EP0046927A1 - Process for producing dispersions and photographic materials - Google Patents

Process for producing dispersions and photographic materials Download PDF

Info

Publication number
EP0046927A1
EP0046927A1 EP81106446A EP81106446A EP0046927A1 EP 0046927 A1 EP0046927 A1 EP 0046927A1 EP 81106446 A EP81106446 A EP 81106446A EP 81106446 A EP81106446 A EP 81106446A EP 0046927 A1 EP0046927 A1 EP 0046927A1
Authority
EP
European Patent Office
Prior art keywords
dispersion
temperature
organic phase
solution
aqueous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81106446A
Other languages
German (de)
French (fr)
Other versions
EP0046927B1 (en
Inventor
Hildegard Dr. Schnöring
Karl-Wilhelm Dr. Schranz
Günther Dr. Koepke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0046927A1 publication Critical patent/EP0046927A1/en
Application granted granted Critical
Publication of EP0046927B1 publication Critical patent/EP0046927B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/56Mixing photosensitive chemicals or photographic base materials

Definitions

  • the invention relates to a process for the production of dispersions and photographic materials which contain dispersions according to the invention.
  • the invention relates to the production of dispersions of organic, hydrophobic substances in an aqueous phase.
  • dispersions are understood to mean apparently homogeneous systems which contain at least 2 phases in finely divided form.
  • examples of dispersions are e.g. Emulsions and suspensions.
  • a disadvantage of such processes is that the color couplers used may have a melting point of at most 100 ° C.
  • a low-boiling auxiliary solvent on the other hand one is limited to color couplers which have a correspondingly low melting point or which may be achieved by mixing with other color couplers or oil formers.
  • the dispersing step by grinding cannot be used for all color couplers. This is because it is technically difficult to intercept the heat generated during the grinding by the cutting work. This difficulty is all the more serious the finer the color coupler particles are to be dispersed and the narrower the required distribution width, i.e.
  • the deviation of the individual particles from the average grain size Most of the compounds to be dispersed, like gelatin, are relatively sensitive to temperature. Gelatin shows slightly irreversible changes at high temperatures, which are manifested in poorer casting behavior and poorer sensitometric values. In the known processes, the phases to be dispersed are mixed before the dispersion and run together into the dispersing device.
  • a process is known from US Pat. No. 3,850,643, in which a copper / oil-forming mixture is dissolved in a solvent at 137.8 ° C. and this solution internally half a minute in a gelatin / emulsifier solution.
  • a special entry device consisting of a fixed ring-shaped plate and a perforated plate with webs. The solvent is then washed out of the solidified emulsion.
  • the method has the disadvantage that a special apparatus must be used, which requires special alignment. Further disadvantages are the use of solvents, which have to be removed in a subsequent double operation, and the very long entry time.
  • the object of the invention is to find a dispersion process which avoids the disadvantages of the known processes.
  • the invention was based on the object of specifying a dispersing process which ensures gentle treatment of the dispersed compounds.
  • a process has now been found for producing dispersions from at least one liquid organic phase which contains a hydrophobic, photographically active compound and at least one aqueous phase which comprises a binder, in which both phases are combined with dispersion.
  • the two phases are left separate from one another in a suitable disperser Run in the yaw device.
  • the organic phase is the pure melt of a photographic substance or the solution of the photographic substance in an oil former and the dispersion takes place above the liquefaction temperature of this fogographically active substance or solution.
  • the aqueous phase can contain dissolved binders and the dispersion can take place above the liquefaction temperature of this binder temperature.
  • the dispersion can also take place above the liquefaction temperatures of both phases.
  • the dispersion is carried out at a temperature which is above the boiling point at atmospheric pressure of the lower-boiling phase or of the azeotrope which may form.
  • the organic phase preferably contains a photographically active substance which is essentially immiscible with water at pH 7.
  • a high-boiling oil former can additionally be contained.
  • the photographically active compound can be a color coupler, a stabilizer or a UV absorber.
  • a particularly advantageous procedure is characterized in that the residence time of a particle of the organic phase in the shear zone of the dispersing device is only a maximum of 6 seconds.
  • the temperature in the dispersion room is advantageously at least 100 ° C. and the pressure in the dispersion room is at least 1 bar.
  • a special method is that the temperature of the organic phase is between 100 and 140 ° C, the temperature of the aqueous phase is between 70 and 85 ° C and the temperature in the dispersion zone is between 60 and 140 °.
  • the process according to the invention is outstandingly suitable for producing dispersions in an aqueous medium from organic hydrophobic substances which are photographically active.
  • organic hydrophobic substances which are photographically active.
  • hydrophobic couplers of the most varied types (4-equivalent couplers, 2-equivalent couplers, DIR couplers, mask couplers, white couplers, competitive couplers), dyes or other coloring compounds, e.g. for the color diffusion transfer process, UV absorbers, stabilizers and other photographic additives.
  • the aqueous phase contains, to improve the stability of the dispersions, hydrophilic colloidal binders, e.g. Gelatin.
  • hydrophilic colloidal binders e.g. Gelatin.
  • the gelatin can also be replaced in whole or in part by other natural, synthetic or semi-synthetic binders, e.g. by derivatives of alginic acid or cellulose, by polyvinyl alcohol, polyacrylates, partially saponified polyvinyl acetate or polyvinyl pyrrolidone.
  • the organic phase is heated above its melting point to such an extent that a thin liquid solution is formed.
  • This is dispersed in the aqueous phase, the residence time in the shear zone of the dispersing device generally being less than one second.
  • the aqueous phase is introduced into the dispersing device at a temperature which is preferably below the boiling point at normal pressure.
  • the temperature of the aqueous phase is preferably 70 to 95 ° C. While the aqueous phase can circulate through the dispersing device before the actual dispersion step, the organic phase is only introduced directly into the shear zone of the dispersing device at the start of the dispersion at high temperature.
  • the temperature of the organic phase is above the melting point of the organic substance to be dispersed, for example the coupler or the mixture of a coupler and a high-boiling oil former. Couplers with melting points up to 180 ° C can be processed without problems according to the invention.
  • the temperature of the organic phase is preferably 100 ° C to 140 ° C. The temperature of the organic phase only cools to the surrounding temperature during or after the dispersion has taken place.
  • the temperature in the shear zone of the dispersing device is generally 60 ° C. to 140 ° C., in particular 80 ° C. to 120 ° C.
  • the temperature in the dispersing device can optionally be controlled via additional devices will.
  • an excess pressure can be maintained in the dispersing device.
  • the overpressure is then measured so that it does not boil, and results from the boiling diagrams of the selected systems.
  • the overpressure can be, for example, between 0-3 bar, possibly also at a higher value.
  • the residence time in the shear zone of the dispersing device is only 0.02 to 0.4 seconds.
  • Dwell time is understood to mean the time from the entry of the dispersing partners into the shear zone of the dispersing device to the exit.
  • the dispersion run through the shear zone several times by superimposing a circulation system on the product line.
  • the effective residence times are generally between 0.2 and 6 seconds.
  • the dispersing partners are sent several times through the shear zone of the dispersing device, so that the residence times add up to an average or effective residence time. These residence times are far below the residence times previously used for the production of such emulsions.
  • the average particle size in the dispersions obtained is a function of residence time, mixing performance and dispersion temperature. In general, the influence of the residence time decreases with higher mixing performance. At higher temperatures, finer dispersions can generally be obtained than at lower temperatures. In principle, any particle sizes can be obtained, particularly preferred are particle sizes from 200 to 600 nm, in particular from 300 to 350 nm.
  • Relatively temperature-sensitive substances can also be dispersed in the dispersing device at high temperatures.
  • Another advantage of the process according to the invention is that highly concentrated dispersions can be produced with a high space / time yield.
  • the space / time yield is based on known manufacturing processes and known use concentrations. E.g. normally a dispersant used with 5% active ingredient, which must be prepared in a kettle, so that the aqueous phase (gelatin solution) can be initially charged with 25% and the organic phase is concentrated, a correspondingly smaller apparatus can be used. This results in a space / time yield that is better by a factor of 3 simply by taking the smaller boiler volume into account. In addition, since mixing times of 10 minutes are usually used, mixing times of 6 seconds (as explained above) result in a further improvement by a factor of 100.
  • the pressure in the disperser should be above the vapor pressure of the aqueous phase.
  • the temperature of the organic phase e.g. 120 ° C corresponding to 2 bar overpressure
  • the pressure in the disperser should be above the vapor pressure of the aqueous phase.
  • determined by the temperature of the organic phase e.g. 120 ° C corresponding to 2 bar overpressure
  • the temperature of the organic phase e.g. 120 ° C corresponding to 2 bar overpressure
  • the dispersion effect itself is not dependent on pressure, provided that it is ensured that no evaporation takes place.
  • the ratio of organic matter (color coupler, UV absorber, etc.) to oil former is not a critical parameter for the success of the process.
  • the oil former high-boiling solvent
  • the oil former is not absolutely necessary, but it is advantageous not to exceed the viscosity of 1000 mPas at the preferred dispersion temperature. A corresponding setting is possible by adding oil formers.
  • the oil formers are substances which generally boil above 180 ° C. and have good dissolving power for the hydrophobic substance to be dispersed. These include the esters of glutaric acid, adipic acid, phthalic acid, sebacic acid, succinic acid, maleic acid, fumaric acid, isophthalic acid, terephthalic acid and phosphoric acid or the esters of glycerin, as well Paraffin and fluorinated paraffin are preferably used because these compounds are chemically stable and very easily accessible, can be handled very easily and have no adverse effect on the light-sensitive materials when the dispersions are used for photographic purposes.
  • oil formers are particularly preferably used as oil formers according to the invention: tricresyl phosphate, triphenyl phosphate, dibutyl phthalate, di-n-octyl phthalate, di-2-ethylhexyl phthalate, glycerol tributyrate, glycerol tripropionate, dioctyl sebacate. Paraffin and fluorinated paraffin. Succinic acid derivatives are also preferred. Examples are given below.
  • R stands for a longer aliphatic radical with at least 8 carbon atoms. This is preferably one of the following, monounsaturated aliphatic radicals - C12H23 ' -C 15 H 29 or -C 18 H 35 .
  • the method according to the invention can be carried out with devices according to FIGS. 1 and 2, but is of course not restricted to the use of these devices.
  • the aqueous phase is metered in from a stirrable and heatable boiler 1 with pump 2 via a dispersing machine 3 with a defined flow rate.
  • the organic phase is metered from a likewise heatable and stirrable kettle 4 with a pump 5 via a filter 6 directly into the shear zone of the dispersing machine.
  • the dispersing machine 3 can also optionally be switched to bypass 7.
  • the dispersion produced in the dispersing machine can be cooled to such an extent that it leaves the pressure-maintaining valve 9 down to a temperature below the evaporation point. cooled at normal pressure and can be introduced into the boiler 10.
  • the device can be operated in a continuous as well as in a discontinuous mode of operation.
  • Rotor / stator machines are preferably used as dispersing machines, since these enable the organic phase to be introduced directly into the shear zone and the organic phase can thus be dispersed at temperatures higher than that specified by the average dispersion temperature.
  • Figure 2 shows another embodiment, 1 represents a batch boiler.
  • 2 is a pump that conveys the aqueous phase to the dispersing machine 3.
  • the organic phase is metered in from the boiler 4 via the pump 5.
  • the cooler 8 allows the emulsified mixture to be cooled to temperatures below 100 ° C., so that pressure can be passed through the valve 9 after relaxation.
  • the dispersions prepared according to the invention are outstandingly suitable for the preparation of light-sensitive photographic materials which contain silver halide.
  • the dispersions can be introduced into such materials in a manner known per se.
  • the dispersions can be introduced both in layers containing silver halide and in layers free of silver halide.
  • the usual silver halide emulsions can be used, which can be prepared by the usual known methods.
  • Gelatin can be used as a binder for the photographic layers, but can be replaced in whole or in part by other binders.
  • Stabilizers such as triazole derivatives, thiocarbonic acid derivatives of thiodiazole or azaindenes can be added to the emulsions as antifoggants.
  • the silver halide emulsions can also be sensitized with the usual chemical sensitizers; the usual for optical sensitization
  • the photographic layers are hardened under conditions which do not adversely affect the image tone, but which allow the layers to be processed quickly even at higher temperatures.
  • Suitable curing agents are, for example, formalin, dialdehydes, divinyl sulfone, triazine derivatives, if appropriate in the presence of tertiary amines, and also instant curing agents such as carbamoylpyridinium compounds or carbodiimides.
  • the usual substrates can be used, e.g. Polyolefin-coated underlays, for example polyethylene-coated paper, suitable polyolefins and paper, polyester, triacetate.
  • An aqueous 25% gelatin solution is prepared in a heatable kettle equipped with a slowly running stirrer. After a clear solution has been formed, 0.90 kg of triisopropyl naphthalenesulfonate is added. This aqueous solution is then heated to 80 ° C.
  • the aqueous gelatin solution is pumped through the dispersion zone of a continuous mixer (Dispax reactor, type p 3/6/6) by means of a pump with a flow rate of 150 kg / h, in the working space of which a pressure of 2 bar by means of a cross-sectional constriction (valve) is set at the outlet and first in the fore position boiler of the aqueous solution is returned so that the pipeline and mixing zone are filled with liquid and brought to temperature. Then the circulation of the aqueous gelatin solution is ended.
  • the second solution is then fed to the mixing zone at a flow rate of 60 kg / h by means of a heatable pump through a heatable pipeline.
  • a temperature of 110 to 115 ° C arises at the outlet of the mixing zone.
  • the pressure is kept at 2 to 2.5 bar. This pressure is about 1 bar higher than the pressure necessary to avoid the boiling of the aqueous phase, but promotes a particularly uniform emulsion formation.
  • Example 1 The two solutions of Example 1 are prepared in a 10-fold amount, but the difference is that the aqueous solution in the kettle is kept at 40 ° C. and only flows through a heat exchanger in which the temperature is just before being pumped into the dispersing machine the solution is raised from 40 to 80 ° C.
  • the solid, powdery couplers from Example 1 are mixed and placed in the shaft of a dissolving screw, to which the tricresyl phosphate heated to 120 ° C. is fed at the same time, so that the solution is produced continuously, the residence time at high temperature of 115 ° C. being only a few Seconds.
  • solution I 25.00 kg of 25% gelatin solution and 1.02 kg of triisopropyl naphthalenesulfonate (solution I) are prepared at 60 ° C. in accordance with Example 1 in a heatable and coolable kettle with a slow-moving stirrer, and are placed in a second heating and Stirable kettles are 50.00 kg of dibutyl phthalate and 25.00 kg of a compound of the formula warmed up to 140 ° C and 50.00 kg coupler of the formula added and stirred until a clear solution (solution II) is formed at 130 ° C.
  • Both solutions are metered continuously with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a Material flow of 120 kg / h and solution II with a material flow of 60 kg / h.
  • the continuous mixer is connected with a circuit. At a pressure of 2 bar and a temperature of 110 to 120 ° C, a fine-particle emulsion is formed in the continuous flow, which is cooled to 80 ° C in a downstream cooler and then processed after passing through a pressure-maintaining valve that is set to 2 bar to become. An emulsifier with an average particle size of 337 nm is obtained.
  • the dispersant obtained is added to a silver halide emulsion containing 60 g / 1 silver halide in a manner known per se.
  • the dispersion thus obtained is provided with hardening and wetting agents and cast onto a base in a known manner.
  • the material obtained is exposed imagewise and developed in a conventional color developer.
  • a corresponding photographic material is produced from the same silver halide emulsion with the same dispersed compounds, but the dispersion was not carried out according to the invention but according to US Pat. No. 2,322,027.
  • the procedure is such that the amounts of coupler and oil former specified above are dissolved in 150 kg of diethyl carbonate.
  • a mixture is prepared by stirring into the 10% gelatin solution (amount corresponding to 25 kg gelatin) mixed with the above-mentioned amount of wetting agent. This mixture is repeated several times by one Mixing siren skillfully while dispersing. The solvent is then evaporated off in vacuo.
  • the emulsifier obtained is added to the silver halide emulsion.
  • the comparison material was processed in the same way as that of the invention.
  • the sensitometric data listed in the table below show that, according to the invention, a higher sensitivity, gradation and maximum density is obtained.
  • a decrease in the sensitivity value by 0.3010 units corresponds to a doubling of the sensitivity.
  • Both solutions are continuously metered in with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a material flow of 120 kg / h and solution II with a material flow of 60 kg / h.
  • the continuous mixer is connected with a circuit. At a pressure of 2 bar and a temperature of 11o to 120 ° C, a finely divided emulsion is formed in the continuous flow, which is cooled to 80 ° C in a downstream cooler and then processed after passing through a pressure control valve that is set to 2 bar to become.
  • Emul gates with particle sizes between 625 and 350 nm are obtained.
  • Both solutions are continuously metered in with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a material flow of 120 kg / h and solution II with a material flow of 60 kg / h.
  • the continuous mixer is connected with a circuit. At a pressure of 1 bar and a temperature of 95 ° C, a finely divided emulsion is formed in the continuous flow, which is cooled to 80 ° C and processed further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Colloid Chemistry (AREA)

Abstract

Verfahren zur Herstellung fotografischer Emulgate, bestehend aus mit Wasser nicht mischbaren oder wasserunlöslichen organischen Substanzen und einer wäßrigen Lösung eines organischen Bindemittels, dadurch gekennzeichnet, daß die hydrophilen und hydrophoben Phasen getrennt voneinander auf die jweiligen Temperaturen über ihrem Verflüssigungspunkt erhitzt werden und dann kontinuierlich dosiert einem Dispergierraum zugeführt werden, dessen Auslauf mit einer Drosselstelle versehen ist, so daß die Dispergierung unter Druck erfolgen kann und damit bei Temperaturen über dem Siede-punkt der einzelnen Komponenten bzw. des sich gegebenenfalls bildenden Azoetrops durchgeführt wird.A process for the preparation of photographic emulsions, consisting of water-immiscible or water-insoluble organic substances and an aqueous solution of an organic binder, characterized in that the hydrophilic and hydrophobic phases are heated separately from one another to the respective temperatures above their liquefaction point and then continuously metered into a dispersion chamber are supplied, the outlet of which is provided with a throttle point, so that the dispersion can take place under pressure and is therefore carried out at temperatures above the boiling point of the individual components or of the azoetrops which may form.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Dispersionen sowie fotografische Materialien, die erfindungsgemäße Dispersionen enthalten. Insbesondere betrifft die Erfindung'die Herstellung von Dispersionen organischer, hydrophober Substanzen in einer wäßrigen Phase.The invention relates to a process for the production of dispersions and photographic materials which contain dispersions according to the invention. In particular, the invention relates to the production of dispersions of organic, hydrophobic substances in an aqueous phase.

Unter Dispersionen werden im folgenden scheinbar homogene Systeme verstanden, die in fein verteilter Form wenigstens 2 Phasen enthalten. Beispiele von Dispersionen sind z.B. Emulsionen und Suspensionen.In the following, dispersions are understood to mean apparently homogeneous systems which contain at least 2 phases in finely divided form. Examples of dispersions are e.g. Emulsions and suspensions.

Zur Herstellung derartiger Dispersionen ist es bekannt, organische Substanzen, insbesondere Farbkuppler, in fester oder flüssiger Form mit als Ölbildnern bezeichneten hochsiedenden Lösungsmitteln zu mischen, gegebenenfalls ein niedrig siedendes Hilfslösungsmittel zuzugeben und diese Mischung mit Hilfe eines Emulgators mit einer wäßrigen Lösung, im allgemeinen einer Gelatinelösung, zu dispergieren. Derartige Verfahren sind beschrieben in der US-PS 2 322 027; aus den Beispielen der US-PS 2 322 027 geht hervor, daß während der Dispergierung relativ niedrige Temperaturen eingehalten werden. Die Verwendung von niedrig siedenden Hilfslösungsmitteln ist vielfach beschrieben worden, hat aber den großen Nachteil, daß nach der Dispergierung das niedrig siedende Hilfslösungsmittel aus der dispersen Phase abdestilliert werden muß. Hierbei muß mit relativ großem technischem Aufwand gearbeitet werden, um das Lösungsmittel vollständig zu entfernen. Die Entfernung wird im allgemeinen bei Unterdruck und niedrigen Temperaturen durchgeführt, um eine Agglomeration der dispersen Phase und eine Temperaturbelastung der meist temperaturempfindlichen Bindemittel zu vermeiden.To produce such dispersions, it is known to mix organic substances, in particular color couplers, in solid or liquid form with high-boiling solvents referred to as oil formers, optionally to add a low-boiling auxiliary solvent, and this mixture with the aid of an emuls gators with an aqueous solution, generally a gelatin solution. Such methods are described in U.S. Patent 2,322,027; The examples in US Pat. No. 2,322,027 show that relatively low temperatures are maintained during the dispersion. The use of low-boiling auxiliary solvents has been described many times, but has the major disadvantage that the low-boiling auxiliary solvent must be distilled off from the disperse phase after dispersion. This requires a relatively large technical effort to remove the solvent completely. The removal is generally carried out at reduced pressure and low temperatures in order to avoid agglomeration of the disperse phase and thermal stress on the mostly temperature-sensitive binders.

Aus der DE-PS 1 143 707 ist weiterhin bekannt, Farbkomponenten mit einem Schmelzpunkt unterhalb 75°C in einer auf 90°C erhitzten Gelatinelösung mit Hilfe eines Emulgators zu emulgieren. Aus der GB-PS 1 151 590 ist weiter bekannt, Farbkuppler mit einem Schmelzpunkt bis unter 100°C zu verwenden, wobei die Farbkuppler mit einem Dispergiermittel zusammen geschmolzen werden. Aus der DDR-Patentschrift 139 040 ist bekannt, Farbkuppler mit einem Schmelzpunkt von oberhalb 75°C einzusetzen, indem diese Kuppler mit einem hochsiedenden Lösungsmittel gemischt und dann in Wasser, das ein Netzmittel enthält, emulgiert werden. Anschließend kann dann eine Vermischung mit einer Gelatinelösung bei niedriger Temperatur erfolgen.From DE-PS 1 143 707 it is also known to emulsify color components with a melting point below 75 ° C. in a gelatin solution heated to 90 ° C. with the aid of an emulsifier. From GB-PS 1 151 590 it is also known to use color couplers with a melting point below 100 ° C., the color couplers being melted together with a dispersant. From GDR patent specification 139 040 it is known to use color couplers with a melting point above 75 ° C. by mixing these couplers with a high-boiling solvent and then emulsifying them in water which contains a wetting agent. It can then be mixed with a gelatin solution at low temperature.

Nachteilig an derartigen Verfahren ist, daß die verwendeten Farbkuppler einen Schmelzpunkt von maximal 100°C haben dürfen. Es entfällt zwar das Abtrennen eines niedrig siedenden Hilfslösungsmittels, andererseits ist man auf Farbkuppler beschränkt, die einen entsprechend niedrigen Schmelzpunkt aufweisen oder diesen gegebenenfalls durch Abmischung mit anderen Farbkupplern oder ölformern erreichen. Zudem ist sowohl bei den lösungsmittelfreien Dispergierverfahren als auch bei den Verfahren unter Zuhilfenahme eines ölbildners der Dispergierschritt durch Mahlen nicht für alle Farbkuppler anwendbar. Es ist nämlich technisch schwierig, die während der Mahlung durch die Zerteilungsarbeit aufgebrachte Wärme abzufangen. Diese Schwierigkeit ist umso gravierender, je feiner die Farbkupplerpartikel dispergiert werden sollen und je schmaler die geforderte Verteilungsbreite, also die Abweichung der einzelnen Partikel von der mittleren Korngröße ist. Die meisten zu dispergierenden Verbindungen sind nämlich ebenso wie Gelatine relativ temperaturempfindlich. Gelatine zeigt bei hohen Temperaturen leicht irreversible Änderungen, die sich in verschlechtertem Begußverhalten sowie schlechteren sensitometrischen Werten äußern. Bei den bekannten Verfahren werden die zu dispergierenden Phasen schon vor der Dispergierung vermischt und laufen zusammen in die Dispergiervorrichtung ein.A disadvantage of such processes is that the color couplers used may have a melting point of at most 100 ° C. Although there is no need to separate off a low-boiling auxiliary solvent, on the other hand one is limited to color couplers which have a correspondingly low melting point or which may be achieved by mixing with other color couplers or oil formers. In addition, in both the solvent-free dispersion process and in the process using an oil former, the dispersing step by grinding cannot be used for all color couplers. This is because it is technically difficult to intercept the heat generated during the grinding by the cutting work. This difficulty is all the more serious the finer the color coupler particles are to be dispersed and the narrower the required distribution width, i.e. the deviation of the individual particles from the average grain size. Most of the compounds to be dispersed, like gelatin, are relatively sensitive to temperature. Gelatin shows slightly irreversible changes at high temperatures, which are manifested in poorer casting behavior and poorer sensitometric values. In the known processes, the phases to be dispersed are mixed before the dispersion and run together into the dispersing device.

Aus der US-PS 3 850 643 ist ein Verfahren bekannt, bei welchem ein Kupfer/ölbildnergemisch in einem Lösungsmittel bei 137,8°C gelöst wird und diese Lösung innerhalb von fünf Minuten in eine Gelatine/Emulgatorlösung eingetragen wird.A process is known from US Pat. No. 3,850,643, in which a copper / oil-forming mixture is dissolved in a solvent at 137.8 ° C. and this solution internally half a minute in a gelatin / emulsifier solution.

Hierzu wird eine spezielle Eintragsvorrichtung, bestehend aus einer feststehenden ringförmigen Platte und einer durchbrochenen mit Stegen ausgeführten Platte verwendet. Das Lösungsmittel wird anschließend aus der erstarrten Emulsion ausgewaschen.For this purpose, a special entry device is used, consisting of a fixed ring-shaped plate and a perforated plate with webs. The solvent is then washed out of the solidified emulsion.

Das Verfahren hat den Nachteil, daß eine spezielle Apparatur verwendet werden muß, die einer besonderen Ausrichtung bedarf. Weitere Nachteile bestehen in der Verwendung von Lösungsmitteln, die in einem nachgeschalteten Doppelarbeitsgang wieder entfernt werden müssen und die sehr lange Eintragszeit.The method has the disadvantage that a special apparatus must be used, which requires special alignment. Further disadvantages are the use of solvents, which have to be removed in a subsequent double operation, and the very long entry time.

Der Erfindung liegt die Aufgabe zugrunde, ein Dispergierverfahren aufzufinden, welches die Nachteile der bekannten Verfahren meidet. Insbesondere lag der Erfindung die Aufgabe zugrunde, ein Dispergierverfahren anzugeben, welches eine schonende Behandlung der dispergierten Verbindungen gewährleistet.The object of the invention is to find a dispersion process which avoids the disadvantages of the known processes. In particular, the invention was based on the object of specifying a dispersing process which ensures gentle treatment of the dispersed compounds.

Es wurde nun ein Verfahren zur Herstellung von Dispersionen aus wenigstens einer flüssigen organischen Phase, die eine hydrophobe, fotografisch wirksame Verbindung enthält, und wenigstens einer wäßrigen Phase, die ein Bindemittel enthält gefunden, bei dem beide Phasen unter Dispergierung zusammengegeben werden. Erfindungsgemäß läßt man beide Phasen getrennt voneinander in eine geeignete Dispergiervorrichtung einlaufen.A process has now been found for producing dispersions from at least one liquid organic phase which contains a hydrophobic, photographically active compound and at least one aqueous phase which comprises a binder, in which both phases are combined with dispersion. According to the invention, the two phases are left separate from one another in a suitable disperser Run in the yaw device.

In einer bevorzugten Durchführung des Verfahrens ist die organische Phase die reine Schmelze einer fotografischen Substanz oder die Lösung der fotografischen Substanz in einem Ölbildner und es erfolgt die Dispergierung oberhalb der Verflüssigungstemperatur dieser fogografisch wirksamen Substanz oder der Lösung.In a preferred embodiment of the method, the organic phase is the pure melt of a photographic substance or the solution of the photographic substance in an oil former and the dispersion takes place above the liquefaction temperature of this fogographically active substance or solution.

Die wäßrige Phase kann gelöste Bindemittel enthalten und die Dispergierung kann oberhalb der Verflüssigungstemperatur dieser Bindemitteltemperatur erfolgen. Die Dispergierung kann auch oberhalb der Verflüssigungstemperaturen beider Phasen erfolgen.The aqueous phase can contain dissolved binders and the dispersion can take place above the liquefaction temperature of this binder temperature. The dispersion can also take place above the liquefaction temperatures of both phases.

In einer bevorzugten Ausführungsform erfolgt die Dispergierung bei einer Temperatur, die über dem Siedepunkt bei Normaldruck der niedriger siedenden Phase bzw. des sich gegebenenfalls bildenden Azeotrops liegt. Die organische Phase enthält vorzugsweise eine fotografisch wirksame Substanz, die bei pH 7 im wesentlichen mit Wasser nicht mischbar ist. Zusätzlich kann in einer bevorzugten Ausführungsform ein hochsiedender ölbildner enthalten sein.In a preferred embodiment, the dispersion is carried out at a temperature which is above the boiling point at atmospheric pressure of the lower-boiling phase or of the azeotrope which may form. The organic phase preferably contains a photographically active substance which is essentially immiscible with water at pH 7. In a preferred embodiment, a high-boiling oil former can additionally be contained.

Die fotografisch wirksame Verbindung kann ein Farbkuppler, ein Stabilisator oder ein UV-Absorber sein.The photographically active compound can be a color coupler, a stabilizer or a UV absorber.

Eine besonders vorteilhafte Verfahrensdurchführung zeichnet sich dadurch aus, daß die Verweildauer eines Teilchens der organischen Phase in der Scherzone der Dispergiervorrichtung nur maximal 6 Sekunden beträgt. Vorteilhafterweise beträgt die Temperatur im Dispergierraum wenigstens 100°C und der Druck im Dispergierraum mindestens 1 bar. Ein spezielles Verfahren besteht darin, daß die Temperatur der organischen Phase zwischen 100 und 140°C, die Temperatur der wäßrigen Phase zwischen 70 und 85°C und die Temperatur in die Dispergierzone zwischen 60 und 140° liegt.A particularly advantageous procedure is characterized in that the residence time of a particle of the organic phase in the shear zone of the dispersing device is only a maximum of 6 seconds. The temperature in the dispersion room is advantageously at least 100 ° C. and the pressure in the dispersion room is at least 1 bar. A special method is that the temperature of the organic phase is between 100 and 140 ° C, the temperature of the aqueous phase is between 70 and 85 ° C and the temperature in the dispersion zone is between 60 and 140 °.

Das erfindungsgemäße Verfahren eignet sich in hervorragender Weise dazu, von organischen hydrophoben Substanzen die fotografisch wirksam sind, Dispersionen in einem wäßrigen Medium herzustellen. Beispiele von solchen Substanzen sind beispielsweise hydrophobe Kuppler der verschiedensten Arten (4-Rquivalentkuppler, 2-Äquivalentkuppler, DIR-Kuppler, Maskehkuppler, Weißkuppler, Konkurrenzkuppler), Farbstoffe oder sonstige farbgebende Verbindungen, z.B. für das Farbdiffusions- übertragungsverfahren, UV-Absorber, Stabilisiermittel und andere fotografische Zusätze.The process according to the invention is outstandingly suitable for producing dispersions in an aqueous medium from organic hydrophobic substances which are photographically active. Examples of such substances are, for example, hydrophobic couplers of the most varied types (4-equivalent couplers, 2-equivalent couplers, DIR couplers, mask couplers, white couplers, competitive couplers), dyes or other coloring compounds, e.g. for the color diffusion transfer process, UV absorbers, stabilizers and other photographic additives.

Die wäßrige Phase enthält zur Verbesserung der Stabilität der Dispersionen hydrophile kolloidale Bindemittel, z.B. Gelatine. Die Gelatine kann auch ganz oder teilweise durch andere natürliche, synthetische oder halbsynthetische Bindemittel ersetzt werden, z.B. durch Derivate der Alginsäure oder der Cellulose, durch Polyvinylalkohol, Polyacrylate, teilweise verseiftes Polyvinylacetat oder Polyvinylpyrrolidon.The aqueous phase contains, to improve the stability of the dispersions, hydrophilic colloidal binders, e.g. Gelatin. The gelatin can also be replaced in whole or in part by other natural, synthetic or semi-synthetic binders, e.g. by derivatives of alginic acid or cellulose, by polyvinyl alcohol, polyacrylates, partially saponified polyvinyl acetate or polyvinyl pyrrolidone.

Erfindungsgemäß wird die organische Phase soweit über ihren Schmelzpunkt erhitzt, daß eine dünnflüssige Lösung entsteht. Diese wird in die wäßrige Phase dispergiert, wobei die Verweilzeit in der Scherzone der Dispergiervorrichtung im allgemeinen weniger als eine Sekunde beträgt. Die wäßrige Phase wird in die Dispergiervorrichtung mit einer Temperatur eingegeben, die vorzugsweise unterhalb des Kochpunktes bei Normaldruck liegt. Vorzugsweise beträgt die Temperatur der wäßrigen Phase 70 bis 95°C. Während die wäßrige Phase vor dem eigentlichen Dispersionsschritt durch die Dispergiervorrichtung zirkulieren kann, wird die organische Phase erst mit Beginn der Dispergierung bei hoher Temperatur direkt in die Scherzone der Dispergiervorrichtung eingeleitet.According to the invention, the organic phase is heated above its melting point to such an extent that a thin liquid solution is formed. This is dispersed in the aqueous phase, the residence time in the shear zone of the dispersing device generally being less than one second. The aqueous phase is introduced into the dispersing device at a temperature which is preferably below the boiling point at normal pressure. The temperature of the aqueous phase is preferably 70 to 95 ° C. While the aqueous phase can circulate through the dispersing device before the actual dispersion step, the organic phase is only introduced directly into the shear zone of the dispersing device at the start of the dispersion at high temperature.

Die Temperatur der organischen Phase liegt erfindungsgemäß oberhalb des Schmelzpunktes der zu dispergierenden organischen Substanz, beispielsweise des Kupplers oder des Gemisches aus einem Kuppler und einem hochsiedenden Ölbildner. Kuppler mit Schmelzpunkten bis zu 180°C sind erfindungsgemäß problemlos zu verarbeiten. Die Temperatur der organischen Phase beträgt vorzugsweise 100°C bis 140°C. Die Temperatur der organischen Phase kühlt sich erst während oder nach erfolgter Dispergierung auf die umgebende Temperatur ab. Die Temperatur in der Scherzone der Dispergiervorrichtung beträgt im allgemeinen 60°C bis 140°C, insbesondere 80°C bis 120°C. Die Temperatur in der Dispergiervorrichtung kann gegebenenfalls über zusätzliche Einrichtungen gesteuert werden. Um ein Sieden der wäßrigen Phase in der Dispergiervorrichtung zu vermeiden, kann in der Dispergiervorrichtung ein Überdruck aufrechterhalten werden. Der Überdruck wird dann so bemessen, daß es nicht zum Sieden kommt, und ergibt sich aus den Siedediagrammen der gewählten Systeme. Der Überdruck kann z.B. zwischen 0-3 bar, gegebenenfalls auch bei einem höheren Wert liegen.According to the invention, the temperature of the organic phase is above the melting point of the organic substance to be dispersed, for example the coupler or the mixture of a coupler and a high-boiling oil former. Couplers with melting points up to 180 ° C can be processed without problems according to the invention. The temperature of the organic phase is preferably 100 ° C to 140 ° C. The temperature of the organic phase only cools to the surrounding temperature during or after the dispersion has taken place. The temperature in the shear zone of the dispersing device is generally 60 ° C. to 140 ° C., in particular 80 ° C. to 120 ° C. The temperature in the dispersing device can optionally be controlled via additional devices will. In order to avoid boiling of the aqueous phase in the dispersing device, an excess pressure can be maintained in the dispersing device. The overpressure is then measured so that it does not boil, and results from the boiling diagrams of the selected systems. The overpressure can be, for example, between 0-3 bar, possibly also at a higher value.

Als Dispergiervorrichtung können die üblichen Maschinen verwendet werden, z.B. Schnellrührer, sogenannte Mischsirenen oder Ultraschallgeräte. Die Verweilzeit in der Scherzone der Dispergiervorrichtung beträgt in einer bevorzugten Ausführungsform nur 0,02 bis 0,4 Sekunden. Unter Verweilzeit wird dabei die Zeitdauer verstanden vom Eintritt der Dispergierpartner in die Scherzone der Dispergiervorrichtung bis zum Austritt. Es ist aber auch möglich, die Dispersion mehrfach durch die Scherzone durchlaufen zu lassen, indem man eine Kreislaufführung der Produktführung überlagert. In diesem Falle liegen die effektiven Verweilzeiten im allgemeinen zwischen 0,2 und 6 Sekunden. Dabei werden die Dispergierpartner mehrfach durch die Scherzone der Dispergiervorrichtung geschickt, so das sich die Verweilzeiten zu einer mittleren oder effektiven Verweilzeit addieren. Diese Verweilzeiten liegen weit unterhalb der bisher gebräuchlichen Verweilzeiten für die Herstellung derartiger Emulsionen.The usual machines can be used as the dispersing device, e.g. High-speed stirrers, so-called mixing sirens or ultrasound devices. In a preferred embodiment, the residence time in the shear zone of the dispersing device is only 0.02 to 0.4 seconds. Dwell time is understood to mean the time from the entry of the dispersing partners into the shear zone of the dispersing device to the exit. However, it is also possible to have the dispersion run through the shear zone several times by superimposing a circulation system on the product line. In this case, the effective residence times are generally between 0.2 and 6 seconds. The dispersing partners are sent several times through the shear zone of the dispersing device, so that the residence times add up to an average or effective residence time. These residence times are far below the residence times previously used for the production of such emulsions.

Die mittlere Teilchengröße in den erhaltenen Dispersionen ist eine Funktion von Verweilzeit, Mischleistung und Dispergiertemperatur. Im allgemeinen nimmt der Einfluß der Verweilzeit mit höherer Mischleistung ab. Bei höheren Temperaturen lassen sich im allgemeinen feinere Dispersionen gewinnen als bei niedrigeren Temperaturen. Es lassen sich grundsätzlich beliebige Teilchengrößen erhalten, besonders bevorzugt sind Teilchengrößen von 200 bis 600 nm, insbesondere von 300 bis 350 nm.The average particle size in the dispersions obtained is a function of residence time, mixing performance and dispersion temperature. In general, the influence of the residence time decreases with higher mixing performance. At higher temperatures, finer dispersions can generally be obtained than at lower temperatures. In principle, any particle sizes can be obtained, particularly preferred are particle sizes from 200 to 600 nm, in particular from 300 to 350 nm.

Es lassen sich auch relativ temperaturempfindliche Substanzen bei hohen Temperaturen in der Dispergiervorrichtung dispergieren. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß hochkonzentrierte Dispersionen bei hoher Raum/Zeit-Ausbeute hergestellt werden können.Relatively temperature-sensitive substances can also be dispersed in the dispersing device at high temperatures. Another advantage of the process according to the invention is that highly concentrated dispersions can be produced with a high space / time yield.

Die Raum/Zeit-Ausbeute wird dabei bezogen auf bekannte Herstellungsverfahren und bekannte Einsatzkonzentrationen. Wird z.B. normalerweise ein.Dispergat eingesetzt mit 5 % Wirkstoff, das in einem Kessel angesetzt werden muß, so kann dadurch, daß die wäßrige Phase (Gelatinelösung) mit 25 % vorgelegt werden kann und die organische Phase konzentrierter angesetzt wird, eine entsprechend kleinere Apparatur verwendet werden. Es ergibt sich hierbei eine um den Faktor 3 bessere Raum/Zeit-Ausbeute lediglich durch Berücksichtigung des kleineren Kesselvolumens. Da außerdem üblicherweise Mischzeiten von 10 Minuten angesetzt werden, ergibt sich bei Mischzeiten von 6 Sekunden (wie oben dargelegt) eine weitere Verbesserung um den Faktor 100.The space / time yield is based on known manufacturing processes and known use concentrations. E.g. normally a dispersant used with 5% active ingredient, which must be prepared in a kettle, so that the aqueous phase (gelatin solution) can be initially charged with 25% and the organic phase is concentrated, a correspondingly smaller apparatus can be used. This results in a space / time yield that is better by a factor of 3 simply by taking the smaller boiler volume into account. In addition, since mixing times of 10 minutes are usually used, mixing times of 6 seconds (as explained above) result in a further improvement by a factor of 100.

Der Druck in der Dispergiervorrichtung sollte über dem Dampfdruck der wäßrigen Phase liegen. Er wird u.a. bestimmt durch die Temperatur der organischen Phase (z.B. 120°C entsprechend 2 bar Überdruck), die sich während der Dispergierung auf die Dispersionstemperatur abkühlt. Will man den Ansatzkessel der wäßrigen Phase nicht als Druckkessel fahren, so muß man beachten, daß die Temperatur unter 100°C liegt. Oder man dispergiert bei Temperaturen höher als 100°C und - für den Fall, daß man das Dispergat in den Ansatzkessel zurückführen will - kühlt vor dem Entspannen auf Temperaturen unter 100°C ab. Der Dispergiereffekt selbst ist nicht druckabhängig, sofern sichergestellt ist, daß keine Verdampfung erfolgt.The pressure in the disperser should be above the vapor pressure of the aqueous phase. Among other things, determined by the temperature of the organic phase (e.g. 120 ° C corresponding to 2 bar overpressure), which cools down to the dispersion temperature during dispersion. If you do not want to run the batch phase of the aqueous phase as a pressure vessel, you must ensure that the temperature is below 100 ° C. Or you disperse at temperatures higher than 100 ° C and - in the event that you want to return the dispersate to the batch kettle - cool down to temperatures below 100 ° C before relaxing. The dispersion effect itself is not dependent on pressure, provided that it is ensured that no evaporation takes place.

Das Verhältnis organische Substanz (Farbkuppler, UV-Absorber etc.) zu ölbildner ist keine für das Gelingen des Verfahrens kritische Größe. Der Ölbildner (hochsiedendes Lösungsmittel) ist nicht unbedingt erforderlich, allerdings ist es vorteilhaft, bei der bevorzugten Dispergiertemperatur die Viskosität von 1000 mPas nicht zu überschreiten. Eine entsprechende Einstellung ist durch ölbildnerzugabe möglich.The ratio of organic matter (color coupler, UV absorber, etc.) to oil former is not a critical parameter for the success of the process. The oil former (high-boiling solvent) is not absolutely necessary, but it is advantageous not to exceed the viscosity of 1000 mPas at the preferred dispersion temperature. A corresponding setting is possible by adding oil formers.

Bei den Ölbildnern handelt es sich um Substanzen, die im allgemeinen über 180°C sieden und für die zu dispergierende hydrophobe Substanz ein gutes Lösungsvermögen haben. Hierunter werden die Ester von Glutarsäure, Adipinsäure, Phthalsäure, Sebacinsäure, Bernsteinsäure, Maleinsäure, Fumarsäure, Isophthalsäure, Terephthalsäure und Phosphorsäure oder die Ester von Glycerin, sowie Paraffin und fluoriertes Paraffin bevorzugt verwendet, weil diese Verbindungen chemisch beständig und sehr leicht zugänglich sind, sehr leicht gehandhabt werden können und bei Verwendung der Dispersionen für fotografische Zwecke keinen nachteiligen Einfluß auf die lichtempfindlichen Materialien haben. Als ölbildner werden erfindungsgemäß besonders bevorzugt die folgenden verwendet: Trikresylphosphat, Triphenylphosphat, Dibutylphthalat, Di-n-octylphthalat, Di-2-ethylhexylphthalat, Glycerintributyrat, Glycerintripropionat, Dioctylsebacat. Paraffin und fluoriertes Paraffin. Bevorzugt sind weiterhin Bernsteinsäurederivate. Beispiele sind im folgenden angegeben.The oil formers are substances which generally boil above 180 ° C. and have good dissolving power for the hydrophobic substance to be dispersed. These include the esters of glutaric acid, adipic acid, phthalic acid, sebacic acid, succinic acid, maleic acid, fumaric acid, isophthalic acid, terephthalic acid and phosphoric acid or the esters of glycerin, as well Paraffin and fluorinated paraffin are preferably used because these compounds are chemically stable and very easily accessible, can be handled very easily and have no adverse effect on the light-sensitive materials when the dispersions are used for photographic purposes. The following are particularly preferably used as oil formers according to the invention: tricresyl phosphate, triphenyl phosphate, dibutyl phthalate, di-n-octyl phthalate, di-2-ethylhexyl phthalate, glycerol tributyrate, glycerol tripropionate, dioctyl sebacate. Paraffin and fluorinated paraffin. Succinic acid derivatives are also preferred. Examples are given below.

In den angegebenen Formeln steht das Symbol R für einen längeren aliphatischen Rest mit mindestens 8 Kohlenstoffatomen. Vorzugsweise handelt es sich hierbei um einen der folgenden, einfach ungesättigten aliphatischen Reste -C12H23' -C15H29 oder -C18H35.

Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
Figure imgb0016
Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020
Figure imgb0021
In the formulas given, the symbol R stands for a longer aliphatic radical with at least 8 carbon atoms. This is preferably one of the following, monounsaturated aliphatic radicals - C12H23 ' -C 15 H 29 or -C 18 H 35 .
Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
Figure imgb0016
Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020
Figure imgb0021

Das erfindungsgemäße Verfahren kann mit Vorrichtungen gemäß Figur 1 und 2 durchgeführt werden, ist natürlich aber nicht auf die Verwendung dieser Vorrichtungen beschränkt. Gemäß Figur 1 wird die wäßrige Phase aus einem rühr- und heizbaren Kessel 1 mit Pumpe 2 über eine Dispergiermaschine 3 mit definiertem Mengenstrom eindosiert.The method according to the invention can be carried out with devices according to FIGS. 1 and 2, but is of course not restricted to the use of these devices. According to FIG. 1, the aqueous phase is metered in from a stirrable and heatable boiler 1 with pump 2 via a dispersing machine 3 with a defined flow rate.

Die organische Phase wird aus einem ebenfalls heiz- und rührbaren Kessel 4 mit einer Pumpe 5 über einen Filter 6 direkt in die Scherzone der Dispergiermaschine eindosiert.The organic phase is metered from a likewise heatable and stirrable kettle 4 with a pump 5 via a filter 6 directly into the shear zone of the dispersing machine.

Die Dispergiermaschine 3 kann auch wahlweise in Bypaß geschaltet werden 7.The dispersing machine 3 can also optionally be switched to bypass 7.

Im Wärmetauscher 8 kann die in der Dispergiermaschine hergestellte Dispersion so weit abgekühlt werden, daß sie bei Verlassen des Druckhalteventils 9 bis auf eine Temperatur unterhalb des Verdampfungspunktes. bei Normaldruck abgekühlt ist und in den Kessel 10 eingeleitet werden kann.In the heat exchanger 8, the dispersion produced in the dispersing machine can be cooled to such an extent that it leaves the pressure-maintaining valve 9 down to a temperature below the evaporation point. cooled at normal pressure and can be introduced into the boiler 10.

Die Vorrichtung kann in kontinuierlicher als auch in diskontinuierlicher Fahrweise betrieben werden.The device can be operated in a continuous as well as in a discontinuous mode of operation.

Als Dispergiermaschinen werden vorzugsweise Rotor/Stator-Maschinen verwendet, da diese das direkte Einleiten der organischen Phase in die Scherzone ermöglichen und die organische Phase somit bei höheren Temperaturen dispergiert werden kann, als durch die mittlere Dispergiertemperatur vorgegeben.Rotor / stator machines are preferably used as dispersing machines, since these enable the organic phase to be introduced directly into the shear zone and the organic phase can thus be dispersed at temperatures higher than that specified by the average dispersion temperature.

Figur 2 zeigt eine andere Ausführungsfcrm, 1 stellt einen Ansatzkessel dar. 2 ist eine Pumpe, die die wäßrige Phase zur Dispergiermaschine 3 fördert. Die organische Phase wird aus dem Kessel 4 über die Pumpe 5 zudosiert. Der Kühler 8 erlaubt eine Kühlung des emulgierten Gemisches auf Temperaturen unter 100°C, so daß nach Entspannen über das Ventil 9 drucklos gefahren werden kann.Figure 2 shows another embodiment, 1 represents a batch boiler. 2 is a pump that conveys the aqueous phase to the dispersing machine 3. The organic phase is metered in from the boiler 4 via the pump 5. The cooler 8 allows the emulsified mixture to be cooled to temperatures below 100 ° C., so that pressure can be passed through the valve 9 after relaxation.

Die erfindungsgemäß hergestellten Dispersionen eignen sich in hervorragender Weise zur Herstellung von lichtempfindlichen fotografischen Materialien, die Silberhalogenid enthalten. Die Dispersionen können in an sich bekannter Weise in derartige Materialien eingebracht werden. Die Dispersionen können sowohl in silberhalogenidhaltige als auch in silberhalogenidfreie Schichten eingebracht werden.The dispersions prepared according to the invention are outstandingly suitable for the preparation of light-sensitive photographic materials which contain silver halide. The dispersions can be introduced into such materials in a manner known per se. The dispersions can be introduced both in layers containing silver halide and in layers free of silver halide.

Es können die üblichen Silberhalogenidemulsionen verwendet werden, die nach den üblichen bekannten Methoden hergestellt werden können. Als Bindemittel für die fotografischen Schichten kann Gelatine verwendet werden, welche jedoch ganz oder teilweise durch andere Bindemittel ersetzt werden kann. Als Antischleiermittel können den Emulsionen Stabilisatoren wie z.B. Triazolderivate, Thiokohlensäurederivate des Thiodiazols oder Azaindene zugesetzt werden. Die Silberhalogenidemulsionen können zusätzlich mit den üblichen chemischen Sensibilisiersngsmiteln sensibilisiert werden; zur optischen Sensibilisierung können die üblichenThe usual silver halide emulsions can be used, which can be prepared by the usual known methods. Gelatin can be used as a binder for the photographic layers, but can be replaced in whole or in part by other binders. Stabilizers such as triazole derivatives, thiocarbonic acid derivatives of thiodiazole or azaindenes can be added to the emulsions as antifoggants. The silver halide emulsions can also be sensitized with the usual chemical sensitizers; the usual for optical sensitization

Sensibilisatoren, wie sie beispielsweise beschrieben sind in dem Werk von S.M. Hamer "The Cyanine Dyes and Related Compounds" (1964), Intersience Publishers John Wiley & Sons, verwendet werden.Sensitizers as described, for example, in the work of S.M. Hamer "The Cyanine Dyes and Related Compounds" (1964), Intersience Publishers John Wiley & Sons.

Die Härtung der fotografischen Schichten erfolgt unter Bedingungen, die sich nicht nachteilig auf den Bildton auswirken, aber eine Schnellverarbeitung der Schichten auch bei höheren Temperaturen ermöglichen. Geeignete Härtungsmittel sind beispielsweise Formalin, Dialdehyde, Divinylsulfon, Triazinderivate, gegebenenfalls in Gegenwart von tertiären Aminen, ferner Soforthärungsmittel wie Carbamoylpyridiniumverbindungen oder Carbodiimide. Es können die üblichen Schichtträger verwendet werden, z.B. Polyolefin-kaschierte Unterlagen, beispielsweise Polyethylen-beschichtetes Papier, geeignete Polyolefine und Papier, Polyester, Triacetat.The photographic layers are hardened under conditions which do not adversely affect the image tone, but which allow the layers to be processed quickly even at higher temperatures. Suitable curing agents are, for example, formalin, dialdehydes, divinyl sulfone, triazine derivatives, if appropriate in the presence of tertiary amines, and also instant curing agents such as carbamoylpyridinium compounds or carbodiimides. The usual substrates can be used, e.g. Polyolefin-coated underlays, for example polyethylene-coated paper, suitable polyolefins and paper, polyester, triacetate.

Beispiel 1example 1

In einem mit einem langsam laufenden Rührer ausgestatteten heizbaren Kessel wird eine wäßrige 25 %ige Gelatinelösung angesetzt. Nachdem eine klare Lösung entstanden ist, erfolgt die Zugabe von 0,90 kg Triisopropyl-naphthalinsulfönat. Diese wäßrige Lösung wird dann auf 80°C erwärmt.An aqueous 25% gelatin solution is prepared in a heatable kettle equipped with a slowly running stirrer. After a clear solution has been formed, 0.90 kg of triisopropyl naphthalenesulfonate is added. This aqueous solution is then heated to 80 ° C.

In einem zweiten heiz- und rührbaren Kessel werden 16,00 kg Trikresylphosphat auf 120°C erwärmt und dann werden z.B. 14,00 kg Kuppler der folgenden Formel

Figure imgb0022
von 20°C und 6,00 kg Kuppler der FormelIn a second heatable and stirrable vessel, 16.00 kg of tricresyl phosphate are heated to 120 ° C. and then, for example, 14.00 kg of couplers of the following formula
Figure imgb0022
of 20 ° C and 6.00 kg coupler of the formula

2-(2'-α-Methyltridecyl-4'-chlor-phenoxyacetylamino)-4,6-dichlor-5-methyl-phenol2- (2'-α-Methyltridecyl-4'-chlorophenoxyacetylamino) -4,6-dichloro-5-methylphenol

zugegeben und eingerührt. Es entsteht eine bei 120°C klare Lösung.added and stirred. A clear solution is formed at 120 ° C.

Nun wird die wäßrige Gelatinelösung mittels einer Pumpe mit einem Mengenstrom von 150 kg/h durch die Dispergierzone eines Durchlaufmischers (Dispax-Reaktor, Typ 3/6/6) gepumpt, in dessen Arbeitsraum ein Druck von 2 bar mittels einer Querschnittsverengung (Ventil) am Auslauf eingestellt wird und zunächst in den Vorlagekessel der wäßrigen Lösung zurückgeführt wird, damit Rohrleitung und Mischzone mit Flüssigkeit gefüllt und auf Temperatur gebracht werden. Dann wird die Kreislaufführung der wäßrigen Gelatinelösung beendet.Now the aqueous gelatin solution is pumped through the dispersion zone of a continuous mixer (Dispax reactor, type p 3/6/6) by means of a pump with a flow rate of 150 kg / h, in the working space of which a pressure of 2 bar by means of a cross-sectional constriction (valve) is set at the outlet and first in the fore position boiler of the aqueous solution is returned so that the pipeline and mixing zone are filled with liquid and brought to temperature. Then the circulation of the aqueous gelatin solution is ended.

Anschließend wird mittels einer beheizbaren Pumpe durch eine beheizbare Rohrleitung auch die zweite Lösung mit einem Mengenstrom von 60 kg/h der Mischzone zugeführt. Am Auslauf der Mischzone entsteht eine Temperatur von 110 bis 115°C. Der Druck wird auf 2 bis 2,5 bar gehalten. Dieser Druck ist etwa um 1 bar höher als der zum Vermeiden des Siedens der wäßrigen Phase notwendige Druck, fördert aber eine besonders gleichmäßige Emulsionsbildung.The second solution is then fed to the mixing zone at a flow rate of 60 kg / h by means of a heatable pump through a heatable pipeline. A temperature of 110 to 115 ° C arises at the outlet of the mixing zone. The pressure is kept at 2 to 2.5 bar. This pressure is about 1 bar higher than the pressure necessary to avoid the boiling of the aqueous phase, but promotes a particularly uniform emulsion formation.

Beispiel 2Example 2

Man setzt die beiden Lösungen des Beispiels 1 in 10- facher Menge an, verfährt aber mit dem Unterschied, daß die wäßrige Lösung im Kessel auf 40°C gehalten wird und erst unmittelbar vor dem Einpumpen in die Dispergiermaschine einen Wärmeaustauscher durchströmt, in dem die Temperatur der Lösung von 40 auf 80°C angehoben wird.The two solutions of Example 1 are prepared in a 10-fold amount, but the difference is that the aqueous solution in the kettle is kept at 40 ° C. and only flows through a heat exchanger in which the temperature is just before being pumped into the dispersing machine the solution is raised from 40 to 80 ° C.

Außerdem werden die festen, pulverförmigen Kuppler aus Beispiel 1 gemischt und in den Schacht einer Löseschnecke gegeben, der gleichzeitig das auf 120°C erwärmte Trikresylphosphat zugeführt wird, so daß die Lösung vollkontinuierlich entsteht, wobei die Verweilzeit bei hoher Temperatur von 115°C nur wenige Sekunden beträgt.In addition, the solid, powdery couplers from Example 1 are mixed and placed in the shaft of a dissolving screw, to which the tricresyl phosphate heated to 120 ° C. is fed at the same time, so that the solution is produced continuously, the residence time at high temperature of 115 ° C. being only a few Seconds.

Beispiel 3Example 3

In einem heiz- und kühlbaren Kessel mit langsam laufendem Rührer werden 25,00 kg 25.%ige Gelatinelösung und 1,02 kg Triisopropyl-naphthalinsulfonat (Lösung I) bei 60°C entsprechend Beispiel 1 hergestellt, vorgelegt und in einem zweiten heiz- und rührbaren Kessel werden 50,00 kg Dibutylphthalat und 25,00 kg einer Verbindung der Formel

Figure imgb0023
auf 140°C aufgewärmt und 50,00 kg Kuppler der Formel
Figure imgb0024
zugegeben und so lange gerührt, bis bei 130°C eine klare Lösung (Lösung II) entstanden ist.25.00 kg of 25% gelatin solution and 1.02 kg of triisopropyl naphthalenesulfonate (solution I) are prepared at 60 ° C. in accordance with Example 1 in a heatable and coolable kettle with a slow-moving stirrer, and are placed in a second heating and Stirable kettles are 50.00 kg of dibutyl phthalate and 25.00 kg of a compound of the formula
Figure imgb0023
warmed up to 140 ° C and 50.00 kg coupler of the formula
Figure imgb0024
added and stirred until a clear solution (solution II) is formed at 130 ° C.

Beide Lösungen werden kontinuierlich mit Kolbendosierpumpen einem Durchlaufmischer nach dem Rotor/Stator-Prinzip, der mit einer Drehzahl von 10 000 U/min betrieben wird, zudosiert, und zwar Lösung I mit einem Stoffstrom von 120 kg/h und Lösung II mit einem Stoffstrom von 60 kg/h.Both solutions are metered continuously with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a Material flow of 120 kg / h and solution II with a material flow of 60 kg / h.

Der Durchlaufmischer ist mit Kreislauf geschaltet. Bei einem Druck von 2 bar und einer Temperatur von 110 bis 120°C entsteht im kontinuierlichen Fluß eine feinteilige Emulsion, die in einem nachgeschalteten Kühler auf 80°C abgekühlt wird, um dann nach Passieren eines Druckhalteventils, das auf 2 bar eingestellt ist, verarbeitet zu werden. Es wird ein Emulgat mit einer mittleren Teilchengröße von 337 nm erhalten.The continuous mixer is connected with a circuit. At a pressure of 2 bar and a temperature of 110 to 120 ° C, a fine-particle emulsion is formed in the continuous flow, which is cooled to 80 ° C in a downstream cooler and then processed after passing through a pressure-maintaining valve that is set to 2 bar to become. An emulsifier with an average particle size of 337 nm is obtained.

Zu einer Silberhalogenidemulsion mit 60 g/1 Silberhalogenid wird in an sich bekannter Weise das erhaltene Dispergat zugefügt. Die so erhaltene Dispersion wird mit Härtungs- und Netzmitteln versehen und in bekannter Weise auf eine Unterlage vergossen. Das erhaltene Material wird bildmäßig belichtet und in einem üblichen Farbentwickler entwickelt.The dispersant obtained is added to a silver halide emulsion containing 60 g / 1 silver halide in a manner known per se. The dispersion thus obtained is provided with hardening and wetting agents and cast onto a base in a known manner. The material obtained is exposed imagewise and developed in a conventional color developer.

Zum Vergleich wird ein entsprechendes fotografisches Material hergestellt aus der gleichen Silberhalogenidemulsion mit den gleichen dispergierten Verbindungen, wobei aber die Dispergierung nicht erfindungsgemäß, sondern gemäß der US-PS 2 322 027 durchgeführt wurde. Dabei wird so verfahren, daß die oben angegebenen Mengen an Kuppler und Ölformer in 150 kg Diethylcarbonat aufgelöst werden. Durch Einfließenlassen in die mit der oben angegebenen Menge Netzmittel versetzte 10 %ige Gelatinelösung (Menge entsprechend 25 kg Gelatine) wird unter Rühren eine Mischung hergestellt. Diese Mischung wird mehrfach durch eine Mischsirene geschickt und dabei dispergiert. Anschließend wird das Lösungsmittel im Vakuum abgedampft. Das erhaltene Emulgat wird der Silberhalogenidemulsion zugesetzt.For comparison, a corresponding photographic material is produced from the same silver halide emulsion with the same dispersed compounds, but the dispersion was not carried out according to the invention but according to US Pat. No. 2,322,027. The procedure is such that the amounts of coupler and oil former specified above are dissolved in 150 kg of diethyl carbonate. A mixture is prepared by stirring into the 10% gelatin solution (amount corresponding to 25 kg gelatin) mixed with the above-mentioned amount of wetting agent. This mixture is repeated several times by one Mixing siren skillfully while dispersing. The solvent is then evaporated off in vacuo. The emulsifier obtained is added to the silver halide emulsion.

Das Vergleichsmaterial wurde in der gleichen Weise verarbeitet wie das erfindungsgemäße.The comparison material was processed in the same way as that of the invention.

Die in der nachfolgenden Tabelle aufgeführten sensitometrischen Daten zeigen, daß erfindungsgemäß eine höhere Empfindlichkeit, Gradation und Maximaldichte erhalten wird.

Figure imgb0025
The sensitometric data listed in the table below show that, according to the invention, a higher sensitivity, gradation and maximum density is obtained.
Figure imgb0025

Eine Erniedrigung des Empfindlichkeitwertes um 0,3010 Einheiten entspricht einer Verdoppelung der Empfindlichkeit.A decrease in the sensitivity value by 0.3010 units corresponds to a doubling of the sensitivity.

Beispiel 4Example 4

In einem heiz- und kühlbaren Kessel mit langsam laufendem Rührer werden 25,00 kg Gelatinelösung und 0,5 kg Triisopropyl-naphthalinsulfonat bei 60°C entsprechend Beispiel 1 hergestellt (Lösung I). Die Konzentrationen der Gelatinelösungen werden entsprechend 7,5 %ig, 10 %ig,_15 %ig und 20 %ig gewählt. Die Gelatinelösungen werden vorgelegt und in einem zweiten heiz- und rührbaren Kessel werden 5 kg Trikresylphosphat und 5 kg einer Verbindung25.00 kg of gelatin solution and 0.5 kg of triisopropyl naphthalenesulfonate are prepared at 60 ° C. in a heatable and coolable kettle with a slow-moving stirrer in accordance with Example 1 (solution I). The concentrations of the gelatin solutions are chosen to be 7.5%, 10%, _15% and 20%. The gelatin solutions are introduced and 5 kg of tricresyl phosphate and 5 kg of a compound are in a second heatable and stirrable kettle

Figure imgb0026
Figure imgb0026

auf 140°C aufgewärmt und so lange gerührt, bis eine klare Lösung (Lösung II) entstanden ist.Warmed up to 140 ° C and stirred until a clear solution (solution II) is formed.

Beide Lösungen werden kontinuierlich mit Kolbendosierpumpen einem Durchlaufmischer nach dem Rotor/Stator-Prinzip, der mit einer Drehzahl von 10 000 U/min betrieben wird, zudosiert, und zwar Lösung I mit einem Stoffstrom von 120 kg/h und Lösung II mit einem Stoffstrom von 60 kg/h.Both solutions are continuously metered in with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a material flow of 120 kg / h and solution II with a material flow of 60 kg / h.

Der Durchlaufmischer ist mit Kreislauf geschaltet. Bei einem Druck von 2 bar und einer Temperatur von 11o bis 120°C entsteht im kontinuierlichen Fluß eine feinteilige Emulsion, die in einem nachgeschalteten Kühler auf 80°C abgekühlt wird, um dann nach Passieren eines Druckhalteventils, das auf 2 bar eingestellt ist, verarbeitet zu werden.The continuous mixer is connected with a circuit. At a pressure of 2 bar and a temperature of 11o to 120 ° C, a finely divided emulsion is formed in the continuous flow, which is cooled to 80 ° C in a downstream cooler and then processed after passing through a pressure control valve that is set to 2 bar to become.

Es werden Emulgate erhalten mit den Teilchengrößen zwischen 625 und 350 nm.Emul gates with particle sizes between 625 and 350 nm are obtained.

Beispiel 5Example 5

In einem heiz- und kühlbaren Kessel mit langsam laufendem Rührer werden 53,1 kg 10 %ige Gelatinelösung und 5,3 kg 50 %ige Lösung des Na-Salzes der Dodecylbenzclsulfosäure und 21,3 kg Wasser bei 60°C entsprechend Beispiel 1 hergestellt (Lösung I), vorgelegt und in einem zweiten heiz- und rührbaren Kessel werden 20,9 kg einer Verbindung der Formel

Figure imgb0027
aufgeheizt und so lange gerührt, bis eine bei 130°C klare Lösung mit einer Viskosität von 750 mPas entstanden ist. Beide Lösungen werden kontinuierlich mit Kolbendosierpumpen einem Durchlaufmischer nach dem Rotor/Stator-Prinzip, der mit einer Drehzahl von 10 000 U/min betrieben wird, zudosiert, und zwar Lösung I mit einem Stoffstrom von 120 kg/h und Lösung II mit einem Stoffstrom von 60 kg/h.53.1 kg of 10% gelatin solution and 5.3 kg of 50% solution of the sodium salt of dodecylbenzenesulfonic acid and 21.3 kg of water at 60 ° C. are prepared in accordance with Example 1 in a heatable and coolable kettle with a slow-moving stirrer ( Solution I), submitted and in a second heatable and stirrable vessel 20.9 kg of a compound of the formula
Figure imgb0027
heated and stirred until a clear solution with a viscosity of 750 mPas is obtained at 130 ° C. Both solutions are continuously metered in with piston metering pumps to a continuous mixer based on the rotor / stator principle, which is operated at a speed of 10,000 rpm, namely solution I with a material flow of 120 kg / h and solution II with a material flow of 60 kg / h.

Der Durchlaufmischer ist mit Kreislauf geschaltet. Bei einem Druck von 1 bar und einer Temperatur von 95°C entsteht im kontinuierlichen Fluß eine feinteilige Emulsion, die auf 80°C abgekühlt und weiter verarbeitet wird.The continuous mixer is connected with a circuit. At a pressure of 1 bar and a temperature of 95 ° C, a finely divided emulsion is formed in the continuous flow, which is cooled to 80 ° C and processed further.

Claims (13)

1) Verfahren zur Herstellung von Dispersionen aus wenigstens einer flüssigen organischen Phase, die eine hydrophobe, fotografisch wirksame Substanz enthält, und wenigstens einer wäßrigen Phase, die ein Bindemittel enthält, durch Zusammengeben der Phasen unter Dispergierung in einer Dispergiervorrichtung, dadurch gekennzeichnet, daß die beiden Phasen gleichzeitig, aber getrennt voneinander, in die Dispergiervorrichtung einlaufen.1) Process for the preparation of dispersions from at least one liquid organic phase which contains a hydrophobic, photographically active substance, and at least one aqueous phase which contains a binder, by combining the phases with dispersion in a dispersing device, characterized in that the two Phases enter the dispersing device simultaneously, but separately from one another. 2) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organische Phase die reine Schmelze einer fotografisch wirksamen Substanz ist und daß die Dispergierung oberhalb der Verflüssigungstemperatur dieser fotografisch wirksamen Substanz erfolgt.2) Method according to claim 1, characterized in that the organic phase is the pure melt of a photographically active substance and that the dispersion takes place above the liquefaction temperature of this photographically active substance. 3) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organische Phase die Lösung einer fotografisch wirksamen Substanz in einem Ölbildner (hochsiedendes Lösungsmittel) ist und daß die Dispergierung oberhalb der Verflüssigungstemperatur dieser Lösung erfolgt.3) Method according to claim 1, characterized in that the organic phase is the solution of a photographically active substance in an oil former (high-boiling solvent) and that the dispersion takes place above the liquefaction temperature of this solution. 4) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die wäßrige Phase gelöste Bindemittel enthält und daß die Dispergierung oberhalb der Verflüssigungstemperatur dieser Bindemittellösung erfolgt.4) Method according to claim 1, characterized in that the aqueous phase contains dissolved binder and that the dispersion takes place above the liquefaction temperature of this binder solution. 5) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organische Phase und die wäßrige Phase bei einer Temperatur oberhalb der Verflüssigungstemperaturen beider Phasen dispergiert werden.5) Method according to claim 1, characterized in that the organic phase and the aqueous phase are dispersed at a temperature above the liquefaction temperatures of both phases. 6) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Dispergierung bei einer Temperatur über dem Siedepunkt bei Normaldruck, der niedriger siedenden Phase bzw. des sich gegebenenfalls bildenden Azeotrops durchgeführt wird.6) Method according to claim 1, characterized in that the dispersion is carried out at a temperature above the boiling point at normal pressure, the lower boiling phase or the azeotrope which may form. 7) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organische Phase Substanzen enthält, die bei pH 7 im wesentlichen mit-Wasser nicht mischbar bzw. wasserunlöslich sind und daß die wäßrige Phase Gelatine enthält.7) Method according to claim 1, characterized in that the organic phase contains substances which are essentially immiscible or insoluble in water at pH 7 and that the aqueous phase contains gelatin. 8) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organische Phase zusätzlich zu der fotografisch wirksamen Substanz eine Ölbildner enthält.8) Method according to claim 1, characterized in that the organic phase contains an oil former in addition to the photographically active substance. 9) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die fotografisch wirksame Verbindung ein Farbkuppler, ein Stabilisator oder ein UV-Absorber ist.9) Method according to claim 1, characterized in that the photographically active compound is a color coupler, a stabilizer or a UV absorber. 10) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verweildauer eines Teilchens der organischen Phase in der Scherzone der Dispergiervorrichtung maximal 6 Sekunden beträgt.10) Method according to claim 1, characterized in that the residence time of a particle of the organic phase in the shear zone of the dispersing device is a maximum of 6 seconds. 11) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur im Dispergierraum wenigstens 100°C beträgt und im Dispergierraum ein Druck von wenigstens 1 bar aufrechterhalten wird.11) Method according to claim 1, characterized in that the temperature in the dispersion chamber is at least 100 ° C and a pressure of at least 1 bar is maintained in the dispersion chamber. 12) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur der organischen Phase zwischen 100 und 140°C, die Temperatur der wäßrigen Phase zwischen 70 und 95°C und die Temperatur in der Dispergierzone zwischen 60 und 140°C liegt.12) Method according to claim 1, characterized in that the temperature of the organic phase between 100 and 140 ° C, the temperature of the aqueous phase between 70 and 95 ° C and the temperature in the dispersion zone between 60 and 140 ° C. 13) Fotografisches Material aus einem Schichtträger, wenigstens einer Silberhalogenidemulsionsschicht und gegebenenfalls weiteren Schichten, dadurch gekennzeichnet, daß in wenigstens einer Schicht eine nach Anspruch 1 hergestellte Dispersion enthalten ist.13) Photographic material from a layer support, at least one silver halide emulsion layer and optionally further layers, characterized in that a dispersion prepared according to claim 1 is contained in at least one layer.
EP81106446A 1980-09-02 1981-08-19 Process for producing dispersions and photographic materials Expired EP0046927B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803033000 DE3033000A1 (en) 1980-09-02 1980-09-02 METHOD FOR PRODUCING DISPERSIONS AND PHOTOGRAPHIC MATERIALS
DE3033000 1980-09-02

Publications (2)

Publication Number Publication Date
EP0046927A1 true EP0046927A1 (en) 1982-03-10
EP0046927B1 EP0046927B1 (en) 1984-03-07

Family

ID=6110941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81106446A Expired EP0046927B1 (en) 1980-09-02 1981-08-19 Process for producing dispersions and photographic materials

Country Status (4)

Country Link
US (1) US4379836A (en)
EP (1) EP0046927B1 (en)
JP (1) JPS5794746A (en)
DE (2) DE3033000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4345516C2 (en) * 1992-10-27 2002-05-23 Ngk Spark Plug Co Glaze compound for coating ceramic substrate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177044A (en) * 1984-09-21 1986-04-19 Konishiroku Photo Ind Co Ltd Preparation of photographic aqueous polymer dispersion
DE3613974C2 (en) * 1986-04-25 1996-01-25 Agfa Gevaert Ag Color photographic recording material
JPH0268136A (en) * 1988-09-02 1990-03-07 Konica Corp Emulsifying dispersion method
US4957857A (en) * 1988-12-23 1990-09-18 Eastman Kodak Company Stabilization of precipitated dispersions of hydrophobic couplers
US5015564A (en) * 1988-12-23 1991-05-14 Eastman Kodak Company Stabilizatin of precipitated dispersions of hydrophobic couplers, surfactants and polymers
US5256527A (en) * 1990-06-27 1993-10-26 Eastman Kodak Company Stabilization of precipitated dispersions of hydrophobic couplers
US5087554A (en) * 1990-06-27 1992-02-11 Eastman Kodak Company Stabilization of precipitated dispersions of hydrophobic couplers
US5358831A (en) * 1990-12-13 1994-10-25 Eastman Kodak Company High dye stability, high activity, low stain and low viscosity small particle yellow dispersion melt for color paper and other photographic systems
US5624999A (en) * 1991-03-05 1997-04-29 Exxon Chemical Patents Inc. Manufacture of functionalized polymers
JPH06510371A (en) * 1992-05-21 1994-11-17 イーストマン・コダック・カンパニー Method for producing photographic dispersions
US5334496A (en) * 1992-09-17 1994-08-02 Eastman Kodak Company Process and apparatus for reproducible production of non-uniform product distributions
US5298389A (en) * 1992-09-29 1994-03-29 Eastman Kodak Company Dry gelatin addition to an emulsion/dispersion mixture
US5272045A (en) * 1992-11-13 1993-12-21 Sun Chemical Corporation Water soluble antifoggant for powder developer solutions
GB9313575D0 (en) * 1993-07-01 1993-08-18 Kodak Ltd Preparation of solutions
US5404866A (en) * 1993-10-13 1995-04-11 Eastman Kodak Company Kettle insert passive liquefaction
US5374120A (en) * 1993-12-06 1994-12-20 Eastman Kodak Company Modified passive liquid in-line segmented blender
US5772895A (en) * 1996-02-15 1998-06-30 Eastman Kodak Company System for controlling the composition of color coupler on a real-time basis
US6056431A (en) * 1997-09-05 2000-05-02 Eastman Kodak Company Modified passive liquefier batch transition process
EP0930537B1 (en) * 1998-01-19 2003-05-02 Tulalip Consultoria Comercial Sociedade Unipessoal S.A. Light-sensitive silver halide photographic materials and process for incorporating hydrophobic photographic additives into hydrophilic colloid compositions
EP1121974B1 (en) * 2000-01-31 2013-06-12 Tetra Laval Holdings & Finance S.A. Mixing apparatus and use
AUPR210600A0 (en) * 2000-12-15 2001-01-25 Bhp Steel (Jla) Pty Limited Manufacturing solid paint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB847143A (en) * 1957-11-18 1960-09-07 Ilford Ltd Improvements in or relating to colour photographic materials
US3827888A (en) * 1972-03-06 1974-08-06 Eastman Kodak Co Apparatus and process for combining chemically compatible solutions
US3850643A (en) * 1971-07-28 1974-11-26 Eastman Kodak Co Process for making coupler dispersions
DE3011927A1 (en) * 1979-03-27 1980-10-09 Fuji Photo Film Co Ltd METHOD FOR EMULSIFYING

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1356921A (en) * 1970-04-03 1974-06-19 Agfa Gevaert Preparation of silver halide emulsions
GB1346426A (en) * 1970-08-13 1974-02-13 Agfa Gevaert Incorporating photographic compounds into hydrophilic colloids
JPS5224412B2 (en) * 1971-08-25 1977-07-01
JPS5825260B2 (en) * 1977-02-09 1983-05-26 コニカ株式会社 How to add photographic additives
JPS5845014B2 (en) * 1977-08-16 1983-10-06 富士写真フイルム株式会社 Silver halide photographic material
JPS54119921A (en) * 1978-03-10 1979-09-18 Fuji Photo Film Co Ltd Photosensitive material of silver halide for color photograph
US4284709A (en) * 1979-05-15 1981-08-18 Ciba-Geigy Aktiengesellschaft Process for incorporating photographic additives in hydrophilic colloid preparations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB847143A (en) * 1957-11-18 1960-09-07 Ilford Ltd Improvements in or relating to colour photographic materials
US3850643A (en) * 1971-07-28 1974-11-26 Eastman Kodak Co Process for making coupler dispersions
US3827888A (en) * 1972-03-06 1974-08-06 Eastman Kodak Co Apparatus and process for combining chemically compatible solutions
DE3011927A1 (en) * 1979-03-27 1980-10-09 Fuji Photo Film Co Ltd METHOD FOR EMULSIFYING
GB2046932A (en) * 1979-03-27 1980-11-19 Fuji Photo Film Co Ltd Process of making an emulsion of a hydrophobic material in a hydrophilic binder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4345516C2 (en) * 1992-10-27 2002-05-23 Ngk Spark Plug Co Glaze compound for coating ceramic substrate

Also Published As

Publication number Publication date
JPS5794746A (en) 1982-06-12
DE3162523D1 (en) 1984-04-12
EP0046927B1 (en) 1984-03-07
US4379836A (en) 1983-04-12
DE3033000A1 (en) 1982-04-15

Similar Documents

Publication Publication Date Title
EP0046927B1 (en) Process for producing dispersions and photographic materials
DE963295C (en) Process for the incorporation of a coupler or dye former in a photographic silver halide gelatin emulsion
DE3011927C2 (en)
DE3246826A1 (en) METHOD FOR PRODUCING A PHOTOGRAPHIC EMULSION
EP0019800B1 (en) Method of introducing photographic additives into preparations of hydrophilic colloids, preparations thus obtained, photographic layers prepared by using these preparations, and photographic material containing these layers
DD299621A5 (en) PREPARATION OF BALLEN-FOUND DISPERSIONS BY CRYSTALLIZATION OF EMULSIONS
DE2902327C2 (en) Process for dispersing an oil-soluble photographic additive
DE69000245T2 (en) METHOD FOR PRODUCING STABLE DISPERSIONS OF PHOTOGRAPHIC MATERIALS.
DE1472745C3 (en)
DE2459960C3 (en) Process for the production of microcapsules
EP0046247B1 (en) Process for making dispersions and photographic materials
DE69122232T2 (en) STABILITY IMPROVEMENT OF DISPERSION AMORPHER PARTICLES
DE2820092C2 (en)
DE69230058T2 (en) Purification of organic compounds by crystallization
DE3138695C2 (en)
DE2136492A1 (en) Process for incorporating additives into photographic casting compositions
DE3905007A1 (en) CONTINUOUS METHOD FOR PRODUCING AQUEOUS NON-SELF-MULULATING POLYMER DISPERSIONS
DE2805250B2 (en)
EP0071122B1 (en) Colour-photographic recording material
DE69018079T2 (en) Process for the preparation of aqueous loaded latex compositions.
DE69227322T2 (en) AQUEOUS DYE SUSPENSIONS FOR SPECTRAL SENSITIZATION OF PHOTOGRAPHIC EMULSIONS
DE2555364A1 (en) METHOD AND DEVICE FOR PRODUCING SILVER HALOGENIDE CORES
DE60119034T2 (en) A method and apparatus for producing grains of a silver salt of an organic acid and methods of making heat-developed image recording materials
DE68920926T2 (en) Process for the preparation of a silver halide emulsion.
DE69429138T2 (en) Surfactant compound and silver halide photographic material containing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810819

AK Designated contracting states

Designated state(s): CH DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3162523

Country of ref document: DE

Date of ref document: 19840412

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920715

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920924

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930831

Ref country code: CH

Effective date: 19930831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950727

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950808

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960819

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST