire chamber (3).

Description

Die Erfindung betrifft ein Verfahren zur Verhinderung einer Ausbreitung des Feuers auf dem zum Feuerraum einer Feuerungsanlage für festes Brennmaterial führenden Zufuhrweg und eine Feuerungsanlage zur Durchführung des Verfahrens, gemäss den Oberbegriffen der Ansprüche 1 und 5.The invention relates to a method for preventing the spread of fire on the feed path leading to the firebox of a firing system for solid fuel and a firing system for carrying out the method according to the preambles of claims 1 and 5.

Eine Ausbreitung des Feuers auf dem Zufuhrweg wird verhindert, wenn sich das Feuer nicht über den in den Feuerraum mündenden Abschnitt des Zufuhrwegs hinaus auf den ganzen Zufuhrweg ausbreiten kann.The fire is prevented from spreading on the feed path if the fire cannot spread over the entire feed path beyond the section of the feed path opening into the firebox.

Aus der US-PS 4181 082 ist es bekannt, einen im Zufuhrkanal einer Feuerungsanlage entstandenen Brand mit Wasser zu löschen. Dazu ist an der Oberseite des Zufuhrkanals eine Wasserleitung angeschlossen, die an der Anschlussstelle durch ein von einem Temperaturfühler gesteuertes Ventil abgesperrt ist. Bei einer bestimmten Temperatur öffnet der Temperaturfühler das Ventil und das Wasser strömt in den Zufuhrkanal, wobei es über den Temperaturfühler fliesst und diesen abkühlt, so dass das Ventil nach einem gewissen Temperaturabfall wieder schliesst. Nachteilig ist dabei, dass nicht nur das Feuer im Zufuhrkanal sondern auch das Feuer im Feuerraum ausgelöscht wird, weil das dem Feuerraum zugeführte Brennmaterial dann völlig durchnässt ist. Wenn man - um dies zu vermeiden - weniger Wasser zuströmen lässt, dann wird der Brand nicht zuverlässig gelöscht, weil nur Teilbereiche des Brennmaterials benetzt werden. Nachteilig ist bei dem bekannten Verfahren auch, dass sich im Zufuhrkanal ein Sumpf bildet, der nur durch gründliche Reinigung des Kanals entfernt werden kann.From US Pat. No. 4,181,082 it is known to extinguish a fire which has arisen in the feed channel of a firing system with water. For this purpose, a water pipe is connected to the top of the feed channel, which is shut off at the connection point by a valve controlled by a temperature sensor. At a certain temperature, the temperature sensor opens the valve and the water flows into the supply channel, flowing over the temperature sensor and cooling it, so that the valve closes again after a certain drop in temperature. The disadvantage here is that not only the fire in the supply duct but also the fire in the combustion chamber is extinguished because the fuel material supplied to the combustion chamber is then completely soaked. If - to avoid this - less water is allowed to flow in, then the fire will not be extinguished reliably because only parts of the fuel are wetted. Another disadvantage of the known method is that a sump forms in the feed channel, which can only be removed by thorough cleaning of the channel.

Aufgabe der Erfindung ist es, ein Ausbreiten des Feuers auf dem Zufuhrweg zu verhindern, ohne die Verbrennung im Feuerraum merklich zu beeinträchtigen.The object of the invention is to prevent the fire from spreading on the feed path without noticeably affecting the combustion in the combustion chamber.

Diese Aufgabe wird gemäss der Erfindung in verfahrensmässiger Hinsicht durch das im kennzeichnenden Teil des Anspruchs 1 angegebene Merkmal und in vorrichtungsmässiger Hinsicht durch das im kennzeichnenden Teil des Anspruchs 5 aufgeführte Merkmal gelöst.This object is achieved according to the invention in procedural terms by the feature specified in the characterizing part of claim 1 and in device terms by the feature listed in the characterizing part of claim 5.

Vorteilhafte Ausgestaltungen des Verfahrens und der Vorrichtung ergeben sich aus den Ansprüchen 2 bis 4 und 6 bis 10.Advantageous embodiments of the method and the device result from claims 2 to 4 and 6 to 10.

Der in das auf dem Zufuhrweg befindliche Brennmaterial geleitete Wasserdampf bewirkt zweierlei : Erstens dringt er gleichmässig in das gesamte Brennmaterial ein, so dass dessen Feuchtigkeitsgehalt erhöht wird. Zweitens erhöht er die Luftfeuchtigkeit auf dem Zufuhrweg. Damit sind die Bedingungen für eine Ausbreitung des Brandes im Zufuhrkanal nicht mehr gegeben. Die Verbrennung im Feuerraum wird dagegen nicht, zumindest nicht merklich, beeinträchtigt, denn dort herrschen sehr hohe Temperaturen und es wird genügend Frischluft zugeführt, so dass das zwar feuchte aber nicht durchnässte Brennmaterial gut verbrennt.The water vapor directed into the fuel on the feed path does two things. First, it penetrates evenly into the entire fuel so that its moisture content is increased. Second, it increases the humidity on the supply route. This means that the conditions for the fire to spread in the supply channel are no longer present. The combustion in the combustion chamber, on the other hand, is not affected, at least not noticeably, because the temperatures are very high and sufficient fresh air is supplied so that the fuel, which is moist but not soaked, burns well.

Der Wasserdampf kann erforderlichenfalls dauernd kontinuierlich oder periodisch stossweise zugeleitet werden. Zweckmässig wird er aber nur zugeführt, wenn eine vorbestimmte Temperatur am Zufuhrweg überschritten wird. Dies geschieht, falls das Feuer das am Ende des Zufuhrwegs befindliche Brennmaterial erfasst und beginnt, sich auf dem Zufuhrweg auszubreiten. Verwendet man als Brennmaterial zum Beispiel Holz, so ist dies dann der Fall, wenn das zugeführte Holz sehr trocken ist, so dass sich das Feuer rascher ausbreitet als das Holz zugeführt wird. Wird dagegen zum Beispiel frisch geschlagenes Holz zugeführt, so ist die Ausbreitungsgeschwindigkeit (Rückbrenngeschwindigkeit) des Feuers kleiner als die Fördergeschwindigkeit des Holzes, das Feuer kann nicht auf den Zufuhrweg übergreifen und die vorbestimmte Temperatur wird nicht überschritten. Indem der Wasserdampf nur beim Ueberschreiten der vorbestimmten Temperatur zugeleitet wird, wird nur das zu trockene Brennmaterial befeuchtet, wogegen ein bereits für die Verhinderung der Feuerausbreitung genügender Feuchtigkeitsgehalt des Brennmaterials nicht noch unnötig weiter erhöht wird.If necessary, the water vapor can be fed continuously or periodically intermittently. However, it is expediently only supplied if a predetermined temperature on the supply path is exceeded. This happens if the fire detects the fuel at the end of the feed path and begins to spread along the feed path. If, for example, wood is used as fuel, this is the case when the wood supplied is very dry, so that the fire spreads faster than the wood is supplied. On the other hand, if, for example, freshly cut wood is fed in, the rate of spread (burn-back speed) of the fire is lower than the rate of conveyance of the wood, the fire cannot spread over the feed path and the predetermined temperature is not exceeded. By supplying the water vapor only when the predetermined temperature is exceeded, only the fuel that is too dry is moistened, whereas a moisture content of the fuel that is already sufficient to prevent the spread of fire is not unnecessarily increased.

Vorzugsweise wird ferner jeweils nach Ueberschreiten der vorbestimmten Temperatur lediglich eine kleine Wassermenge stossartig verdampft. Die Wassermenge wird nur so gross bemessen, dass eine Ausbreitung des Brandes verhindert wird. Dazu genügt es, das Holz so anzufeuchten, dass die Ausbreitungsgeschwindigkeit des Feuers kleiner wird als die Geschwindigkeit des zur Aufrechterhaltung des Feuers im Feuerraum erforderlichen Mindestbrennmaterialstroms, der im Betrieb der Anlage eingehalten wird, wenn keine Wärme benötigt wird.Preferably, each time after the predetermined temperature is exceeded, only a small amount of water is evaporated in a burst. The amount of water is only so large that the spread of the fire is prevented. To do this, it is sufficient to moisten the wood in such a way that the rate of fire spread is less than the speed of the minimum fuel flow required to maintain the fire in the combustion chamber, which is maintained during operation of the plant when no heat is required.

Im folgenden wird anhand der beiliegenden Zeichnung ein Ausführungsbeispiel der Erfindung näher beschrieben. Es zeigen :

  • Figur 1 eine Draufsicht auf eine erfindungsgemässe Feuerungsanlage, teilweise im Schnitt, und
  • Figur 2 einen vertikalen Längsschnitt durch die Anlage nach der Linie 11-11 in Fig. 1.
In the following an embodiment of the invention will be described with reference to the accompanying drawings. Show it :
  • Figure 1 is a plan view of a furnace according to the invention, partially in section, and
  • 2 shows a vertical longitudinal section through the system along the line 11-11 in FIG. 1st

Die dargestellte Anlage ist eine für eine Zentralheizung bestimmte Holzfeuerungsanlage mit selbsttätiger Beschickung des Feuerraums. Sie hat einen Behälter 1 für das Holz, welcher unten in einer Seitenwand eine am Rand verstärkte Oeffnung 2 hat, die in einen zum Feuerraum 3 führenden Zufuhrkanal 4 mündet. Ein im Behälter 1 hin- und herbewegter (nicht dargestellter) Stössel zerbricht das Holz an der Oeffnung 2 und schiebt es in den Zufuhrkanal 4. Dies ist im einzelnen in der US-PS 4185 567 erläutert. Der Feuerraum 3 befindet sich in einer nicht näher dargestellten Brennkammer 5, deren Einzelheiten in der US-PS 4181 082 beschrieben sind.The system shown is a wood-burning system for central heating with automatic loading of the combustion chamber. It has a container 1 for the wood, which has an opening 2 reinforced at the bottom in a side wall, which opens into a feed channel 4 leading to the combustion chamber 3. A plunger which is moved back and forth in the container 1 (not shown) breaks the wood at the opening 2 and pushes it into the feed channel 4. This is explained in detail in US Pat. No. 4,185,567. The combustion chamber 3 is located in a combustion chamber 5, not shown in detail, the details of which are described in US Pat. No. 4,181,082.

Eine an das Wasserleitungsnetz angeschlossene Wasserleitung 6 führt über ein mittels einer Druckmembran betätigbares Ventil 7 und einen Wärmeaustauscher 8 zu einem Wärmeaustauscher 9, in welchem das Wasser verdampft wird. Eine an den Wärmeaustauscher 9 angeschlossene Dampfzufuhrleitung 10 leitet den erzeugten Dampf zu einer Oeffnung 11 in der Wandung des hinteren der beiden, den Zufuhrkanal 4 bildenden Rohrstücke 12, 13.One connected to the water supply network ne water pipe 6 leads via a valve 7 which can be actuated by means of a pressure membrane and a heat exchanger 8 to a heat exchanger 9 in which the water is evaporated. A steam supply line 10 connected to the heat exchanger 9 conducts the generated steam to an opening 11 in the wall of the rear of the two pipe sections 12, 13 forming the supply channel 4.

Der Wärmeaustauscher 8 sitzt auf dem hinteren, an das Rohrstück 13 angeflanschten Ende des Rohrstücks 12. Er besteht aus einem auf die Wandung des Rohrstücks 12 geschraubten Metallblock 14, der die von der Rohrwandung übertragene Wärme speichert und an das durch seine Bohrung 15 fliessende Wasser abgibt. Der Wärmeaustauscher 9 sitzt auf dem vorderen, an die Brennkammer 5 angeflanschten Ende des Rohrstücks 12. Er hat ebenfalls einen auf die Wandung des Rohrstücks 12 geschraubten Metallblock 19, der die von der Rohrwandung übertragene Wärme speichert. Auf den Metallblock 19 ist ein Rohrstück 20 geschweisst, das durch einen abschraubbaren Deckel 21 geschlossen ist. Die Wasserleitung 6 und die Dampfzufuhrleitung 10 münden in einem Abstand über dem den Boden des Wärmeaustauschers 9 bildenden Metallblock 19 in den oberen Teil des Rohrstücks 20. Dadurch, dass die Anschlussbohrungen für die Leitungen 6 und 10 im oberen Teil des Rohrstücks 20 angeordnet sind, wird vermieden, dass der sich beim Verdampfen des durch die Wasserleitung 6 zugeführten Wassers ausscheidende und im unteren Teil des Rohrstücks 20 auf dem Metallblock 19 absetzende Kalk die Anschlussbohrungen verstopft. Der Deckel 21 ist abschraubbar, damit der Wärmeaustauscher 9 gereinigt, d. h. der Kalk entfernt werden kann.The heat exchanger 8 sits on the rear end of the pipe section 12 flanged to the pipe section 13. It consists of a metal block 14 screwed onto the wall of the pipe section 12, which stores the heat transferred from the pipe wall and transfers it to the water flowing through its bore 15 . The heat exchanger 9 sits on the front end of the pipe section 12 flanged to the combustion chamber 5. It also has a metal block 19 screwed onto the wall of the pipe section 12, which stores the heat transferred from the pipe wall. A pipe section 20 is welded onto the metal block 19 and is closed by a screw-off cover 21. The water line 6 and the steam supply line 10 open at a distance above the metal block 19 forming the bottom of the heat exchanger 9 into the upper part of the pipe section 20. The connection bores for the lines 6 and 10 are arranged in the upper part of the pipe section 20 Avoided that the lime precipitating during the evaporation of the water supplied through the water line 6 and settling on the metal block 19 in the lower part of the pipe section 20 clogs the connection bores. The lid 21 can be unscrewed so that the heat exchanger 9 is cleaned, i.e. H. the lime can be removed.

Zwischen den Flanschen der Brennkammerwandung 5 und des Rohrstücks 12 sowie der beiden Rohrstücke 12, 13 ist je ein Asbestzwischenring 16, 16' angeordnet. Der Asbestring 16 verhindert, dass das Rohrstück 12 infolge Wärmeleitung von der Brennkammerwandung 5 zu stark erhitzt und dadurch die Ausbreitung des Feuers in das Rohrstück 12 gefördert wird. Der Asbestring 16' verhindert, dass das hintere Ende des Rohrstücks 12 durch Ableitung der Wärme in das Rohrstück 13 stark abgekühlt und dadurch die im folgenden beschriebene Wirkungsweise des Wärmeaustauschers 8 beeinträchtigt wird.An asbestos intermediate ring 16, 16 'is arranged between the flanges of the combustion chamber wall 5 and the pipe section 12 and the two pipe sections 12, 13. The asbestos ring 16 prevents the pipe section 12 from heating up too much as a result of heat conduction from the combustion chamber wall 5 and thereby promoting the spread of fire into the pipe section 12. The asbestos ring 16 ′ prevents the rear end of the pipe section 12 from being cooled down significantly by dissipation of the heat into the pipe section 13 and thereby the operation of the heat exchanger 8 described below being impaired.

Die Erwärmung des Wassers im Wärmeaustauscher 8 ist zwar erwünscht, weil der Wärmeaustauscher 9 dann das Wasser rascher auf den Siedepunkt erhitzen und verdampfen kann, sie ist aber nicht der eigentliche Zweck des Wärmeaustauschers 8. Dieser wirkt vielmehr mit einem Dehnstoff-Temperaturfühler 17 und dem Membranventil 7 so zusammen, dass dieses bei Ueberschreiten einer bestimmten Temperatur öffnet und nach Durchströmen einer bestimmten Wassermenge wieder schliesst. Zu diesem Zweck sitzt der die Dehnflüssigkeit enthaltende Behälter des Temperaturfühlers 17 in einer zur Bohrung 15 parallelen, zweiten Bohrung des Wärmeaustauscherblocks 14. Ein Kapillarrohr 18 verbindet den Fühler 17 mit dem Membranventil 7, so dass dieses nach Ueberschreiten einer vorbestimmten Temperatur öffnet und nach Unterschreiten der Temperatur wieder schliesst. Da der Wärmeaustauscher 8 vom durchströmenden Wasser abgekühlt wird, tritt der das Schliessen des Ventils 7 auslösende Temperaturabfall ein, nachdem eine bestimmte Wassermenge durch den Wärmeaustauscher 8 geströmt ist.The heating of the water in the heat exchanger 8 is indeed desirable because the heat exchanger 9 can then heat and evaporate the water more quickly to the boiling point, but it is not the actual purpose of the heat exchanger 8. Rather, it works with an expansion material temperature sensor 17 and the membrane valve 7 so that it opens when a certain temperature is exceeded and closes again after flowing through a certain amount of water. For this purpose, the container of the temperature sensor 17 containing the expansion fluid is seated in a second bore of the heat exchanger block 14 parallel to the bore 15. A capillary tube 18 connects the probe 17 to the membrane valve 7, so that it opens after a predetermined temperature is exceeded and after the temperature falls below the Temperature closes again. Since the heat exchanger 8 is cooled by the water flowing through it, the temperature drop which causes the valve 7 to close occurs after a certain amount of water has flowed through the heat exchanger 8.

Die Anlage arbeitet wie folgt :

  • Der im Behälter 1 befindliche Stössel schiebt bei seinem Arbeitshub das Brennholz an die Oeffnung 2, zersplittert es dort und schiebt die zersplitterten Holzstücke weiter in den Zufuhrkanal 4. Die Stösselfrequenz und damit der Brennmaterialstrom wird in Abhängigkeit vom Wärmebedarf der Zentralheizung geregelt, wobei ein die Aufrechterhaltung des Feuers im Feuerraum 3 gewährleistender Mindestmaterialstrom eingehalten wird. Solange feuchtes Holz zugeführt wird, kann sich das Feuer bei dem eingehaltenen Mindestmaterialstrom nicht vom Feuerraum 3 in den Zufuhrkanal 4 ausbreiten. Das Rohrstück 12 wird nicht erhitzt und die vom Temperaturfühler 17 erfasste Temperatur des Wärmeaustauschers 8 liegt unter der vorbestimmten Temperatur, so dass das Ventil 7 geschlossen bleibt und keine Dampfzufuhr erfolgt. Wenn dagegen trockenes Holz zugeführt wird, kann die Rückbrenngeschwindigkeit, d. h. die Geschwindigkeit, mit der sich das Feuer entgegen der Förderrichtung ausbreitet, grösser werden als die Geschwindigkeit des Brennmaterialstroms. In diesem Fall erfasst das Feuer das Holz am Ausgang des Zufuhrkanals 4, wobei das Ende des Rohrstücks 12 und der darauf sitzende Wärmeaustauscher 9 auf über 200 °C erhitzt werden. Infolge der Wärmeleitung im Rohrstück 12 wird auch der Wärmeaustauscher 8 und damit der Temperaturfühler 17 erwärmt. Dessen Dehnflüssigkeit dehnt sich aus und beaufschlagt nach Ueberschreiten der vorbestimmten Temperatur die Membran des Ventils 7. Das nach Oeffnen des Ventils 7 durch die Leitung 6 strömende Wasser nimmt Wärme aus dem Wärmeaustauscher 8 auf und wird im Wärmeaustauscher 9 über den Siedepunkt erhitzt und stossartig verdampft. Der Wasserdampf (Nassdampf) strömt durch die Dampzufuhrleitung 10 und die Oeffnung 11 in das hintere Rohrstück 13, worauf er sich im ganzen Zufuhrkanal 4 verteilt, darin die Luftfeuchtigkeit erhöht und in das zersplitterte Brennholz eindringt. Nachdem eine bestimmte Wassermenge (20 bis 30 cm3) durch den Wärmeaustauscher 8 geströmt ist, ist dessen Temperatur und damit auch die Temperatur des Temperaturfühlers 17 abgefallen, die Dehnflüssigkeit zieht sich zusammen und das Ventil 7 schliesst wieder. Weil nur eine verhältnismässig kleine Wassermenge in den Wärmeaustauscher 9 gelangt, ist die erforderliche Verdampfungswärme verhältnismässig gering und der Wärmeaustauscher 9 wird nur geringfügig abgekühlt. Wenn der zugeführte Dampfstoss noch nicht ausreicht, um die für die Verhinderung der Feuerausbreitung erforderliche Luft- und Holzfeuchtigkeit zu erreichen, d. h. wenn die Verbrennung noch fortschreitet, wird der Wärmeaustauscher 8 durch die vom Rohrstück 12 übertragene Verbrennungswärme wieder über die vorbestimmte Temperatur erwärmt, worauf - wie beschrieben - erneut ein Dampfstoss erzeugt wird. Dies wiederholt sich solange, bis die Verbrennung am Ausgang des Zufuhrkanals 4 auf ein geringes, wenig Wärme erzeugendes Mass herabgesetzt ist, bei dem die Rückbrenngeschwindigkeit kleiner ist als die Fördergeschwindigkeit des für die Aufrechterhaltung des Feuers im Feuerraum 3 erforderlichen Mindestmaterialstroms. Weil nun das ganze, im Zufuhrkanal befindliche Brennholz einen hohen Feuchtigkeitsgehalt aufweist, besteht die Gefahr einer Ausbreitung des Feuers im Zufuhrkanal erst wieder, wenn neues Brennholz aus dem Behälter 1 bis zum Ende des Zufuhrkanals 4 gefördert ist. Danach wiederholt sich erforderlichenfalls der beschriebene Befeuchtungsvorgang. Der erhöhte Feuchtigkeitsgehalt des Brennholzes beeinträchtigt die Verbrennung im Feuerraum 3 nicht, weil dort eine wesentlicht höhere Temperature herrscht und zudem Verbrennungsluft zugeführt wird.
The system works as follows:
  • The plunger located in the container 1 pushes the firewood to the opening 2 during its working stroke, splinters it there and pushes the splintered pieces of wood further into the feed channel 4. The plunger frequency and thus the fuel flow is regulated in dependence on the heat requirement of the central heating, with maintenance being maintained of the fire in the firebox 3 ensuring the minimum material flow is observed. As long as moist wood is supplied, the fire cannot spread from the combustion chamber 3 into the supply duct 4 with the minimum material flow being maintained. The pipe section 12 is not heated and the temperature of the heat exchanger 8 detected by the temperature sensor 17 is below the predetermined temperature, so that the valve 7 remains closed and no steam is supplied. If, on the other hand, dry wood is supplied, the burn-back speed, ie the speed at which the fire spreads against the direction of conveyance, can become greater than the speed of the fuel flow. In this case, the fire detects the wood at the outlet of the feed channel 4, the end of the pipe section 12 and the heat exchanger 9 sitting thereon being heated to over 200 ° C. As a result of the heat conduction in the pipe section 12, the heat exchanger 8 and thus the temperature sensor 17 are also heated. Its expansion fluid expands and acts on the membrane of the valve 7 after the predetermined temperature has been exceeded. The water flowing through the line 6 after opening the valve 7 absorbs heat from the heat exchanger 8 and is heated in the heat exchanger 9 above the boiling point and evaporated in a surge. The water vapor (wet steam) flows through the steam supply line 10 and the opening 11 into the rear pipe section 13, whereupon it is distributed throughout the supply duct 4, increases the air humidity therein and penetrates the splintered firewood. After a certain amount of water (20 to 30 cm 3 ) has flowed through the heat exchanger 8, its temperature and thus also the temperature of the temperature sensor 17 has dropped, the expansion fluid contracts and the valve 7 closes again. Because only a relatively small amount of water gets into the heat exchanger 9, the heat of vaporization required is comparatively low and the heat exchanger 9 is cooled only slightly. If the supplied burst of steam is not sufficient to prevent it to achieve the air and wood moisture required for the fire to spread, ie if the combustion is still proceeding, the heat exchanger 8 is heated again above the predetermined temperature by the combustion heat transferred from the pipe section 12, whereupon - as described - a burst of steam is generated again. This is repeated until the combustion at the outlet of the supply duct 4 is reduced to a low, little heat-generating level, at which the burn-back speed is lower than the conveying speed of the minimum material flow required for maintaining the fire in the combustion chamber 3. Because all the firewood in the feed channel now has a high moisture content, there is no risk of fire spreading again in the feed channel until new firewood has been conveyed from the container 1 to the end of the feed channel 4. Then, if necessary, the described moistening process is repeated. The increased moisture content of the firewood does not affect the combustion in the combustion chamber 3 because there is a much higher temperature and combustion air is also supplied.

Das erfindungsgemässe Verfahren eignet sich besonders gut für Holzfeuerungsanlagen der oben beschriebenen Art, bei denen zersplittertes Holz zugeführt wird, weil der Dampf leicht in die bei der Zersplitterung entstandenen Lufträume eindringt und das Holz durchgehend befeuchtet wird. Die Anwendung des erfindungsgemässen Verfahrens beschränkt sich aber keineswegs auf solche Holzfeuerungsanlagen. Das Verfahren eignet sich zum Beispiel ebensogut für die bekannten Holzfeuerungsanlagen, bei denen Holz in einer Zerkleinerungsanlage zu einem kleinstückigen Fördergut verarbeitet und mittels eines in einem Zufuhrrohr angeordneten Schneckenförderers dem Feuerraum zugeführt wird. Als Brennmaterial kommen neben Holz auch andere feste Stoffe in Betracht, z. B. Kohle, wobei sich das Problem der Feuerausbreitung bei Holz in besonderem Masse stellt, weil der Feuchtigkeitsgehalt je nach dem verwendeten Holz ausserordentlich stark schwankt.The method according to the invention is particularly suitable for wood-fired systems of the type described above, in which splintered wood is supplied because the steam easily penetrates into the air spaces created during the splitting and the wood is continuously moistened. However, the application of the method according to the invention is in no way limited to such wood-fired systems. The method is, for example, just as well suitable for the known wood-burning systems in which wood is processed into a small-sized conveyed material in a comminution system and is fed to the combustion chamber by means of a screw conveyor arranged in a feed pipe. In addition to wood, other solid materials can also be considered as fuel, e.g. B. coal, the problem of fire spreading in wood arises in particular because the moisture content fluctuates greatly depending on the wood used.

Die Erzeugung des Dampfes im Wärmeaustauscher 9 hat den Vorteil, dass die bei einer Verbrennung am Ausgang des Zufuhrkanals entstehende Verlustwärme für die Verdampfung des Wassers genutzt wird. Selbstverständlich könnte der Dampf aber auch mittels eines z. B. elektrisch beheizten Verdampfers, z. B. eines Dampfkessels, erzeugt werden.The generation of the steam in the heat exchanger 9 has the advantage that the waste heat generated during combustion at the outlet of the supply channel is used for the evaporation of the water. Of course, the steam could also be by means of a z. B. electrically heated evaporator, for. B. a steam boiler.

Mit dem Wärmeaustauscher 8, dem Temperaturfühler 17 und dem von diesem gesteuerten Ventil 7 wird in einfachster Weise jeweils beim Ueberschreiten der vorbestimmten Temperatur eine bestimmte, kleine und zudem vorgewärmte Wassermenge an den Wärmeaustauscher 9 abgegeben, der diese dosierte Wassermenge stossartig verdampft. Um eine grössere Wassermenge zu verdampfen, könnte der Temperaturfühler 17 bzw. ein mit diesem verbundenes Steuergerät das Ventil 7 auch beim Ueberschreiten einer oberen Temperaturgrenze öffnen und erst nach einem erheblichen Temperaturabfall beim Unterschreiten einer unteren Temperaturgrenze wieder schliessen. Die zu verdampfende Wassermenge könnte auch in anderer Weise zudosiert werden, z. B. könnte ein Zeitschalter vorgesehen sein, der das Ventil nach Auslösung durch einen Temperaturfühler während einer entsprechend der gewünschten Wassermenge vorgewählten Zeitdauer öffnet.With the heat exchanger 8, the temperature sensor 17 and the valve 7 controlled by this, a certain, small and, in addition, preheated amount of water is emitted to the heat exchanger 9 in a very simple manner when the predetermined temperature is exceeded, which evaporates this metered amount of water in a burst. In order to evaporate a larger amount of water, the temperature sensor 17 or a control device connected to it could open the valve 7 even when an upper temperature limit is exceeded and only close again after a significant drop in temperature when the temperature falls below a lower temperature limit. The amount of water to be evaporated could also be metered in in other ways, e.g. B. could be provided a timer that opens the valve after triggering by a temperature sensor during a preselected time period according to the desired amount of water.

Indem die Dampfzufuhrleitung 10 in den hinteren Teil 13 des Zufuhrkanals 4 mündet, wird gewährleistet, dass sich der Dampf gleichmässig im ganzen Kanal verteilt. Würde die Zufuhrleitung 10 in das an die Brennkammer 5 angeschlossene Ende des Zufuhrkanals 4 münden, dann könnte ein Teil des Dampfes u. U. in den Feuerraum 3 entweichen. Die Anordnung der Dampfzufuhröffnung 11 im hinteren Kanalteil 13 - in einem ein Mehrfaches des Kanaldurchmessers betragenden Abstand vom Feuerraumeingang - gewährleistet zudem, dass das Feuer sich selbst dann, wenn es zu einer explosionsartigen Ausbreitung in das vordere Ende des Zufuhrkanals kommen sollte, nicht in den ganzen Zufuhrkanal ausbreitet, weil dann in rascher Folge Dampfstösse in das noch nicht brennende Holz im hinteren Teil erfolgen und dieses dadurch so stark befeuchtet wird, dass eine weitere Ausbreitung des Feuers unmöglich ist. Am Ausgang der Oeffnung 11 kann auch eine Düse vorgesehen sein, um den Dampf mit noch höherer Geschwindigkeit im Zufuhrkanal zu verteilen. Ferner könnten bei sehr langen Zufuhrkanälen mehrere Dampfzufuhrleitungen vorgesehen sein oder eine Dampfzufuhrleitung könnte an mehreren Stellen in den Zufuhrkanal münden, um den Zufuhrkanal über die ganze Länge zuverlässig mit Dampf zu versorgen.The fact that the steam supply line 10 opens into the rear part 13 of the supply duct 4 ensures that the steam is distributed evenly throughout the duct. If the feed line 10 would open into the end of the feed channel 4 connected to the combustion chamber 5, part of the steam could u. U. escape into the firebox 3. The arrangement of the steam supply opening 11 in the rear channel part 13 - at a distance from the fire chamber entrance which is a multiple of the channel diameter - furthermore ensures that the fire does not spread throughout, even if there is an explosive expansion into the front end of the supply channel Feed channel spreads out, because then in rapid succession steam bursts into the not yet burning wood in the rear part and this is moistened so strongly that a further spread of the fire is impossible. A nozzle can also be provided at the outlet of the opening 11 in order to distribute the steam in the feed channel at an even higher speed. Furthermore, in the case of very long supply channels, a plurality of steam supply lines could be provided, or a steam supply line could open into the supply channel at several points in order to reliably supply the supply channel with steam over the entire length.

Der Wärmeaustauscher 8 kann entfallen, wenn der Temperaturfühler 17 in einer Bohrung des Metallblocks 19 des Wärmeaustauschers 9 angeordnet wird und dieser am Zufuhrkanal 4 montiert ist. Andererseits könnte der Wärmeaustauscher 8 mit dem Temperaturfühler 17 am vorderen Ende des Zufuhrkanals 4 und der Wärmeaustauscher 9 an oder in der Brennkammer 5 montiert sein.The heat exchanger 8 can be omitted if the temperature sensor 17 is arranged in a bore in the metal block 19 of the heat exchanger 9 and this is mounted on the supply duct 4. On the other hand, the heat exchanger 8 with the temperature sensor 17 at the front end of the supply channel 4 and the heat exchanger 9 could be mounted on or in the combustion chamber 5.

Claims (10)

1. A method of preventing spreading of the fire on the feed path leading to the fire chamber of a furnace installation for solid fuel, characterised in that water vapour is conducted into the fuel present on the feed path.
2. A method according to claim 1, characterised in that periodically, or in each case whenever a predetermined temperature is exceeded at the feed path, a dosed amount of water is suddenly vaporised.
3. A method according to claim 1 or 2, characterised in that the water vapour is supplied only whenever a predetermined temperature is exceeded at the feed path.
4. A method according to any one of claims 1 to 3, in which respect the fuel flow is regulated as a function of the heat requirement and a minimum fuel flow ensuring the maintenance of the fire in the fire chamber is adhered to, characterised in that only so much vapour is supplied that the spreading speed of the fire in the fuel present on the feed path is less than the speed of the minimum fuel flow.
5. A furnace installation for carrying out the method according to claim 1, with a feed duct (4), opening out into a fire chamber (3), for the fuel, characterised in that a vapour feed pipe (10) opens out (11) into the feed duct (4).
6. An installation according to claim 5, characterised in that a heat exchanger (9) connecting a water pipe (6) to the vapour feed pipe (10) is arranged on the fire chamber or at that end of the feed duct (4) wich opens out into this, in order to vaporise water, inflowing out of the water pipe (6), by heat of combustion transferred from the heat exchanger (9).
7. An installation according to claim 5 or 6, characterised in that arranged on the feed duct (4) is a temperature sensor (17) which so controls a shut-off member (7), regulating the vapour feed or respectively the feed of water that is to be vaporised, that it opens above a predetermined temperature and closes therebelow or after a preset temperature drop or interval of time.
8. An installation according to claim 6 and 7, characterised in that the shut-off member (7) which opens above a predetermined temperature and which closes therebelow or after a preset temperature drop is installed in the water pipe (6) and the temperature sensor (17) is seated in the heat exchanger or a second heat exchanger (8) which is arranged on the feed duct (4) and which is inserted into the water pipe (6), so that the water flowing upon the opening of the shut-off member (7) cools the first or second heat exchanger (8) respectively after vaporisation or throughflow of a specific amount of water, down to the temperature which triggers the closing of the shut-off member (7).
9. An installation according to claim 8, characterised in that the second heat exchanger (8) lies in the water pipe (6) in the throughrun (transit) direction in front of the first heat exchanger (9) and is arranged, distanced from the heat exchanger (9) as well as from the entrance of the fire chamber (3), on the feed duct (4).
10. An installation according to any one of claims 5 to 9, characterised in that the vapour feed pipe (10) opens out, remote from the entrance of the fire chamber (3), into the feed duct (4), in which respect the distance of the mouth location (11) from the fire chamber entrance preferably amounts to a multiple of the clear width of the feed duct (4).
EP81107552A 1980-10-17 1981-09-23 Method of inhibiting a fire propagation in a solid fuel feed duct from a combustion furnace, and furnace for carrying out said method Expired EP0050232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81107552T ATE7331T1 (en) 1980-10-17 1981-09-23 METHOD OF PREVENTING THE SPREAD OF FIRE ON THE FUEL SUPPLY WAY LEADING TO THE FURNACE OF A SOLID FUEL FURNACE AND FURNACE FOR CARRYING OUT THE METHOD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH776080 1980-10-17
CH7760/80 1980-10-17

Publications (3)

Publication Number Publication Date
EP0050232A2 EP0050232A2 (en) 1982-04-28
EP0050232A3 EP0050232A3 (en) 1982-09-08
EP0050232B1 true EP0050232B1 (en) 1984-05-02

Family

ID=4330078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107552A Expired EP0050232B1 (en) 1980-10-17 1981-09-23 Method of inhibiting a fire propagation in a solid fuel feed duct from a combustion furnace, and furnace for carrying out said method

Country Status (9)

Country Link
US (1) US4385569A (en)
EP (1) EP0050232B1 (en)
JP (1) JPS5798718A (en)
AT (1) ATE7331T1 (en)
CA (1) CA1185123A (en)
DE (1) DE3163407D1 (en)
DK (1) DK149415C (en)
FI (1) FI67443C (en)
NO (1) NO152575C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200108A1 (en) * 1992-01-04 1993-07-08 Alfo Ag EXTINGUISHING VALVE
CN101347661B (en) * 2008-06-26 2012-01-25 张家港市保丽洁环保科技有限公司 Extinguishing device in high-temperature oil smoke pipeline
CN104014089A (en) * 2014-06-17 2014-09-03 蓝星石油有限公司济南分公司 Emergency fire-extinguishing device for chimney of sulfur recovery device
CN110863672A (en) * 2019-11-28 2020-03-06 湖南麓上住宅工业科技有限公司 Overhanging high-rise wood structure building
CN113304419A (en) * 2021-06-03 2021-08-27 中消盾科技有限公司 Automobile spontaneous combustion extinguishing device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US169338A (en) * 1875-11-02 Improvement in furnaces
US668787A (en) * 1899-11-24 1901-02-26 Ernest Armand Vetillard Apparatus for feeding liquid and solid pulverized fuel into furnaces.
US744220A (en) * 1903-04-10 1903-11-17 Duryee E Fuel-burner.
US2353144A (en) * 1939-08-12 1944-07-11 Carrier Corp Air conditioning system
US3183864A (en) * 1962-02-14 1965-05-18 Combustion Eng Method and system for operating a furnace
US3748080A (en) * 1971-12-27 1973-07-24 Peabody Engineering Corp Combustion control apparatus using a liquid spray
US3861857A (en) * 1974-01-14 1975-01-21 John F Straitz Flammable liquid waste burner
US3916991A (en) * 1974-04-05 1975-11-04 George S Trump Heating system
US3994671A (en) * 1975-03-14 1976-11-30 Combustion Unlimited Incorporated Flare gas burner
US4008038A (en) * 1975-09-10 1977-02-15 Columbia Technical Corporation Fuel conditioning apparatus and method
DK124377A (en) * 1976-04-03 1977-10-04 Danfoss As DEVICE FOR HEATING COOLING OR AIR CONDITIONING OF A ROOM
US4094632A (en) * 1977-02-07 1978-06-13 John Zink Company Accelerated response for delivery of smoke suppressant to flares
CH622079A5 (en) * 1977-06-17 1981-03-13 Hans Grossniklaus
US4147116A (en) * 1977-09-19 1979-04-03 Coal Tech Inc. Pulverized coal burner for furnace and operating method
US4204463A (en) * 1978-07-18 1980-05-27 Jack Carty Stack design
US4344751A (en) * 1979-03-24 1982-08-17 The British Petroleum Company Limited Flares

Also Published As

Publication number Publication date
FI67443B (en) 1984-11-30
JPS5798718A (en) 1982-06-19
EP0050232A3 (en) 1982-09-08
DE3163407D1 (en) 1984-06-07
NO152575B (en) 1985-07-08
US4385569A (en) 1983-05-31
DK454781A (en) 1982-04-18
NO152575C (en) 1985-10-16
DK149415B (en) 1986-06-02
DK149415C (en) 1987-01-12
EP0050232A2 (en) 1982-04-28
FI813212L (en) 1982-04-18
FI67443C (en) 1985-03-11
NO813505L (en) 1982-04-19
ATE7331T1 (en) 1984-05-15
CA1185123A (en) 1985-04-09

Similar Documents

Publication Publication Date Title
DE2836531A1 (en) FLUID BED COMBUSTION DEVICE
EP0954722B1 (en) Water-cooled firing grate
EP0172375A1 (en) Device for heating a fluid and for cleaning the flue gases of firing equipments
EP0050232B1 (en) Method of inhibiting a fire propagation in a solid fuel feed duct from a combustion furnace, and furnace for carrying out said method
DE3438018A1 (en) METHOD FOR BURNING COAL
DE2366052A1 (en) TOBACCO DRYERS
DE2300749C3 (en) Vertical incineration furnace for sludge-like residues
DE3344089A1 (en) Device for heating systems
DE2935520A1 (en) METHOD FOR OPERATING A FLUID-LAYER COMBUSTION PLANT AND DEVICE FOR IMPLEMENTING THE METHOD
DE2442122A1 (en) PYROLYSIS CONTAINER
DE2158317A1 (en) FIRING DEVICE FOR BURNING ARCHBALLS AND THE SAME BODIES
EP0919771B1 (en) Combustion process for solid material on a water-cooled sliding grate as well as gratebar and grate for carrying out the process
DE3123328C2 (en) Arrangement for discharging hot ash, in particular from fluidized bed reactors and fluidized bed ovens
DE3226877A1 (en) Heating boiler
DE2148065A1 (en) Boilers for industrial plants
DE3715132C2 (en)
CH365094A (en) Heat exchanger
AT408270B (en) COMBUSTION PLANT
EP0987494A1 (en) Process for cooling a grate of a furnace and grate of a furnace
DE1920624A1 (en) Method and device for burning liquid fuels
DE604450C (en) Surface feed water deaerator, especially for ship operation
DE585794C (en) Device for degassing the lignite
DE970783C (en) Flow tube steam generator
DE315213C (en)
AT88970B (en) Device on steam boilers electrically heated by means of electrodes.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19821103

ITF It: translation for a ep patent filed

Owner name: STUDIO APRA' BREVETTI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 7331

Country of ref document: AT

Date of ref document: 19840515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3163407

Country of ref document: DE

Date of ref document: 19840607

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910909

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910913

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910916

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910918

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910930

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920601

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920923

Ref country code: AT

Effective date: 19920923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920930

BERE Be: lapsed

Owner name: GROSSNIKLAUS HANS

Effective date: 19920930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81107552.2

Effective date: 19930406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951012

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL