EP0043223B1 - Building module - Google Patents
Building module Download PDFInfo
- Publication number
- EP0043223B1 EP0043223B1 EP81302820A EP81302820A EP0043223B1 EP 0043223 B1 EP0043223 B1 EP 0043223B1 EP 81302820 A EP81302820 A EP 81302820A EP 81302820 A EP81302820 A EP 81302820A EP 0043223 B1 EP0043223 B1 EP 0043223B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- modules
- module
- building
- walls
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010276 construction Methods 0.000 claims description 30
- 239000004567 concrete Substances 0.000 claims description 22
- 238000009435 building construction Methods 0.000 claims description 13
- 239000011178 precast concrete Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 19
- 238000009417 prefabrication Methods 0.000 description 9
- 238000009413 insulation Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 210000003414 extremity Anatomy 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000009436 residential construction Methods 0.000 description 3
- 210000001364 upper extremity Anatomy 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 241000771208 Buchanania arborescens Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/348—Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
- E04B1/34815—Elements not integrated in a skeleton
- E04B1/34861—Elements not integrated in a skeleton particular arrangement of habitable rooms or their component parts; modular co-ordination
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/348—Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
- E04B1/34869—Elements for special technical purposes, e.g. with a sanitary equipment
Definitions
- This invention relates to improvements in building modules and to building constructions utilizing such modules.
- FR-A-2381870 discloses an example of a prefabrication system employing building modules having an L-shaped configuration.
- Prefabrication techniques fall under two major categories, namely, light wood and aluminium frame prefabrication, and concrete or like product pre-casting. Wood and aluminium frame prefabrication is limited to low density suburban housing. Concrete prefabrication is more appropriate for urban buildings due to fire and structural safety requirements.
- US-A-4142340 discloses a building module formed by a pre-cast concrete monolithic unit comprising a rectangular rear wall having a planar side wall extending outwardly at right angles from each respective side edge thereof whereby the side walls define with the rear wall an open ended, shallow U-shaped configuration over the entire height of the module, the module having top and bottom ends lying in spaced parallel planes normal to its height, the height of the module corresponding to a single storey of residential construction, and the strength of the walls being sufficient to enable the module to support, with like modules a roof or upper storey.
- Such modules are used in the construction of a perimeter wall of a building together with similar modules which have modified back panels which incorporate doorway and window cutouts, adjacent modules around the perimeter wall being fastened together by connectors carried by the modules.
- a building module formed by a pre-cast concrete monolithic unit comprising:
- standard facility as used in this specification means any of the standard appurtenances commonly used in residential building construction including kitchen counters, cupboards and appliances, bathroom counters, bath tubs, showers, closets and fireplaces.
- the shallow U-shaped configured modules disclosed in US-A-4142340 function only to provide the structure of the building with the flanges being provided for the sole purpose of stiffening the main panels, whereas the flanges in the deep U-shaped configuration of modules in accordance with the present invention enable the modules to function also to define spaces for containing housing appurtenances and also enable the modules to be free-standing on a horizontal support surface.
- use of modules in accordance with the present invention in a building construction makes it possible to eliminate entire phases of operations which are normally required in a building once the basic structure shell has been erected, such as partitioning, and providing enclosures for appurtenances.
- modules are free-standing they may be placed anywhere on a horizontal support surface independently of other modules, thus providing for enormous flexibility in construction arrangements.
- the free-standing property of the modules greatly simplifies erection techniques since no temporary bracing or the like is required to support them during building construction, and no system of connecting fastenings is required.
- FR-A-1090415 drawn to my attention during the Examination of this application discloses various building modules of complex cross-section which inter alia define U-shaped recesses in which standard facilities are housed as opposed to U-shaped modules per se.
- the invention also includes a room formed by a plurality of construction modules, each as defined in the last paragraph bar three, the side walls of at least one of the modules facing inwardly of the room whereby a standard facility for use in said room can be contained therebetween and in front of the rear wall thereof, and a roof element supported on said construction modules.
- the invention also includes a plurality of rooms as defined in the last preceding paragraph, said modules defining a plurality of rooms interior of the building and a plurality of external peripheral walls, modules which define external walls having their side walls disposed inwardly of the building and a slab roof supported by said modules.
- the invention also includes a building comprising at least one room, the room having concrete walls formed of precast universal building construction modules each being in the form of a deep open ended U-shape formed of a rear wall and two side walls, the modules being one storey in height and disposed end down on a concrete slab, the rear wall of at least one module being sufficiently wide to span the major portion of a room, the width of the side walls of each module being sufficient with the rear wall to enclose on three sides a standard facility within the room while at the same time the side walls of said modules form supports for the rear walls sufficient to cause the modules to be free standing, the modules also being devoid of mutual lateral support, and a roof element supported by said free standing building modules.
- the width of the side walls may be restricted to define the walls of a standard facility.
- the internal walls of the module may form a functional container for enclosing on three sides, and form the walls of a standard domestic facility within the building.
- the walls of the module may enclose on three sides, or define walls of, a closet, a bathtub, kitchen cupboards, a shower compartment, a wash basin assembly, a fireplace, a kitchen counter, a bathroom counter, or a front-like recess.
- the module may include a network of conduits embedded therein, the network terminating in a plurality of terminal boxes embedded slightly below the surface of the concrete at predetermined locations, whereby the concrete overlying the boxes at said predetermined locations can be broken away to facilitate access to the network of conduits.
- the strength of the walls of the module 10 is sufficient to enable the module to support with like modules a roof or upper storey as will be apparent hereinafter.
- the construction module 10 is suitably reinforced by having conventional reinforcing members (not shown) embedded therein.
- the reinforcing members may comprise conventional steel reinforcing rods and steel mesh embedded within the concrete in a manner which will be quite apparent to those skilled in this art.
- the module 10 may also be pre-stressed if desired.
- FIG 2 is a plan view of a selected set of typical modules. These modules can be linked either in their basic U-shape or provided as part- channel shapes, i.e. L-shape to provide any desired shape or size of room or enclosure. In Figure 2, five basic sizes of U-shape module have been shown together with typical L-shaped modules 20 and 20a.
- each module is dimensioned such that its length taken along the main panel in the horizontal direction is substantially equal to a whole number multiple of a common grid or modular dimension M.
- the width of each module is also equal to a multiple of the common modular dimension M.
- this common modular dimension M is 32 inches (81.28 cm).
- the basic modular dimension is based on a suitable metric multiple of about 90 centimeters.
- the modular dimension is chosen to give a flange length that completely encloses most appurtenances and facilities, i.e. countertops, sinks, household equipment, office equipment, retail showcases, etc.
- the modules in Figure 2 have been laid out indicating a floor lay- out grid of 1/2 M or 16 inches (40.64 cm) to show a finer grid which may be used for design purposes.
- the distance between the solid lines is the common modular distance or dimension M of 32 inches (81.28 cm) noted above.
- the common rectangular grid dimensioned as a multiple of or as a division of the basic modular dimension M allows for relatively straightforward modular co-ordination at the design and construction stages.
- the dimensioning is done relative to the grid; therefore the grid provides a discipline, not a constraint.
- the smallest U-shape module shown, designated 10a has an overall length substantially equal to 2 M while its overall width is equal to M.
- its overall nominal length is 5 feet 4 inches (162.54 cm) while its nominal overall width is 2 feet 8 inches (81.28 cm).
- the modules are dimensioned such that their outer surfaces are typically spaced inwardly of the grid lines by a distance of about 1/8 of an inch (0.3175 cm).
- module 10a has an overall actual length of 5 feet 3-3/4 inches (161.915 cm) and an overall width of 2 feet 7-3/4 inches (80.645 cm). The same considerations apply to each of the remaining modules illustrated.
- the thickness of the main panels and flanges of the several modules illustrated are the same in each case, typically being about 4-3/4 inches (12.065 cm); however, the flanges are desirably provided with a small degree of draft of their inwardly facing major surfaces to allow for ease of stripping from the molds without affecting the basic "squareness" of the module flanges relative to the main panel.
- a suitable radius or fillet 22 is also provided between the interior major surfaces of the flanges 14 and the main panel 12 to provide added strength, a more pleasing appearance, and ease of cleaning the module surface particularly in cases where the module is used as a part of a kitchen or bathroom facility.
- the relative proportions and dimensions of the modules shown in Figure 2 are chosen primarily to satisfy user requirements while also providing each module with a substantial degree of lateral stability when standing on a level surface.
- the degree of lateral stability is such as to allow the modules to be positioned on a horizontal surface, each in a self-standing condition.
- Lateral stability is the resistance of the individual modules to a force tending to topple the same, but is not readily capable of precise definition since a very large number of variables are involved.
- FIG 3 is a typical floor plan illustrating the positioning of the various modules depicted in Figure 2 in a single storey application.
- the modules are positioned on a horizontal surface 30 which in a typical case would be provided by a concrete slab on grade.
- the horizontal surface 30 is shown as having an imaginary grid consisting of two series of parallel lines intersecting one another at right angles, the lines being spaced apart by a distance corresponding to the common modular dimension M.
- a first group of the modules 10 are positioned relative to one another on the support surface 30 adjacent perimeter portions of such surface as to define portions of the side walls of the building.
- a further group of the modules are positioned interiorly on the support surface 30 to define at least portions of the interior partitions.
- FIG. 3 An inspection of Figure 3 will readily show how the various modules 10a, 10b, 10c, 20 etc. serve to provide partial space enclosures to house or partly enclose the various facilities within the building construction.
- end wall 32 of the structure is defined by a single 10c module together with two L-shaped modules 20.
- the opposing end wall 34 is defined by a pair of L-shaped modules 20a in conjunction with the flanges of back-to-back U-shaped modules 10c.
- These modules 10c also provide an interior partition between bedrooms 36 and 38.
- a bathroom facility 40 is defined in part by a module 10d located at the perimeter and an opposed interior module 10e.
- the flanges of modules 10e and 10d are directed generally toward an intermediate region to define a substantial portion of the enclosure for bathroom 40.
- a partial enclosure for a kitchen facility 42 is provided by interiorly disposed modules 10c disposed in opposing relationship to a special module 10c' disposed at the building perimeter.
- the flanges of these latter two modules are directed toward each other to provide a partial space enclosing function.
- Module 10c' is of a special construction in that it includes a rectangular window opening 44.
- a typical window opening is illustrated in dashed lines in module 10 of Figure 1.
- the modules 10 do not commonly require window openings to be formed therein except to satisfy a user's preference.
- an exteriorly disposed fireplace and chimney arrangement 46 is defined by a further module 10a.
- a conventional fireplace and chimney constructed on-site can of course be used, but the amount of on-site work is reduced by using a module in this fashion.
- the remaining modules perform various types of space-defining and space-enclosing functions as, for example, in closets 48 which are provided with suitable add-on shelving and doors, with others of the modules providing simple space enclosures facing into the dining-room area 50 and the living-room area 52. These partial space enclosures may be used to house desks, book- cases, entertainment centers, built-in furniture and any other desired appurtenances. Still others of the modules, including portions of the modules already referred to, serve to frame and define doorway entrances and hallways, none of which need to be described in detail here.
- FIG. 3A is a plan view illustrating a typical joint sealing means which can be used both in an exterior and an interior joint between adjacent modules 10.
- the rain screen method may be employed which uses a flexible rain shield, such as a P.V.C.
- this shows the use of a special L-shaped module 20' in conjunction with the flange of a regular U-shaped module to define a small closet 70.
- These special short L-shaped modules could be used in other instances as well.
- a block be placed in the mold which is used to manufacture the U modules, appropriate adjustments being made to the lay-out of the reinforcing members and the conduit system hereinafter described. All of these modules may be cast in an open steel mould, vibrated and trowelled thereby enabling the production of a high quality final surface finish.
- the surfaces of the modules exposed to the building interior can be simply painted or wallpapered as desired while the exterior surfaces may be left as is, painted, providing a smooth stucco-like finish or the exterior can have any desired cladding of wood, brick or stone.
- the exterior surfaces of the modules at the perimeter of the building will be provided with a vapour barrier and a layer of insulation 68 ( Figure 3A), preferably a rigid insulation board. Any desired exterior siding 69 ( Figure 3A) can be applied over the insulation using techniques well known in the art.
- precast is intended to be the exposed exterior finish, the mass is outside and the insulation is inside, which is the wrong place for maximum effectiveness.
- modular system described places the mass inside because of the interiorly disposed finished surface, allowing the insulation to go outside where it achieves its full effectiveness.
- Figure 3 demonstrates the kind of simple module co-ordination that can be achieved using a grid equivalent to the basic modular dimensions.
- the modules and all between- module spacings, either for windows, door or passageways are of a modular dimension. This allows a builder to use door and window units of a size which are co-ordinated with the modular dimension. In construction it also achieves simplicity in lay-out, and erection.
- the dimensioning can be done relative to the grid.
- the invention is not limited to positioning modules either strictly on the grid or even relative to the grid. Rather the modules can be dimensioned with total freedom using any suitable form of layout.
- the walls need not be composed entirely of U-shaped and L-shaped modules as shown in Figure 3, but may include flat in-fill panels 70. These in-fill panels 70 may be connected to the adjacent modules utilizing the connection technique illustrated in Figures 4A and 4B.
- Figure 4A shows a plan view of a 1/4 inch (0.635 cm) rod 73 which ties the flat wall panel 70 to a module flange 14.
- Figure 4B is a section view showing the bent rod 73 having one downwardly angled end held in a channel 62 (to be described) in the flange 14 while the other end of rod 73 is inserted in a 3/8 inch . (0.9525 cm) drilled hole 75 of the wall panel 70.
- This device serves to hold the wall panel 70 in place until a roof assembly is put on, or, in the case of a multi-storey structure, until the next floor slab is positioned on the upper ends of the modules.
- Figure 4C is a top plan view of a floor plan configuration suitable for apartment application.
- the layout provides a kitchen 42', dining-room 50', living-room 52', bedrooms 38' and 38", bathrooms 40' and 40", numerous closets 48', as well as balcony areas 51a through 51d, together with various hallways, doorways, window openings etc., none of which need be described in detail here.
- Figure 4C again illustrates the great flexibility of the modular system in providing virtually any desired lay-out.
- Figure 5 is a frontal view of a bungalow utilizing the modular system and employing a conventional truss-roof structure.
- a truss-roof structure (not shown) is supported directly upon the uppermost extremities of the various modules and is connected thereto by an industry standard connector means (not shown).
- a layer of insulating material 68 is applied to the exterior surfaces of the modules and is covered by an exterior surface of a suitable cladding material 69. It will be realized that in certain instances it may be desirable to provide the bungalow with a simple flat roof made from a slab or slabs of concrete laid directly upon the upper extremities of the self-standing modules. In this instance, as a result of the great weight of the slab concrete roof, no special connecting means for attaching it to the modules will be required other than mortar between the top of the module and the bottom of the slab.
- Figures 6-9 illustrate the volumetric space-defining functions of the modules 10.
- Figure 6 shows a module 10 providing a clothes-closet structure.
- a suitable support rail or trackway (not shown) extends between the outer extremities of flanges 14 and support a pair of sliding doors 80 in a generally conventional fashion.
- a clothes hanger bar 82 extends between the flanges 14.
- FIGS 7 and 8 illustrate the application of the modules to a bathroom facility.
- a pair of modules 10 are arranged in opposed spaced relation with their associated flanges 14 directed toward an intermediate region to define the bathroom enclosure.
- modules for bathroom facilities it is quite common to employ at least one module which is of a relatively "deep" variety, i.e. having a relatively low length to width ratio.
- the construction illustrated shows a shower compartment 84 connected directly to one of the modules 10 and attached to the inwardly facing major surfaces of main panel 12 and flanges 14 using any suitable concrete fastener elements. It will be quite apparent that a bathtub may be substituted for the shower enclosure and connected directly to the module.
- the opposing module 10 has a built-in vanity and wash-basin assembly 88.
- a suitable in-fill panel 92 is positioned intermediate the opposed ends of one pair of the flanges 14 while a door unit 94 is positioned intermediate the opposed ends of the other pair of flanges 14, the various connections etc. being made in a conventional fashion.
- a toilet assembly 96 is positioned on the floor of the bathroom area. The bathtub 84 and the vanity and washbasin 88 can be preinstalled in their respective modules at the factory to reduce the amount of on-site work.
- FIG 9 is a plan view of a typical kitchen facility. As shown, each of two modules 10 has a kitchen counter assembly 100 attached thereto and extending a selected distance along the major surfaces of the main panels 12. Suitable kitchen cupboard assemblies 102 (indicated in broken lines) are disposed above the kitchen counters 100. Suitable spaces are provided between the ends of the counters 100 and the flanges 14 of the modules to receive standard- sized stoves and refrigerators. The kitchen is closed by a window assembly 104 spanning the outer extremities of the flanges 14 of the opposed modules. The kitchen counters may be continued beneath the window assembly 104 or alternatively other kitchen facilities of any desired nature may be located in this position.
- the kitchen counters and cupboards 100, 102 may be prefabricated and installed in their respective modules 10 at the factory to reduce the amount of on-site labour. It bears noting that in Figures 6-9 the flanges 14 of the modules are sufficiently deep to completely enclose the respective counters, appliances, vanities, shower compartments or tubs.
- Figures 10, 10A and 10B, 10C illustrate two alternative methods to provide a pre-powered module.
- FIGS 10 and 10A illustrate a top trough-like channel or recess as well as an interior conduit and outlet/junction box configuration.
- the top end wall 16 of the module is provided with a trough-like channel or recess 62 which extends along the top end wall of both the main panel 12 and the flanges 14.
- the channel may be about 1-1/4 to 2 inches (3.175 to 5.08 cm) in depth and of a sufficient width to accommodate one or more electrical cables.
- the module flanges are each provided with a respective vertically extending internal conduit 110, with the top ends of each communicating with respective junction boxes 112, the latter in turn communicating with opposing end portions of channel 62.
- a transverse conduit 114 extends horizontally through the flanges 14 and the main panel 12, and has opposing ends entering junction boxes 116 in communication with the vertical conduits 110.
- the horizontally disposed conduit 114 includes an outlet/junction box 118 intermediate the opposed major surfaces of main panel 12 while the vertically disposed conduits 110 each include an associated outlet/junction box 120 disposed at a convenient height so as to be useable with a wall switch or appliance outlet etc.
- the individual conduits and the outlet/junction boxes need not be described in further detail here since such devices are well known, per se, in the art and they will, in any event, be selected to satisfy the electrical and wiring codes in the jurisdictions in question.
- Figure 10A shows the conduit 110 disposed approximately mid-way between the opposing major surfaces of the flange with the top junction box communicating directly with the top channel 62.
- the outlet/junction box 120 is disposed such that its sides are spaced from the major surfaces of the flange by relatively short distances with relatively thin layers of concrete overlying the box.
- conduit and outlet/junction box arrangement illustrated in Figures 10 and 10A can be utilized to accommodate both power supply wiring and the wiring system for an intercom arrangement, cable television and/or telephone cables etc.
- the module can be pre-wired to reduce the amount of non-site work.
- Figures 10B and 10C illustrate an alternative method of providing a pre-powered module.
- the difference in application is that the electrical wiring is primarily within the internal conduit network in the module, while telephone and/or intercom wiring is carried in the top channel. This provides for more strict separation of the two systems.
- the top end wall 16 of the module is provided with a cast in channel 62C of about 3/8 inch (0.9525 cm) in depth and about 1-1/4 to 1-3/4 inches (3.175 to 4.445 cm) in width.
- Figure 10B shows that the channel 62C is in communication with a conduit 121 which in turn is linked to a junction/outlet box 122 and then with a junction/ outlet box 123.
- Figure 10B shows a transverse conduit 62d extending in the horizontal direction through flanges 14 as well as through the main panel 12, the opposing ends of conduits 62d entering into junction boxes 112a disposed in the respective flanges and the latter junction boxes being in communication with a set of vertical conduits 110a, containing further junction boxes 120a and 116a.
- a further transverse conduit, like 114 of Figure 10 could be included if desired (not shown).
- Figure 11 shows the bottom end wall of the module 10 provided with a plurality of integrally formed bearing pads 124,126, spaced apart along the main panel 12 and the flanges 14.
- the bearing pads 126 are disposed adjacent the free outer end portions of flanges 14 while bearing pads 124 are common to both one flange and the main panel 12.
- the elongated recessed regions 128 extending between the bearing pads 124, 126, provide room for a grouting compound to be inserted between the module and the floor on which it is standing to satisfy various codes relating to fire, water and insect resistance, as well as to improve the structural stability of the upright module.
- Each of the bearing pads 124 is provided with an aperture 130 to receive a portion of a self-levelling and self-centering arrangement.
- Step A is to drill a hole 132 of the appropriate depth and diameter in the concrete slab at a preselected location.
- Step B a stud-like insert 134 is then driven into the hole with its upper threaded end projecting above the floor surface.
- Step C a transit or level is used in order to determine the number of shims 136 required to provide a level support for the module.
- a nut 138 is then applied to the insert.
- Step D a frustoconically shaped centering element, 140, -preferably of plastics material, is positioned over the nut.
- the module is then lowered into its final position with the centering element 140 entering into the aperture 130 provided in the associated bearing pad 124, 126. Shims (not shown) may also be positioned beneath the bearing pads 126 as required to achieve a level support for the module.
- FIGs 13A-13E The method for erecting the modules is illustrated in Figures 13A-13E.
- the floor slab 142 is provided, which may be poured on the site or alternatively may comprise a pre-cast slab or slabs of a conventional nature.
- the square grid pattern 144 is then laid out on the floor and the module locations are marked.
- a module template 146 is then positioned at each of the desired locations, such template being used to enable the holes 132 to be accurately drilled at the required locations, following which the stud-like inserts 134 are driven in.
- a transit or level is used to determine the number of shims required at the bearing pad locations.
- the various centering inserts 140 are then applied.
- the module is provided with lifting hooks (not shown) anchored in suitably located apertures positioned in its top end wall such that when the module is lifted up it hangs plumb.
- the lifting device shown in Figure 13C lifts the module upwardly and then swings it to a position directly over its pre-assigned location on the floor following which it is lowered, being carefully guided over the last stage such that the conically shaped centering inserts 140 enter the apertures 130 in the module bearing pads and the module seats firmly on the pre-positioned levelling shims.
- the module is thus very accurately positioned and levelled at its desired location. This procedure is repeated until the desired array of modules is positioned on the floor, as illustrated in Figure 13D, following which a roof structure or alternatively a flat set of slabs 150 as shown in Figures 13E are positioned on top of the modules for support thereby.
- the support for the first storey comprises a horizontal footing 160 of conventional construction. All of the modules 10 on both storeys are of the same height. The modules of the first storey are supported on the horizontal floor slab 160 and serve to support on their upper extremities a further horizontal floor 162.
- Floor 162 comprises the support for the modules 10 of the second storey with the upper extremities of the modules 10 of the uppermost storey supporting a suitable roof structure which, as illustrated in Figure 14, is a flat slab roof 164. The load of the horizontal floor and roof slabs etc. is thus carried downwardly to the lowermost floor or fotting via both the modules positioned around the perimeter and those.
- a multi-storey building structure as shown in Figure 14 can thus be quickly erected storey-by-storey, until the desired height is reached. Modules can be stacked on intervening floors up to their maximum bearing capacity. The number of floors permitted depends on the span length of the floor slabs, the live loads expected and the type of connections provided. These follow normal engineering and job considerations.
- a modified configuration is shown in Figure 15.
- the modules 10 which are positioned at the perimeter portions extend the full height of building.
- a floor structure 170 is disposed at each level of the building and its peripheral edges are supported by the full height modules at the perimeter.
- the modules 10 which are located interiorly of the perimeter serve to support the remaining interiorly disposed portions of the floor structure at each level of the building and to carry these loads down to the bottom floor or footing.
- Standard angle brackets 172 are utilized to attach the perimeter portions of the floor 170 to the extremities of the flanges 14 of the full height modules.
- This configuration requires the use of additional in-fill floor panels 174 to bridge the gap between the edge of floor and the main panel 12 of each full height module. These panels can be pre-fabricated and inserted in place and held or secured to the module with standard angle connectors, or alternatively such slabs can be poured in place and secured by suitable reinforcing bars and other means well known in the industry.
- Figure 16 shows a conventional support structure comprising poured in place vertical columns 180, and horizontally disposed beams 182 supported by the columns at each level of the building and serving to support conventional reinforced concrete floor slabs 184.
- a series of exterior modules defining the side walls of the building are attached to and supported by the perimeter portions of the floors 184 while the interiorly disposed modules are supported on the floors thereby to define the interior partitions and volumetric enclosures for facilities utilizing any desired floor plan or lay-out.
- Essentially the same technique can be used with steel floor assemblies. It is believed that the above illustrations will show the great flexibility of the modular building construction provided by the present invention; those skilled in this art will readily be able to visualize other applications of the modular structure in the light of the foregoing illustrative examples.
- the described embodiments of the invention provide a flexible form of modular building construction which allows custom design solutions for a wide variety of building types.
- the modules are relatively small in size thus resulting in efficiency and economies in casting, transporting; erecting and connecting because of the elimination of the need for large or special factory or handling equipment.
- the free standing modules can be erected quickly and directly and can incorporate levelling and centering means which may be positioned prior to placement of the modules thereby to further accelerate the building erection process and to provide accuracy of placement of the modules.
- the modular building system described is an "open" system to allow the use of the builders' choice of local standard windows, doors, roofs and other equipment. These local standard windows and doors are preferably set between the modules, although they can, if desired, be cast in the modules. Windows and doors set adjacent to the modules provide the advantage of connecting them to the modules on-site using standard connection details and further to provide the construction tolerances required. Moreover, the connection of building modules to each other, to floors and roofs, also requires only the use of standard on-site connection details and local practices.
- L-shaped modules can be made simply by blocking of a portion of the mold for a U-shaped module.
- larger U-shapes can be created by linking L-shape modules. Therefore the basic three to five sizes of modules can be interrelated, as large U-shapes created by two L-shapes, or as L-shapes, to create a virtually limitless set of room or enclosure configurations.
- the free-standing characteristic of the modules allows the modules to be erected without scaffolds, shoring, bracing etc. This characteristic is accentuated through the use of levelling and centering means which facilitate quick and easy on-site erection.
- the provision of bearing pads on the bottom of the module which mate with centering and levelling means installed on the floor eliminates the need to constantly lift and adjust the module vertically and horizontally during erection. Rather the module can be lowered downwardly and positioned true and level in a single motion. Therefore, the erection process is significantly speeded up, and costly crane and equipment staff are utilized more efficiently.
- the need for skilled labour is greatly reduced as compared with traditional methods, this being a great advantage in regions where there is a shortage of skilled labour or where labour costs are high.
- the levelling and centering arrangement used for erection of the modules can be replaced by other suitable systems.
- steel inserts (not shown) could be provided in the floor slabs at the desired erection locations and welded to steel inserts cast into the lower ends of the modules.
- the inserts in the floor could be provided by any suitable means, such as being cast in place, or carried by an underlying module and projecting upwardly through apertures in the floor slabs.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Residential Or Office Buildings (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16250180A | 1980-06-24 | 1980-06-24 | |
US162501 | 1993-12-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0043223A1 EP0043223A1 (en) | 1982-01-06 |
EP0043223B1 true EP0043223B1 (en) | 1987-06-24 |
Family
ID=22585889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81302820A Expired EP0043223B1 (en) | 1980-06-24 | 1981-06-23 | Building module |
Country Status (5)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008055976A1 (de) | 2008-11-05 | 2010-05-12 | Rolf Kaiser | Raumzelle |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19920765C2 (de) * | 1999-05-05 | 2002-11-14 | Heinrich Stoeter | 3-D-Modul Fertigteilbausystem |
IT1309727B1 (it) * | 1999-10-08 | 2002-01-30 | Mauro Umberto Di | Sistema per la realizzazione di strutture di edifici mono e multipiano con la composizione di unita' spaziali modulari ottenute con getto di |
US20130180191A1 (en) | 2010-09-17 | 2013-07-18 | Urbanetics Inc. | Composite building module with a thermal mass radiator |
RU186417U1 (ru) * | 2018-10-11 | 2019-01-21 | МФМ-НЙ, Лтд. | Стеновая панель |
CN117569590A (zh) * | 2024-01-17 | 2024-02-20 | 清华大学 | 一种新型高层混凝土模块化建筑的内部连接方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1090415A (fr) * | 1953-06-11 | 1955-03-30 | Entpr S Balency & Schuhl | Perfectionnements à la construction de bâtiments |
FR2263359A1 (en) * | 1974-03-08 | 1975-10-03 | Saint Arroman Jean | Separate and collective accommodation unit-system - consists of blocks containing installations and services |
FR2352136A1 (fr) * | 1976-05-21 | 1977-12-16 | Etude Rech Hebergement Loisir | Habitat de loisir et les elements qui le constituent |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1336456A (fr) * | 1962-08-24 | 1963-08-30 | Elcon Ag | Perfectionnements apportés aux éléments destinés à la construction de bâtiments préfabriqués |
FR2104967B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1970-09-11 | 1973-11-23 | Fillod Const | |
FR2381870A1 (fr) * | 1977-02-23 | 1978-09-22 | Tekton Building Systems Propri | Ameliorations relatives a la construction de structures de batiments |
US4142340A (en) | 1977-07-11 | 1979-03-06 | Howard Milton L | Building enclosure made from standard construction unit in side walls and roof deck |
US4195453A (en) * | 1977-11-09 | 1980-04-01 | Komendant August E | Modular, multi-floor building |
-
1981
- 1981-06-23 EP EP81302820A patent/EP0043223B1/en not_active Expired
- 1981-06-23 ES ES503329A patent/ES8300161A1/es not_active Expired
- 1981-06-23 CA CA000380408A patent/CA1186524A/en not_active Expired
- 1981-06-23 DE DE8181302820T patent/DE3176279D1/de not_active Expired
- 1981-06-24 JP JP56098151A patent/JPS5744041A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1090415A (fr) * | 1953-06-11 | 1955-03-30 | Entpr S Balency & Schuhl | Perfectionnements à la construction de bâtiments |
FR2263359A1 (en) * | 1974-03-08 | 1975-10-03 | Saint Arroman Jean | Separate and collective accommodation unit-system - consists of blocks containing installations and services |
FR2352136A1 (fr) * | 1976-05-21 | 1977-12-16 | Etude Rech Hebergement Loisir | Habitat de loisir et les elements qui le constituent |
Non-Patent Citations (1)
Title |
---|
Techniques et Architecture, Vol. 34, 1972, No. 4/5, page 125 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008055976A1 (de) | 2008-11-05 | 2010-05-12 | Rolf Kaiser | Raumzelle |
Also Published As
Publication number | Publication date |
---|---|
ES503329A0 (es) | 1982-10-01 |
EP0043223A1 (en) | 1982-01-06 |
DE3176279D1 (en) | 1987-07-30 |
JPS6365785B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1988-12-16 |
CA1186524A (en) | 1985-05-07 |
ES8300161A1 (es) | 1982-10-01 |
JPS5744041A (en) | 1982-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5103604A (en) | Modular building systems | |
US3762115A (en) | Multilevel concrete building of precast modular units | |
US3514910A (en) | Modular building construction | |
US4145861A (en) | Building construction method and system | |
US4513545A (en) | Apparatus for and method of constructing, transporting and erecting a structure of two or more stories comprised of a plurality of prefabricated core modules and panelized room elements | |
US3643390A (en) | Modular building structure | |
US6457281B1 (en) | Modular building systems | |
US3503170A (en) | Modular post-tensioned overlapped staggered building construction | |
US4573292A (en) | Prefabricated, self-contained building | |
US20050108957A1 (en) | Pre-fabricated building modules and method of installation | |
EP1971727B1 (en) | Construction of buildings | |
US4078345A (en) | Prefabricated building and method of making same | |
US3245183A (en) | Modular house having dividing component walls dimensioned in correlation with the modular dimension | |
US3862534A (en) | Method of constructing a dwelling | |
US3812637A (en) | Method for erecting a reinforced concrete building | |
US3402515A (en) | Folding multi-storeyed buildings | |
CA1203063A (en) | Prefabricated, self-contained building and method of construction | |
CN104641048B (zh) | 华夫格子箱体建筑技术 | |
RU59088U1 (ru) | Конструкция металлического каркаса строительного объемного блока для малоэтажного здания | |
EP0043223B1 (en) | Building module | |
CA2046217A1 (en) | Residential building and a building unit for same | |
US3975873A (en) | Prefabricated building sections or room units and methods for their use in erecting buildings | |
US4078344A (en) | Prefabricated building sections or room units and methods for their use in erecting buildings | |
JP3261404B2 (ja) | 規格化集合住宅のスケルトン構造 | |
RU218496U1 (ru) | Панель модульного здания |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820608 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3176279 Country of ref document: DE Date of ref document: 19870730 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RC |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: DA |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960611 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960626 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960812 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970620 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19970630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970630 Year of fee payment: 17 |
|
BERE | Be: lapsed |
Owner name: TERON WILLIAM Effective date: 19970630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19980101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980227 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980623 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990401 |