EP0049196B1 - Corde synthétique pour raquette de tennis - Google Patents

Corde synthétique pour raquette de tennis Download PDF

Info

Publication number
EP0049196B1
EP0049196B1 EP81401480A EP81401480A EP0049196B1 EP 0049196 B1 EP0049196 B1 EP 0049196B1 EP 81401480 A EP81401480 A EP 81401480A EP 81401480 A EP81401480 A EP 81401480A EP 0049196 B1 EP0049196 B1 EP 0049196B1
Authority
EP
European Patent Office
Prior art keywords
fibers
cord
elastomer
binder
threads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401480A
Other languages
German (de)
English (en)
Other versions
EP0049196A1 (fr
Inventor
Jean-Claude V. F. E. Cousin
Jacques André Robin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cousin Freres SA
Original Assignee
Cousin Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cousin Freres SA filed Critical Cousin Freres SA
Priority to AT81401480T priority Critical patent/ATE15083T1/de
Publication of EP0049196A1 publication Critical patent/EP0049196A1/fr
Application granted granted Critical
Publication of EP0049196B1 publication Critical patent/EP0049196B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/444Yarns or threads for use in sports applications
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • D07B2207/4059Heat treating devices; Corresponding methods to soften the filler material

Definitions

  • the present invention relates to a synthetic rope intended in particular, but not exclusively, for the production of tennis racket strings and its manufacturing methods.
  • the casings are only a by-product of the breeding of animals for slaughter.
  • the economic conditions of breeding lead to the slaughter of young animals often fed with synthetic feeds which, if they are of nutritional interest, do not develop a resistance of the intestines comparable to that developed by a natural food.
  • This results in a degradation of the average characteristics of the casings which can only be remedied by a strengthening of the selection, which further increases the cost of said strings and limits the production of quality.
  • the characteristics of the casing ropes very closely depend on the storage conditions and the hygrometric conditions during use.
  • ropes have already been proposed which consist of a monofilament extruded from thermoplastic material and, for example, from polyamide, modified polyvinyl, polyurethane or thermoplastic polyester.
  • thermoplastic material for example, from polyamide, modified polyvinyl, polyurethane or thermoplastic polyester.
  • the breaking load of a monofilament is of the order of 50 to 60 kg. Since the strings are stretched over the frame with a variable tension, but which is commonly around 20 kg, the slightest shock causes deformation.
  • Ropes have also been proposed consisting of bundles of multifilaments, each bundle being surrounded by a thermoplastic sheath, possibly reinforced with fibers.
  • a tennis cord is obtained by surrounding a core of parallel thermoplastic multifilaments, for example nylon, with a thermoplastic braid, then passing the assembly through a heating die after impregnation in a bath with a nylon solution.
  • a tennis string of another design is known from FR-A-2 393 102.
  • the structure of the string is no longer linear, that is to say that it no longer has any core of parallel, mono or multifilament yarns.
  • a bundle of multifilaments is formed, parallel to each other and is impregnated with a thermosetting adhesive, having after curing an appropriate elasticity. Then, the adhesive is pre-polymerized to a selected degree of partial prepolymerization and the bundle is then twisted, avoiding the dewatering of the impregnated multifilaments by virtue of the partial polymerization, the total polymerization being obtained subsequently.
  • the object of the present invention is to overcome the drawbacks of known synthetic ropes and to allow the continuous production of a new rope, the characteristics of which can be compared to those of natural gut ropes.
  • the synthetic string for tennis rackets comprising fibers of a first material and a binder of a second material joining said fibers, the fibers constituting an assembly of turns inclined relative to the longitudinal axis of the rope is characterized in that the fibers have a breaking elongation between 10 and 25%, the binder being constituted by a thermoplastic material whose melting point is lower than the melting point of the fibers and whose elongation at break is greater than 200%, the binder having a Shore D hardness at least equal to 55.
  • the elongation at break of the binder is greater than 200%.
  • the values indicated correspond respectively to a polyamide of the nylon type and to a polyurethane elastomer.
  • the rope according to the invention is formed of turns joined by a binder.
  • the turns undergo a relative lateral displacement which tends to move them away from each other.
  • This relative displacement is limited on the one hand, by the resistance to elongation of the fibers constituting the turns and, on the other hand by the reaction of the binder both inside the turns and between them.
  • the elongation of the binder is limited to approximately 10% of its elongation at break which is greater than 200%.
  • a cord according to the invention can be obtained by various methods which will be described below, all using a milling, wiring, braiding, stranding, wrapping or twisting carried out while the binder is in a plastic state. It is known that the operations mentioned above make it possible to apply wires against each other and help to give the rope a substantially circular section.
  • a cord 12 is in the form of an assembly of turns 10 adhering to one another, not only because of the treatment undergone, but also thanks to the presence of the binder 2.
  • the bonding product 2 which makes it possible to obtain the elastic return of the rope after an impact.
  • the disappearance of the permanent deformation results from the fact that the elongation of the wires constituting the turns limits the elongation of the binder, the elongation-rupture of which is at least 200%.
  • the binder 2 and the wires or strands 1 work in an area which preserves all their elastic properties.
  • the binder 2 is chosen from the range of thermoplastic products whose melting or softening point is lower than that of the material of the threads. As will be described later, it is possible to use a thermoplastic binder which becomes thermosetting above a certain temperature.
  • a step in a first manufacturing process is shown diagrammatically in FIG. 2.
  • a multifilament yarn 1, for example made of polyamide, is unwound from a spool 3 and passes through a tank 4 inside which is an elastomer in solution. It is known that thermoplastic products are generally soluble whereas it is not the same for thermosets after polymerization, even partial.
  • the wire 1 is thus coated with an elastomer solution and calibrated at the outlet of the tank 4 by a not shown die which aims to remove the excess solution. Then, the coated wire 11 passes through a heating chamber 5 inside which the solvents evaporate and there remains only on the surface of the wire a coating which, by fusion will give the rope a structure homogeneous thereafter.
  • the multifilaments are also impregnated.
  • the enclosure 5 is brought to a temperature of approximately 100 ° C. which ensures a rate of evaporation of the solvents compatible with the speed of threading of the wire without causing the melting of any of the components.
  • the wire 11 is dry and can be wound on a take-up reel 6.
  • the wire 11 can also be directly routed, as soon as it leaves tunnel 5 on a torsion machine where the second phase of the process is carried out . Any other coating process could be used at this stage and in particular pultrusion or extrusion which, however, given the thin coating thickness and the fineness of the wire 1, seem difficult to implement given the characteristics of machines which are currently on the market.
  • the next phase of this first process is shown diagrammatically in FIG. 3. It consists in the molding of a plurality of coated wires 11.
  • the molding is an operation practiced for a very long time. It can be carried out on a turntable 7 on which pins are arranged. These pins can be animated relative movements with respect to each other, be animated by a proper movement of rotation in the opposite direction to the direction of rotation of the plate or have no own movement.
  • Said pins carry coils 6 of coated wire during the first step of the process.
  • the wires 11 unwound from the coils 6 converge in a ring 9.
  • a heating tunnel 8 whose purpose is to cause the softening or at least partial melting of the binder 2 which spreads thus between the turns during their formation.
  • the coating consists of a thermoplastic elastomer of the polyurethane type and the strands are made of polyamide
  • the temperature may be greater than 120 ° C. and must be adjusted so as to cause the melting of the binder and not that of the strands.
  • the wires and the binder cool beyond the ring 9 and the finished cord 12 can be wound on a take-up reel. Before use, the rope is subjected to thermofixing as will be described later. It will be noted that the wires are stranded while the binder is more or less melted.
  • the first two phases of the process which has just been described can be carried out on suitable equipment allowing continuity of manufacture which, moreover, results in a saving of the energy consumed. Indeed, at the exit of the tunnel 5, the coated wire is already hot and consequently a lower number of calories is necessary to raise the cord to the melting point of the binder 2.
  • the same applies with regard to the third phase of this first process which consists of a heat setting which can be carried out immediately after formation of the cord in the ring 9, while the cord is still hot.
  • the twist rate during molding is preferably between 100 and 200 turns per meter of length after molding. It is obvious that the rate of twist conditions the angle of the turns and accentuates the difference with synthetics with linear structure. In practice, we choose the maximum torsion rate compatible with the surface quality of the rope.
  • a second method consists in coating, by passing through a tank containing an elastomer in solution, a set of parallel wires kept spaced apart during the impregnation. We then obtain a strip of wires embedded in and joined by the binder. This strip is then hot-twisted and a cord 12 is obtained such as that which is shown in FIG. 4.
  • the parallel wires can also be assembled in "daisy", that is to say around a central wire.
  • FIG. 5 A third method is shown in FIG. 5 on which there is a turntable 7 on which are mounted coils 6 of uncoated wire 1.
  • a turntable 7 On which are mounted coils 6 of uncoated wire 1.
  • an orifice 15 allowing the passage of a fine wire 14 (2 / 10th of mm) unwound from a coil 13.
  • the wires 1 are grouped in a ring 9.
  • the wire 14 is previously coated with an excess of thermoplastic elastomer in the dissolved state.
  • the threads 1 wring out the thread 14 so that the elastomer spreads inside and between the turns in formation.
  • a heating tunnel 16 disposed above the ring 9 causes on the one hand the evaporation of the solvents and, on the other hand the at least partial melting of the thermoplastic elastomer. After drying and cooling the rope 12 obtained can be wound on a reel.
  • the material of the central wire is chosen so that the elongation of the latter is at least equal to that of the completed cord so that it participates in the response of the cord when it is stressed in tension , but without showing any permanent deformation.
  • the temperature of the components inside the tunnel 16 is order of 14CTC.
  • a fourth method is shown diagrammatically in FIG. 6.
  • This process again uses a turntable 7, intended to ensure the formation of turns by molding.
  • wires 1, not coated with elastomer are wound on coils 6 carried by pins.
  • Other coils 17 do not carry polyamide thread, for example, but a textile thread 18 made of hot-melt elastomer such as hot-melt polyurethane.
  • All the wires 1 and 17 are joined by a ring 9 which forms the turns, the ring 9 being followed, in the direction of progression of the rope by a heating tunnel 16 which, as previously causes the elastomer to melt. distributes in and around the turns of fibers.
  • the polyurethane threads are used after melting of the binder. Unlike previous processes, the binder is not applied in solution on the fibers.
  • the strings obtained according to one of the above methods appear, when used directly, to have response curves greater than those of the known synthetic strings mentioned above, but do not reach the quality of the best natural casings.
  • the strings obtained are subjected in the terminal phase to a thermofixing, operation which consists in heating the strings while they are under tension. It makes it possible to reduce the elongations by sometimes increasing the resistance, to regularize the structure and to avoid twists.
  • the applied voltage is between 3 and 10 kg, the temperature being above 140 "C and the duration of one to two minutes. This phase has not been shown on the drawings.
  • the strings obtained according to the invention have been found to have qualities at least equivalent to those of natural casings, both with regard to the "feeling" or impression of the player, and the speed of return after impact. In addition, their lifespan, under identical working conditions, is approximately ten times that of casings.
  • a 6-6 multifilament polyamide yarn titrating 940 decitex is used.
  • the thread drawn by a take-up reel passes through an impregnation bath filled with a solution of thermoplastic polyether in a mixture of cyclohexanone and tetrahydrofuran.
  • the dry extract equal to 15% determines the final weight ratio of the wire and the binder.
  • the solvents are evaporated in an oven brought to 150 ° C.
  • the passage time required for evaporation is 4 minutes.
  • the impregnated and dry wire is stored on the take-up spool.
  • the polyamide yarn has a tensile strength of approximately 7 kg and an elongation at break of 22% the polyether has a Shore D hardness greater than 55 and an elongation at break greater than 300%.
  • the rope obtained has a tensile strength of 70 kg and an elongation at break of 25%. It offers no possibility of untwisting and has a homogeneous and transparent appearance.
  • the traction curves show an almost absolute similarity with those of the usual natural casings.
  • the binder is chosen from bodies having a Shore D hardness at least equal to 55.
  • strings according to the invention can be used in any other ball sport than tennis and in particular for squash or badmonton, whenever it is desirable to have a permanent elastic return.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Ropes Or Cables (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Purses, Travelling Bags, Baskets, Or Suitcases (AREA)

Description

  • La présente invention a pour objet une corde synthéthique destinée en particulier, mais non exclusivement, à la réalisation de cordages de raquettes de tennis ainsi que ses procédés de fabrication.
  • On sait que des cordes réalisées par retordage de bandes découpées dans des boyaux d'animaux, notamment de moutons, sont utilisées depuis fort longtemps et donnent d'excellents résultats lorsqu'elles sont tendues sur des raquettes de tennis, seul le »boyau« étant pratiquement utilisé en compétition. La préférence des joueurs de haut niveau résulte essentiellement des caractéristiques de retour élastique de telles cordes, c'est-à-dire de la reprise rapide et intégrale de leur longueur initiale après déformation due à des chocs rapides et répétés. Les courbes d'allongement/traction appliquée de ces cordes sont sensiblement rectilignes et ne varient que très peu d'un cycle de traction au suivant, ce qui indique l'absence de déformations permanentes. Chacune desdites courbes présente cependant des paliers correspondant chacun à la rupture de certains filaments élémentaires ou au décollement des spires de la corde retordue. Ce phénomène limite bien entendu la durée de vie d'une telle corde.
  • D'autre part, les boyaux ne constituent qu'un sous produit de l'élevage d'animaux de boucherie. Les conditions économiques de l'élevage conduisent à l'abattage d'animaux jeunes souvent alimentés avec des porduits de synthèse qui, s'ils présentent un intérêt au plan de la nutrition, ne développent pas une résistance des intestins comparable à celle développée par une alimentation naturelle. Il en résulte une dégradation des caractéristiques moyennes des boyaux qui ne peut être palliée que par un renforcement de la sélection, ce qui accroît encore le coût desdites cordes et limite la production de qualité. En outre les caractéristiques des cordes en boyau dépendent très étroitement des conditions de stockage et des conditions hygrométriques lors de l'utilisation.
  • Compte tenu du développement actuel du tennis, le besoin en cordes synthétiques s'est accru et il est souhaitable de pouvoir produire à grande échelle des cordes de qualités constantes et reproductibles, indépendantes de l'élevage ovin et présentant des caractéristiques en jeu analogues et même supérieures à celles réalisées en boyau animal.
  • Différentes tentatives on été faites dans cette voie depuis de nombreuses années. C'est ainsi que l'on a déjà proposé des cordes constituées par un monofilament extrudé en matière thermoplastique et, par exemple, en polyamide, en po- lyvinyl modifié, en polyuréthane ou en polyester thermoplastique. Malheureusement, si le retour de ces cordes à leur position initiale après une faible déformation reste élastique, encore que relativement lent, l'allongement devient permanent dès que la corde est soumise à un effort de traction élevé. Pratiquement, on ne peut faire travailler de telles cordes qu'à 10% de leur charge de rupture en usage continu et répété. Pour le diamètre des cordes montées sur les raquettes, de l'ordre de 1,5 mm, la charge de rupture d'un monofilament est de l'ordre de 50 à 60 kg. Etant donné que les cordes sont tendues sur le cadre avec une tension variable, mais qui est couramment de l'ordre de 20 kg, le moindre choc provoque une déformation.
  • On a également proposé des cordes constituées de faisceaux de multifilaments, chaque faisceau étant entouré par une gaine thermoplastique, éventuellement renforcée de fibres. Dans le brevet US-A-3 050 431, une corde de tennis est obtenue en entourant un noyau de multifilaments thermoplastiques parallèles, par exemple en nylon, avec une tresse thermoplastique, puis en faisant passer l'ensemble dans une filière chauffante après imprégnation dans un bain par une solution de nylon.
  • Toutes les cordes ci-dessus mentionnées ont une structure linéaire ou unidirectionnelle, parfois renforcée par un enroulement. Malheureusement, elles travaillent toutes à un taux de traction qui excède les limites élastiques et c'est ainsi que les courbes d'allogement en fonction de la traction appliquée indiquent toutes une déformation irréversible ou allongement non récupérable et, après une série de contraintes successive, un allongement permanent.
  • Une corde de tennis d'une autre conception est connue par FR-A-2 393 102. Dans ce brevet, la structure de la corde n'est plus linéaire c'est-à-dire que celle-ci ne présente plus d'âme de fils parallèles, mono ou multifilaments. On forme un faisceau de multifilaments, parallèles les uns aux autres et l'on imprègne ceux-ci avec un adhésif thermodurcissable, présentant après durcissement une élasticité appropriée. Puis, on fait pré- polymériser l'adhésif jusqu'à un degré choisi de prépolymérisation partielle et l'on retord alors ledit faisceau en évitant l'essorage des multifilaments imprégnés grâce à la polymérisation partielle, la polymérisation totale étant obtenue ultérieurement.
  • Il est, bien entendu, très difficile de contrôler le degré de polymérisation partielle et il ressort des exemples donnés dans le brevet précité que le procédé décrit nécessité pour l'obtention de cette prépolymérisation des temps relativement longs (de 35 à 90 mn) la polymérisation complète pouvant demander jusqu'à huit jours. Il est bien évident que ce procédé ne peut pas permettre une fabrication à la continue.
  • La présente invention a pour objet de pallier les inconvénients des cordes synthétiques connues et de permettre la production, en continu, d'une corde nouvelle dont les caractéristiques en jeu puissent se comparer à celles des cordes en boyau naturel.
  • Selon la présente invention, la corde synthétique pour raquette de tennis, comprenant des fibres d'une première matière et un liant d'une seconde matière réunissant lesdites fibres, les fibres constituant un assemblage de spires inclinées par rapport à l'axe longitudinal de la corde est caractérisée en ce que les fibres ont un allongement de rupture compris entre 10 et 25%, le liant étant constitué par une matière thermoplastique dont le point de fusion est inférieur au point de fusion des fibres et dont l'allongement de rupture est supérieur à 200%, le liant présentant une dureté Shore D au moins égale à 55.
  • L'allongement de rupture du liant est supérieur à 200%. Pour fixer les idées uniquement, on peut préciser que les valeurs indiquées correspondent respectivement à un polyamide du type nylon et à un élastomère polyuréthane.
  • Ainsi, la corde selon l'invention est formée de spires réunies par un liant. Lorsque la corde est soumise à un choc, les spires subissent un déplacement latéral relatif qui tend à les éloigner les unes des autres. Ce déplacement relatif est limité d'une part, par la résistance à l'allongement des fibres constituant les spires et, d'autre part par la réaction du liant tant à l'intérieur des spires qu'entre celles-ci. Compte-tenu de la limitation de déplacement relatif entre les spires dû à la résistance des fibres, l'allongement du liant est limité à environ 10% de son allongement de rupture qui est supérieur à 200%. Il en résulte que les déformations du liant restent toujours élastiques et que celui-ci ramène toujours les spires les unes contre les autres, c'est-à-dire que la corde retrouve après un impact de la balle très rapidement sa longueur initiale, résultat que seuls les boyaux naturels pouvaient donner pendant leur durée de vie qui, comme celà a déjà été signalé est relativement courte.
  • Bien entendu, si certaines élastomères présentent des caractéristiques d'allongement-rupture satisfaisantes eu égard à la nécessité de retour élastique, ils ne présentent pas, pris en eux-mêmes, la résistance suffisante ce qui conduit à la structure composite selon l'invention.
  • Alors que dans les cordes de la technique antérieure la réponse de la corde sous un choc était assurée presque exclusivement par un allongement de fibres parallèles, selon l'invention cette réponse provient d'une déformation controlée de la spirale et du liant.
  • Une corde selon l'invention peut être obtenue par différents procédés qui seront décrits ci-après, faisant tous appel à un moulinage, ca- blage, tressage, toronage, guipage ou retordage effectué alors que le liant est dans un état plastique. On sait que les opérations mentionnées ci-dessus permettent d'appliquer des fils les uns contre les autres et contribuent à donner à la corde une section sensiblement circulaire.
  • D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre de modes de réalisation particuliers, donnés uniquement à titre d'exemples non limitatifs, en regard des figures qui représentent:
  • La Fig. 1, un morceau de corde selon l'invention;
    • La Fig.2, un schéma d'une installation d'enduction;
    • La Fig. 3, un schéma d'une installation de retordage;
    • La Fig. 4, une bande de fils après retordage;
    • La Fig. 5, une autre installation de retordage;
    • La Fig.6, une variante du procédé selon l'invention utilisant des fils d'élastomère thermofusible.
  • Comme celà apparaît sur la Fig. 1, une corde 12 se présente sous la forme d'un assemblage de spires 10 adhérant les une sur les autres, non seulement à cause du traitement subi, mais également grâce à la présence du liant 2. En fait, c'est le choix des caractéristiques du produit de liaison 2 qui permet d'obtenir le retour élastique de la corde après un choc. La disparition de la déformation permanente provient de ce que l'allongement des fils constituant les spires limite l'allongement du liant, dont l'allongement-rupture est d'au moins 200%. Le liant 2 et les fils ou brins 1 travaillent dans une zone qui préserve toutes leurs propriétés élastiques.
  • Selon l'une des caractéristiques de l'invention, le liant 2 est choisi dans la gamme des produits thermoplastiques dont le point de fusion ou de ramollissement est inférieur à celui de la matière des fils. Comme celà sera décrit par la suite, il est possible d'utiliser un liant thermoplastique qui devient thermodurcissable au-delà d'une certaine température.
  • Une étape d'un premier procédé de fabrication est schématisée sur la Fig. 2. Un fil multifilaments 1, par exemple en polyamide est déroulé à partir d'une bobine 3 et traverse un bac 4 à l'intérieur duquel se trouve un élastomère en solution. On sait que les produits thermoplastiques sont généralement solubles alors qu'il n'en va pas de même pour les thermodurcissables après polymérisation même partielle. Le fil 1 est ainsi enduit par une solution d'élastomère et calibré à la sortie du bac 4 par une filière non représentée qui a pour but d'éliminer l'excès de solution. Puis, le fil enrobé 11 passe à travers une enceinte chauffante 5 à l'intérieur de laquelle les solvants s'évaporent et il ne reste plus à la surface du fil qu'un enrobage qui, par fusion permettra de donner à la corde une structure homogène par la suite. On remarquera que lors du passage dans le bain d'élastomère dissous ou fondu, les multifilaments sont aussi imprégnés. De préférence, l'enceinte 5 est portée à une température d'environ 100° C ce qui assure une vitesse d'évaporation des solvants compatible avec la vitesse de d'filement du fil sans provoquer la fusion de l'un quelconque des composants. A la sortie du tunnel 5, le fil 11 est sec et peut être enroulé sur une bobine réceptrice 6. Le fil 11 peut également être directement acheminé, dès sa sortie du tunnel 5 sur une machine à torsion où la deuxième phase du procédé est exécutée. Tout autre procédé d'enrobage pourrait être utilisé à ce stade et en particulier la pultrusion ou l'extrusion qui toutefois, étant donné la faible épaisseur d'enrobage et la finesse du fil 1, semblent difficiles à mettre en oeuvre compte tenu des caractéristiqueé de machines qui se trouvent acutellement sur le marché.
  • La phase suivante de ce premier procédé est schématisée sur la Fig. 3. Elle consiste dans le moulinage d'une pluralité de fils enrobés 11. Le moulinage est une opération pratiquée depuis fort longtemps. Elle peut se réaliser sur un plateau tournant 7 sur lequel sont disposées des broches. Ces broches peuvent être animées de mouvements relatifs les unes par rapport aux autres, être animées d'un mouvement propre de rotation de sens inverse au sens de rotation du plateau ou n'avoir aucun mouvement propre. Lesdites broches portent des bobines 6 de fil enduit au cours de la première étape du procédé. Les fils 11 déroulés à partir des bobines 6 convergent dans un anneau 9. Entre l'anneau 9 et le plateau 7 est disposé un tunnel chauffant 8 dont le but est de provoquer le ramollissement ou la fusion au moins partielle du liant 2 qui se répand ainsi entre les spires lors de leur formation. Lorsque l'enrobage est constitué par un élastomère thermoplastique du genre polyuréthane et que les fils sont en polyamide, la température peut être supérieure à 120°C et doit être réglée de manière à provoquer la fusion du liant et non celle des fils. Les fils et le liant refroidissent au delà de l'anneau 9 et la corde terminée 12 peut être enroulée sur une bobine réceptrice. Avant utilisation, la corde est soumise à un thermofixage comme celà sera décrit par la suite. On notera que les fils sont moulinés alors que le liant est plus ou moins fondu. Il en résulte une imprégnation à cœurs de la corde 12, imprégnation qui lui confère l'homogénéité nécessaire. Il est évident que les deux premières phases du procédé qui vient d'être décrit peuvent être réalisées sur un matériel adapté permettant une continuité de fabrication qui, par ailleurs se traduit par une économie de l'énergie consommée. En effet, à la sortie du tunnel 5, le fil enrobé est déjà chaud et par suite un nombre moindre de calories est nécessaire pour élever la corde à la température de fusion du liant 2. Il en va de même en ce qui concerne la troisième phase de ce premier procédé qui consiste en un thermofixage pouvant être réalisé immédiatement après formation de la corde dans l'anneau 9, alors que la corde est encore chaude. Le taux de torsion lors du moulinage est de préférence compris entre 100 et 200 tours par mètre de longeur après moulinage. Il est évident que le taux de torsion conditionne l'angle des spires et accentue la différence avec les synthétiques à structure linéaire. De façon pratique, on choisit le taux de torsion maximum compatible avec la qualité de surface de la corde.
  • Un second procédé consiste à enrober, par passage dans un bac contenant un élastomère en solution, un ensemble de fils parallèles maintenus espacés au cours de l'imprégnation. On obtient alors une bande de fils noyés dans et réunis par le liant. Cette bande est unsuite retordue à chaud et l'on obtient une corde 12 telle que celle qui est représentée sur la Fig.4. Les fils parallèles peuvent également être assemblées en »marguerite«, c'est-à-dire autour d'un fil central.
  • Un troisième procédé est représenté sur la Fig. 5 sur laquelle on retrouve un plateau tournant 7 sur lequel sont montées des bobines 6 de fil non enduit 1. Dans le milieu du plateau 7 est prévu un orifice 15 permettant le passage d'un fil 14 fin (2/10è de mm) déroulé à partir d'une bobine 13. Les fils 1 sont regroupés dans un anneau 9. Selon une caractéristique de ce procédé, le fil 14 est préalablement enduit par un excès d'élastomère thermoplastique à l'état dissous. Au cours du retordage, les fils 1 viennent essorer par pression le fil 14 de sorte que l'élastomère se répand à l'intérieur et entre les spires en formation. Un tunnel chauffant 16 disposé au-dessus de l'anneau 9 provoque d'une part l'évaporation des solvants et, d'autre part la fusion au moins partielle de l'élastomère thermoplastique. Après séchage et refroidissement la corde 12 obtenue peut être enroulée sur une bobine. Bien entendu, la matière du fil central est choisie pour que l'allongement de celui-ci soit au moins égal à celui de la corde terminée de manière à ce qu'il participe à la réponse de la corde lorsqu'elle est sollicitée en traction, mais sans présenter de déformation permanente. On peut également utiliser un fil 14 thermofusible qui disparaît lors du passage dans le tunnel 16. Dans le cas d'une corde constituée par des fils polyamides et un élastomère polyuréthane, la température des composants à l'intérieur du tunnel 16 est de l'ordre de 14CTC.
  • Dans le mode de réalisation précédent, il peut subsister un noyau de fil central. En tout état de cause, la proportion de fil central dans l'ensemble ne saurait dépasser 15% en poids de la structure totale, de manière à conserver la structure en spirale de la corde qui permet d'obtenir les avantages précités. Cette proportion définit clairement les cordes selon l'invention par rapport aux cordes de la technique antéreure dans lesquelles la structure linéaire représente au moins 90% de la structure totale.
  • Un quatrième procédé est schématisé sur la Fig. 6. Ce procédé fait à nouveau appel à un plateau tournant 7, destiné à assurer la formation des spires par moulinage. Comme dans le cas schématisé sur la Fig. 5, des fils 1, non enduits d'élastomère, sont enroulés sur des bobines 6 portées par des broches. D'autre bobines 17 portent non pas du fil polyamide, par exemple, mais un fil 18 textile en élastomère thermofusible tel que du polyuréthane thermofusible. Tous les fils 1 et 17 sont réunis par un anneau 9 qui forme les spires, l'anneau 9 étant suivi, dans le sens de progression de la corde par un tunnel chauffant 16 qui, comme précédemment provoque la fusion de l'élastomère qui se répartit dans et autour des spires de fibres. Les fils de polyuréthane servent après fusion de liant. Contrairement aux procédés précédents, le liant n'est pas appliqué en solution sur les fibres.
  • Les cordes obtenues selon l'un des procédés ci dessus se révèlent toutefois, lorsqu'elles sont utilisées directement avoir des courbes de réponse supérieures à celles des cordes synthétiques connues é voquées plus haut, mais n'atteignent pas la qualité des meilleurs boyaux naturels. Selon une caractéristique commune à tous les procédés, les cordes obtenues sont soumises en phase terminale à un thermofixage, opération qui consiste à chauffer les cordes alors qu'elles sont sous tension. Elle permet de réduire les allongements en augmentant parfois la résistance, de régulariser la structure et d'éviter les vrillages. Dans les cas des cordes de tennis selon l'invention, la tension appliquée est comprise entre 3 et 10 kg, la température étant supérieure à 140" C et la durée de une à deux minutes. Cette phase n'a pas été représentée sur les dessins.
  • Les cordes obtenues selon l'invention se sont avérées présenter des qualités au moins équivalentes à celles des boyaux naturels, tant en ce qui concerne le »feeling« ou impression du joueur, que la vitesse de retour après impact. De plus, leur durée de vie, à conditions de travail identiques est d'environ dix fois celle des boyaux.
  • Exemple
  • Dans un premier temps on utilise un fil polyamide multifilaments 6-6 titrant 940 decitex. Le fil tiré par une bobine réceptrice traverse un bain d'imprégnation rempli d'une solution de polyether thermoplastique dans un mélange de cyclo- hexanone et de tétrahydrofurane. L'extrait sec égal à 15% détermine le rapport pondéral final du fil et du liant. Les solvants sont évaporés dans un four porté à 150° C. Le temps de passage nécessaire à l'évaporation est de 4 minutes. Le fil imprégné et sec est stocké sur la bobine réceptrice.
  • Dans un second temps, neuf bobines réceptrices sont montées sur un plateau tournant. Les neuf fils imprégnés et secs sont retordus sous une tension de 3 kg, à raison de 150 tours par mètre. Le toron passe ensuite dans un four de deux mètres de longueur à la vitesse de 30 cm/ mn. La température du four est portée à 230° C et assure la soudure entre les fils et le liant, puis le thermofixage. La corde ainsi fabriquée est mise à longueur et enroulée.
  • Le fil polyamide a une résistance en traction de 7 kg environ et un allongement de rupture de 22% le polyether a une dureté Shore D supérieure à 55 et un allongement à la rupture supérieur à 300%. La corde obtenue présente une résistance en traction de 70 kg et un allongement à la rupture de 25%. Elle ne présente aucune possibilité de détorsadage et a un aspect homogène et transparent. Les courbes de traction montrent une similitude presque absolue avec celles des boyaux naturels usuels.
  • Afin d'éviter une usure trop rapide de la corde sur ses points de fixation le liant est choisi parmi les corps présentant une dureté Shore D au moins égale à 55.
  • Bien entendu, les cordes selon l'invention peuvent être utilisées dans tout autre sport de balle que le tennis et en particulier pour le squash ou le badmonton, chaque fois qu'il est souhaitable d'avoir un retour élastique permanent.
  • Il va de soi que de nombreuses variantes peuvent être introduites, notamment par substitution de moyens ou de produits équivalents, sans sortir pour celà du cadre de la présente invention.

Claims (8)

1. Corde synthétique, notamment pour raquette de tennis, comprenant des fibres d'une première matière synthétique et un liant d'une seconde matière synthétique réunissant lesdites fibres, les fibres constituant un assemblage de spires, inclinées par rapport à l'axe longitudinal de la corde et réunies par le liant, caractérisée en ce que les fibres (1) ont un allongement de rupture compris entre 10 et 25%, le liant (2) étant constitué par une matière thermoplastique dont le point de fusion est inférieur au point de fusion des fibres (1) et dont l'allongement de rupture est supérieur à 200%, le liant (2) présentant une dureté Shore D au moins égale à 55.
2. Procédé de fabrication d'une corde selon la revendication 1, caractérisé en ce qu'il consiste à:
- enrober chaque fibre par passage de celle-ci dans un bac contenant une solution d'élastomère thermoplastique;
- évaporer les solvants;
- réchauffer un ensemble de fibres pour provoquer la fusion de l'élastomère, puis à mouliner ledit ensemble avec un taux de torsion de 100 à 200 tours par mètre
- réaliser un thermofixage sous tension.
3. Procédé de fabrication d'une corde selon la revendication 1, caractérisé en ce qu'il consiste à
- imprégner par un élastomère thermoplastique en solution un ensemble de fils adjacents multifilaments;
- faire passer l'ensemble dans un four pour évaporer les solvants;
- à réchauffer l'ensemble pour faire fondre au moins partiellement l'élastomère;
- mouliner l'ensemble alors que l'élastomère est à l'état au moins partiellementfondu;
- thermofixer.
4. Procédé de fabrication d'une corde selon la revendication 1, caractérisé en ce qu'il consiste à:
- monter sur un plateau tournant un premier ensemble de bobines portant des fils multifilaments et, intercalées, un second ensemble de bobines portant des fils d'élastomère thermoplastique;
- chauffer et mouliner les deux ensembles de fils pour provoquer la fusion de l'élastomère et la formation des spires;
- thermofixer.
5. Procédé de fabrication d'une corde selon l'une des revendications 3 ou 4, caractérisé en ce que la fusion de l'élastomère est réalisée à une température supérieure à 140° C, avant ou après moulinage, le taux de torsion étant compris entre 100 et 200 tours par mètre de longueur finale, le thermofixage étant réalisé à une température supérieure à 150°C sous une tension de 3 à 10 kg, pendant une à deux minutes.
6. Procédé de fabrication d'une corde synthétique comprenant des fibres d'une première matière et un liant d'une seconde matière caractérisé en ce qu'il consiste à:
- monter sur un plateau tournant un ensemble de bobines portant des fils de fibres multifilaments;
- réunir ces fils par un anneau qui reçoit un fil central imprégné d'un excès d'élastomére en solution;
- mouliner l'ensemble de façon à réaliser un essorage du fil central;
- à chauffer l'ensemble pour évaporer les solvants et fondre l'élastomère thermoplastique;
- thermofixer.
7. Corde obtenue par le procédé de la revendication 6, caractérisée en ce que le pourcentage de fibres disposées dans la direction de l'axe longitudinal de la corde par rapport au nombre total de fibres est inférieur à 15%, les autres fibres étant enroulées en spirale autour de l'axe longitudinal.
8. Corde selon la revendication 1 ou 7, caractérisée en ce que les fils multifilaments sont en polyamide, la seconde matière étant un élastomère thermofusible polyuréthane.
EP81401480A 1980-09-26 1981-09-24 Corde synthétique pour raquette de tennis Expired EP0049196B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81401480T ATE15083T1 (de) 1980-09-26 1981-09-24 Saiten aus kunststoffen fuer tennisschlaeger.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8020663 1980-09-26
FR8020663A FR2491098B1 (fr) 1980-09-26 1980-09-26

Publications (2)

Publication Number Publication Date
EP0049196A1 EP0049196A1 (fr) 1982-04-07
EP0049196B1 true EP0049196B1 (fr) 1985-08-21

Family

ID=9246307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401480A Expired EP0049196B1 (fr) 1980-09-26 1981-09-24 Corde synthétique pour raquette de tennis

Country Status (8)

Country Link
EP (1) EP0049196B1 (fr)
JP (1) JPS57128174A (fr)
AT (1) ATE15083T1 (fr)
AU (1) AU7561881A (fr)
DE (1) DE3171925D1 (fr)
ES (1) ES8304231A1 (fr)
FR (1) FR2491098B1 (fr)
IN (1) IN154611B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601393B1 (fr) * 1986-07-09 1989-11-03 Cousin Freres Sa Cable aramide de manutention.
GB9206623D0 (en) * 1992-03-26 1992-05-06 Don & Low Holdings Ltd Improvements in or relating to a thermoplastic composite material
FR2770140B1 (fr) 1997-10-23 2002-09-27 Cousin Biotech Corde synthetique composite pour raquette de tennis
FR2808697B1 (fr) 2000-05-09 2002-10-11 Cousin Biotech Corde synthetique composite pour raquette de tennis
FR2850030B1 (fr) 2003-01-16 2007-03-23 Cousin Composites Corde synthetique pour raquette et son procede de fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842934A (en) * 1954-07-29 1958-07-15 Owens Robert Stuart Stabilized multi-ply yarns
DE1444115A1 (de) * 1962-05-15 1968-10-24 Karl Plate Gmbh Dr Faeden fuer Papiermaschinensiebe und Verfahren zu ihrer Herstellung
US3920658A (en) * 1972-01-20 1975-11-18 Martin James Benson Coated tennis string and process for coating
FR2393102A2 (fr) * 1977-05-31 1978-12-29 Robin Jacques Cordes en fibres synthetiques et leur procede de fabrication
DE2651659A1 (de) * 1976-11-12 1978-05-18 Ruediger Lothar Von Di Reppert Verfahren zur herstellung beschichteter tennissaiten

Also Published As

Publication number Publication date
ES505733A0 (es) 1983-03-01
AU7561881A (en) 1982-04-01
ATE15083T1 (de) 1985-09-15
EP0049196A1 (fr) 1982-04-07
JPS57128174A (en) 1982-08-09
DE3171925D1 (en) 1985-09-26
FR2491098A1 (fr) 1982-04-02
FR2491098B1 (fr) 1983-05-27
IN154611B (fr) 1984-11-17
ES8304231A1 (es) 1983-03-01

Similar Documents

Publication Publication Date Title
US4275117A (en) String construction produced by subjecting a fibrous strand composed of fibrous materials having differing melting points to heating conditions sufficient to melt some but not all of the fibrous materials
EP0214060B1 (fr) Procédé de fabrication d'un bas de ligne pour la pêche
FI69877C (fi) Foerfarande foer framstaellning av en omflaetad snodd eller tvnnad kord och foer framstaellning av ett naet av saodan k or
FR2488513A1 (fr) Fil pour sutures chirurgicales et procede pour sa fabrication
EP0125953B1 (fr) Procédé de fabrication d'une corde composite
FR2854814A1 (fr) Corde synthetique pour raquette de tennis
EP0049196B1 (fr) Corde synthétique pour raquette de tennis
FR2468684A1 (fr) Cable en fibres synthetiques
US3745756A (en) Construction of tennis strings
US4449353A (en) Gut string for sports rackets
EP1280586B1 (fr) Corde synthetique composite pour raquette de tennis
USH1715H (en) Process and device for the manufacture of a string for stringing tennis rackets or the like and string resulting therefrom
US6062014A (en) String for a racket
JP2004084148A (ja) 比重調整可能な低伸度耐磨耗性糸条
FR2491099A1 (fr) Procede de fabrication d'un tissu, notamment d'un tissu a sacs et metier a tisser pour l'application dudit procede
TW208673B (fr)
FR2770140A1 (fr) Corde synthetique composite pour raquette de tennis
FR2477584A1 (fr) Cables metalliques ameliores pour le renforcement des articles en caoutchouc, procede et dispositifs de fabrication
CA1107585A (fr) Methode et machine pour la fabrication de ficelles monofilament
EP0377362A1 (fr) Corde synthétique de tennis ou analogue et son procédé de fabrication
JPH02242987A (ja) 繊維複合材撚り線用素線,同撚り線,並びにそれらの製造方法
EP0488873A1 (fr) Procédé de fabrication de cordes destinées à être soumises à des tractions, notamment de cordes pour raquettes et instruments de musique, et cordes ainsi obtenues
JP2006345963A (ja) ストリング
JP4804912B2 (ja) ラケット用ストリングの製造方法及び装置
WO2023156952A1 (fr) Procédé de fabrication d'une estrope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19821006

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 15083

Country of ref document: AT

Date of ref document: 19850915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3171925

Country of ref document: DE

Date of ref document: 19850926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81401480.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000927

Year of fee payment: 20

Ref country code: CH

Payment date: 20000927

Year of fee payment: 20

Ref country code: AT

Payment date: 20000927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000928

Year of fee payment: 20

Ref country code: NL

Payment date: 20000928

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001002

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20001006

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001117

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20010924 *COUSIN FRERES S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010923

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010923

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010924

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010924

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010923

EUG Se: european patent has lapsed

Ref document number: 81401480.9

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20010924