EP0042997A2 - Circuit arrangement to supply energising current to an electromagnetic relay - Google Patents

Circuit arrangement to supply energising current to an electromagnetic relay Download PDF

Info

Publication number
EP0042997A2
EP0042997A2 EP81104315A EP81104315A EP0042997A2 EP 0042997 A2 EP0042997 A2 EP 0042997A2 EP 81104315 A EP81104315 A EP 81104315A EP 81104315 A EP81104315 A EP 81104315A EP 0042997 A2 EP0042997 A2 EP 0042997A2
Authority
EP
European Patent Office
Prior art keywords
coil
relay
voltage
windings
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81104315A
Other languages
German (de)
French (fr)
Other versions
EP0042997A3 (en
EP0042997B1 (en
Inventor
Heinz Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDS Elektro GmbH
Panasonic Electric Works Co Ltd
Original Assignee
Euro Matsushita Electric Works AG
SDS Elektro GmbH
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Matsushita Electric Works AG, SDS Elektro GmbH, Matsushita Electric Works Ltd filed Critical Euro Matsushita Electric Works AG
Priority to AT81104315T priority Critical patent/ATE7088T1/en
Publication of EP0042997A2 publication Critical patent/EP0042997A2/en
Publication of EP0042997A3 publication Critical patent/EP0042997A3/en
Application granted granted Critical
Publication of EP0042997B1 publication Critical patent/EP0042997B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device

Definitions

  • the invention relates to an electromagnetic relay that can be controlled with an alternating voltage, the coil of which is connected to each of the two alternating voltage terminals via a pair of diodes in the opposite direction in such a way that the coil is always flooded in the same direction, regardless of the polarity of the alternating voltage, with the excitation current limiting capacity.
  • the control with AC voltage is reserved for relatively large-volume, non-polarized relays, which tolerate coil losses of up to a few watts with a winding volume of a few cubic centimeters.
  • these relays are provided with a short-circuit ring, which extends the fall times in such a way that the relays neither fall off nor flutter, for example in 50 Hz operation.
  • the polarized relays can also be operated with AC voltage if, for example, a bridge rectifier is used.
  • the rectifier diodes act like quenching diodes at the same time and thereby extend the relay's dropout time by a factor of five Coil resistances are required that are far above what is technically feasible.
  • the invention is based on the object, an electromagnetic relay of the initially designated A rt to provide that requires little driving power and at a higher alternating voltage and has the same small space requirement.
  • this object is achieved in that the coil has two galvanically isolated and capacitively coupled windings, each of which is switched on between one of the diode pairs in such a way that the fluxes generated by the two windings run in the same direction.
  • a relay is known from German Offenlegungsschrift 2749732, the coil of which consists of two galvanically isolated and capacitively coupled windings in order to limit the current flow in time.
  • this known relay is intended for control by means of direct voltage, and the capacitance is intended to ensure that the flow required for the relay to respond is reached briefly, ie only when switching on or switching over. If the capacitance is charged, it prevents further direct current flow.
  • the control of such a relay by means of alternating current is not provided in this document.
  • the utilization of the capacitance between the two windings to form an AC resistance of the desired size and the connection of the two windings via diodes to the AC voltage sources cannot be found in the document.
  • the coil inductance is not taken into account in this approximation formula, which is sufficient for practical application, because in this arrangement only a pulsating direct current is effective for the coil windings that determine the inductance.
  • the ohmic resistance of the coil windings is practically negligible in relation to the substantially larger series-connected capacitive reactance resulting from the capacitive coupling.
  • the required flow ⁇ is a known quantity for the respective magnet system. It follows that the response voltage of the relay can be reduced, for example, by increasing the frequency of the AC voltage or increasing the capacitance between the coil windings.
  • the two coil windings are wound with two wires and that the common winding capacitance is effective as the capacitance.
  • the beginnings and ends of both windings lie side by side.
  • this type of winding significantly higher capacitance values are achieved than with layer windings.
  • a further increase in the winding capacity of two-wire wound coil windings is achieved by reducing the wire diameter.
  • a further development of the invention also consists in the use in a magnet system, the electromagnetic flux of which is superimposed by a permanent magnetic flux. This results in a significant increase in the sensitivity of the relay. It is thus possible to implement AC voltage relays in miniature design with the same low need for control energy as is possible with the DC voltage relays cited at the beginning.
  • part of the permanent flux can be stored in contact springs of the relay.
  • this opens up the possibility that the excitation power of the relay can be made within the available continuous flux, regardless of the contact force or the number of contact springs to be actuated.
  • an overvoltage protection element can be connected in parallel with the AC voltage terminals, which is, for example, a varistor or a bipolar zener diode, which in a further advantageous embodiment is connected together with the four diodes to form a structural unit. In this way, protection of the coil windings and, at the same time, of the diodes against any voltage surges that occur can be achieved using circuitry-free means.
  • FIG. 1 to 3 show the coil windings W1, W2 of an electromagnetic relay which is connected to the connections 5, 6 of an AC voltage U via rectifier diodes D1, D2, D3, D4.
  • the two coil windings W1, W2 are electrically isolated from one another and two-wire, that is to say wound in one operation and thus in the same winding direction.
  • First diodes D1, D3 with their cathodes are connected to the winding starts 1, 3 lying next to one another and second diodes D2, D4 with their anodes are connected to the winding ends 2, 4 also lying next to one another.
  • the connections of the first and second diodes D1, D3 and D2, D4 facing away from the coil windings W1, W2 are each connected to one another and connected to the two connections 5, 6 of the AC voltage U.
  • a voltage-limiting element Z connected between the connections 5, 6, for example a bipolar Zener diode, protects the winding W1, W2 and the diodes D1 to D4 against overvoltages Component.
  • the current J always flows through the same direction, regardless of the polarity of the AC voltage U applied two coils, while reversing in the capacitance C between the two windings W1, W2. Since the present exemplary embodiment is not a discrete capacitance but rather the winding capacitance caused by the two-wire winding, this is shown in dashed lines in the figures.
  • the excitation current J now flows from the terminal 6 via the first diode D3 to the beginning 3 of the coil winding W2, the coil capacitance C, the coil winding W1 and the second diode D2 at the coil winding end 2 to the negative pole 5 of the AC voltage U.
  • the diodes D1 and D4 blocked. While the coil windings W1 and W2 always flow through in the same direction, an alternating current flows through the winding capacitance coupling the two coils.
  • the coil capacitance C and the number of turns w of each coil winding W1, W2 are selected in accordance with the aforementioned formula.
  • the necessary flooding is known for the respective magnet system.
  • the ohmic coil resistance is negligible if its amount is significantly below the reactance resulting from the winding capacitance.
  • the capacitance values for coil wires running next to one another are also known, so that the winding capacitance of a two-wire wound coil can be calculated in a good approximation.
  • a modern small relay with a two-wire coil winding with a number of windings of 10,000 windings has a winding capacity of 30 nF. This results in a permanent excitation of the relay with 220 V alternating voltage, a self-heating of about 10 o C, so that this relay can be used as well as modern polarized DC relay.

Landscapes

  • Relay Circuits (AREA)
  • Cookers (AREA)
  • Surgical Instruments (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electronic Switches (AREA)
  • Rectifiers (AREA)
  • Electromagnets (AREA)

Abstract

An electromagnetic relay adapted to be driven by a.c. voltage includes two windings formed by two wires wound together, each winding having its ends connected through diodes to a respective terminal of the a.c. voltage source. The diodes are connected to each terminal with opposite forward directions so that the magnetic fluxes generated by the two windings have the same direction irrespective of the polarity of the a.c. voltage. The capacity existing between the two windings acts as a reactance for limiting the exciting current without consuming active energy.

Description

Die Erfindung betrifft ein mit Wechselspannung ansteuerbares elektromagnetisches Relais, dessen Spule über jeweils ein Paar von Dioden in entgegengesetzter Durchlassrichtung derart an jede der beiden Wechselspannungsklemmen angeschlossen ist, daß die Spule unabhängig von der Polarität der Wechselspannung stets in gleicher Richtung durchflutet ist, mit einer den Erregerstrom begrenzenden Kapazität.The invention relates to an electromagnetic relay that can be controlled with an alternating voltage, the coil of which is connected to each of the two alternating voltage terminals via a pair of diodes in the opposite direction in such a way that the coil is always flooded in the same direction, regardless of the polarity of the alternating voltage, with the excitation current limiting capacity.

Gegenüber dem Betrieb von Relais mit Gleichspannung ist die Ansteuerung mit Wechselspannung, insbesondere bei den üblichen Versorgungsspannungen von 110 bzw. 220 V, relativ großvolumigen ungepolten Relais vorbehalten, die bei einem Wickelvolumen von einigen Kubikzentimetern Spulenverlustleistungen bis zu einigen Watt vertragen. üblicherweise sind diese Relais mit einem Kurzschlußring versehen, der die Abfallzeiten derart verlängert, daß die Relais beispielsweise bei 50-Hz-Betrieb weder abfallen noch flattern.Compared to the operation of relays with DC voltage, the control with AC voltage, especially with the usual supply voltages of 110 or 220 V, is reserved for relatively large-volume, non-polarized relays, which tolerate coil losses of up to a few watts with a winding volume of a few cubic centimeters. Usually, these relays are provided with a short-circuit ring, which extends the fall times in such a way that the relays neither fall off nor flutter, for example in 50 Hz operation.

Auch die gepolten Relais lassen sich an Wechselspannung betreiben, wenn z.B. ein Brückengleichrichter verwendet wird. Die Gleichrichterdioden wirken gleichzeitig wie Löschdioden und verlängern dadurch die Abfallzeit des Relais etwa um den Faktor 5. Wollte man nun ein solches Relais bei vertretbarem Bauvolumen mit der für gepolte Gleicrnpannungsrelais üblichen Erregerleisung von ca. 150 mW an 220 V Wechselspannung betreiben, so wären Spulenwiderstände erforderlich, die weit oberhalb des technisch Realisierbaren liegen.The polarized relays can also be operated with AC voltage if, for example, a bridge rectifier is used. The rectifier diodes act like quenching diodes at the same time and thereby extend the relay's dropout time by a factor of five Coil resistances are required that are far above what is technically feasible.

Versucht man bei modernen Relais, einen maximalen Spulenwiderstand zu realisieren, so erreicht man mit den dünnsten, noch mit vertretbarem Aufwand zu verarbeitenden Kupferlackdrähten mit ca. 20 kn einen Maximalwert. Wollte man nun ein solches Relais an 220 V Wechselspannung betreiben, so würden an der Erregerspule 2,4 Watt elektrischer Energie in Warme umgesetzt, was eine Temperaturerhöhung des Relais um 140°C zur Folge hätte. Um diese unzulässige Erwärmung zu vermeiden, ist es bei Verwendung eines ohmschen Widerstandes nur möglich, diesen als separates Bauelement vorzusehen, was abgesehen von den erhöhten Montagekosten zu 1 bis 2 Watt Verlustleistung und damit zu einem höheren Platzbedarf führt, der insbesondere bei Leiterplattenbauweise störend ist.If you try to achieve a maximum coil resistance with modern relays, you will reach a maximum value with the thinnest copper wires, which can still be processed with reasonable effort, with approx. 20 kn. If one now wanted to operate such a relay with 220 V AC voltage, 2.4 watt electrical energy would be converted into heat at the excitation coil, which would result in a temperature increase of the relay of 140 ° C. In order to avoid this impermissible heating, when using an ohmic resistor, it is only possible to provide it as a separate component, which, apart from the increased assembly costs, leads to 1 to 2 watts of power loss and thus to a larger space requirement, which is particularly annoying in the case of printed circuit board construction.

Aus der deutschen Auslegeschrift Nr. 1298626 ist ein Relais der eingangs bezeichneten Art bekannt, bei der der Erregerstrom durch einen vorgeschalteten Kondensator begrenzt wird. Dieser Kondensator nimmt zwar nur Blindleistung auf und erzeugt deshalb keine Wärme. Auch er stellt jedoch ein separates Bauelement dar, das wegen sei-- nes erheblichen Raumbedarfes in den modernen Schaltungen mit hoher Packungsdichte erst recht nachteilig ist.From German specification No. 1298626, a relay of the type described in the introduction is known, in which the excitation current is limited by an upstream capacitor. This capacitor only consumes reactive power and therefore does not generate any heat. However, he also is a separate component, which due sides - nes considerable space requirement in modern circuits with high packing density is especially disadvantageous.

Der Erfindung liegt die Aufgabe zugrunde, ein elektromagnetisches Relais der eingangs bezeichneten Art zu schaffen, das auch bei höherer Wechselspannung wenig Ansteuerenergie benötigt und gleichzeitig geringen Raumbedarf aufweist.The invention is based on the object, an electromagnetic relay of the initially designated A rt to provide that requires little driving power and at a higher alternating voltage and has the same small space requirement.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Spule zwei galvanisch getrennte und kapazitiv gekoppelte Wicklungen aufweist, deren jede zwischen jeweils eines der Diodenpaare derart eingeschaltet ist, daß die von beiden Wicklungen erzeugten Durchflutungen in gleicher Richtung verlaufen.According to the invention, this object is achieved in that the coil has two galvanically isolated and capacitively coupled windings, each of which is switched on between one of the diode pairs in such a way that the fluxes generated by the two windings run in the same direction.

Durch diese Maßnahme erhält man ein Relais, das bei relativ niederohmigen Spulenwicklungen einen geringen Bedarf an Steuerleistung hat, zumal der Erregerstrom durch die Kapazität zwischen den Spulenwicklungen auf einen relativ kleinen Wert begrenzt wird. Bei niederohmigen Spulen und gleichzeitiger Strombegrenzung erreicht man, daß auch bei geringem Bauvolumen relativ wenig Erregerleistung aufgenommen wird und damit kaum nennenswerte Eigenerwärmung des Relais auftritt. Der aus der Kapazität zwischen den Spulenwicklungen resultierende Blindwider- - stand ist entsprechend der Frequenz der angelegten Wechselspannung in seinem Betrag wesentlich größer als der ohmsche Widerstand der Spulenwicklungen, so daß der Spulenwiderstand bei der Ermittlung des benötigten Erregerstromes in erster Näherung vernachlässigbar ist. Hieraus ergibt sich, daß die zur Erregung des Magnetsystems erforderliche Durchflutung bzw. die nötige Ampere-Windungszahl, ausgehend von einer bestimmten Windungszahl einer Spule erreicht wird, indem die Kapazität zwischen den Spulenwicklungen so groß gemacht wird, daß deren Blindwiderstand bei der Frequenz der angelegten Spannung einen ausreichenden Stromfluß zuläßt.By this measure you get a relay that at relatively low-resistance coil windings has a low control power requirement, especially since the excitation current is limited to a relatively small value by the capacitance between the coil windings. With low-resistance coils and simultaneous current limitation, it is achieved that even with a small construction volume, relatively little excitation power is consumed and thus hardly any significant self-heating of the relay occurs. The amount of reactance resulting from the capacitance between the coil windings is substantially greater in magnitude than the ohmic resistance of the coil windings, corresponding to the frequency of the AC voltage applied, so that the coil resistance is negligible in a first approximation when determining the required excitation current. It follows from this that the throughflow or the required number of ampere turns required to excite the magnet system is achieved on the basis of a certain number of turns of a coil by making the capacitance between the coil windings so large that their reactance at the frequency of the applied voltage allows sufficient current flow.

Aus der deutschen Offenlegungschrift 2749732 ist zwar ein Relais bekannt, dessen Spule aus zwei galvanisch getrennten und kapazitiv gekoppelten Wicklungen besteht, um den Stromfluß zeitlich zu begrenzen. Dieses bekannte Relais ist jedoch zur Ansteuerung mittels Gleichspannung bestimmt, und die Kapazität soll bewirken, daß die für das Ansprechen des Relais erforderliche Durchflutung kurzzeitig, d.h. nur beim Ein- bzw. Umschalten, erreicht wird. Ist die Kapazität aufgeladen, so verhindert sie einen weiteren Gleichstromfluß. Die Ansteuerung eines derartigen Relais mittels Wechselstrom ist in dieser Druckschrift nicht vorgesehen. Die Ausnutzung der Kapazität zwischen den beiden Wicklungen zur Bildung eines Wechselstromwiderstandes gewünschter Größe und die Verbindung der beiden Wicklungen über Dioden mit den Wechselspannungsquellen sind der Druckschrift nicht zu entnehmen.A relay is known from German Offenlegungsschrift 2749732, the coil of which consists of two galvanically isolated and capacitively coupled windings in order to limit the current flow in time. However, this known relay is intended for control by means of direct voltage, and the capacitance is intended to ensure that the flow required for the relay to respond is reached briefly, ie only when switching on or switching over. If the capacitance is charged, it prevents further direct current flow. The control of such a relay by means of alternating current is not provided in this document. The utilization of the capacitance between the two windings to form an AC resistance of the desired size and the connection of the two windings via diodes to the AC voltage sources cannot be found in the document.

Selbst wenn man daran denken würde, das aus der deutschen Offenlegungschrift 2749732 bekannte Relais in die aus der deutschen Auslegeschrift 1298626 bekannte Schaltung einzusetzen, so würde man bei Anschalten der Wechselspannung keine dauernde Durchflutung, sondern wegen der gleichrichtenden Wirkung der Diodenbrücke in Verbindung mit dem Verhalten der Kapazität zwischen den beiden Wicklungen bei Gleichstrom nur eine einmalige Aufladung dieser Kapazität und damit eine einmalige kurze Durchflutung erzielen.Even if you were to think of inserting the relay known from German Offenlegungsschrift 2749732 into the circuit known from German Auslegeschrift 1298626, you would not have constant flooding when switching on the AC voltage, but because of the rectifying effect of the diode bridge in connection with the behavior of the Capacitance between the two windings with direct current only achieve a single charge of this capacitance and thus a single short flood.

Nach einer bevorzugten Ausgestaltung der Erfindung ist zur Erzielung definierter Anspechspannung U vorgesehen, daß diese im wesentlichen folgender Formel genügt:

Figure imgb0001
worin

  • 0 die zum Ansprechen des Relais erforderliche Durchflutung,
  • w die Windungszahl einer Spule,
  • W die Kreisfrequenz der angelegten Wechselspannung U,
  • C die Kapazität zwischen den beiden Spulenwicklungen und
  • R der ohmsche Widerstand einer Spulenwicklung
According to a preferred embodiment of the invention, in order to achieve a defined response voltage U, it is essentially sufficient to use the following formula:
Figure imgb0001
wherein
  • 0 the flow required to respond to the relay,
  • w is the number of turns of a coil,
  • W is the angular frequency of the applied AC voltage U,
  • C the capacitance between the two coil windings and
  • R is the ohmic resistance of a coil winding

Bei dieser Näherungsformel, die der praktischen Anwendung genügt, ist die Spuleninduktivität unberücksichtigt, weil bei dieser Anordnung für die die Induktivität bestimmenden Spulenwicklungen lediglich ein pulsierender Gleichstrom wirksam ist. Auch ist der ohmsche Widerstand der Spulenwicklungen, im Verhältnis zu dem aus der kapazitiven Kopplung resultierenden, wesentlich größeren, in Serie liegenden kapazitiven Blindwiderstand praktisch vernachlässigbar. Die erforderliche Durchflutung θ ist eine für das jeweilige Magnetsystem bekannte Größe. Somit ergibt sich, daß die Ansprechspannung des Relais z.B. durch Erhöhen der Frequenz der Wechselspannung oder Vergrößern der Kapazität zwischen den Spulenwicklungen erniedrigt werden kann.The coil inductance is not taken into account in this approximation formula, which is sufficient for practical application, because in this arrangement only a pulsating direct current is effective for the coil windings that determine the inductance. The ohmic resistance of the coil windings is practically negligible in relation to the substantially larger series-connected capacitive reactance resulting from the capacitive coupling. The required flow θ is a known quantity for the respective magnet system. It follows that the response voltage of the relay can be reduced, for example, by increasing the frequency of the AC voltage or increasing the capacitance between the coil windings.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß die beiden Spulenwicklungen zweidrähtig gewickelt sind und als Kapazität die gemeinsame Wicklungskapazität wirksam ist. Bei einer solchen zweidrähtigen Spulenwicklung liegen die Anfänge und Enden beider Wicklungen jeweils nebeneinander. Man erzielt mit dieser Art der Wicklung wesentlich höhere Kapazitätswerte als mit Lagenwicklungen. Eine weitere Steigerung der Wicklungskapazität zweidrähtig gewickelter Spulenwicklungen erzielt man durch Verkleinerung der Drahtdurchmesser.In a further embodiment of the invention it can be provided that the two coil windings are wound with two wires and that the common winding capacitance is effective as the capacitance. With such a two-wire coil winding, the beginnings and ends of both windings lie side by side. With this type of winding, significantly higher capacitance values are achieved than with layer windings. A further increase in the winding capacity of two-wire wound coil windings is achieved by reducing the wire diameter.

Eine Weiterbildung der Erfindung besteht ferner in der Verwendung bei einem Magnetsystem, dessen elektromagnetischer Fluß von einem Dauermagnetfluß überlagert ist. Hierdurch erreicht man eine erhebliche Steigerung der Empfindlichkeit des Relais. Es ist damit möglich, Wechselspannungsrelais in Miniaturbauweise bei ebenso geringem Bedarf an Ansteuerenergie zu realisieren, wie dies bei den eingangs zitierten Gleichspannungsrelais möglich ist.A further development of the invention also consists in the use in a magnet system, the electromagnetic flux of which is superimposed by a permanent magnetic flux. This results in a significant increase in the sensitivity of the relay. It is thus possible to implement AC voltage relays in miniature design with the same low need for control energy as is possible with the DC voltage relays cited at the beginning.

Außerdem kann bei einem derartigen Dauermagnetsystem vorgesehen sein, daß ein Teil der Dauerflußkraft in Kontaktfedern des Relais speicherbar ist. Neben einer weiteren Steigerung der Ansprechempfindlichkeit des Relais eröffnet sich hierdurch die Möglichkeit, daß die Erregerleistung des Relais, im Rahmen der verfügbaren Dauerflußkraft, unabhängig von der Kontaktkraft bzw. der Zahl der zu betätigenden Kontaktfedern gemacht werden kann.In addition, it can be provided in such a permanent magnet system that part of the permanent flux can be stored in contact springs of the relay. In addition to a further increase in the sensitivity of the relay, this opens up the possibility that the excitation power of the relay can be made within the available continuous flux, regardless of the contact force or the number of contact springs to be actuated.

In weiterer Ausgestaltung der Erfindung kann zu den Wechselspannungsklemmen ein Uberspannungsschutzelement parallel geschaltet sein, bei dem es sich beispielsweise um einen Varistor oder eine bipolare Zenerdiode handelt, die in weiterer vorteilhafter Ausgestaltung mit den vier Dioden zu einer Baueinheit.zusammen geschaltet ist. Dadurch lässt sich mit schaltungstechnisch unaufwendigen Mitteln ein Schutz der Spulenwicklungen und gleichzeitig der Dioden gegen etwaige auftretende Spannungsstöße erzielen.In a further embodiment of the invention, an overvoltage protection element can be connected in parallel with the AC voltage terminals, which is, for example, a varistor or a bipolar zener diode, which in a further advantageous embodiment is connected together with the four diodes to form a structural unit. In this way, protection of the coil windings and, at the same time, of the diodes against any voltage surges that occur can be achieved using circuitry-free means.

Die Erfindung wird im folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Darin zeigen:

  • Fig. 1 einen Plan aus dem die Beschaltung der Spulenwicklungen des erfindungsgemäßen Relais ersichtlich ist;
  • Fig. 2 und Fig. 3 Schaltpläne, die die Stromflüsse bei unterschiedlicher Polarität der angelegten Wechselspannung zeigen; und
  • Fig. 4 die Zusammenschaltung einiger Schaltungselemente zu einem gemeinsamen Bauelement.
The invention is explained below with reference to an embodiment shown in the drawing tert. In it show:
  • Figure 1 is a plan from which the wiring of the coil windings of the relay according to the invention can be seen.
  • 2 and 3 are circuit diagrams showing the current flows with different polarity of the applied AC voltage; and
  • Fig. 4 shows the interconnection of some circuit elements to form a common component.

In den Figuren 1 bis 3 sind die Spulenwicklungen W1, W2 eines elektromagnetischen Relais dargestellt, das über Gleichrichterdioden D1, D2, D3, D4 an die Anschlüsse 5, 6 einer Wechselspannung U gelegt ist. Die beiden Spulenwicklungen W1, W2 sind galvanisch voneinander getrennt und zweidrähtig, also in einem Arbeitsgang und damit im gleichen Wicklungssinn gewickelt. An die nebeneinander liegenden Wicklungsanfänge 1, 3 sind erste Dioden D1, D3 mit ihren Kathoden und an die ebenfalls nebeneinander liegenden Wicklungsenden 2, 4 sind zweite Dioden D2, D4 mit ihren Anoden angeschlossen. Die den Spulenwicklungen W1, W2 abgewandten Anschlüsse der ersten und zweiten Dioden D1, D3 bzw. D2, D4 sind jeweils miteinander verbunden und an die beiden Anschlüsse 5, 6 der Wechselspannung U gelegt. Ein zwischen die Anschlüsse 5, 6 eingeschaltetesrspannungsbegrenzendes Element Z, beispielsweise eine bipolare Zenerdiode, schützt die Wicklung W1, W2 und die Dioden D1 bis D4 gegen Überspannungen.'Figur 4 zeigt die Zusammenschaltung der Zenerdiode Z mit den vier Dioden D1 bis D4 zu einem einheitlichen Bauelement.1 to 3 show the coil windings W1, W2 of an electromagnetic relay which is connected to the connections 5, 6 of an AC voltage U via rectifier diodes D1, D2, D3, D4. The two coil windings W1, W2 are electrically isolated from one another and two-wire, that is to say wound in one operation and thus in the same winding direction. First diodes D1, D3 with their cathodes are connected to the winding starts 1, 3 lying next to one another and second diodes D2, D4 with their anodes are connected to the winding ends 2, 4 also lying next to one another. The connections of the first and second diodes D1, D3 and D2, D4 facing away from the coil windings W1, W2 are each connected to one another and connected to the two connections 5, 6 of the AC voltage U. A voltage-limiting element Z connected between the connections 5, 6, for example a bipolar Zener diode, protects the winding W1, W2 and the diodes D1 to D4 against overvoltages Component.

Infolge der gewählten Beschaltung der Spulenwicklungen W1, W2 mit den Dioden D1, D2, D3, D4 fließt der Strom J, unabhängig von der Polarität der angelegten Wechselspannung U, stets in gleicher Richtung durch die beiden Spulen, während er sich in der zwischen beiden Wicklungen W1, W2 befindlichen Kapazität C umkehrt. Da es sich beim vorliegenden Ausführungsbeispiel um keine diskrete Kapazität sondern die durch die zweidrähtige Wicklung bedingte Wicklungskapazität handelt, ist diese in den Figuren gestrichelt eingezeichnet.As a result of the selected connection of the coil windings W1, W2 with the diodes D1, D2, D3, D4, the current J always flows through the same direction, regardless of the polarity of the AC voltage U applied two coils, while reversing in the capacitance C between the two windings W1, W2. Since the present exemplary embodiment is not a discrete capacitance but rather the winding capacitance caused by the two-wire winding, this is shown in dashed lines in the figures.

Bei der in Figur 2 gegebenen Polarität, positives Potential am Anschluß 5 und negatives am Anschluß 6, fließt der Erregerstrom J vom Pluspol über die erste Diode D1 zum Anfang 1 der Spulenwicklung W1, über die Spulenkapazität C zur Spulenwicklung W2 zum Ende 4 dieser Wicklung und von dort über die zweite Diode D4 zum Minuspol der Wechselspannung..Die Dioden D2 und D3 sind bei dieser Polarität der Wechselspannung U gesperrt. Erfolgt ein Wechsel in der Polarität der Spannung U, wie in-Fig. 3 gezeigt, so fließt der Erregerstrom J nun vom Anschluß 6 über die erste Diode D3 zum Anfang 3 der Spulenwicklung W2, die Spulenkapazität C, die Spulenwicklung W1 und die zweite Diode D2 am Spulenwicklungsende 2 zum Minuspol 5 der Wechselspannung U. In diesem Falle sind die Dioden D1 und D4 gesperrt. Während die Spulenwicklungen W1 und W2 stets in gleicher Richtung durchflossen werden, fließt über die beide Spulen koppelnde Wicklungskapazität ein Wechselstrom. Um für das Relais die gewünschte Ansprechspannung U zu erzielen, sind die Spulenkapazität C und die Windungszahl w einer jeden Spulenwicklung W1, W2 gemäß der vorerwähnten Formel gewählt.With the polarity given in Figure 2, positive potential at terminal 5 and negative at terminal 6, the excitation current J flows from the positive pole via the first diode D1 to the beginning 1 of the coil winding W1, via the coil capacitance C to the coil winding W2 to the end 4 of this winding and thence via the second diode D4 to the negative pole of the AC voltage. The diodes D2 and D3 are blocked at this polarity of the AC voltage U. If there is a change in the polarity of the voltage U, as in FIG. 3, the excitation current J now flows from the terminal 6 via the first diode D3 to the beginning 3 of the coil winding W2, the coil capacitance C, the coil winding W1 and the second diode D2 at the coil winding end 2 to the negative pole 5 of the AC voltage U. In this case the diodes D1 and D4 blocked. While the coil windings W1 and W2 always flow through in the same direction, an alternating current flows through the winding capacitance coupling the two coils. In order to achieve the desired response voltage U for the relay, the coil capacitance C and the number of turns w of each coil winding W1, W2 are selected in accordance with the aforementioned formula.

Die jeweils notwendige Durchflutung ist dabei für das jeweilige Magnetsystem bekannt. In der angegebenen Näherungsformel ist der ohmsche Spulenwiderstand vernachlässigbar, wenn er im Betrag wesentlich unter dem aus der Wicklungskapazität resultierenden Blindwiderstand liegt. Die Kapazitätswerte für nebeneinander geführte Spulendrähte sind ebenfalls bekannt, so daß sich die Wicklungskapazität einer zweidrähtig gewickelten Spule in guter Näherung berechnen läßt.The necessary flooding is known for the respective magnet system. In the approximation formula given, the ohmic coil resistance is negligible if its amount is significantly below the reactance resulting from the winding capacitance. The capacitance values for coil wires running next to one another are also known, so that the winding capacitance of a two-wire wound coil can be calculated in a good approximation.

Beispielsweise erhält man bei einem modernen Kleinrelais mit einer zweidrähtigen Spulenwicklung bei einer Windungszahl von 10000 Windungen eine Wicklungskapazität von 30 nF. Hierbei ergibt sich bei einer Dauererregung des Relais mit 220 V Wechselspannung eine Eigenerwärmung von etwa 10oC, so daß dieses Relais ebenso wie moderne gepolte Gleichspannungsrelais problemlos einsetzbar ist.For example, a modern small relay with a two-wire coil winding with a number of windings of 10,000 windings has a winding capacity of 30 nF. This results in a permanent excitation of the relay with 220 V alternating voltage, a self-heating of about 10 o C, so that this relay can be used as well as modern polarized DC relay.

Claims (8)

1. Mit Wechselspannung ansteuerbares elektromagnetisches Relais, dessen Spule (W1, W2) über jeweils ein Paar von Dioden (D1, D2; D3, D4) in entgegengesetzter Durchlaßrichtung derart an jede der beiden Wechselspannungsklemmen (5, 6) angeschlossen ist, daß die Spule unabhängig von der Polarität der Wechselspannung stets in gleicher Richtung durchflutet ist, mit einer den Erregerstrom begrenzenden Kapazität (C), dadurch gekennzeichnet, daß die Spule zwei galvanisch getrennte und kapazitiv gekoppelte Wicklungen ( W1, W2) aufweist, deren jede zwischen jeweils eines der Diodenparen (D1, D2; D3, D4) derart eingeschaltet ist, daß dievon beiden Wicklungen (W1, W2) erzeugten Durchflutungen in gleicher Richtung verlaufen.1. AC-controllable electromagnetic relay, the coil (W1, W2) via a pair of diodes (D1, D2; D3, D4) in the opposite direction to each of the two AC voltage terminals (5, 6) is connected so that the coil irrespective of the polarity of the alternating voltage is always flooded in the same direction, with a capacitance (C) limiting the excitation current, characterized in that the coil has two electrically isolated and capacitively coupled windings (W1, W2), each of which between one of the diode pairs (D1, D2; D3, D4) is switched on in such a way that the floodings generated by the two windings (W1, W2) run in the same direction. 2. Relais nach Anspruch 1, dadurch gekennzeichnet, daß die für das Ansprechen des Relais erforderliche Spannung U im wesentlichen folgender Formel genügt:
Figure imgb0002
worin θ die zum Ansprechen des Relais erforderliche Durchflutung, w die Windungszahl jeder Spulenwicklung (W1, W2), ω die Kreisfrequenz der angelegten Wechselspannung (U), C die Kapazität zwischen den beiden Spulenwicklungen, und R der ohmsche Widerstand einer Spulenwicklung (W1, W2) ist.
2. Relay according to claim 1, characterized in that the voltage U required for the response of the relay essentially satisfies the following formula:
Figure imgb0002
wherein θ the flow required to respond to the relay, w the number of turns of each coil winding (W1, W2), ω the angular frequency of the applied AC voltage ( U ), C the capacitance between the two coil windings, and R is the ohmic resistance of a coil winding (W1, W2).
3. Relais nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die beiden Wicklungen (W1, W2) zweidrähtig gewickelt sind und als Kapazität (C) die gemeinsame Wicklungskapazität wirksam ist.3. Relay according to claim 1 or 2, characterized in that the two windings (W1, W2) are wound in two wires and the common winding capacitance is effective as the capacitance (C). 4. Relais nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zu den Wechselspannungsklemmen (5, 6) ein Überspannungs- Schutzelement (Z) parallel geschaltet ist.4. Relay according to one of claims 1 to 3, characterized in that an overvoltage protection element (Z) is connected in parallel to the AC voltage terminals (5, 6). 5. Relais nach Anspruch 4, dadurch gekennzeichnet, daß das Überspannungs―Schutzelement aus einer bipolaren Zenerdiode (Z) besteht.5. Relay according to claim 4, characterized in that the overvoltage ― protective element consists of a bipolar Zener diode (Z). 6. Relais nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß da Überspannungs-Schutzelement (Z) mit den vier Dioden (D1; D4) zu einer Baueinheit zusammen geschaltet ist.6. Relay according to claim 4 or 5, characterized in that since overvoltage protection element (Z) with the four diodes (D1; D4) is connected together to form a structural unit. 7. Relais nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Verwendung bei einem Magnetsystem, dessen elektromagnetischer Fluß von einem Dauermagnetfluß überlagert ist.7. Relay according to one of claims 1 to 6, characterized by the use in a magnet system, the electromagnetic flux of which is superimposed by a permanent magnetic flux. 8. Relais nach Anspruch 7, dadurch gekennzeichnet, daß ein Teil der Dauerflußkraft in Kontaktfedern des Relais speicherbar ist.8. Relay according to claim 7, characterized in that a part of the permanent flux force can be stored in contact springs of the relay.
EP81104315A 1980-06-27 1981-06-04 Circuit arrangement to supply energising current to an electromagnetic relay Expired EP0042997B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104315T ATE7088T1 (en) 1980-06-27 1981-06-04 CIRCUIT ARRANGEMENT FOR POWERING AN ELECTROMAGNETIC RELAY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3024343 1980-06-27
DE3024343A DE3024343C2 (en) 1980-06-27 1980-06-27 Electromagnetic relay

Publications (3)

Publication Number Publication Date
EP0042997A2 true EP0042997A2 (en) 1982-01-06
EP0042997A3 EP0042997A3 (en) 1982-05-12
EP0042997B1 EP0042997B1 (en) 1984-04-11

Family

ID=6105750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104315A Expired EP0042997B1 (en) 1980-06-27 1981-06-04 Circuit arrangement to supply energising current to an electromagnetic relay

Country Status (9)

Country Link
US (1) US4369482A (en)
EP (1) EP0042997B1 (en)
JP (1) JPS5743333A (en)
AT (1) ATE7088T1 (en)
AU (1) AU539916B2 (en)
BR (1) BR8104074A (en)
CA (1) CA1148647A (en)
DE (2) DE3024343C2 (en)
ZA (1) ZA813973B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005147A1 (en) * 1986-02-14 1987-08-27 Cornelius Lungu Electrical component with inductive and capacitive properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258646A (en) * 1966-06-28 Fig. i prior art
US3582719A (en) * 1969-06-23 1971-06-01 Stearns Electric Corp Forcing circuit for inductors
DE2749732A1 (en) * 1977-11-07 1979-05-10 Sds Elektro Gmbh Electromagnetic relay with series capacitor - is wound with two wires, insulated from each other and forming capacitor through which winding is energised

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE905986C (en) * 1951-12-08 1954-03-08 Deutsche Telephonwerk Kabel Relay with only one winding that can be influenced by alternating current, preferably for telephone systems
DE1298626B (en) * 1965-09-01 1969-07-03 Siemens Ag DC relay for AC operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258646A (en) * 1966-06-28 Fig. i prior art
US3582719A (en) * 1969-06-23 1971-06-01 Stearns Electric Corp Forcing circuit for inductors
DE2749732A1 (en) * 1977-11-07 1979-05-10 Sds Elektro Gmbh Electromagnetic relay with series capacitor - is wound with two wires, insulated from each other and forming capacitor through which winding is energised

Also Published As

Publication number Publication date
ATE7088T1 (en) 1984-04-15
ZA813973B (en) 1982-06-30
CA1148647A (en) 1983-06-21
BR8104074A (en) 1982-03-16
AU539916B2 (en) 1984-10-25
US4369482A (en) 1983-01-18
EP0042997A3 (en) 1982-05-12
AU7200481A (en) 1982-01-07
JPS5743333A (en) 1982-03-11
DE3163058D1 (en) 1984-05-17
DE3024343A1 (en) 1982-01-21
EP0042997B1 (en) 1984-04-11
DE3024343C2 (en) 1986-12-11

Similar Documents

Publication Publication Date Title
DE3438818A1 (en) Fault current circuit breaker
DE3333768A1 (en) DEVICE FOR LIMITING AC FLOWS
DE3213728A1 (en) ENGINE STARTING
DE3689315T2 (en) Inductor device for use with ferroresonance controllers.
DE102019106485A1 (en) Weissach rectifier arrangement
DE1932379A1 (en) Current limiting device, preferably for short-circuit current limitation in energy transmission systems
DE2613423B2 (en) Electronic switchgear
DE2524367A1 (en) CIRCUIT FOR THE CONVERSION OF AC VOLTAGES INTO A DC VOLTAGE OF CONSTANT SIZE
DE69006655T2 (en) Generator for generating an electrical voltage.
EP0057910B1 (en) Circuit for the regulated supply to a user
EP0210524B1 (en) Control device for an ac load in series with a capacitor bank
DE1488072B2 (en) Control circuit for an electric stepper motor
DE1928914A1 (en) Stator circuits for AC motors
DE2526649B2 (en) Earth fault protection device
DE2856316C3 (en) Electronic tripping system for circuit breakers, in particular for residual current circuit breakers
DE2554825C3 (en) Circuit arrangement for generating an output voltage from a DC input voltage supplied by a DC voltage source as a function of a predetermined nominal voltage
EP0042997A2 (en) Circuit arrangement to supply energising current to an electromagnetic relay
DE2848883A1 (en) AC / DC POWER SUPPLY DEVICE
EP0381083A1 (en) Starting circuit for a high-pressure metal vapour discharge lamp connected to an AC source by a ballast inductor
EP0259845A2 (en) Protection against inverted polarity and AC for DC-operated electrical loads
DE2826325C2 (en) Arrangement for external excitation of an electrical machine
EP0314178B1 (en) Ignition circuit for high-pressure met2l vapour discharge lamps
DE1639597A1 (en) Power supply for a glow discharge vacuum pump
DE2613972A1 (en) Earth leakage mains circuit breaker - has sum current transformer with winding compensating capacitive leakage currents for single or polyphase circuits
AT374310B (en) CIRCUIT ARRANGEMENT FOR THE SUPPLY OF DC CONSUMERS FROM AN AC NETWORK

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811007

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATSUSHITA ELECTRIC WORKS, LTD.

Owner name: SDS-ELEKTRO GMBH

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 7088

Country of ref document: AT

Date of ref document: 19840415

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840502

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3163058

Country of ref document: DE

Date of ref document: 19840517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840529

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840530

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860617

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870630

Ref country code: CH

Effective date: 19870630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81104315.7

Effective date: 19880711