EP0042997B1 - Circuit arrangement to supply energising current to an electromagnetic relay - Google Patents

Circuit arrangement to supply energising current to an electromagnetic relay Download PDF

Info

Publication number
EP0042997B1
EP0042997B1 EP81104315A EP81104315A EP0042997B1 EP 0042997 B1 EP0042997 B1 EP 0042997B1 EP 81104315 A EP81104315 A EP 81104315A EP 81104315 A EP81104315 A EP 81104315A EP 0042997 B1 EP0042997 B1 EP 0042997B1
Authority
EP
European Patent Office
Prior art keywords
partial coil
circuit arrangement
voltage
coil windings
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104315A
Other languages
German (de)
French (fr)
Other versions
EP0042997A3 (en
EP0042997A2 (en
Inventor
Heinz Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDS Elektro GmbH
Panasonic Electric Works Co Ltd
Original Assignee
Euro Matsushita Electric Works AG
SDS Elektro GmbH
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Matsushita Electric Works AG, SDS Elektro GmbH, Matsushita Electric Works Ltd filed Critical Euro Matsushita Electric Works AG
Priority to AT81104315T priority Critical patent/ATE7088T1/en
Publication of EP0042997A2 publication Critical patent/EP0042997A2/en
Publication of EP0042997A3 publication Critical patent/EP0042997A3/en
Application granted granted Critical
Publication of EP0042997B1 publication Critical patent/EP0042997B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device

Definitions

  • the invention relates to a circuit arrangement for feeding an electromagnetic relay according to the preamble of claim 1.
  • the control with AC voltage is reserved for relatively large-volume, non-polarized relays, which tolerate coil losses of up to a few watts with a winding volume of a few cubic centimeters.
  • these relays are provided with a short-circuit ring, which extends the fall times in such a way that the relays neither fall off nor flutter, for example in 50 Hz operation.
  • the polarized relays can also be operated on AC voltage if e.g. B. a bridge rectifier is used.
  • the rectifier diodes act like quenching diodes at the same time and thereby extend the relay's fallout time by a factor of five. If you wanted to operate such a relay with a reasonable volume with the excitation power of approx. 150 mW at 220 V AC voltage, which is common for polarized DC voltage relays, coil resistors would be required that are far above what is technically feasible.
  • the invention has for its object to provide a circuit arrangement for supplying an electromagnetic relay with AC voltage, which requires little control energy even at higher AC voltage and at the same time requires little space.
  • the amount of reactance resulting from the capacitance between the partial windings is, in accordance with the frequency of the AC voltage applied, substantially greater than the ohmic resistance of the partial windings, so that the winding resistance is negligible in a first approximation when determining the excitation current required. It follows from this that the flux required to excite the magnet system, based on a predetermined number of turns of a partial winding, is achieved in that the capacitance between the partial windings is made so large that their reactance at the frequency of the AC voltage present allows a sufficient current flow.
  • FIGS. 1 to 3 show the coil partial windings W1, W2 of an electromagnetic relay which is connected to the connections 5, 6 of an AC voltage U via rectifier diodes D1, D2, D3, D4.
  • the two Spu Partial windings W1, W2 are galvanically separated from one another and two-wire, ie wound in one operation and thus in the same winding direction.
  • First diodes D1, D3 with their cathodes are connected to the winding starts 1, 3 lying next to one another and second diodes D2, D4 with their anodes are connected to the winding ends 2, 4 also lying next to one another.
  • connections of the first and second diodes D1, D3 and D2, D4 facing away from the partial windings W1, W2 are each connected to one another and connected to the two connections 5, 6 of the AC voltage U.
  • a voltage-limiting element Z for example a bipolar zener diode, connected between the connections 5, 6 protects the windings W1, W2 and the diodes D1 to D4 against overvoltages.
  • FIG. 4 shows the interconnection of the Zener diode Z with the four diodes D1 to D4 to form a single component.
  • the necessary flow is known for the respective magnet system.
  • the ohmic winding resistance is negligible if the amount is significantly below the reactance resulting from the winding capacitance.
  • the capacitance values for winding wires running next to one another are also known, so that the winding capacitance can be calculated in a good approximation.
  • a modern small relay with a number of turns of 10,000 turns gives a winding capacity of 30 nF. This results in a permanent excitation of the relay with 220 V AC voltage, a self-heating of about 10 ° C, so that this relay can be used as well as modern polarized DC voltage relay.

Abstract

An electromagnetic relay adapted to be driven by a.c. voltage includes two windings formed by two wires wound together, each winding having its ends connected through diodes to a respective terminal of the a.c. voltage source. The diodes are connected to each terminal with opposite forward directions so that the magnetic fluxes generated by the two windings have the same direction irrespective of the polarity of the a.c. voltage. The capacity existing between the two windings acts as a reactance for limiting the exciting current without consuming active energy.

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Speisen eines elektromagnetischen Relais nach dem Oberbegriff des Anspruchs 1.The invention relates to a circuit arrangement for feeding an electromagnetic relay according to the preamble of claim 1.

Gegenüber dem Betrieb von Relais mit Gleichspannung ist die Ansteuerung mit Wechselspannung, insbesondere bei den üblichen Versorgungsspannungen von 110 bzw. 220 V, relativ großvolumigen ungepolten Relais vorbehalten, die bei einem Wickelvolumen von einigen Kubikzentimetern Spulenverlustleistungen bis zu einigen Watt vertragen. Üblicherweise sind diese Relais mit einem Kurzschlußring versehen, der die Abfallzeiten derart verlängert, daß die Relais beispielsweise bei 50-Hz-Betrieb weder abfallen noch flattern.Compared to the operation of relays with DC voltage, the control with AC voltage, especially with the usual supply voltages of 110 or 220 V, is reserved for relatively large-volume, non-polarized relays, which tolerate coil losses of up to a few watts with a winding volume of a few cubic centimeters. Usually, these relays are provided with a short-circuit ring, which extends the fall times in such a way that the relays neither fall off nor flutter, for example in 50 Hz operation.

Auch die gepolten Relais lassen sich an Wechselspannung betreiben, wenn z. B. ein Brückengleichrichter verwendet wird. Die Gleichrichterdioden wirken gleichzeitig wie Löschdioden und verlängern dadurch die Abfallzeit des Relais etwa um den Faktor 5. Wollte man nun ein solches Relais bei vertretbarem Bauvolumen mit der für gepolte Gleichspannungsrelais üblichen Erregerleistung von ca. 150 mW an 220 V Wechselspannung betreiben, so wären Spulenwiderstände erforderlich, die weit oberhalb des technisch Realisierbaren liegen.The polarized relays can also be operated on AC voltage if e.g. B. a bridge rectifier is used. The rectifier diodes act like quenching diodes at the same time and thereby extend the relay's fallout time by a factor of five. If you wanted to operate such a relay with a reasonable volume with the excitation power of approx. 150 mW at 220 V AC voltage, which is common for polarized DC voltage relays, coil resistors would be required that are far above what is technically feasible.

Versucht man bei modernen Relais, einen maximalen Spulenwiderstand zu realisieren, so erreicht man mit den dünnsten, noch mit vertretbarem Aufwand zu verarbeitenden Kupferlackdrähten mit ca. 20 kΩ einen Maximalwert. Wollte man nun ein solches Relais an 220 V Wechselspannung betreiben, so würden an der Erregerspule 2,4 Watt elektrischer Energie in Wärme umgesetzt, was eine Temperaturerhöhung des Relais um 140 °C zur Folge hätte. Um diese unzulässige Erwärmung zu vermeiden, ist es bei Verwendung eines ohmschen Widerstandes nur möglich, diesen als separates Bauelement vorzusehen, was abgesehen von den erhöhten Montagekosten zu 1 bis 2 Watt Verlustleistung und damit zu einem höheren Platzbedarf führt, der insbesondere bei Leiterplattenbauweise störend ist.If you try to achieve a maximum coil resistance with modern relays, you will achieve a maximum value with the thinnest copper wires with approx. 20 kΩ that can be processed with reasonable effort. If you wanted to operate such a relay with 220 V AC voltage, 2.4 watt electrical energy would be converted into heat at the excitation coil, which would result in a temperature increase of the relay of 140 ° C. In order to avoid this impermissible heating, when using an ohmic resistor, it is only possible to provide it as a separate component, which, apart from the increased assembly costs, leads to 1 to 2 watts of power loss and thus to a larger space requirement, which is particularly annoying in the case of printed circuit board construction.

Aus der deutschen Auslegeschrift Nr. 1 298 626 ist ein mit Wechselspannung ansteuerbares Gleichstromrelais bekannt, dessen Spule über jeweils ein Paar von Dioden in entgegengesetzter Durchlassrichtung derart an jede der beiden Wechselspannungsklemmen angeschlossen ist, daß die Spule unabhängig von der Polarität der Wechselspannung stets in gleicher Richtung durchflutet ist. Ein vorgeschalteter Kondensator dient dazu, den Erregerstrom zu begrenzen. Dieser Kondensator nimmt zwar nur Blindleistung auf und erzeugt daher keine Wärme, er stellt jedoch ein separates Bauelement dar, das wegen seines erheblichen Raumbedarfs in modernen Schaltungen mit hoher Packungsdichte unerwünscht ist.From German patent specification No. 1 298 626, a direct current relay that can be controlled with alternating voltage is known, the coil of which is connected to each of the two alternating voltage terminals via a pair of diodes in the opposite forward direction in such a way that the coil is always in the same direction regardless of the polarity of the alternating voltage is flooded. An upstream capacitor is used to limit the excitation current. Although this capacitor only consumes reactive power and therefore does not generate any heat, it is a separate component which is undesirable in modern circuits with a high packing density due to its considerable space requirement.

Aus der deutschen Offenlegungsschrift Nr. 2 749 732 ist ferner eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1 bekannt, die jedoch zur Ansteuerung mittels Gleichspannung bestimmt ist, wobei die zwischen den beiden Spulenteilwicklungen vorhandene Kapazität bewirken soll, daß die für das Ansprechen des Relais erforderliche Durchflutung nur kurzzeitig, d. h. nur beim Ein- bzw. Umschalten, erreicht und somit der Stromfluß zeitlich begrenzt wird.From German Offenlegungsschrift No. 2 749 732 a circuit arrangement according to the preamble of claim 1 is also known, which, however, is intended for control by means of DC voltage, the capacitance between the two coil partial windings being said to have the effect that the throughflow required for the relay to respond only for a short time, d. H. only when switching on or switching, reached and thus the current flow is limited in time.

Der Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung zum Speisen eines elektromagnetischen Relais mit Wechselspannung zu schaffen, das auch bei höherer Wechselspannung nur wenig Ansteuerenergie benötigt und gleichzeitig geringen Raumbedarf aufweist.The invention has for its object to provide a circuit arrangement for supplying an electromagnetic relay with AC voltage, which requires little control energy even at higher AC voltage and at the same time requires little space.

Die erfindungsgemäße Lösung dieser Aufgabe ist im Anspruch 1 gekennzeichnet. Diese Schaltungsanordnung gewährleistet bei relativ niederohmigen Spulenteilwicklungen einen geringen Bedarf an Steuerleistung, da auch hier der Erregerstrom durch die Kapazität zwischen den Teilwicklungen auf einen relativ kleinen Wert begrenzt ist. Infolge der Niederohmigkeit der Wicklungen und der Strombegrenzung wird wenig Erregerleistung aufgenommen, so daß auch bei geringem Bauvolumen keine nennenswerte Eigenerwärmung des Relais auftritt. Der aus der Kapazität zwischen den Teilwicklungen resultierende Blindwiderstand ist entsprechend der Frequenz der angelegten Wechselspannung seinem Betrag nach wesentlich größer als der ohm'sche Widerstand der Teilwicklungen, so daß der Wikklungswiderstand bei der Ermittlung des benötigten Erregerstroms in erster Näherung vernachlässigbar ist. Hieraus ergibt sich, daß die zur Erregung des Magnetsystems erforderliche Durchflutung, ausgehend von einer vorgegebenen Windungszahl einer Teilwicklung, dadurch erreicht wird, daß die Kapazität zwischen den Teilwicklungen so groß gemacht wird, daß deren Blindwiderstand bei der Frequenz der anliegenden Wechselspannung einen ausreichenden Stromfluß zuläßt.The solution to this problem according to the invention is characterized in claim 1. This circuit arrangement ensures a low need for control power in the case of relatively low-resistance coil partial windings, since here too the excitation current is limited to a relatively small value by the capacitance between the partial windings. As a result of the low impedance of the windings and the current limitation, little excitation power is consumed, so that no significant self-heating of the relay occurs even with a small construction volume. The amount of reactance resulting from the capacitance between the partial windings is, in accordance with the frequency of the AC voltage applied, substantially greater than the ohmic resistance of the partial windings, so that the winding resistance is negligible in a first approximation when determining the excitation current required. It follows from this that the flux required to excite the magnet system, based on a predetermined number of turns of a partial winding, is achieved in that the capacitance between the partial windings is made so large that their reactance at the frequency of the AC voltage present allows a sufficient current flow.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous developments of the invention are characterized in the subclaims.

Die Erfindung wird im folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Darin zeigen :

  • Figur 1 einen Plan, aus dem die Beschaltung der Spulenwicklungen der erfindungsgemäßen Relais ersichtlich ist ;
  • Figur 2 und Figur 3 Schaltpläne, die die Stromflüsse bei unterschiedlicher Polarität der angelegten Wechselspannung zeigen ; und
  • Figur 4 die Zusammenschaltung einiger Schaltungselemente zu einem gemeinsamen Bauelement.
The invention is explained below with reference to an embodiment shown in the drawing. In it show:
  • Figure 1 is a plan from which the wiring of the coil windings of the relays according to the invention can be seen;
  • Figure 2 and Figure 3 circuit diagrams showing the current flows with different polarity of the AC voltage applied; and
  • Figure 4 shows the interconnection of some circuit elements to form a common component.

In den Figuren 1 bis 3 sind die Spulenteilwikklungen W1, W2 eines elektromagnetischen Relais dargestellt, das über Gleichrichterdioden D1, D2, D3, D4 an die Anschlüsse 5, 6 einer Wechselspannung U gelegt ist. Die beiden Spulenteilwicklungen W1, W2 sind galvanisch voneinander getrennt und zweidrähtig, also in einem Arbeitsgang und damit im gleichen Wicklungssinn gewickelt. An die nebeneinander liegenden Wicklungsanfänge 1, 3 sind erste Dioden D1, D3 mit ihren Kathoden und an die ebenfalls nebeneinander liegenden Wicklungsenden 2, 4 sind zweite Dioden D2, D4 mit ihren Anoden angeschlossen. Die den Teilwicklungen W1, W2 abgewandten Anschlüsse der ersten und zweiten Dioden D1, D3 bzw. D2, D4 sind jeweils miteinander verbunden und an die beiden Anschlüsse 5, 6 der Wechselspannung U gelegt. Ein zwischen die Anschlüsse 5, 6 eingeschaltetes spannungsbegrenzendes Element Z, beispielsweise eine bipolare Zenerdiode, schützt die Wicklungen W1, W2 und die Dioden D1 bis D4 gegen Überspannungen. Figur 4 zeigt die Zusammenschaltung der Zenerdiode Z mit den vier Dioden D1 bis D4 zu einem einheitlichen Bauelement.FIGS. 1 to 3 show the coil partial windings W1, W2 of an electromagnetic relay which is connected to the connections 5, 6 of an AC voltage U via rectifier diodes D1, D2, D3, D4. The two Spu Partial windings W1, W2 are galvanically separated from one another and two-wire, ie wound in one operation and thus in the same winding direction. First diodes D1, D3 with their cathodes are connected to the winding starts 1, 3 lying next to one another and second diodes D2, D4 with their anodes are connected to the winding ends 2, 4 also lying next to one another. The connections of the first and second diodes D1, D3 and D2, D4 facing away from the partial windings W1, W2 are each connected to one another and connected to the two connections 5, 6 of the AC voltage U. A voltage-limiting element Z, for example a bipolar zener diode, connected between the connections 5, 6 protects the windings W1, W2 and the diodes D1 to D4 against overvoltages. FIG. 4 shows the interconnection of the Zener diode Z with the four diodes D1 to D4 to form a single component.

Infolge der gewählten Beschaltung der Teilwikklungen W1, W2 mit den Dioden D1, D2, D3, D4 fließt der Strom J, unabhängig von der Polarität der angelegten Wechselspannung U, stets in gleicher Richtung durch die beiden Wicklungen W1, W2, während er sich in der dazwischen befindlichen Kapazität C umkehrt. Da es sich bei dieser um keine diskrete Kapazität, sondern um die durch die zweidrähtige Wicklung bedingte Wicklungskapazität handelt, ist diese in den Figuren gestrichelt eingezeichnet.As a result of the selected wiring of the partial windings W1, W2 with the diodes D1, D2, D3, D4, the current J, regardless of the polarity of the AC voltage U applied, always flows in the same direction through the two windings W1, W2 while it is in the capacitance C in between reverses. Since this is not a discrete capacitance, but rather the winding capacitance caused by the two-wire winding, it is shown in dashed lines in the figures.

Bei der in Fig. 2 gegebenen Polarität, positives Potential am Anschluß 5 und negatives am Anschluß 6, fließt der Erregerstrom J vom Pluspol über die erste Diode D1 zum Anfang 1 der Teilwicklung W1, über die Kapazität C zur Teilwikklung W2 zum Ende 4 dieser Wicklung und von dort über die zweite Diode D4 zum Minuspol der Wechselspannung. Die Dioden D2 und D3 sind bei dieser Polarität der Wechselspannung U gesperrt. Erfolgt ein Wechsel in der Polarität der Spannung U, wie in Fig. 3 gezeigt, so fließt der Erregerstrom J nun vom Anschluß 6 über die erste Diode D3 zum Anfang 3 der Teilwicklung W2, die Kapazität C, die Teilwicklung W1 und die zweite Diode D2 am Wicklungsende 2 zum Minuspol 5 der Wechselspannung U. In diesem Falle sind die Dioden D1 und D4 gesperrt. Während die Teilwicklungen W1 und W2 stets in gleicher Richtung durchflossen werden, fließt über die Wicklungskapazität ein Wechselstrom. Um für das Relais die gewünschte Ansprechspannung U zu erzielen, sind die Spulenkapazität C und die Windungszahl w einer jeden Spulenteilwicklung W1, W2 gemäß der folgenden Formel gewählt :

Figure imgb0001
worin

  • 0 die zum Ansprechen des Relais erforderliche Durchflutung,
  • w die Kreisfrequenz der angelegten Wechselspannung U, und
  • R der ohm'sche Widerstand einer Spulenteilwicklung bedeuten.
With the polarity given in Fig. 2, positive potential at terminal 5 and negative at terminal 6, the excitation current J flows from the positive pole via the first diode D1 to the beginning 1 of the partial winding W1, via the capacitance C to the partial winding W2 to the end 4 of this winding and from there via the second diode D4 to the negative pole of the AC voltage. The diodes D2 and D3 are blocked at this polarity of the AC voltage U. If there is a change in the polarity of the voltage U, as shown in FIG. 3, the excitation current J now flows from the terminal 6 via the first diode D3 to the beginning 3 of the partial winding W2, the capacitance C, the partial winding W1 and the second diode D2 at the winding end 2 to the negative pole 5 of the AC voltage U. In this case, the diodes D1 and D4 are blocked. While the partial windings W1 and W2 always flow through in the same direction, an alternating current flows through the winding capacitance. In order to achieve the desired response voltage U for the relay, the coil capacitance C and the number of turns w of each coil partial winding W1, W2 are selected according to the following formula:
Figure imgb0001
wherein
  • 0 the flow required to respond to the relay,
  • w is the angular frequency of the applied AC voltage U, and
  • R is the ohmic resistance of a partial coil winding.

Die jeweils notwendige Durchflutung ist dabei für das jeweilige Magnetsystem bekannt. In der angegebenen Näherungsformel ist der ohm'sche Wicklungswiderstand vernachlässigbar, wenn er im Betrag wesentlich unter dem aus der Wikklungskapazität resultierenden Blindwiderstand liegt. Die Kapazitätswerte für nebeneinander geführte Wicklungsdrähte sind ebenfalls bekannt, so daß sich die Wicklungskapazität in guter Näherung berechnen läßt.The necessary flow is known for the respective magnet system. In the approximation formula given, the ohmic winding resistance is negligible if the amount is significantly below the reactance resulting from the winding capacitance. The capacitance values for winding wires running next to one another are also known, so that the winding capacitance can be calculated in a good approximation.

Beispielsweise erhält man bei einem modernen Kleinrelais bei einer Windungszahl von 10000 Windungen eine Wicklungskapazität von 30 nF. Hierbei ergibt sich bei einer Dauererregung des Relais mit 220 V Wechselspannung eine Eigenerwärmung von etwa 10 °C, so daß dieses Relais ebenso wie moderne gepolte Gleichspannungsrelais problemlos einsetzbar ist.For example, a modern small relay with a number of turns of 10,000 turns gives a winding capacity of 30 nF. This results in a permanent excitation of the relay with 220 V AC voltage, a self-heating of about 10 ° C, so that this relay can be used as well as modern polarized DC voltage relay.

Claims (5)

1. Circuit arrangement for energizing an electromagnetic relay which includes two partial coil windings (W1, W2) separated from each other by a dielectric and forming a determined capacity between each other, wherein each partial coil winding is connected free of voltage drop to only one pole (5, 6) of the exciting current source and wherein the numbers of turns of the partial coil windings (W1, W2) and the capacity resulting from the structure and disposition of the partial coil windings are determined such that the current flowing in the two partial coil windings through the capacity is sufficient to actuate the relay, characterised in that the two partial coil windings (W1, W2) are so dimensioned and disposed that they are suited for permanently exciting the relay with alternating current, that each partial coil winding (W1, W2) is bridged by two rectifier elements (D1, D2 or, respectively, D3, D4) connected in series, and that the connection of the partial coil windings (W1, W2) with the corresponding pole (5, 6) of the exciting current source is each effected via the connecting point between the two rectifier elements (D1, D2 or, respectively, D3, D4).
2. Circuit arrangement according to claim 1, characterised in that the two partial coil windings (W1, W2) are coiled together.
3. Circuit arrangement according to claim 1 or 2, characterised in that an excess-voltage protection element (Z) is connected between the poles (5, 6) of the exciting current source.
4. Circuit arrangement according to claim 3, characterised in that the excess-voltage protection element consists of a bipolar Zener diode (Z).
5. Circuit arrangement according to claim 3 or 4, characterised in that the excess-voltage protection element (Z) is connected with the four rectifier elements (D1 ... D4) to form a structural unit.
EP81104315A 1980-06-27 1981-06-04 Circuit arrangement to supply energising current to an electromagnetic relay Expired EP0042997B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104315T ATE7088T1 (en) 1980-06-27 1981-06-04 CIRCUIT ARRANGEMENT FOR POWERING AN ELECTROMAGNETIC RELAY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3024343 1980-06-27
DE3024343A DE3024343C2 (en) 1980-06-27 1980-06-27 Electromagnetic relay

Publications (3)

Publication Number Publication Date
EP0042997A2 EP0042997A2 (en) 1982-01-06
EP0042997A3 EP0042997A3 (en) 1982-05-12
EP0042997B1 true EP0042997B1 (en) 1984-04-11

Family

ID=6105750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104315A Expired EP0042997B1 (en) 1980-06-27 1981-06-04 Circuit arrangement to supply energising current to an electromagnetic relay

Country Status (9)

Country Link
US (1) US4369482A (en)
EP (1) EP0042997B1 (en)
JP (1) JPS5743333A (en)
AT (1) ATE7088T1 (en)
AU (1) AU539916B2 (en)
BR (1) BR8104074A (en)
CA (1) CA1148647A (en)
DE (2) DE3024343C2 (en)
ZA (1) ZA813973B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3767610D1 (en) * 1986-02-14 1991-02-28 Cornelius Lungu ELECTRICAL COMPONENT WITH INDUCTIVE AND CAPACITIVE PROPERTIES.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258646A (en) * 1966-06-28 Fig. i prior art
DE905986C (en) * 1951-12-08 1954-03-08 Deutsche Telephonwerk Kabel Relay with only one winding that can be influenced by alternating current, preferably for telephone systems
DE1298626B (en) * 1965-09-01 1969-07-03 Siemens Ag DC relay for AC operation
US3582719A (en) * 1969-06-23 1971-06-01 Stearns Electric Corp Forcing circuit for inductors
DE2749732A1 (en) * 1977-11-07 1979-05-10 Sds Elektro Gmbh Electromagnetic relay with series capacitor - is wound with two wires, insulated from each other and forming capacitor through which winding is energised

Also Published As

Publication number Publication date
CA1148647A (en) 1983-06-21
BR8104074A (en) 1982-03-16
DE3024343A1 (en) 1982-01-21
ZA813973B (en) 1982-06-30
AU7200481A (en) 1982-01-07
EP0042997A3 (en) 1982-05-12
EP0042997A2 (en) 1982-01-06
JPS5743333A (en) 1982-03-11
US4369482A (en) 1983-01-18
DE3163058D1 (en) 1984-05-17
AU539916B2 (en) 1984-10-25
ATE7088T1 (en) 1984-04-15
DE3024343C2 (en) 1986-12-11

Similar Documents

Publication Publication Date Title
DE3438818A1 (en) Fault current circuit breaker
EP0464240A1 (en) Circuit for a blocking oscillator converter working in the auto-oscillation mode
EP0247409B1 (en) Switching power supply having a primary chopping converter
DE2050219C3 (en) Device for controlling an electromagnet
EP3021335A1 (en) Assembly and method for reducing a magnetic unidirectional flux component in the core of a transformer
DE2026466A1 (en) Electric solid state switching relay
EP0042997B1 (en) Circuit arrangement to supply energising current to an electromagnetic relay
DE1488072B2 (en) Control circuit for an electric stepper motor
DE1928914A1 (en) Stator circuits for AC motors
DE1638316A1 (en) Control circuit for the electronic commutation of an electric motor
DE2526649B2 (en) Earth fault protection device
DE2826763C2 (en) Circuit arrangement for feeding telecommunication lines transmitting alternating current signals with direct current
DE10331866B4 (en) Device for controlling a coil arrangement with electrically variable inductance, and switching power supply
EP0811276B1 (en) Process and circuit arrangement for connecting a load to a conductor
DE2826325C2 (en) Arrangement for external excitation of an electrical machine
EP0314178B1 (en) Ignition circuit for high-pressure met2l vapour discharge lamps
DE4003179C2 (en)
EP0249220A1 (en) Circuit arrangement for automatically connecting the remote feeding current paths of a remote feeding loop
DE2613972A1 (en) Earth leakage mains circuit breaker - has sum current transformer with winding compensating capacitive leakage currents for single or polyphase circuits
EP0142809B1 (en) Switching power supply
DE10228226B4 (en) Device for voltage regulation on electric generators by means of winding tapping and control relay
DE2616138C3 (en) Converter made up of a DC motor and an AC generator
DE1216356B (en) Self-holding magnetic core switch
DE4418864A1 (en) Arc welding appts.
DE3407311A1 (en) CIRCUIT FOR MONITORING A VOLTAGE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811007

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATSUSHITA ELECTRIC WORKS, LTD.

Owner name: SDS-ELEKTRO GMBH

ITF It: translation for a ep patent filed

Owner name: TOP - PATENTS - ITALO INCOLLINGO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 7088

Country of ref document: AT

Date of ref document: 19840415

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840502

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3163058

Country of ref document: DE

Date of ref document: 19840517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840529

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840530

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860617

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870630

Ref country code: CH

Effective date: 19870630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81104315.7

Effective date: 19880711