WO2010070242A2 - Dispositif de production d'électricité avec plusieurs pompes à chaleur en série - Google Patents

Dispositif de production d'électricité avec plusieurs pompes à chaleur en série Download PDF

Info

Publication number
WO2010070242A2
WO2010070242A2 PCT/FR2009/052615 FR2009052615W WO2010070242A2 WO 2010070242 A2 WO2010070242 A2 WO 2010070242A2 FR 2009052615 W FR2009052615 W FR 2009052615W WO 2010070242 A2 WO2010070242 A2 WO 2010070242A2
Authority
WO
WIPO (PCT)
Prior art keywords
transfer fluid
heat transfer
heat
heat exchanger
exchanger
Prior art date
Application number
PCT/FR2009/052615
Other languages
English (en)
Other versions
WO2010070242A3 (fr
Inventor
Alberto Sardo
Original Assignee
Xeda International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2009329431A priority Critical patent/AU2009329431B2/en
Priority to US13/141,057 priority patent/US8624410B2/en
Priority to BRPI0918110A priority patent/BRPI0918110B1/pt
Priority to CN200980157062.0A priority patent/CN102325965B/zh
Priority to ES09805750.8T priority patent/ES2528932T3/es
Priority to EP09805750.8A priority patent/EP2379848B1/fr
Application filed by Xeda International filed Critical Xeda International
Priority to DK09805750.8T priority patent/DK2379848T3/en
Priority to PL09805750T priority patent/PL2379848T3/pl
Priority to MX2011006529A priority patent/MX2011006529A/es
Publication of WO2010070242A2 publication Critical patent/WO2010070242A2/fr
Publication of WO2010070242A3 publication Critical patent/WO2010070242A3/fr
Priority to HRP20150213AT priority patent/HRP20150213T1/hr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention generally relates to power generation devices.
  • Electricity generation devices known to date contribute to atmospheric warming (fossil or plant-based power plant) or are neutral with respect to atmospheric heating (hydroelectric power station, wind turbine, nuclear power plant).
  • Solar power generation devices help reduce atmospheric warming by converting solar energy into electrical energy.
  • solar energy installations are generally not very powerful, because the heat of the sun is only available at low temperatures. To raise the temperature, it is necessary to concentrate the sun's rays, which is technically complex.
  • Solar energy is therefore useful for heating water or air, but is poorly suited to mass production of electrical energy.
  • Photovoltaic cells are currently able to provide only small amounts of electrical energy.
  • heat pumps allow the production of heat at a temperature higher than that of the ambient air.
  • the heat pump absorbs the energy of the ambient air and provides heat with a temperature difference generally of the order of 30 to 40 ° C relative to the ambient air.
  • Such machines are not suitable for the production of electrical energy because of the small difference in temperature between the hot and cold points of the heat pump.
  • the invention aims to provide an electricity generating device that contributes to limiting atmospheric heating, and to produce electricity in large quantities with acceptable efficiency.
  • the invention relates to a device for producing electricity of the type comprising: - a first heat pump, provided with a first closed circuit in which a first coolant circulates, and a first heat exchanger; heat between the first coolant and a flow of atmospheric air in which the atmospheric air flow transfers a quantity of heat to the first heat transfer fluid;
  • At least one second heat pump provided with a second closed circuit in which a second heat transfer fluid circulates, and a second heat exchanger between the second heat transfer fluid and a third heat transfer fluid in which the second heat transfer fluid transfers a amount of heat to the third heat transfer fluid;
  • the production device may also have one or more of the following features, considered individually or in any technically feasible combination:
  • the means for transferring a quantity of heat from the first heat transfer fluid to the second heat transfer fluid comprise a third heat pump, provided with a fourth closed circuit in which a fourth heat transfer fluid circulates, with a third heat exchanger between the first fluid coolant and the fourth heat transfer fluid in which the first heat transfer fluid transfers a quantity of heat to the fourth heat transfer fluid, and a fourth heat exchanger between the fourth heat transfer fluid and the second heat transfer fluid in which the fourth heat transfer fluid yields a quantity of heat to the second heat transfer fluid;
  • the first heat transfer fluid has at an inlet of the third heat exchanger a pressure of between 18 and 22 bar and a temperature of between 220 and 270 ° C., the first heat transfer fluid having at an inlet of the first heat exchanger a pressure comprised between 2 and 6 bar and a temperature between 0 and 20 ° C;
  • the fourth heat transfer fluid has at an inlet of the fourth heat exchanger a pressure of between 17 and 22 bars and a temperature between 290 and 330 ° C, the fourth heat transfer fluid having at an inlet of the third heat exchanger a pressure of between 2 and 6 bar and a temperature between 30 and 70 ° C;
  • the second heat transfer fluid has at an inlet of the second heat exchanger a pressure of between 13 and 17 bar and a temperature of between 340 and 390 ° C., the second heat transfer fluid having at an inlet of the fourth heat exchanger a pressure of between 1 and 5 bar and a temperature between 90 and 130 ° C;
  • the third closed circuit comprises first and second loops in which the third heat transfer fluid circulates, each of the first and second loops having a hot line connecting an output of the second heat exchanger to a high pressure inlet of the turbine, the first loop having a first return line connecting a low pressure outlet of the turbine to an inlet of the second heat exchanger, the second loop having an intermediate heat exchanger between the first heat transfer fluid and the third heat transfer fluid in which the third heat transfer fluid yields a quantity of heat to the first heat transfer fluid, an intermediate line connecting a low pressure outlet of the turbine to an inlet of the intermediate heat exchanger, and a second return line connecting an outlet of the intermediate heat exchanger to an inlet of the second heat exchanger. heat;
  • the first heat transfer fluid essentially comprises propane
  • the second heat transfer fluid essentially comprises hexane
  • the fourth heat transfer fluid essentially comprises butane
  • the third heat transfer fluid essentially comprises water.
  • the device shown in the attached figure is intended for the production of electricity. It comprises a steam turbine, interposed on a water / steam circuit, the heat required to provide high pressure steam to the turbine being obtained through several heat pumps placed in series. Thus, the heat required for the production of high pressure steam is mainly taken from the atmosphere.
  • the power generation device comprises:
  • first, second and third heat pumps 3, 5 and 7 a water / steam circuit 9;
  • the first heat pump 3 comprises a first closed circuit 15 in which circulates a first coolant, a first heat exchanger 17 between the first heat transfer fluid and atmospheric air , a compressor 19, and an expansion valve 21.
  • the first heat transfer fluid essentially comprises propane.
  • the first heat transfer fluid is technically pure propane.
  • the first heat exchanger 17 has a first side in which the atmospheric air circulates, and a second side in which the propane circulates.
  • the device comprises means for forcing the flow of air on the first side of the heat exchanger 17. These means may for example comprise fans or any similar type of equipment.
  • the second heat pump 5 comprises a second closed circuit 23 in which a second heat transfer fluid circulates, a second heat exchanger 25 between the second heat transfer fluid and the fluid flowing in the water / steam circuit 9, a compressor 27 and a gas valve. expansion 29.
  • the second heat transfer fluid essentially comprises hexane.
  • the second heat transfer fluid is technically pure hexane.
  • the second heat exchanger 25 has a first side in which the second heat transfer fluid circulates, and a second side in which water circulates in liquid or vapor form. Water is a third heat transfer fluid.
  • the water circulating in the water / steam circuit 9 enters the heat exchanger 25 in vapor form through the inlet 31 and in liquid form through the inlet 33, receives the heat transferred by the second heat transfer fluid, and leaves the the heat exchanger 25 in the form of water vapor through the outlets 35 and 37.
  • the third heat pump 7 comprises a third closed circuit 39 in which circulates a fourth heat transfer fluid, a third heat exchanger 41 between said fourth heat transfer fluid and the first heat transfer fluid of the first heat pump 3, a fourth heat exchanger 43 between said fourth heat transfer fluid and the second heat transfer fluid of the second heat pump 5, a compressor 45 and an expansion valve 47.
  • the heat exchanger 41 has a first side in which the first heat exchange fluid circulates and a second side in which the fourth heat exchange fluid flows.
  • the fourth heat exchanger 43 has a first side in which the fourth heat exchange fluid circulates and a second side in which the second heat exchange fluid circulates.
  • the fourth heat exchange fluid preferably comprises essentially butane.
  • the fourth heat fluid is technically pure butane.
  • the water / steam circuit 9 comprises first and second loops 49 and 51.
  • the same heat transfer fluid circulates in both loops.
  • the first loop 49 comprises a first hot line 53 connecting the steam outlet 35 of the second heat exchanger to a high pressure inlet 55 of the turbine 11.
  • the first loop also comprises a return line 57 connecting a low pressure outlet 59 of the turbine at the steam inlet 31 of the second heat exchanger.
  • the first loop 49 further comprises a compressor 61 interposed on the first hot line 53.
  • the second loop 51 of the water / steam circuit comprises a second hot line connecting the second steam outlet 37 of the heat exchanger 25 to the high pressure inlet 55 of the steam turbine.
  • the second loop further comprises an intermediate heat exchanger 65 between the first heat transfer fluid and the third heat transfer fluid, an intermediate line 67 connecting the low pressure outlet 59 of the steam turbine to an inlet 69 of the intermediate heat exchanger, and a second return line connecting an outlet 73 of the intermediate exchanger to the liquid inlet 33 of the second heat exchanger 25.
  • the second loop further comprises a compressor 75 interposed on the return line 71.
  • the intermediate heat exchanger 65 comprises a first side in which the first heat transfer fluid circulates, and a second side in which the third heat transfer fluid circulates, from the inlet 69 to the outlet 73.
  • the closed circuit 15 connects a discharge outlet of the compressor 19 to an inlet on the first side of the heat exchanger 41.
  • the circuit 15 also connects the output of said first side to the inlet of the expansion valve 21.
  • the outlet of the expansion valve 21 is connected by the circuit 15 to an inlet of the second side of the heat exchanger 17.
  • the circuit also connects the outlet of the second side of the exchanger 17 to the inlet of the first side of the exchanger 65 and the outlet of the first side of the exchanger 65 to the suction of the compressor 19.
  • the first coolant is gaseous between the outlet of the exchanger 17 and the inlet of the exchanger 41. It is liquid between the outlet of the exchanger 41 and the inlet of the exchanger 17. In the exchanger 17 , the first coolant is in thermal contact with the air flowing from the first side of this exchanger. The air gives up heat to the first heat transfer fluid. The first heat transfer fluid is vaporized during its passage in the first heat exchanger 17.
  • the first coolant circulating on the first side of the exchanger is in thermal contact with the water vapor flowing on the second side of the exchanger.
  • the water vapor is at least partially condensed through the intermediate heat exchanger and gives heat to the first heat transfer fluid.
  • the first heat transfer fluid flowing on the first side of the heat exchanger 41 is in thermal contact with the fourth heat transfer fluid circulating on the second side of the exchanger 41.
  • the first heat transfer fluid is condensed through the exchanger 41 and yields the heat to the third heat transfer fluid.
  • the third closed circuit 39 connects the discharge of the compressor 45 to an inlet on the first side of the heat exchanger 43. It also connects the outlet of said first side of the heat exchanger 43 to an inlet of the expansion valve 47 The closed circuit 39 further connects the outlet of the expansion valve 47 to an inlet on the second side of the heat exchanger 41. Finally, the circuit 39 connects an outlet of said second side of the exchanger 41 to the suction compressor 45.
  • the fourth heat transfer fluid is in thermal contact with the first heat transfer fluid through the heat exchanger 41 and receives heat therefrom.
  • the fourth heat transfer fluid is vaporized in the heat exchanger 41.
  • the fourth heat transfer fluid passing through the first side of the heat exchanger 43 is in thermal contact with the second heat transfer fluid circulating on the second side of the heat exchanger 43. heat transfer fluid is condensed through the heat exchanger heat 43 and gives heat to the second heat transfer fluid.
  • the fourth heat transfer fluid is in the gaseous state between the outlet of the second side of the heat exchanger 41 and the inlet of the first side of the heat exchanger 43. It is in the liquid state between the outlet of the first side of the exchanger 43 and the inlet of the second side of the exchanger 41.
  • the second closed circuit 23 connects the discharge of the compressor 27 to an inlet on the first side of the heat exchanger 25. It also connects an outlet of the first side of the heat exchanger 25 to an inlet of the expansion valve 29 The circuit 23 further connects the outlet of the expansion valve 29 to the inlet of the second side of the exchanger 43, and the outlet of said second side to the suction of the compressor 27.
  • the second heat transfer fluid through the second side of the exchanger 43 is in thermal contact with the fourth heat transfer fluid. It receives heat from the fourth heat transfer fluid through the exchanger 43 and is vaporized.
  • the second heat transfer fluid is in thermal contact with the third heat transfer fluid in the heat exchanger 25. Crossing the first side of the heat exchanger 25, it is condensed and gives heat to the third heat transfer fluid.
  • the second heat transfer fluid is in the gaseous state between the outlet of the second side of the exchanger 43 and the inlet of the first side of the heat exchanger 25. It is in the liquid state between the outlet of the first side of the heat exchanger 25 and the inlet of the second side of the heat exchanger 43.
  • the heat exchanger 25 is for example a two-zone exchanger, a first zone for heating the water vapor flowing in the first loop, and a second zone for vaporizing the water flowing in the second loop.
  • the second heat transfer fluid flowing from the first side of the heat exchanger 25 is first brought into thermal contact with the fluid flowing in the second loop, and then placed in thermal contact with the fluid flowing in the first loop.
  • the second side of the heat exchanger 25 comprises two separate circuits, one between the inlet 33 and the outlet 37 and the other between the inlet 31 and the outlet 35. These two circuits are fluidly separated.
  • the water is in the vapor state in the first loop between the outlet 35 and the high pressure inlet 55 of the turbine. It is in the vapor state, close to the saturation temperature, between the low pressure outlet 59 of the turbine and the inlet 31 of the second heat exchanger.
  • the water is in the vapor state between the outlet 37 of the second heat exchanger and the high pressure inlet 55 of the turbine. It is in the vapor state, close to the saturation temperature, between the low pressure outlet 59 of the turbine and the inlet 69 of the intermediate exchanger 65.
  • the vapor is at least partially condensed in the exchanger 65.
  • the water is in liquid form between the discharge of the compressor 75 and the inlet 33 of the second heat exchanger.
  • the atmospheric air flowing from the second side of the heat exchanger 17 transfers its heat to the first heat transfer fluid.
  • the atmospheric air has a temperature difference of 12 ° C between the inlet and the outlet of the exchanger 17.
  • the flow of atmospheric air is about 1 million m 3 / h.
  • the air at the inlet of exchanger 17 has a temperature of 12 ° C. and a temperature of 0 ° C. at the outlet of exchanger 17.
  • the propane flow rate in the first closed circuit 15 is about 40 t / h.
  • Propane is vaporized in the exchanger 17. It has a pressure of 4 bar and a temperature of about 0 ° C at the inlet of the exchanger 17, and a temperature of 10 ° C at the outlet of the exchanger 17.
  • the propane is heated in the intermediate exchanger 65. It has a pressure of 4 bar and a temperature of about 179 ° C at the outlet of the intermediate exchanger 65.
  • the propane is compressed by the compressor 19 and has a pressure of 20 bar and a temperature of about 245 ° C at the discharge of the compressor 19. Through the heat exchanger 41, the propane is condensed.
  • the butane flowing in the fourth closed circuit 39 has a pressure of 4 bar and a temperature of about 50 ° C. at the inlet of the heat exchanger 41. It is vaporized while passing through this exchanger and presents at the outlet a pressure of 4 bar and a temperature of about 240 ° C. The butane is then compressed by compressor 45 to a pressure of 19 bar and a temperature of about 310 ° C. It is condensed through the heat exchanger
  • the butane 43 has a pressure of about 19 bar and a temperature of about 1 16 ° C at the outlet of the heat exchanger 43.
  • the butane then undergoes expansion through the expansion valve 47, to a pressure of 4 bar and a temperature of about 50 ° C.
  • the butane flow rate in the fourth closed circuit is about 52 t / h.
  • the flow of hexane in the second closed circuit 23 is about 50t / h. It has a pressure of 2.5 bars and a temperature of 110.degree. C. at the inlet of the heat exchanger 43.
  • the hexane is vaporized in the heat exchanger 43 and has a pressure of 2.5 bars. and a temperature of 305 ° C at the outlet of the exchanger 43.
  • the hexane is then compressed by the compressor 27 to a pressure of 15 bar and a temperature of 365 ° C.
  • the hexane is condensed through the heat exchanger 25 and then undergoes expansion through the expansion valve 29.
  • the flow of water in the third closed circuit 9 is in total about 65.2 t / h.
  • the water flow in the first loop is about 62 t / h and the water flow in the second loop is about 3.2 t / h.
  • the water vapor flowing in the first loop has a pressure of 9 bar and a temperature of about 180 ° C. It is superheated by passing through the heat exchanger 25, the steam having at the outlet 35 a pressure of 9 bar and a temperature of about 360 ° C.
  • the steam is compressed by the compressor 61 to a pressure of 30 bar and a temperature of 405 ° C.
  • the water flowing in the second loop has at the inlet 33 of the second heat exchanger a pressure of 30 bars and a temperature of about 180 ° C. This water is vaporized in the heat exchanger 25 to a temperature of about 370 ° C and a pressure of about 30 bar.
  • the first and second loops are connected to the same inlet 55 of the turbine. Alternatively, they can be connected to different inputs.
  • the water vapor drives the turbine and at the same time undergoes expansion. It has a pressure of 9 bar and a temperature of about 180 ° C at the low pressure outlet of the turbine.
  • the water vapor is subdivided into two streams and is partly directed towards the return line 57 of the first loop and partly towards the intermediate line
  • the steam is condensed at least partially in the intermediate heat exchanger 65, the pressure and temperature remaining substantially constant.
  • the water present at the inlet of the compressor 75 a pressure of 9 bar and a temperature of 180 ° C and the discharge of said compressor, a pressure of 30 bar and a temperature of 180 ° C.
  • the energy balance of the device is as follows: atmospheric air yields propane about 3,700,000 kcal / hour. This receives in the intermediate exchanger 65 about 1,660,000 kcal / hour. It also receives during compression by the compressor 19 about 550 000 kcal / hour. Propane yields to butane in the heat exchanger 41 about 5,900,000 kcal / hour. The butane receives during compression by the compressor 45 approximately
  • the hexane receives about 600 000 kcal / hour during compression by the compressor 27. It yields about 7000 100 kcal / hour to the water in the heat exchanger 25. Moreover, the water flowing in the first loop receives during compression by the compressor 61 about 550 000 kcal / hour. The energy received by the water circulating in the second loop during compression by the compressor 75 will be neglected.
  • the energy supplied to the turbine is about 6,000,000 kcal / hour, taking into account the heat given off by the steam of the second loop in the intermediate heat exchanger 65.
  • the electrical efficiency of the turbo-generator 1 1 and 13 is about 70%. The alternator 13 therefore produces approximately
  • the electricity generating device therefore has a positive energy balance of about 1400 kW.
  • the power generation device described above has many advantages.
  • this device comprises: - a first heat pump, provided with a first closed circuit in which a first heat transfer fluid circulates, and a first heat exchanger between the first heat transfer fluid and an atmospheric air fluid in wherein the flow of atmospheric air transfers a quantity of heat to the first heat transfer fluid, - at least a second heat pump, provided with a second closed circuit in which a second heat transfer fluid circulates, and a second heat exchanger between the second heat transfer fluid and a third heat transfer fluid in which the second heat transfer fluid transfers a quantity of heat to the third heat transfer fluid; means for transferring a quantity of heat from the first heat transfer fluid to the second heat transfer fluid;
  • the power generation device takes heat from the environment, while producing electricity.
  • the device takes advantage of the fact that, in heat pumps, for a 1 kW of energy applied in particular for the compression of the heat transfer gas, it is possible to obtain 5 kW of thermal energy.
  • the fact of placing several heat pumps in series, one behind the other, makes it possible to raise at each stage the temperature of the heat transfer fluid, up to a temperature making it possible to produce steam in enough to drive a steam turbine coupled to an electric generator.
  • the fact of using several heat pumps in series makes it possible to overcome the defect of the heat pumps, which is to allow only a small difference in temperature between the heat flow absorbed and the heat flow rendered by the pump. heat.
  • the heat transfer fluids are chosen so that the condensing temperature of the fluid of a given heat pump substantially corresponds to the boiling temperature of the heat transfer fluid of the next heat pump in the series.
  • each heat transfer fluid by compressing each heat transfer fluid by a compressor and then condensing it by heat exchange with a more volatile fluid, this step being followed by expansion, it is possible to absorb the heat of each coolant by the less volatile fluid. used by the next heat pump in the series. This results in a gradual increase in temperature of the heat transfer fluid until reaching about 400 ° C.
  • Two heat pumps in series may be sufficient to produce electricity, but it is advantageous to use at least three to obtain sufficient energy efficiency.
  • propane, butane and hexane as heat transfer fluids in the three heat pumps placed in series is particularly advantageous because these fluids have characteristics well adapted to the desired purpose.
  • the electric bearing of the turbine / alternator assembly is thus greater than 60%, for example of the order of 70%.
  • the electricity generating device described above can have multiple variants. It may comprise only two heat pumps or three heat pumps, or more than three heat pumps in series with each other, depending on the power to be obtained and the heat transfer fluids used.
  • the heat transfer fluids used in the various heat pumps can be of any type, provided that the condensation temperature of a heat transfer fluid used in a given heat pump substantially corresponds to the boiling temperature of the heat transfer fluid used in the pump. next heat in the series.
  • the pressure and temperature profiles may vary for each of the heat pumps, depending on the thermal power to be transferred and the heat transfer fluids used.
  • the water / steam circuit may have only one loop.
  • the heat exchanger 25 between the second heat transfer fluid and the water may consist of a multi-zone exchanger or may consist of several heat exchangers physically independent of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Le dispositif (1) de production d'électricité comprend : une première pompe à chaleur (3), pourvue d'un premier circuit fermé (15) dans lequel circule un premier fluide caloporteur, et d'un premier échangeur de chaleur (17) entre le premier fluide caloporteur et un flux d'air atmosphérique dans lequel le flux d'air atmosphérique cède une quantité de chaleur au premier fluide caloporteur; au moins une seconde pompe à chaleur (5), pourvue d'un second circuit fermé (23) dans lequel circule un second fluide caloporteur, et d'un second échangeur de chaleur (25) entre le second fluide caloporteur et un troisième fluide caloporteur dans lequel le second fluide caloporteur cède une quantité de chaleur au troisième fluide caloporteur; des moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur; un troisième circuit fermé (9), dans lequel circule le troisième fluide caloporteur; une turbine (11) intercalée sur le troisième circuit fermé (9) et entraînée par le troisième fluide caloporteur; une génératrice électrique (13), mécaniquement entraînée par la turbine (11).

Description

Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
L'invention concerne en général les dispositifs de production d'électricité.
Les dispositifs de production d'électricité connus à ce jour contribuent au réchauffement atmosphérique (centrale à combustible fossile ou végétale) ou sont neutre vis-à-vis du réchauffement atmosphérique (centrale hydraulique, éolienne, centrale nucléaire). Les dispositifs de production d'électricité fonctionnant à l'énergie solaire contribuent à réduire le réchauffement atmosphérique, en convertissant l'énergie solaire en énergie électrique. Toutefois, de telles installations à énergie solaire ne sont généralement pas très puissantes, du fait que la chaleur du soleil n'est disponible qu'à basse température. Pour monter en température, il est nécessaire de concentrer les rayons du soleil, ce qui est techniquement complexe.
L'énergie solaire est donc utile pour chauffer l'eau ou l'air, mais est mal adaptée à la production massive d'énergie électrique. Les cellules photovoltaïques ne sont pour l'instant en mesure de fournir que de faibles quantités d'énergie électrique.
Par ailleurs, il est connu que les pompes à chaleur permettent la production de chaleur à une température supérieure à celle de l'air ambiant. La pompe à chaleur absorbe l'énergie de l'air ambiant et fournit de la chaleur avec une différence de température généralement de l'ordre de 30 à 40° C par rapport à l'air ambiant. De telles machines ne sont pas adaptées à la production d'énergie électrique, à cause de la faible différence de température entre les points chaud et froid de la pompe à chaleur. Dans ce contexte, l'invention vise à proposer un dispositif de production d'électricité contribuant à limiter le réchauffement atmosphérique, et permettant de produire de l'électricité en grandes quantités avec une efficacité acceptable.
A cette fin, l'invention porte sur un dispositif de production de l'électricité du type comprenant : - une première pompe à chaleur, pourvue d'un premier circuit fermé dans lequel circule un premier fluide caloporteur, et d'un premier échangeur de chaleur entre le premier fluide caloporteur et un flux d'air atmosphérique dans lequel le flux d'air atmosphérique cède une quantité de chaleur au premier fluide caloporteur ;
- au moins une seconde pompe à chaleur, pourvue d'un second circuit fermé dans lequel circule un second fluide caloporteur, et d'un second échangeur de chaleur entre le second fluide caloporteur et un troisième fluide caloporteur dans lequel le second fluide caloporteur cède une quantité de chaleur au troisième fluide caloporteur ;
- des moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur ; - un troisième circuit fermé dans lequel circule le troisième fluide caloporteur ;
- une turbine intercalée sur le troisième circuit fermé et entraînée par le troisième fluide caloporteur ;
- une génératrice électrique, mécaniquement entraînée par la turbine. Le dispositif de production peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- les moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur comprennent une troisième pompe à chaleur, pourvue d'un quatrième circuit fermé dans lequel circule un quatrième fluide caloporteur, d'un troisième échangeur de chaleur entre le premier fluide caloporteur et le quatrième fluide caloporteur dans lequel le premier fluide caloporteur cède une quantité de chaleur au quatrième fluide caloporteur, et d'un quatrième échangeur de chaleur entre le quatrième fluide caloporteur et le second fluide caloporteur dans lequel le quatrième fluide caloporteur cède une quantité de chaleur au second fluide caloporteur ;
- le premier fluide caloporteur présente à une entrée du troisième échangeur de chaleur une pression comprise entre 18 et 22 bars et une température comprise entre 220 et 270 °C, le premier fluide caloporteur présentant à une entrée du premier échangeur de chaleur une pression comprise entre 2 et 6 bars et une température comprise entre 0 et 20 °C ;
- le quatrième fluide caloporteur présente à une entrée du quatrième échangeur de chaleur une pression comprise entre 17 et 22 bars et une température comprise entre 290 et 330 °C, le quatrième fluide caloporteur présentant à une entrée du troisième échangeur de chaleur une pression comprise entre 2 et 6 bars et une température comprise entre 30 et 70 °C ;
- le second fluide caloporteur présente à une entrée du second échangeur de chaleur une pression comprise entre 13 et 17 bars et une température comprise entre 340 et 390 °C, le second fluide caloporteur présentant à une entrée du quatrième échangeur de chaleur une pression comprise entre 1 et 5 bars et une température comprise entre 90 et 130°C ;
- le troisième circuit fermé comprend des première et seconde boucles dans lesquelles circule le troisième fluide caloporteur, chacune des première et seconde boucles ayant une ligne chaude reliant une sortie du second échangeur de chaleur à une entrée haute pression de la turbine, la première boucle ayant une première ligne de retour reliant une sortie basse pression de la turbine à une entrée du second échangeur de chaleur, la seconde boucle ayant un échangeur de chaleur intermédiaire entre le premier fluide caloporteur et le troisième fluide caloporteur dans lequel le troisième fluide caloporteur cède une quantité de chaleur au premier fluide caloporteur, une ligne intermédiaire reliant une sortie basse pression de la turbine à une entrée de l'échangeur de chaleur intermédiaire, et une seconde ligne de retour reliant une sortie de l'échangeur intermédiaire à une entrée du second échangeur de chaleur ;
- le premier fluide caloporteur comprend essentiellement du propane ;
- le second fluide caloporteur comprend essentiellement de l'hexane ;
- le quatrième fluide caloporteur comprend essentiellement du butane ;
- le troisième fluide caloporteur comprend essentiellement de l'eau. D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence à la figure unique annexée représentant schématiquement un dispositif de production d'électricité conforme à l'invention.
Le dispositif représenté sur la figure annexée est destiné à la production d'électricité. Il comporte une turbine à vapeur, intercalée sur un circuit eau/vapeur, la chaleur nécessaire pour fournir de la vapeur d'eau à haute pression à la turbine étant obtenue par l'intermédiaire de plusieurs pompes à chaleur placées en série. Ainsi, la chaleur nécessaire pour la production de vapeur à haute pression est essentiellement prélevée dans l'atmosphère.
Plus précisément, le dispositif de production d'électricité comporte :
- des première, seconde et troisième pompes à chaleur 3, 5 et 7 ; - un circuit eau/vapeur 9 ;
- une turbine à vapeur 1 1 intercalée sur le circuit eau/vapeur 9 ;
- une génératrice électrique 13, mécaniquement entraînée par la turbine 1 1. La première pompe à chaleur 3 comporte un premier circuit fermé 15 dans lequel circule un premier fluide caloporteur, un premier échangeur de chaleur 17 entre le premier fluide caloporteur et l'air atmosphérique, un compresseur 19, et une valve d'expansion 21.
Le premier fluide caloporteur comprend essentiellement du propane. Avantageusement, le premier fluide caloporteur est du propane techniquement pur. Le premier échangeur de chaleur 17 comporte un premier côté dans lequel circule l'air atmosphérique, et un second côté dans lequel circule le propane. De préférence, le dispositif comporte des moyens pour forcer la circulation d'air du premier côté de l'échangeur de chaleur 17. Ces moyens peuvent par exemple comporter des ventilateurs ou tout type d'équipement analogue. La seconde pompe à chaleur 5 comprend un second circuit fermé 23 dans lequel circule un second fluide caloporteur, un second échangeur de chaleur 25 entre le second fluide caloporteur et le fluide circulant dans le circuit eau/vapeur 9, un compresseur 27 et une valve d'expansion 29.
Le second fluide caloporteur comprend essentiellement de l'hexane. Par exemple, le second fluide caloporteur est de l'hexane techniquement pur.
Le second échangeur de chaleur 25 comporte un premier côté dans lequel circule le second fluide caloporteur, et un second côté dans lequel circule de l'eau sous forme liquide ou vapeur. L'eau constitue un troisième fluide caloporteur.
L'eau circulant dans le circuit eau/vapeur 9 pénètre dans l'échangeur de chaleur 25 sous forme vapeur par l'entrée 31 et sous forme liquide par l'entrée 33, reçoit la chaleur cédée par le second fluide caloporteur, et sort de l'échangeur de chaleur 25 sous la forme de vapeur d'eau par les sorties 35 et 37. La troisième pompe à chaleur 7 comporte un troisième circuit fermé 39 dans lequel circule un quatrième fluide caloporteur, un troisième échangeur de chaleur 41 entre ledit quatrième fluide caloporteur et le premier fluide caloporteur de la première pompe à chaleur 3, un quatrième échangeur de chaleur 43 entre ledit quatrième fluide caloporteur et le second fluide caloporteur de la seconde pompe à chaleur 5, un compresseur 45 et une valve d'expansion 47. L'échangeur de chaleur 41 présente un premier côté dans lequel circule le premier fluide d'échange de chaleur, et un second côté dans lequel circule le quatrième fluide d'échange de chaleur. Le quatrième échangeur de chaleur 43 présente un premier côté dans lequel circule le quatrième fluide d'échange de chaleur et un second côté dans lequel circule le second fluide d'échange de chaleur.
Le quatrième fluide d'échange de chaleur comprend de préférence essentiellement du butane. Par exemple, le quatrième fluide de chaleur est du butane techniquement pur.
Le circuit eau/vapeur 9 comporte des premières et secondes boucles 49 et 51. Le même fluide caloporteur circule dans les deux boucles.
La première boucle 49 comprend une première ligne chaude 53 reliant la sortie vapeur 35 du second échangeur de chaleur à une entrée haute pression 55 de la turbine 11. La première boucle comporte également une ligne de retour 57 reliant une sortie basse pression 59 de la turbine à l'entrée de vapeur 31 du second échangeur de chaleur. La première boucle 49 comporte encore un compresseur 61 intercalé sur la première ligne chaude 53.
La seconde boucle 51 du circuit eau/vapeur comporte une seconde ligne chaude reliant la seconde sortie vapeur 37 de l'échangeur de chaleur 25 à l'entrée haute pression 55 de la turbine à vapeur.
La seconde boucle comporte encore un échangeur de chaleur intermédiaire 65 entre le premier fluide caloporteur et le troisième fluide caloporteur, une ligne intermédiaire 67 reliant la sortie basse pression 59 de la turbine à vapeur à une entrée 69 de l'échangeur intermédiaire, et une seconde ligne de retour reliant une sortie 73 de l'échangeur intermédiaire à l'entrée de liquide 33 du second échangeur de chaleur 25. La seconde boucle comporte en outre un compresseur 75 intercalé sur la ligne de retour 71. L'échangeur intermédiaire 65 comporte un premier côté dans lequel circule le premier fluide caloporteur, et un second côté dans lequel circule le troisième fluide caloporteur, depuis l'entrée 69 jusqu'à la sortie 73.
Le circuit fermé 15 relie une sortie de refoulement du compresseur 19 à une entrée du premier côté de l'échangeur de chaleur 41 . Le circuit 15 relie par ailleurs la sortie dudit premier côté à l'entrée de la valve d'expansion 21. La sortie de la valve d'expansion 21 est reliée par le circuit 15 à une entrée du second côté de l'échangeur de chaleur 17. Le circuit relie par ailleurs la sortie du second côté de l'échangeur 17 à l'entrée du premier côté de l'échangeur 65 et la sortie du premier côté de l'échangeur 65 à l'aspiration du compresseur 19.
Le premier fluide caloporteur est gazeux entre la sortie de l'échangeur 17 et l'entrée de l'échangeur 41. Il est liquide entre la sortie de l'échangeur 41 et l'entrée de l'échangeur 17. Dans l'échangeur 17, le premier fluide caloporteur est en contact thermique avec l'air circulant du premier côté de cet échangeur. L'air cède de la chaleur au premier fluide caloporteur. Le premier fluide caloporteur est vaporisé lors de son passage dans le premier échangeur de chaleur 17.
Dans l'échangeur intermédiaire 65, le premier fluide caloporteur circulant du premier côté de l'échangeur est en contact thermique avec la vapeur d'eau circulant du second côté de l'échangeur. La vapeur d'eau est au moins condensée partiellement en traversant l'échangeur intermédiaire et cède de la chaleur au premier fluide caloporteur.
Le premier fluide caloporteur circulant du premier côté de l'échangeur de chaleur 41 est en contact thermique avec le quatrième fluide caloporteur circulant du second côté de l'échangeur 41. Le premier fluide caloporteur est condensé en traversant l'échangeur 41 et cède de la chaleur au troisième fluide caloporteur.
Le troisième circuit fermé 39 relie le refoulement du compresseur 45 à une entrée du premier côté de l'échangeur de chaleur 43. Il relie également la sortie dudit premier côté de l'échangeur de chaleur 43 à une entrée de la valve d'expansion 47. Le circuit fermé 39 relie encore la sortie de la valve d'expansion 47 à une entrée du second côté de l'échangeur de chaleur 41. Enfin, le circuit 39 relie une sortie dudit second côté de l'échangeur 41 à l'aspiration du compresseur 45. Comme indiqué ci-dessus, le quatrième fluide caloporteur est en contact thermique avec le premier fluide caloporteur en traversant l'échangeur de chaleur 41 et reçoit de celui-ci de la chaleur. Le quatrième fluide caloporteur est vaporisé dans l'échangeur de chaleur 41. Le quatrième fluide caloporteur traversant le premier côté de l'échangeur de chaleur 43 est en contact thermique avec le second fluide caloporteur circulant du second côté de l'échangeur 43. Le quatrième fluide caloporteur est condensé en traversant l'échangeur de chaleur de chaleur 43 et cède de la chaleur au second fluide caloporteur.
Le quatrième fluide caloporteur est à l'état gazeux entre la sortie du second côté de l'échangeur de chaleur 41 et l'entrée du premier côté de l'échangeur de chaleur 43. Il est à l'état liquide entre la sortie du premier côté de l'échangeur 43 et l'entrée du second côté de l'échangeur 41.
Le second circuit fermé 23 relie le refoulement du compresseur 27 à une entrée du premier côté de l'échangeur de chaleur 25. Il relie également une sortie du premier côté de l'échangeur de chaleur 25 à une entrée de la valve d'expansion 29. Le circuit 23 relie encore la sortie de la valve d'expansion 29 à l'entrée du second côté de l'échangeur 43, et la sortie dudit second côté à l'aspiration du compresseur 27. Le second fluide caloporteur en traversant le second côté de l'échangeur 43 est en contact thermique avec le quatrième fluide caloporteur. Il reçoit de la chaleur du quatrième fluide caloporteur en traversant l'échangeur 43 et est vaporisé.
Le second fluide caloporteur est en contact thermique avec le troisième fluide caloporteur dans l'échangeur de chaleur 25. En traversant le premier côté de l'échangeur de chaleur 25, il est condensé et cède de la chaleur au troisième fluide caloporteur.
Le second fluide caloporteur est à l'état gazeux entre la sortie du second côté de l'échangeur 43 et l'entrée du premier côté de l'échangeur de chaleur 25. Il est à l'état liquide entre la sortie du premier côté de l'échangeur de chaleur 25 et l'entrée du second côté de l'échangeur de chaleur 43. L'échangeur de chaleur 25 est par exemple un échangeur à deux zones, une première zone permettant de réchauffer la vapeur d'eau circulant dans la première boucle, et une seconde zone permettant de vaporiser l'eau circulant dans la seconde boucle. Le second fluide caloporteur circulant du premier côté de l'échangeur de chaleur 25 est d'abord mis en contact thermique avec le fluide circulant dans la seconde boucle, puis mis en contact thermique avec le fluide circulant dans la première boucle. Le second côté de l'échangeur thermique 25 comporte deux circuits distincts, l'un entre l'entrée 33 et la sortie 37 et l'autre entre l'entrée 31 et la sortie 35. Ces deux circuits sont fluidiquement séparés.
L'eau est à l'état de vapeur dans la première boucle entre la sortie 35 et l'entrée haute pression 55 de la turbine. Elle est à l'état de vapeur, proche de la température de saturation, entre la sortie basse pression 59 de la turbine et l'entrée 31 du second échangeur de chaleur. Dans la seconde boucle, l'eau est à l'état de vapeur entre la sortie 37 du second échangeur de chaleur et l'entrée haute pression 55 de la turbine. Elle est à l'état de vapeur, proche de la température de saturation, entre la sortie basse pression 59 de la turbine et l'entrée 69 de l'échangeur intermédiaire 65. La vapeur est au moins partiellement condensée dans l'échangeur 65. L'eau est sous forme liquide entre le refoulement du compresseur 75 et l'entrée 33 du second échangeur de chaleur.
Le fonctionnement du dispositif décrit ci-dessus va maintenant être détaillé. L'air atmosphérique circulant du second côté de l'échangeur de chaleur 17 cède sa chaleur au premier fluide caloporteur. Par exemple, l'air atmosphérique présente une différence de température de 12°C entre l'entrée et la sortie de l'échangeur 17. Le débit d'air atmosphérique est d'environ 1 million m3/h. Par exemple, l'air présente à l'entrée de l'échangeur 17 une température de 12°C et une température de 0°C à la sortie de l'échangeur 17.
Le débit de propane dans le premier circuit fermé 15 est d'environ 40 t/h. Le propane est vaporisé dans l'échangeur 17. Il présente une pression de 4 bars et une température d'environ 0°C à l'entrée de l'échangeur 17, et une température de 10°C à la sortie de l'échangeur 17. Le propane est réchauffé dans l'échangeur intermédiaire 65. Il présente une pression de 4 bars et une température de 179°C environ à la sortie de l'échangeur intermédiaire 65. Le propane est comprimé par le compresseur 19 et présente une pression de 20 bars et une température d'environ 245 °C au refoulement du compresseur 19. En traversant l'échangeur de chaleur 41 , le propane est condensé. Il présente à la sortie de l'échangeur de chaleur 41 une pression d'environ 20 bars et une température d'environ 60 °C. Le propane subit enfin une détente en traversant la valve d'expansion 21 , et présente à la sortie de cette valve une pression de 4 bars et une température d'environ 0°C.
Le butane circulant dans le quatrième circuit fermé 39 présente une pression de 4 bars et une température d'environ 50 °C à l'entrée de l'échangeur de chaleur 41. Il est vaporisé en traversant cet échangeur et présente à la sortie une pression de 4 bars et une température d'environ 240 °C. Le butane est ensuite comprimé par le compresseur 45 jusqu'à une pression de 19 bars et une température d'environ 310°C. Il est condensé en traversant l'échangeur de chaleur
43, et présente une pression d'environ 19 bars et une température d'environ 1 16°C à la sortie de l'échangeur de chaleur 43. Le butane subit ensuite une détente en traversant la valve d'expansion 47, jusqu'à une pression de 4 bars et une température d'environ 50 °C. Le débit de butane dans le quatrième circuit fermé est d'environ 52 t/h.
Le débit d'hexane dans le second circuit fermé 23 est d'environ 50t/h. Il présente une pression de 2,5 bars et une température de 1 100C à l'entrée de l'échangeur de chaleur 43. L'hexane est vaporisé dans l'échangeur de chaleur 43 et présente une pression de 2,5 bars et une température de 305 °C à la sortie de l'échangeur 43. L'hexane est ensuite comprimé par le compresseur 27 jusqu'à une pression de 15 bars et une température de 365 °C. L'hexane est condensé en traversant l'échangeur de chaleur 25 et subit ensuite une détente en traversant la valve d'expansion 29.
Le débit d'eau dans le troisième circuit fermé 9 est au total d'environ 65,2 t/h. Le débit d'eau dans la première boucle est d'environ 62 t/h et le débit d'eau dans la seconde boucle est d'environ 3,2 t/h. A l'entrée 31 dans le second échangeur de chaleur, la vapeur d'eau circulant dans la première boucle présente une pression de 9 bars et une température d'environ 180°C. Elle est surchauffée en traversant l'échangeur de chaleur 25, la vapeur d'eau présentant à la sortie 35 une pression de 9 bars et une température d'environ 360 °C. La vapeur d'eau est comprimée par le compresseur 61 jusqu'à une pression de 30 bars et une température de 405 °C.
L'eau circulant dans la seconde boucle présente à l'entrée 33 du second échangeur de chaleur une pression de 30 bars et une température d'environ 180°C. Cette eau est vaporisée dans l'échangeur de chaleur 25 jusqu'à une température d'environ 370 °C et une pression de 30 bars environ. Les premières et secondes boucles sont raccordée à la même entrée 55 de la turbine. En variante, elles peuvent être raccordées à des entrées différentes.
La vapeur d'eau entraîne la turbine et subit dans le même temps une expansion. Elle présente une pression de 9 bars et une température de 180°C environ à la sortie basse pression de la turbine.
La vapeur d'eau est subdivisée en deux flux et est orientée pour partie vers la ligne de retour 57 de la première boucle et pour partie vers la ligne intermédiaire
67 de la seconde boucle. La vapeur d'eau est condensée au moins partiellement dans l'échangeur intermédiaire 65, la pression et température restant sensiblement constantes.
L'eau présente à l'entrée du compresseur 75 une pression de 9 bars et une température de 180°C et au refoulement dudit compresseur, une pression de 30 bars et une température de 180°C. Le bilan énergétique du dispositif est le suivant : l'air atmosphérique cède au propane environ 3 700 000 kcal/heure. Celui-ci reçoit dans l'échangeur intermédiaire 65 environ 1 660 000 kcal/heure. Il reçoit également lors de la compression par le compresseur 19 environ 550 000 kcal/heure. Le propane cède au butane dans l'échangeur de chaleur 41 environ 5 900 000 kcal/heure. Le butane reçoit lors de la compression par le compresseur 45 environ
600 000 kcal/heure. Il cède environ 6 500 000 kcal/heure dans l'échangeur 43.
L'hexane reçoit environ 600 000 kcal/heure lors de la compression par le compresseur 27. Il cède environ 7 000 100 kcal/heure à l'eau dans l'échangeur de chaleur 25. Par ailleurs, l'eau circulant dans la première boucle reçoit lors de la compression par le compresseur 61 environ 550 000 kcal/heure. On négligera l'énergie reçue par l'eau circulant dans la deuxième boucle, lors de la compression par le compresseur 75.
Ainsi, l'énergie apportée à la turbine est d'environ 6 000 000 de kcal/heure compte tenu de la chaleur cédée par la vapeur de la seconde boucle dans l'échangeur intermédiaire 65. Le rendement électrique de l'ensemble turboalternateur 1 1 et 13 est d'environ 70%. L'alternateur 13 produit donc environ
4 000 200 kcal/heure d'électricité, soit une puissance électrique de 4.900 kW. La consommation électrique des différents compresseurs 19, 27, 45, 61 et
75 sont respectivement 750 kW, 900 kW, 900 kW, 800 kW, 20 kW. La consommation des ventilateurs destinés à forcer la circulation d'air atmosphérique à travers l'échangeur 17 est estimée à environ 100 kW. Le dispositif de production d'électricité présente donc un solde énergétique positif d'environ 1400 kW.
Le dispositif de production d'électricité décrit ci-dessus présente de multiples avantages.
Du fait que ce dispositif comprend : - une première pompe à chaleur, pourvue d'un premier circuit fermé dans lequel circule un premier fluide caloporteur, et d'un premier échangeur de chaleur entre le premier fluide caloporteur et un fluide d'air atmosphérique dans lequel le flux d'air atmosphérique cède une quantité de chaleur au premier fluide caloporteur, - au moins une seconde pompe à chaleur, pourvue d'un second circuit fermé dans lequel circule un second fluide caloporteur, et d'un second échangeur de chaleur entre le second fluide caloporteur et un troisième fluide caloporteur dans lequel le second fluide caloporteur cède une quantité de chaleur au troisième fluide caloporteur ; - des moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur ;
- un troisième circuit fermé dans lequel circule le troisième fluide caloporteur ;
- une turbine intercalée sur le troisième circuit fermé et entraîné par le troisième fluide caloporteur ; et
- une génératrice électrique, mécaniquement entraînée par la turbine, le dispositif de production d'électricité prélève de la chaleur dans l'environnement, tout en produisant de l'électricité. Le dispositif tire partie du fait que, dans les pompes à chaleur, pour un 1 kW d'énergie appliquée notamment pour la compression du gaz caloporteur, il est possible d'obtenir de 5 kW d'énergie thermique. Le fait de placer plusieurs pompes à chaleur en série, les unes derrières les autres, permet d'élever à chaque étape la température du fluide caloporteur, jusqu'à une température permettant de produire de la vapeur en quantité suffisante pour entraîner une turbine à vapeur couplée à une génératrice électrique. Ainsi, le fait d'utiliser plusieurs pompes à chaleur en série permet de palier le défaut des pompes à chaleur, qui est de ne permettre qu'une faible différence de température entre le flux de chaleur absorbée et le flux de chaleur rendue par la pompe à chaleur.
Les fluides caloporteurs sont choisis de telle sorte que la température de condensation du fluide d'une pompe à chaleur donnée corresponde sensiblement à la température d'ébullition du fluide caloporteur de la pompe à chaleur suivante dans la série. Ainsi, en comprimant chaque fluide caloporteur par un compresseur, puis en le condensant par échange thermique avec un fluide plus volatil, cette étape étant suivie d'une expansion, il est possible de faire absorber la chaleur de chaque fluide caloporteur par le fluide moins volatil utilisé par la pompe à chaleur suivante de la série. On obtient ainsi une augmentation progressive par palier de la température du fluide caloporteur jusqu'à atteindre environ 400 °C.
Deux pompes à chaleur en série peuvent être suffisantes pour produire de l'électricité, mais il est avantageux d'en utiliser au moins trois pour obtenir un rendement énergétique suffisant.
L'utilisation de propane, de butane et d'hexane comme fluides caloporteurs dans les trois pompes à chaleur placées en série est particulièrement avantageuse, car ces fluides présentent des caractéristiques bien adaptées pour le but recherché.
De même, les profils de pression et de température décrits ci-dessus pour les fluides caloporteurs des trois pompes à chaleur sont particulièrement bien adaptés.
Le fait de subdiviser le circuit au vapeur en deux boucles, avec une boucle permettant de surchauffer le fluide caloporteur de la première pompe à chaleur avant compression, permet d'optimiser le rendement énergétique total du dispositif. Le roulement électrique de l'ensemble turbine/alternateur est ainsi supérieur à 60%, par exemple de l'ordre de 70%.
Le dispositif de production d'électricité décrit ci-dessus peut présenter de multiples variantes. II peut ne comporter que deux pompes à chaleur ou trois pompes à chaleur, ou plus de trois pompes à chaleur en série les unes avec les autres, en fonction de la puissance à obtenir et des fluides caloporteurs utilisés.
Les fluides caloporteurs utilisés dans les différentes pompes à chaleur peuvent être de tout type, sous réserve que la température de condensation d'un fluide caloporteur utilisé dans une pompe à chaleur donnée corresponde sensiblement à la température d'ébullition du fluide caloporteur utilisé dans la pompe à chaleur suivante dans la série.
De même, les profils de pression et de température peuvent varier pour chacune des pompes à chaleur, en fonction de la puissance thermique à transférer et des fluides caloporteurs utilisés.
Le circuit eau / vapeur pourrait ne comporter qu'une seule boucle. L'échangeur de chaleur 25 entre le second fluide caloporteur et l'eau peut être constitué d'un échangeur à plusieurs zones ou peut être constitué de plusieurs échangeurs de chaleur physiquement indépendants les uns des autres.

Claims

REVENDICATIONS
1. Dispositif (1 ) de production d'électricité, comprenant :
- une première pompe à chaleur (3), pourvue d'un premier circuit fermé (15) dans lequel circule un premier fluide caloporteur, et d'un premier échangeur de chaleur
(17) entre le premier fluide caloporteur et un flux d'air atmosphérique dans lequel le flux d'air atmosphérique cède une quantité de chaleur au premier fluide caloporteur,
- au moins une seconde pompe à chaleur (5), pourvue d'un second circuit fermé (23) dans lequel circule un second fluide caloporteur, et d'un second échangeur de chaleur (25) entre le second fluide caloporteur et un troisième fluide caloporteur dans lequel le second fluide caloporteur cède une quantité de chaleur au troisième fluide caloporteur ;
- des moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur ;
- un troisième circuit fermé (9), dans lequel circule le troisième fluide caloporteur ;
- une turbine (11 ) intercalée sur le troisième circuit fermé (9) et entraînée par le troisième fluide caloporteur ;
- une génératrice électrique (13), mécaniquement entraînée par la turbine (1 1 ) ; - le troisième circuit fermé (9) comprenant des première et seconde boucles (49, 51 ) dans lesquelles circule le troisième fluide caloporteur, chacune des première et seconde boucles (49, 51 ) ayant une ligne chaude (53, 63) reliant une sortie (35, 37) du second échangeur de chaleur (25) à une entrée haute pression (55) de la turbine (1 1 ), la première boucle (49) ayant une première ligne de retour (57) reliant une sortie basse pression (59) de la turbine (1 1 ) à une entrée (31 ) du second échangeur de chaleur (25), la seconde boucle (51 ) ayant un échangeur de chaleur intermédiaire (65) entre le premier fluide caloporteur et le troisième fluide caloporteur dans lequel le troisième fluide caloporteur cède une quantité de chaleur au premier fluide caloporteur, une ligne intermédiaire (67) reliant une sortie basse pression (59) de la turbine (1 1 ) à une entrée (69) de l'échangeur de chaleur intermédiaire (65), et une seconde ligne de retour (71 ) reliant une sortie (73) de l'échangeur intermédiaire (65) à une entrée (33) du second échangeur de chaleur (25).
2. Dispositif selon la revendication 1 , caractérisé en ce que les moyens pour transférer une quantité de chaleur du premier fluide caloporteur au second fluide caloporteur comprennent une troisième pompe à chaleur (7), pourvue d'un quatrième circuit fermé (39) dans lequel circule un quatrième fluide caloporteur, d'un troisième échangeur de chaleur (41 ) entre le premier fluide caloporteur et le quatrième fluide caloporteur dans lequel le premier fluide caloporteur cède une quantité de chaleur au quatrième fluide caloporteur, et d'un quatrième échangeur
(43) de chaleur entre le quatrième fluide caloporteur et le second fluide caloporteur dans lequel le quatrième fluide caloporteur cède une quantité de chaleur au second fluide caloporteur.
3. Dispositif selon la revendication 2, caractérisé en ce que le premier fluide caloporteur présente à une entrée du troisième échangeur de chaleur (41 ) une pression comprise entre 18 et 22 bars et une température comprise entre 220 et 270 °C, le premier fluide caloporteur présentant à une entrée du premier échangeur de chaleur (17) une pression comprise entre 2 et 6 bars et une température comprise entre 0 et 20 °C.
4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que le quatrième fluide caloporteur présente à une entrée du quatrième échangeur de chaleur (43) une pression comprise entre 17 et 22 bars et une température comprise entre 290 et 330 °C, le quatrième fluide caloporteur présentant à une entrée du troisième échangeur de chaleur (41 ) une pression comprise entre 2 et 6 bars et une température comprise entre 30 et 70 °C.
5. Dispositif selon l'une quelconque des revendications 2 à 4, caractérisé en ce que le second fluide caloporteur présente à une entrée du second échangeur de chaleur (25) une pression comprise entre 13 et 17 bars et une température comprise entre 340 et 390 °C, le second fluide caloporteur présentant à une entrée du quatrième échangeur de chaleur (43) une pression comprise entre 1 et 5 bars et une température comprise entre 90 et 130°C.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le premier fluide caloporteur comprend essentiellement du propane.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le second fluide caloporteur comprend essentiellement de l'hexane.
8. Dispositif selon l'une quelconque des revendications 2 à 5, caractérisé en ce que le quatrième fluide caloporteur comprend essentiellement du butane.
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le troisième fluide caloporteur comprend essentiellement de l'eau.
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la turbine (1 1 ) et la génératrice électrique (13) présentent ensemble un rendement électrique supérieur à 60%.
PCT/FR2009/052615 2008-12-19 2009-12-18 Dispositif de production d'électricité avec plusieurs pompes à chaleur en série WO2010070242A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/141,057 US8624410B2 (en) 2008-12-19 2009-12-18 Electricity generation device with several heat pumps in series
BRPI0918110A BRPI0918110B1 (pt) 2008-12-19 2009-12-18 dispositivo de produção de eletricidade
CN200980157062.0A CN102325965B (zh) 2008-12-19 2009-12-18 具有串联的几个热泵的发电设备
ES09805750.8T ES2528932T3 (es) 2008-12-19 2009-12-18 Dispositivo de producción de electricidad con varias bombas de calor en serie
EP09805750.8A EP2379848B1 (fr) 2008-12-19 2009-12-18 Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
AU2009329431A AU2009329431B2 (en) 2008-12-19 2009-12-18 Electricity generation device with several heat pumps in series
DK09805750.8T DK2379848T3 (en) 2008-12-19 2009-12-18 Electricity Producing decor with several heat pumps in series
PL09805750T PL2379848T3 (pl) 2008-12-19 2009-12-18 Urządzenie do produkcji elektryczności z kilkoma pompami ciepła w układzie szeregowym
MX2011006529A MX2011006529A (es) 2008-12-19 2009-12-18 Dispositivo generador de electricidad con varias bombas de calor en serie.
HRP20150213AT HRP20150213T1 (en) 2008-12-19 2015-02-24 Electricity generation device with several heat pumps in series

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858836 2008-12-19
FR0858836A FR2940355B1 (fr) 2008-12-19 2008-12-19 Dispositif de production d'electricite avec plusieurs pompes a chaleur en serie

Publications (2)

Publication Number Publication Date
WO2010070242A2 true WO2010070242A2 (fr) 2010-06-24
WO2010070242A3 WO2010070242A3 (fr) 2011-05-12

Family

ID=40908606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052615 WO2010070242A2 (fr) 2008-12-19 2009-12-18 Dispositif de production d'électricité avec plusieurs pompes à chaleur en série

Country Status (14)

Country Link
US (1) US8624410B2 (fr)
EP (1) EP2379848B1 (fr)
CN (1) CN102325965B (fr)
AU (1) AU2009329431B2 (fr)
BR (1) BRPI0918110B1 (fr)
DK (1) DK2379848T3 (fr)
ES (1) ES2528932T3 (fr)
FR (1) FR2940355B1 (fr)
HR (1) HRP20150213T1 (fr)
MX (1) MX2011006529A (fr)
PE (1) PE20120568A1 (fr)
PL (1) PL2379848T3 (fr)
PT (1) PT2379848E (fr)
WO (1) WO2010070242A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171333A2 (fr) * 2012-05-17 2013-11-21 Naji Amin Atalla Appareil de production d'énergie à rendement élevé, appareil à pompe à chaleur/réfrigération, et procédé et système s'y rapportant
FR3012517A1 (fr) * 2013-10-30 2015-05-01 IFP Energies Nouvelles Procede d'une conversion d'une energie thermique en energie mecanique au moyen d'un cycle de rankine equipe d'une pompe a chaleur

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981129B1 (fr) * 2011-10-07 2013-10-18 IFP Energies Nouvelles Procede et systeme perfectionne de conversion de l'energie thermique marine.
SE536432C2 (sv) * 2012-03-20 2013-10-29 Energihuset Foersaeljnings Ab Hardy Hollingworth Värmecykel för överföring av värme mellan medier och för generering av elektricitet
US10233788B1 (en) * 2012-04-10 2019-03-19 Neil Tice Method and apparatus utilizing thermally conductive pumps for conversion of thermal energy to mechanical energy
AU2012203556B2 (en) * 2012-06-19 2014-03-27 Ampro Systems Inc. Air conditioning system capable of converting waste heat into electricity
JP5949383B2 (ja) * 2012-09-24 2016-07-06 三浦工業株式会社 蒸気発生システム
WO2015041501A1 (fr) * 2013-09-23 2015-03-26 김영선 Système de génération d'énergie à pompe à chaleur et son procédé de commande
CN104748592B (zh) * 2013-11-12 2020-10-30 特灵国际有限公司 具有流体流动以与不同的制冷剂回路串联地热交换的钎焊换热器
IL254492A0 (en) * 2017-09-13 2017-11-30 Zettner Michael System and process for converting thermal energy into kinetic energy
CN112901400A (zh) * 2021-01-26 2021-06-04 重庆中节能悦来能源管理有限公司 一种大高差取水系统水轮机组应用方法
AU2022291952A1 (en) * 2021-06-16 2024-01-04 Atmoszero, Inc. Air source heat pump system and method of use for industrial steam generation
EP4269758A1 (fr) * 2022-04-28 2023-11-01 Borealis AG Procédé de récupération d'énergie
EP4269757A1 (fr) * 2022-04-28 2023-11-01 Borealis AG Procédé de récupération d'énergie

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173125A (en) * 1978-03-16 1979-11-06 Schweitzer Industrial Corporation Energy recovery system
DE3433366A1 (de) * 1984-09-08 1986-03-20 Peter 2351 Hasenkrug Koch Verfahren zur waermeenergiezu- und -abfuhr sowie waermepumpeneinrichtung
US4724679A (en) * 1986-07-02 1988-02-16 Reinhard Radermacher Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures
US5042259A (en) * 1990-10-16 1991-08-27 California Institute Of Technology Hydride heat pump with heat regenerator
DE19925257A1 (de) * 1999-06-01 2001-02-22 Gerhard Von Hacht Multiples, solares-, Wärmepumpen-Pumpspeicher-Kombinations-Kraftwerk
US20050076639A1 (en) * 2003-10-14 2005-04-14 Shirk Mark A. Cryogenic cogeneration system
DE102004006837A1 (de) * 2004-02-12 2005-08-25 Erwin Dr. Oser Stromgewinnung aus Luft
CN200978686Y (zh) * 2006-09-05 2007-11-21 袁欢乐 动力机
TW200825280A (en) * 2006-12-05 2008-06-16 Wei Fang Power generating system driven by a heat pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171333A2 (fr) * 2012-05-17 2013-11-21 Naji Amin Atalla Appareil de production d'énergie à rendement élevé, appareil à pompe à chaleur/réfrigération, et procédé et système s'y rapportant
WO2013171333A3 (fr) * 2012-05-17 2014-05-15 Naji Amin Atalla Appareil de production d'énergie à rendement élevé, appareil à pompe à chaleur/réfrigération, et procédé et système s'y rapportant
CN104685164A (zh) * 2012-05-17 2015-06-03 N·A·阿塔拉 高效发电装置、制冷/热泵装置及其方法和系统
US9988946B2 (en) 2012-05-17 2018-06-05 Naji Amin Atalla High efficiency power generation apparatus, refrigeration/heat pump apparatus, and method and system therefor
US10557380B2 (en) 2012-05-17 2020-02-11 Naji Amin Atalla High efficiency power generation apparatus, refrigeration/heat pump apparatus, and method and system therefor
FR3012517A1 (fr) * 2013-10-30 2015-05-01 IFP Energies Nouvelles Procede d'une conversion d'une energie thermique en energie mecanique au moyen d'un cycle de rankine equipe d'une pompe a chaleur
WO2015062782A1 (fr) * 2013-10-30 2015-05-07 IFP Energies Nouvelles Procede d'une conversion d'une energie thermique en energie mecanique au moyen d'un cycle de rankine equipe d'une pompe a chaleur
US10132199B2 (en) 2013-10-30 2018-11-20 IFP Energies Nouvelles Thermal to mechanical energy conversion method using a rankine cycle equipped with a heat pump

Also Published As

Publication number Publication date
AU2009329431B2 (en) 2014-08-14
FR2940355B1 (fr) 2011-07-22
DK2379848T3 (en) 2015-01-26
ES2528932T3 (es) 2015-02-13
WO2010070242A3 (fr) 2011-05-12
PE20120568A1 (es) 2012-06-06
CN102325965B (zh) 2014-07-02
PL2379848T3 (pl) 2015-04-30
FR2940355A1 (fr) 2010-06-25
AU2009329431A1 (en) 2011-08-11
BRPI0918110B1 (pt) 2020-01-28
HRP20150213T1 (en) 2015-03-27
PT2379848E (pt) 2015-03-02
CN102325965A (zh) 2012-01-18
US8624410B2 (en) 2014-01-07
MX2011006529A (es) 2011-09-29
EP2379848A2 (fr) 2011-10-26
US20110309635A1 (en) 2011-12-22
BRPI0918110A2 (pt) 2015-11-24
EP2379848B1 (fr) 2014-11-26

Similar Documents

Publication Publication Date Title
EP2379848B1 (fr) Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
EP1495473B1 (fr) Procede et dispositif de production d'electricite a partir de la chaleur produite dans le coeur d'au moins un reacteur nucleaire a haute temperature
EP3052773B1 (fr) Système thermodynamique de stockage/production d'énergie électrique
FR3034813B1 (fr) Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
EP2326801B1 (fr) Dispositif de cogénération
FR3016025A1 (fr) Combinaison d'une unite de stockage d'energie par air comprime et d'une centrale thermique
EP2659098A2 (fr) Dispositif de conversion d'énergie thermique en énergie mécanique
EP2764243B1 (fr) Procédé et système perfectionné de conversion de l'énergie thermique marine
EP3732743B1 (fr) Ensemble de production d'énergie couplant une pile à combustible et un système thermodynamique réversible
WO2013178938A1 (fr) Installation de transformation d'énergie thermique
WO2013057427A1 (fr) Stockage adiabatique ameliore d'energie sous forme de chaleur et d'air comprime.
FR2924746A1 (fr) Installation de production d'electricite a partir d'energie solaire.
WO2013014178A1 (fr) Dispositif de stockage des energies renouvelables sous la forme de chaleur et le procede de restitution en tri generation
EP4334583A1 (fr) Systèmes de transfert de chaleur destinés à des applications à puissance critique
FR2998357A1 (fr) Groupe de conversion d'une energie thermique en une energie hydraulique
WO2019073177A1 (fr) Systeme d'echangeurs de chaleur en particulier pour une trigeneration solaire
FR3024998B1 (fr) Dispositif de cogeneration
WO2023233116A1 (fr) Dispositif autonome de refroidissement d'un processus industriel, notamment d'un centre de traitement de données, et centre de traitement de données utilisant ledit dispositif
FR2915764A1 (fr) Installation de generation d'energie electrique
FR2982118A1 (fr) Procede de cogeneration d'energie electrique et d'energie thermique
FR3024997A1 (fr) Dispositif de cogeneration
FR3011576A1 (fr) Generateur de puissance mecanique et procede associe de generation de puissance mecanique
WO2011128520A1 (fr) Moteur thermique sans carburant adaptable notamment a l'automobile et au nucleaire
FR2964695A1 (fr) Dispositif pour produire de l'energie mecanique ou electrique a partir de l'air atmospherique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157062.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805750

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011001514

Country of ref document: CL

Ref document number: 001242-2011

Country of ref document: PE

Ref document number: MX/A/2011/006529

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009329431

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 5161/CHENP/2011

Country of ref document: IN

Ref document number: 2009805750

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009329431

Country of ref document: AU

Date of ref document: 20091218

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13141057

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0918110

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110617