EP0041911A2 - Perfectionnements aux pompes à chaleur - Google Patents

Perfectionnements aux pompes à chaleur Download PDF

Info

Publication number
EP0041911A2
EP0041911A2 EP81420089A EP81420089A EP0041911A2 EP 0041911 A2 EP0041911 A2 EP 0041911A2 EP 81420089 A EP81420089 A EP 81420089A EP 81420089 A EP81420089 A EP 81420089A EP 0041911 A2 EP0041911 A2 EP 0041911A2
Authority
EP
European Patent Office
Prior art keywords
group
motor
compressor
evaporators
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81420089A
Other languages
German (de)
English (en)
Other versions
EP0041911B1 (fr
EP0041911A3 (en
Inventor
Robert Meric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helpac Applications Thermodynamiques Et Solaires SA
Original Assignee
Helpac Applications Thermodynamiques Et Solaires SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helpac Applications Thermodynamiques Et Solaires SA filed Critical Helpac Applications Thermodynamiques Et Solaires SA
Priority to AT81420089T priority Critical patent/ATE10028T1/de
Publication of EP0041911A2 publication Critical patent/EP0041911A2/fr
Publication of EP0041911A3 publication Critical patent/EP0041911A3/fr
Application granted granted Critical
Publication of EP0041911B1 publication Critical patent/EP0041911B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0684Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans the fans allowing rotation in reverse direction

Definitions

  • heat pumps are called reverse operating heat pumps, that is to say to which mechanical power is supplied to obtain heat.
  • these machines operate according to the Carnot cycle, their action is twofold, namely that on the one hand they transform mechanical power into heat, but on the other hand they take heat from a cold source for the transfer to a hot source, that is, they raise the temperature level of the heat thus transferred, which explains the name they were given.
  • the heat taken from the cold source is free, if the temperature difference between it and the hot source is not too high and if the mechanical efficiency of the machine considered is good, we can thus arrive at have at the hot source a quantity of heat much greater than that which would result from the direct transformation into thermal energy of the mechanical energy applied to this machine.
  • water from a river or a lake it is advantageously used to constitute the external fluid for supplying calories to the cold source, but this is rare in practice.
  • the usual heat pumps are therefore generally designed to use atmospheric air for this purpose.
  • the cold source of a conventional heat pump is in practice constituted by a heat exchanger or "evaporator" in which a suitable heat transfer fluid (freon in general) evaporates by absorbing the heat of the external fluid used (water or air) which obviously cools down.
  • a suitable heat transfer fluid frreon in general
  • this cooling can lead to a phenomenon of condensation.
  • the surface of the evaporator exposed to the air remains above 0 ° C, the water thus condensed flows and can be removed without difficulty. But below this limit, there is icing.
  • frost which isolates it by considerably reducing the exchange coefficient and consequently lowering the vaporization temperature of the heat transfer fluid, which in turn decreases the performance of the machine.
  • frost more or less obstructs the passage of the air flow, thus acting in the same unfavorable direction as the insulation of the evaporator. It is therefore essential to carry out a defrosting operation from time to time, taking care that the energy expended does not reduce the final energy balance too significantly.
  • the invention aims to remedy these drawbacks and to make it possible to reduce icing while ensuring the melting of residual frost, without additional energy consumption, or at the very least by reducing such consumption as much as possible.
  • the pump comprises two elementary pumps, the evaporators of which are arranged in series on the same air stream, while on the one hand means are provided for circulating this air at will in one direction or in the other, on the other hand, means which, when the evaporator which is located downstream on the air stream is covered with frost or ice, stop the corresponding motor-compressor group, reverse the direction of flow of said draft, then, when the evaporator of the group thus stopped is defrosted, restart this group without changing the direction of air circulation.
  • the double heat pump shown in the drawing comprises two motor-compressor groups 1a, 1b each constituted by a compressor proper 2a, 2b and by an electric drive motor 3a, 3b, controlled by an appropriate contactor 4a, 4b with actuation electric inserted on a supply line 5a, 5b, for example three-phase.
  • Each group expels the heat transfer fluid, which we will assume to be a freon to fix the ideas, by a pipe 6a, 6b, in one of the elements 7a, 7b of a double condenser 8 forming a heat exchanger between the freon and the water which arrives through the line 9 to exit through another line 10 after having absorbed the heat of condensation from the two elements 7a, 7b.
  • these two elements consist of coils arranged inside the same water chamber 11. Means must be provided so that these two coils or others are in the same conditions heat exchange with water, which we very roughly schematized by arranging the outlet of the channeling of the room. In practice, it is possible to use flat coils with overlapping turns, or else to provide a large number of deflecting partitions so that the water circulates in multiple zigzags in contact with the two elements such as 7a, 7b.
  • the liquid freon under pressure leaving each of the elements 7a, 7b is brought by a line 12a, 12b to a pressure reducer 13a, 13b from which it arrives under reduced pressure by a line 14a, 14b to an evaporator 15a, 15b arranged so that a stream of reheating air can pass through it.
  • evaporators can for example be produced for this purpose in the form of a flat leaf or a tubular bundle joining an inlet body to an outlet body.
  • the two evaporators 15, 15b are arranged at one and at the other end of a sort of tubular box 16 inside which is provided a reversible fan 17 controlled by a motor 18 supplied by a line 19, by three-phase example, on which is interposed an electrically operated inverter 20.
  • box 16 must be of circular section in the plane of the fan 17, but nothing prevents this section from gradually passing to a square or rectangular shape towards each end to facilitate the production of the evaporators.
  • the freon vaporized in the evaporators 15a, 15b is brought back to the compressors 2a, 2b by individual pipes 21a, 21b.
  • the evaporators 15a, 15b are associated with individual icing detectors 22a, 22b established in the form of electrical transducers, of known type, which send their signals by lines 23a, 23b to a microprocessor 24.
  • the latter has three outputs, namely a first 25 which leads to the inverter 20 and two others 26a, 26b connected to the respective contactors 4a, and 4b.
  • the two groups 1a and 1b operate simultaneously, the fan 17 rotating in any direction, for example to determine a current of air following the arrows 27.
  • the outside air causing a temperature tl passes through the evaporator 15a to which it gives up heat while cooling itself; it leaves it at a temperature t2 and, if we neglect the heat given off by the fan motor 17-18, it arrives at this same temperature at the evaporator 15b.
  • the outlet temperature t3 is significantly higher than 0 ° C and any risk of icing is excluded.
  • the machine then operates as a double pump with the small difference that the half which corresponds to compressor 2b works with an evaporator temperature slightly lower than that of the other, which implies a slightly lower coefficient of performance. But if the air flow passing through the evaporators 15a, 15b, has a sufficient flow, this difference is practically negligible.
  • tl While remaining above 0 ° C, is below a certain limit (for example 5 ° C), t3 lowers below 0 ° C and therefore, unless the air is particularly dry, the risk of icing appears for evaporator 15b. Its heat exchange coefficient then tends to decrease, the resistance it opposes to the passage of air to increase and the performance coefficient of the machine to decrease. But as soon as the icing layer has reached a notable thickness, the detector 22b operates and alerts the microprocessor 24. The latter is programmed so as to then reverse the fan 17-18 by the inverter 20 and to stop the group lb by contactor 4b.
  • a certain limit for example 5 ° C
  • the detector 22b As soon as the detector 22b has detected the disappearance of the frost, it sends a signal to the microprocessor 24 which restarts the group lb without re-inverting the fan 17-18. We thus return roughly to the initial operating conditions, with the difference however that the air flow is reversed and that it is therefore the evaporator 15a which receives the air at temperature t2 and which carries the risk. icing.
  • the detector 22a comes into play and it alerts the microprocessor which stops the group la and reverses the fan 17-18. There is again defrosting and when this is finished, the microprocessor 24 restarts the group 1a, thus bringing the whole assembly back exactly to the initial conditions without any exception.
  • the machine therefore operates without stopping, without the intervention of additional energy to ensure defrosting, with only relatively short periods during which one of the groups is stopped, the power being momentarily reduced by half.
  • the microprocessor 24 can be programmed to initiate such defrosting operations itself and to monitor their execution thanks to the detectors 22a, 22b which continuously send them their information.
  • Fig. 2 indicates in partial view an embodiment in which two separate condensers 8a, 8b are used, each comprising an element or coil 7a, 7b traversed by the freon and a water chamber lla, llb, these two chambers being mounted in parallel between the pipes 9 and 10, but with the interposition of electromagnetic valves 29a, 29b whose control inputs are connected to the output lines 26a, 26b of the microprocessor 24.
  • the arrangement is such that when a group, such as for example that Ib (fig. 1), is stopped by the microprocessor 24, the corresponding valve, such as 29b, is closed. It follows that during the operation of a single group, only the corresponding elementary condenser intervenes (ie 8a in the aforementioned example).
  • the outlet temperature is lower than during the operation of the two groups with half-flow in each elementary condenser.
  • the coefficient of performance of the group alone in operation (group la) is thus improved, which partially compensates for the stoppage of the other group (lb).
  • the invention is applicable to the case where the external cold source fluid consists of water at a temperature low enough that there is a risk of ice forming on the evaporators. It also applies to pumps which do not use the phenomenon of liquefaction and evaporation of the internal heat transfer fluid by implementing the compression and expansion of a non-liquefiable gas at the temperatures in question at the hot source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Central Heating Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Reciprocating Pumps (AREA)
  • Defrosting Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

La pompe comprend deux pompes élémentaires avec moto-compreseur (1a, 1b), condenseur (7a, 7b) disposé dans la chambre à eau (11) à chauffer (source chaude) et évaporaateur (15a, 15b) situé dans le courant d'air extérieur d'un ventilateur réversible commun (17-18) formant source froide. Aux évaporateurs sont associés des détecteurs de givrage (22a, 22b) qui informent un micro-processeur (24). Quand l'évaporateur (15b) en aval sur le courant d'air (27) givre, (24) intervient, inverse (17-18) (sens de courant d'air 28) et arrête (1b) de façon que (15b) soit dégivré par l'air extérieur. Cela fait (1b) est remis en marche, et ainsi de suite quand (15a) givre à son tour. Si (15a) et (15b) givrent ensemble, (24) arrête (1a) et (1b) et alerte ou met en marche des moyens de dégivrage auxiliaires.

Description

  • On sait qu'on appelle pompes à chaleur des machines thermiques fonctionnant de façon inversée, c'est-à-dire auxquelles on fournit de la puissance mécanique pour obtenir de la chaleur. En fait, comme ces machines fonctionnent suivant le cycle de Carnot, leur action est double, savoir que d'une part elles transforment de la puissance mécanique en chaleur, mais que d'autre part elles prélèvent de la chaleur à une source froide pour la transférer à une source chaude, c'est-à-dire qu'elles élèvent le niveau de température de la chaleur ainsi transférée, ce qui explique le nom qu'on leur a donné. Si la chaleur prélevée à la source froide est gratuite, si l'écart de température entre celle-ci et la source chaude n'est pas trop élevé et si le rendement mécanique de la machine considérée est bon, l'on peut ainsi arriver à disposer à la source chaude d'une quantité de chaleur bien supérieure à celle qui résulterait de la transformation directe en énergie thermique de l'énergie mécanique appliquée à cette machine. Lorsqu'on peut disposer de l'eau d'une rivière ou d'un lac, on l'utilise avantageusement pour constituer le fluide extérieur d'apport de calories à la source froide, mais cela est rare en pratique. Aussi les pompes à chaleur usuelles sont-elles en général prévues pour employer à cet effet l'air atmosphérique.
  • Toutefois cela pose un problème parfois gênant. La source froide d'une pompe à chaleur usuelle est en pratique constituée par un échangeur de chaleur ou "évaporateur" dans lequel un fluide caloporteur approprié (fréon en général) s'évapore en absorbant la chaleur du fluide extérieur utilisé (eau ou air) qui évidemment se refroidit au passage. Dans le cas où le fluide extérieur de source froide est constitué par de l'air ambiant, ce refroidissement peut entraîner un phénomène de condensation. Aussi longtemps que la surface de l'évaporateur exposée à l'air reste supérieure à 0°C, l'eau ainsi condensée s'écoule et peut être évacuée sans difficulté. Mais au-dessous de cette limite, il y a givrage. La surface en question se recouvre d'une couche adhérente de givre qui l'isole en réduisant considérablement le coefficient d'échange et en abaissant par conséquent la température de vaporisation du fluide caloporteur, ce qui diminue à son tour les performances de la machine. Par ailleurs le givre gêne plus ou moins le passage du courant d'air, en agissant ainsi dans le même sens défavorable que l'isolation de l'évaporateur. Il est donc indispensable de procéder de temps à autre à une opération de dégivrage, en prenant soin à ce que l'énergie ainsi dépensée ne diminue pas de manière trop sensible le bilan énergétique final.
  • Divers moyens ont été proposés à cet effet, mais ils n'ont pas donné entière satisfaction.
  • L'invention vise à remédier à ces inconvénients et à permettre de réduire le givrage tout en assurant la fusion du givre résiduel, sans consommation d'énergie additionnelle, ou à tout le moins en réduisant au maximum une telle consommation.
  • Conformément à l'invention, la pompe comprend deux pompes élémentaires dont les évaporateurs sont disposés en série sur un même courant d'air, tandis qu'il est prévu d'une part des moyens pour faire circuler cet air à volonté dans un sens ou dans l'autre, d'autre part des moyens qui, lorsque l'évaporateur qui se trouve situé en aval sur le courant d'air est recouvert de givre ou glace, arrêtent le groupe moto-compresseur correspondant, inversent le sens de circulation dudit courant d'air, puis, lorsque l'évaporateur du groupe ainsi arrêté est dégivré, remettent en marche ce groupe sans alors modifier le sens de circulation de l'air.
  • Le dessin annexé, donné à titre d'exemple, permettra de mieux comprendre l'invention, les caractéristiques qu'elle présente et les avantages qu'elle est susceptible de procurer :
    • Fig. 1 est une vue générale schématique d'une pompe à chaleur double suivant l'invention.
    • Fig. 2 est une vue partielle indiquant une autre forme d'exécution.
  • La pompe à chaleur double représentée sur le dessin comprend deux groupes moto-compresseurs la, lb constitués chacun par un compreseur proprement dit 2a, 2b et par un moteur électrique d'entraînement 3a, 3b, commandé par un contacteur approprié 4a, 4b à actionnement électrique inséré sur une ligne d'alimentation 5a, 5b, par exemple triphasée. Chaque groupe refoule le fluide caloporteur, qu'on supposera être un fréon pour fixer les idées, par une canalisation 6a, 6b, dans l'un des éléments 7a, 7b d'un condenseur double 8 formant échangeur de chaleur entre le fréon et de l'eau qui arrive par la canalisation 9 pour sortir par une autre canalisation 10 après avoir absorbé la chaleur de condensation à partir des deux éléments 7a, 7b. Dans l'exemple représenté, on a supposé que ces deux éléments étaient constitués par des serpentins disposés à l'intérieur d'une même chambre à eau 11. Des moyens doivent être prévus pour que ces deux serpentins ou autres se trouvent dans les mêmes conditions d'échange thermique avec l'eau, ce qu'on a très grossièrement schématisé en disposant le débouché de la canalisation de la chambre. Dans la pratique on peut utiliser des serpentins plats à spires imbriquées, ou bien prévoir un grand nombre de cloisons déflectrices pour que l'eau circule en zigzags multiples au contact des deux éléments tels que 7a, 7b.
  • Le fréon liquide sous pression sortant de chacun des éléments 7a, 7b est amené par une canalisation 12a, 12b à un mano-détendeur 13a, 13b à partir duquel il parvient sous pression réduite par une canalisation 14a, 14b à un évaporateur 15a, 15b agencé de manière à pouvoir être traversé par un courant d'air de réchauffage. Chacun de ces évaporateurs peut par exemple être réalisé à cet effet sous la forme d'un serpetin plat ou d'un faisceau tubulaire réunissant un corps d'entrée à un corps de sortie.
  • Les deux évaporateurs 15, 15b sont disposés à l'une et à l'autre extrémité d'une sorte de caisson tubulaire 16 à l'intérieur duquel est prévu un ventilateur réversible 17 comandé par un moteur 18 alimenté par une ligne 19, par exemple triphasée, sur laquelle est interposé un inverseur 20 à actionnement électrique.
  • Bien entendu le caisson 16 doit être à section circulaire dans le plan du ventilateur 17, mais rien n'empêche que cette section ne passe progressivement a une forme carrée ou rectangulaire vers chaque extrémité pour faciliter la réalisation des évaporateurs.
  • Le fréon vaporisé dans les évaporateurs 15a, 15b est ramené aux compresseurs 2a, 2b par des canalisations individuelles 21a, 21b.
  • Aux évaporateurs 15a, 15b sont associés des détecteurs individuels de givrage 22a, 22b établis sous forme de transducteurs électriques, de type connu, qui envoient leurs signaux par des lignes 23a, 23b à un micro-processeur 24. Ce dernier comporte trois sorties, savoir une première 25 qui aboutit à l'inverseur 20 et deux autres 26a, 26b reliées aux contacteurs respectifs 4a, et 4b.
  • Le fonctionnement est le suivant :
  • En marche normale, c'est-à-dire en l'absence de givrage, les deux groupes 1a et 1b fonctionnent simultanément, le ventilateur 17 tournant dans un sens quelconque, par exemple pour déterminer un courant d'air suivant les flèches 27. L'air extérieur entraînant une température tl traverse l'évaporateur 15a auquel il cède de la chaleur en se refroidisant lui-même ; il sort de celui-ci à une température t2 et, si l'on néglige la chaleur dégagée par le moto-ventilateur 17-18, il arrive à cette même température à l'évaporateur 15b.
  • Il réchauffe également celui-ci en se refroidissant et il sort à l'extérieur à une température t3. Pendant ce temps la chaleur de condensation du fréon dans les éléments 7a, 7b du condensateur 8 réchauffe l'eau de circulation qui sort par 10 à la température désirée pour l'application envisagée, chauffage de locaux par exemple.
  • Si la température d'entrée tl est suffisante, celle de sortie t3 est nettement supérieure à 0°C et tout risque de givrage est exclu. La machine fonctionne alors comme une pompe double à cette petite différence près que la moitié qui correspond au compresseur 2b travaille avec une température d'évaporateur légèrement inférieure à celle de l'autre, ce qui implique un coefficient de performance un peu moindre. Mais si le courant d'air qui traverse les évaporateurs 15a, 15b, comporte un débit suffisant, cette différence est pratiquement négligeable.
  • Lorsque tl, tout en restant supérieure à 0°C, est inférieure à une certaine limite (par exemple 5°C), t3 s'abaisse au-dessous de 0°C et par conséquent, à moins que l'air ne soit particulièrement sec, le risque de givrage apparaît pour l'évaporateur 15b. Son coefficient d'échange de chaleur tend alors à diminuer, la résistance qu'il oppose au passage de l'air à augmenter et le coefficent de performance de la machine à s'abaisser. Mais aussitôt que la couche de givrage a atteint une épaisseur notable, le détecteur 22b fonctionne et alerte le micro-processeur 24. Celui-ci est programmé de manière à inverser alors le ventilateur 17-18 par l'inverseur 20 et à arrêter le groupe lb par le contacteur 4b.
  • On passe alors à une phase de dégivrage au cours de laquelle le groupe la fonctionne seul, tandis que l'air circule dans le caisson 16 suivant les flèches en pointillé 28. Cet air entre alors à la température extérieure tl, soit par exemple 4°C ; il traverse l'évaporateur 15b, alors au repos, sans céder de la chaleur au fluide caloporteur qui n'y circule plus et en faisant simplement fondre progressivement la couche de givre, ce qui n'abaisse que faiblement sa température. Il arrive ainsi à l'évaporateur du fréon et il sort à une température encore supérieure à 0°C (par exemple à 1°C), sans par conséquent provoquer la formation de givre.
  • Dès que le détecteur 22b a détecté la disparition du givre, il envoie un signal au micro-processeur 24 qui remet en marche le groupe lb sans ré-inverser le ventilateur 17-18. On revient ainsi à peu près aux conditions initales de fonctionnement, avec cette différence toutefois que le courant d'air est inversé et que c'est par conséquent l'évapo_ rateur 15a qui reçoit l'air à la température t2 et qui comporte le risque de givrage.
  • Quand ce risque se réalise, le détecteur 22a entre en jeu et il alerte le microprocesseur qui arrête le groupe la et inverse le ventilateur 17-18. Il y a à nouveau dégivrage et lorsque celui-ci est terminé, le micro-processeur 24 remet en marche le groupe la en ramenant ainsi tout l'ensemble exactement aux conditions initales sans aucune exception.
  • La machine fontionne donc alors sans arrêt, sans intervention d'une énergie additionnelle pour assurer le dégivrage, avec seulement des périodes relativement courtes pendant lesquelles l'un des groupes est à l'arrêt, la puissance étant momentanément réduite de moitié.
  • Si la température extérieure tl continue à diminuer, la durée des phases de dégivrage augmente et il arrive un moment où l'évaporateur qui se trouve seul en action pendant l'une de celles-ci givre avant que l'autre ne soit complètement dégivré. En pareil cas les deux détecteurs 22a et 22b envoient simultanément un signal de givrage au micro-processeur 24. Celui-ci répond en arrêtant les deux groupes et l'on peut alors mettre en état de fonctionnement un système approprié de dégivrage. En variante le micro-processeur 24 peut être programmé pour déclencher lui-même de telles opérations de dégivrage et pour en surveiller l'exécution grâce aux détecteurs 22a, 22b qui lui envoient leur information en permanence.
  • Fig. 2 indique en vue partielle une forme d'exécution dans laquelle on utilise deux condenseurs séparés 8a, 8b comportant chacun un élément ou serpentin 7a, 7b traversé par le fréon et une chambre à eau lla, llb, ces deux chambres étant montées en parallèles entre les canalisations 9 et 10, mais avec interposition de vannes électromagnétiques 29a, 29b dont les entrées de commande sont reliées aux lignes de sorties 26a, 26b du micro-processeur 24. L'agencement est tel que lorsqu'un groupe, tel par exemple que Ib (fig. 1), est arrêté par le micro-processeur 24, la vanne correspondante, telle que 29b, soit fermée. Il en résulte que lors du fonctionnement d'un groupe unique, seul intervient le condenseur élémentaire correspondant (soit 8a dans l'exemple précité). Pour le débit d'eau traversant la chambre lla de ce condenseur, la température de sortie est plus basse que lors du fonctionnement des deux groupes avec demi-débit dans chaque condenseur élémentaire. Le coefficient de performance du groupe seul en fonctionnement (groupe la) est ainsi amélioré, ce qui compense en partie l'arrêt de l'autre groupe (lb).
  • En variante on pourrait agencer les choses de façon que lorsqu'un groupe fonctionne seul le condenseur correspondant continue à ne recevoir que la moitié du débit d'eau correspondant au fonctionnement des deux groupes. On pourrait par exemple remplacer les vannes 29a, 29b par deux pompes de circulation individuelles commandées par les lignes 26a, 26b, des clapets anti-retour empêchant le condenseur qui correspond à la pompe arrêtée de fonctionner comme dérivation court- circuitant l'autre.
  • Il doit d'ailleurs être entendu que la description qui précède n'a été donnée qu'à titre d'exemple et qu'elle ne limite nullement le domaine de l'invention dont on se sortirait pas en remplaçant les détails d'exécution décrits par tous autres équivalents. C'est ainsi, par exemple, que l'invention est applicable au cas où le fluide extérieur de source froide est constitué par de l'eau à une température assez basse pour qu'il risque de se former de la glace sur les évaporateurs. Elle s'applique aussi aux pompes qui n'utilisent pas le phénomène de liquéfaction et d'évaporation du fluide caloporteur intérieur en mettant en oeuvre la compression et la détente d'un gaz non liquéfiable aux températures en cause à la source chaude.

Claims (4)

1. Pompe à chaleur, caractérisée en ce qu'elle comprend en combinaison les éléments suivants dont certains au moins sont connus soit à l'état isolé, soit dans des combinaisons différentes de celle ci-après :
- deux groupes moto-compresseurs (la, lb) à fluide caloporteur liquéfiable susceptibles d'être commandés indépendamment l'un de l'autre ;
- deux évaporateurs (15a, 15b) respectivement associés de façon individuelle au compresseur (2a, 2b) de chaque groupe (la, Ib) pour constituer la source froide d'une pompe à chaleur élémentaire correspondante ;
- une canalisation (16) dans laquelle ces deux évaporateurs (15a, 15b) sont disposés en série de façon à pouvoir être traversés en échange de chaleur par un même courant d'un fluide extérieur de réchauffage tel que l'air, susceptible de renfermer de l'humidité ;
- un moto-ventilateur réversible (17-18) interposé sur ladite canalisation (16) pour y assurer la circulation du fluide de réchauffage dans un sens ou dans l'autre ;
- deux condenseurs (7a, 7b) respectivement associés de façon individuelle au compresseur (2a, 2b) de chaque groupe (la Ib) pour constituer la source chaude de la pompe à chaleur élémentaire correspondante ;
- des moyens d'échange pour refroidir ces deux condenseurs (7a, 7b) à l'aide d'un fluide extérieur en vue de l'utilisation de la chaleur évacuée par celui-ci ;
- des moyens (22a, 22b) pour déceler individuellement le givrage de l'un et de l'autre des deux évaporateurs (15a, 15b) ;
- et des moyens de commande (24, 4a, 4b,) placés sous le contrôle des précédents (22a, 22b) et qui agissent de façon telle qu'en marche normale les deux goupes moto-compresseurs (la, Ib) fonctionnent simultanément, mais que lorsque le givrage a été décelé sur l'évaporateur (15a, 15b) qui se trouve alors situé en aval sur le courant de fluide de réchauffage, ils arrêtent le groupe (la, Ib) correspondant, inversent le moto-ventilateur (17,18), puis, quand l'évaporateur du groupe ainsi arrêté a été débarrasé du givre, remettent en marche ce groupe sans arrêter l'autre et sans inverser à nouveau le moto-ventilateur (17-18).
2. Pompe à chaleur suivant la renvendication 1, caractérisée en ce que les deux condenseurs respectivement associés au compresseur (2a, 2b) de chaque groupe (la, lb) sont combinés en un appareil unique comprenant deux éléments individuels (7a, 7b) traversés par les fluides caloporteurs respectifs, et une chambre commune (11) dans laquelle ces éléments (7a, 7b) sont disposés et à travers laquelle circule le fluide extérieur de refroidissement, des moyens étant prévus pour que celui-ci refroidisse les deux éléments susbtantiellement dans les mêmes conditions.
3. Pompe à chaleur suivant la revendication 1, caractérisée en ce que les moyens de commande (24, 4a, 4b) sont établis de façon telle que dans le cas où les deux évaporateurs (15a, 15b) sont tous deux simultanément givrés, ils arrêtent les deux groupes (la, Ib) et signalent l'incident.
4. Pompe à chaleur suivant la revendication 1, caractérisée en ce que les moyens de commande (24, 4a, 4b ) sont établis de façon telle que dans le cas où les deux évaporateurs (15a, 15b) sont tous deux givrés simultanément, ils arrêtent les deux groupes (la, lb), mettent en marche des moyens de dégivrage, puis lorsque ce dégivrage est terminé, arrêtent ces dispositifs et remettent en marche les deux groupes (la, lb) simultanément.
EP81420089A 1980-06-06 1981-06-04 Perfectionnements aux pompes à chaleur Expired EP0041911B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81420089T ATE10028T1 (de) 1980-06-06 1981-06-04 Waermepumpen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8013026 1980-06-06
FR8013026A FR2484065A1 (fr) 1980-06-06 1980-06-06 Perfectionnements aux pompes a chaleur

Publications (3)

Publication Number Publication Date
EP0041911A2 true EP0041911A2 (fr) 1981-12-16
EP0041911A3 EP0041911A3 (en) 1982-12-08
EP0041911B1 EP0041911B1 (fr) 1984-10-24

Family

ID=9242988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81420089A Expired EP0041911B1 (fr) 1980-06-06 1981-06-04 Perfectionnements aux pompes à chaleur

Country Status (4)

Country Link
EP (1) EP0041911B1 (fr)
AT (1) ATE10028T1 (fr)
DE (1) DE3166799D1 (fr)
FR (1) FR2484065A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0104306A1 (fr) * 1982-09-28 1984-04-04 Siemens Aktiengesellschaft Österreich Pompe à chaleur
WO1986000977A1 (fr) * 1984-07-24 1986-02-13 Conry Ronald D Systeme de refrigeration modulaire
GB2183320A (en) * 1985-11-08 1987-06-03 Gossler Ewald Method and device for cooling gases
DE102006024871B4 (de) * 2006-05-24 2019-08-08 ait-deutschland GmbH Verfahren zum Abtauen des Verdampfers eines Wärmepumpenheizsystems

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR792390A (fr) * 1935-07-12 1935-12-30 Delas Mode de chauffage et de réfrigération des locaux au moyen de pompes de chaleur
CH182171A (de) * 1935-06-15 1936-01-31 Sulzer Ag Luftkühler.
US2062054A (en) * 1935-04-26 1936-11-24 Westinghouse Electric & Mfg Co Air conditioning apparatus
FR808335A (fr) * 1935-06-18 1937-02-03 Thomson Houston Comp Francaise Systèmes de
US2336549A (en) * 1941-11-28 1943-12-14 Clemeral Motors Corp Refrigerating apparatus
US2522484A (en) * 1948-10-04 1950-09-12 Trane Co Method of and apparatus for conditioning air
US2692481A (en) * 1951-03-16 1954-10-26 Gen Motors Corp Dual evaporator air cooling apparatus
US2763132A (en) * 1953-08-31 1956-09-18 Lawrence S Jue Dehumidifying apparatus
DE2612997A1 (de) * 1975-03-27 1976-10-07 Electricite & Isolation Elise Verfahren zum aufheizen oder abkuehlen eines raumes unter anwendung eines thermodynamischen kreisprozesses und vorrichtung zur durchfuehrung des verfahrens
FR2305699A1 (fr) * 1975-03-28 1976-10-22 Aznavorian Arachin Perfectionnement aux installations susceptibles de fonctionner en pompe de chaleur
FR2328163A1 (fr) * 1975-10-16 1977-05-13 Chauffe Cie Gle Perfectionnements aux dispositifs de chauffage des locaux par l'utilisation de pompes a chaleur
FR2378482A1 (fr) * 1977-02-01 1978-08-25 Electrolux Ab Procede et dispositif de degivrage d'un meuble-presentoir
EP0027604A2 (fr) * 1979-10-22 1981-04-29 Carrier Corporation Système de réfrigération à deux circuits de réfrigération

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698524A (en) * 1949-04-14 1955-01-04 Rygard Sune Ossian Heat transfer between two media according to the carnot principle
FR2305694A1 (fr) * 1975-03-27 1976-10-22 Villaume Michel Procede et dispositif utilisant des machines a cycle thermodynamique pour le chauffage ou la refrigeration d'un local

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2062054A (en) * 1935-04-26 1936-11-24 Westinghouse Electric & Mfg Co Air conditioning apparatus
CH182171A (de) * 1935-06-15 1936-01-31 Sulzer Ag Luftkühler.
FR808335A (fr) * 1935-06-18 1937-02-03 Thomson Houston Comp Francaise Systèmes de
FR792390A (fr) * 1935-07-12 1935-12-30 Delas Mode de chauffage et de réfrigération des locaux au moyen de pompes de chaleur
US2336549A (en) * 1941-11-28 1943-12-14 Clemeral Motors Corp Refrigerating apparatus
US2522484A (en) * 1948-10-04 1950-09-12 Trane Co Method of and apparatus for conditioning air
US2692481A (en) * 1951-03-16 1954-10-26 Gen Motors Corp Dual evaporator air cooling apparatus
US2763132A (en) * 1953-08-31 1956-09-18 Lawrence S Jue Dehumidifying apparatus
DE2612997A1 (de) * 1975-03-27 1976-10-07 Electricite & Isolation Elise Verfahren zum aufheizen oder abkuehlen eines raumes unter anwendung eines thermodynamischen kreisprozesses und vorrichtung zur durchfuehrung des verfahrens
FR2305699A1 (fr) * 1975-03-28 1976-10-22 Aznavorian Arachin Perfectionnement aux installations susceptibles de fonctionner en pompe de chaleur
FR2328163A1 (fr) * 1975-10-16 1977-05-13 Chauffe Cie Gle Perfectionnements aux dispositifs de chauffage des locaux par l'utilisation de pompes a chaleur
FR2378482A1 (fr) * 1977-02-01 1978-08-25 Electrolux Ab Procede et dispositif de degivrage d'un meuble-presentoir
EP0027604A2 (fr) * 1979-10-22 1981-04-29 Carrier Corporation Système de réfrigération à deux circuits de réfrigération

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0104306A1 (fr) * 1982-09-28 1984-04-04 Siemens Aktiengesellschaft Österreich Pompe à chaleur
WO1986000977A1 (fr) * 1984-07-24 1986-02-13 Conry Ronald D Systeme de refrigeration modulaire
GB2183320A (en) * 1985-11-08 1987-06-03 Gossler Ewald Method and device for cooling gases
GB2183320B (en) * 1985-11-08 1990-07-11 Ewald Gossler Method and device for compression of gases
DE102006024871B4 (de) * 2006-05-24 2019-08-08 ait-deutschland GmbH Verfahren zum Abtauen des Verdampfers eines Wärmepumpenheizsystems

Also Published As

Publication number Publication date
FR2484065A1 (fr) 1981-12-11
ATE10028T1 (de) 1984-11-15
EP0041911B1 (fr) 1984-10-24
DE3166799D1 (en) 1984-11-29
EP0041911A3 (en) 1982-12-08
FR2484065B1 (fr) 1984-02-03

Similar Documents

Publication Publication Date Title
EP0044248A2 (fr) Ensemble frigorifique à compartiments à températures différentes
EP0730719A1 (fr) Echangeur frigorifique, procede de commande d'un tel echangeur et installation de refrigeration comportant un tel echangeur
FR2485169A1 (fr) Perfectionnements aux installations de fourniture d'eau chaude comprenant un circuit thermodynamique
FR2855252A1 (fr) Echangeur de chaleur et systeme a cycle combine utilisant celui-ci
FR2808742A1 (fr) Dispositif optimise de regulation thermique a pompe a chaleur pour vehicule automobile
FR2894014A1 (fr) Unite solaire de production frigorifique pour installation de climatisation et procede de controle correspondant
WO2010070242A2 (fr) Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
EP0041911A2 (fr) Perfectionnements aux pompes à chaleur
FR2533270A1 (fr) Procede et dispositif pour la regeneration rapide de pompes cryogeniques autonomes
EP0091382B1 (fr) Procédé et dispositif de réfrigération par adsorption
EP2739918B1 (fr) Installation et procédé d'optimisation de fonctionnement d'une installation de pompe à chaleur
FR2876323A1 (fr) Dispositif et procede de regulation de la temperature de l'habitacle d'un vehicule automobile
JPH1019375A (ja) ヒートポンプ式風呂給湯システム
FR2469679A1 (fr) Appareil de climatisation, en particulier pompe a chaleur
FR2672970A1 (fr) Installation de deshumidification, de pompe a chaleur et caloduc.
FR2635367A1 (fr) Vanne de separation pour systemes de refrigeration ou de climatisation
JPH0260950B2 (fr)
JP2906508B2 (ja) ヒートポンプ給湯装置
FR2760078A1 (fr) Dispositif pour modifier la temperature d'un fluide
EP0309634A1 (fr) Système de chauffage et de refroidissement intégré à grand rendement, à fonctionnement assisté par l'ambiance
EP0156707A1 (fr) Installation de climatisation utilisant une pompe à chaleur avec échangeur de chaleur extérieur statique et régulation du point de vapeur sèche par variation automatique du débit du détendeur
FR2478792A1 (fr) Installation de chauffage pour locaux a usage d'habitation ou industriel
FR2913755A1 (fr) Dispositif de ventilation pour echangeur thermique
JPH06272964A (ja) ヒートポンプ給湯機
FR2975471A1 (fr) Chauffe-eau thermodynamique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT SE

17P Request for examination filed

Effective date: 19821221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19841024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19841024

Ref country code: AT

Effective date: 19841024

REF Corresponds to:

Ref document number: 10028

Country of ref document: AT

Date of ref document: 19841115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3166799

Country of ref document: DE

Date of ref document: 19841129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

Ref country code: BE

Effective date: 19890630

BERE Be: lapsed

Owner name: HELPAC APPLICATIONS THERMODYNAMIQUES ET SOLAIRES

Effective date: 19890630

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301