EP0038767A2 - Verfahren und Vorrichtung zur Trennung von Materialteilchen durch Induktion - Google Patents

Verfahren und Vorrichtung zur Trennung von Materialteilchen durch Induktion Download PDF

Info

Publication number
EP0038767A2
EP0038767A2 EP81420059A EP81420059A EP0038767A2 EP 0038767 A2 EP0038767 A2 EP 0038767A2 EP 81420059 A EP81420059 A EP 81420059A EP 81420059 A EP81420059 A EP 81420059A EP 0038767 A2 EP0038767 A2 EP 0038767A2
Authority
EP
European Patent Office
Prior art keywords
particles
inductor
disc
strip
conveyor belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81420059A
Other languages
English (en)
French (fr)
Other versions
EP0038767A3 (de
Inventor
Michel Porte
Daniel Michalon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Original Assignee
Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA filed Critical Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement SA
Publication of EP0038767A2 publication Critical patent/EP0038767A2/de
Publication of EP0038767A3 publication Critical patent/EP0038767A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/253Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a linear motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp

Definitions

  • the present invention relates to a product and a device for separating various particles of materials.
  • the present invention aims to allow the extraction and separation of different materials hitherto difficult to recover by conventional means of sorting.
  • At least one conventional plane inductor of a linear motor is used, or any other plane inductor making it possible to obtain either a sliding magnetic field, or a Laplace force.
  • a cylindrical inductor is used.
  • the forces of gravity are used as a mechanical phenomenon.
  • centrifugal forces are used as a mechanical phenomenon.
  • a fluid flow system is used, such as a stream of air.
  • a mechanical system is used, a transport system such as a conveyor belt or as transport discs.
  • a mechanical system such as a spring projection system or an explosion system is used as a mechanical phenomenon.
  • the displacement action induced by the electrical phenomenon takes place transversely with respect to the basic trajectory defined by the mechanical phenomenon.
  • the displacement action induced by the electrical phenomenon results in a more or less intense acceleration of the particles to be sorted along their basic trajectory.
  • the displacement action induced by the electrical phenomenon results in more or less intense braking from particles to be sorted along their basic trajectory.
  • the winding may be axial or circumferential.
  • the basic trajectory can present various orientations. It can be vertical, for example (fig 1) if we use terrestrial gravity, or horizontal (fig 3), if we use an air current.
  • the materials to be sorted can pass either in front of a single inductor (fig 1 to 4), or between two inductors (fig 5).
  • the trajectory deviation obtained from the electrical phenomenon can be perpendicular or tangential to the base trajectory 3, or have a completely different direction relative to the plane of the inductor or inductors.
  • the basic trajectory 3 is therefore vertical while the Laplàce forces 4 generated by the inductor 2 provided with a spiral coil 5 are horizontal.
  • a jet of compressed air 6 defines a horizontal base trajectory 7 while the inductors generate vertical forces 8.
  • a planar or cylindrical inductor generates a sliding field which brakes or which accelerates the particles.
  • a vertical plane inductor establishes a sliding field which generates a downward force 10 capable of braking the particles. Some of them then make a U-turn (trajectory 9a), while others cross the cap of the inductor (trajectory 9b).
  • a horizontal base trajectory 12 (fig 7) established using an air jet disposed above the level of a horizontal plane inductor 13, it is possible to use the acceleration 14 generated by the sliding field of the inductor so as to define different drop zones of the particles.
  • containers such as ' 15, 16 and 17 are placed, for example, collecting, non-conductive materials, non-conductive materials, and highly conductive materials, respectively.
  • a cylindrical inductor 20 in which is established a rotating field generating circular forces 21 contains a helical ramp 22.
  • the axis of the inductor being oriented vertically, the particles introduced along arrow 23 at the upper feed station of the inductor te'ndent, by gravity, to be gradually accelerated along a helical path.
  • the forces 21 give the particles a more or less intense additional acceleration depending on their nature, and the particles finally ejected with more or less speed at the lower outlet of the inductor are recovered at several drop points such as 24, 25 and 26.
  • a cylindrical inductor with a vertical axis and a helical ramp is still used, but the feed station 27 is placed this time at an intermediate altitude of the ramp, while the circular forces 28 generated by the rotating field s exercise on the particles in the direction corresponding to the rise of the particles along the ramp.
  • the conductive products travel up the ramp and are ejected through the outlet .. upper 29, while the conductors NBN products are recovered at the bottom outlet 30.
  • the effect of the inductor can therefore allow certain particles to overcome various phenomena such as terrestrial attraction, friction on a given surface (here, friction against the ramp), and others.
  • a conveyor disc less than vertical axis 39 is used, and on the other hand an upper conveyor disc with vertical axis 40 both rotating in the same direction and partially overlapping.
  • the upper disk 40 is surmounted by a plane inductor 41, while the lower disk 39 comprises, upstream of the overlap zone, a feed station 42 and, downstream of the overlap zone, a evacuation slide 43.
  • the sliding field 46 of the horizontal plane inductor 41 is directed, overall, towards the axis of the disc 40, and opposite the axis of the disc 39.
  • a lower conveyor belt 47 is used on the one hand and an upper conveyor disc with a vertical axis 48 constantly rotating and partly covering the conveyor belt 47.
  • the upper disc 48 is surmounted by a horizontal plane inductor 49 which generates a sliding field 50 directed transversely to the conveyor belt 46 and in the direction of the axis of the disc 48.
  • This last arrangement makes it possible to select shapes, or to make a selective sorting of badly positioned cylindrical parts.
  • the invention uses the difference in friction coefficients that may exist between different materials to be sorted and the support on which they are caused to move.
  • the inductor system sets in motion the particles, and the latter are more or less braked, according to their coefficient of friction relative to the conveyor belt or to any other support.
  • FIGS. 12 and 13 Another variant of the construction illustrated in FIGS. 12 and 13 consists in placing the inductor 60 (FIG. 18) under the upper strand of a main conveyor belt 61, receiving bulk materials 70.
  • This belt 61 includes reliefs, and in particular transverse reliefs 62 (cleats, flaps, etc.). These allow the magnetic materials 63 to be driven, which the inductor 60 tends to stop like a magnet. These magnetic materials 63 exit downstream of the main strip 61, and this with the non-conductive materials 64.
  • the non-magnetic conductive materials 69 are ejected perpendicular to the direction of advance 65 of the strip 61, and this at the level of the inductor linear 60.
  • Magnetic 63 and non-conductive materials 64, collected downstream of the strip 61, after a drum magnetic 80 can be sorted by any known means, for example using a magnet or an electromagnet.
  • FIG. 19 another variant has been shown in which the lower strip is replaced by a fluidized bed 66 or by a vibrating support (not drawn), in order to limit the friction forces of the particles on the surfaces.
  • the fluidized bed 66 consists of a set of particles, balls or the like, kept in suspension in a tank 67 by an air blower 79. They can be, for example, metal balls, so that the particles to be sorted float without friction on the surface of the fluidized bed 66.
  • the strip 61 with reliefs 62 flows in the direction indicated by the arrow 65, and the inductor 60 creates a field 81 above the strand, lower 68 of the strip 61.
  • the particles to be sorted are fluidized on the bed 66.
  • a upstream of the strip 61 the conductive non-magnetic particles 69 are collected.
  • the diffuser or fluidized bed 66 can be horizontal or inclined.
  • the sorting efficiency can be improved by ensuring the supply of mixed particles, from a system of the kind illustrated in FIGS. 20 and 21.
  • the bulk particles 70 are stored in a feed hopper 71 provided with a vibrating mouth 72, oriented perpendicular to a conveyor belt 73 on which it pours the particles 70.
  • the latter are arranged in line, due to the advancement of the strip 73 (arrow 74).
  • the particles 70 are thus conveyed one by one to the sorting zone 75 which can include any device of the kind described above.
  • the alignment of the particles 70 is further improved.
  • the vibrating hopper 71-72 pours onto the strip 73 which advances at a speed Vx.
  • This strip pours onto a second strip 76 which is substantially perpencicular to it and advances at a speed V2.

Landscapes

  • Electrostatic Separation (AREA)
  • Non-Mechanical Conveyors (AREA)
EP81420059A 1980-04-22 1981-04-17 Verfahren und Vorrichtung zur Trennung von Materialteilchen durch Induktion Withdrawn EP0038767A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8009469 1980-04-22
FR8009469A FR2480624A1 (fr) 1980-04-22 1980-04-22 Procede et dispositif pour separer par induction des particules de materiaux

Publications (2)

Publication Number Publication Date
EP0038767A2 true EP0038767A2 (de) 1981-10-28
EP0038767A3 EP0038767A3 (de) 1983-09-28

Family

ID=9241393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81420059A Withdrawn EP0038767A3 (de) 1980-04-22 1981-04-17 Verfahren und Vorrichtung zur Trennung von Materialteilchen durch Induktion

Country Status (2)

Country Link
EP (1) EP0038767A3 (de)
FR (1) FR2480624A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0095356A1 (de) * 1982-05-26 1983-11-30 Cotswold Research Limited Linearmotorsysteme
GB2153707A (en) * 1984-02-10 1985-08-29 Frederick Thomas Barwell Electromagnetic rotary separator
EP0154207A1 (de) * 1984-02-29 1985-09-11 Lindemann Maschinenfabrik GmbH Verfahren und Vorrichtung zum Abtrennen elektrisch leitfähiger Nichteisenmetalle
EP0305881A1 (de) * 1987-09-04 1989-03-08 Huron Valley Steel Corporation Verfahren und Apparat zur Ausscheidung von Nichteisenmetall-Stücken
EP0363166A1 (de) * 1988-10-06 1990-04-11 Peter Thomas Reid Verfahren und Apparat zum Trennen von nichtmagnetischen elektrisch leitenden Materialien
US4935122A (en) * 1986-12-22 1990-06-19 Dreyfuss William C Mineral separator system
GB2187117B (en) * 1986-02-28 1990-10-24 De Beers Ind Diamond Method and apparatus for separating particles into fractions
WO1998023378A2 (de) * 1996-11-27 1998-06-04 Meier Staude Robert Verfahren und vorrichtung zur steigerung der trennschärfe von wirbelstromscheidern
US6390302B1 (en) 1998-02-26 2002-05-21 Vagiz Nurgalievich Abrarov Method and apparatus for separating particles
CN114433353A (zh) * 2021-12-22 2022-05-06 长安大学 一种基于铁尾矿品位的分级磁选装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1227281A (fr) * 1959-01-30 1960-08-19 Procédé et dispositif de séparation magnétique
FR2116430A1 (en) * 1970-12-02 1972-07-13 Preussac Ag Electromagnetic particle separation - for electrically conducting and semiconducting materials
FR2263822A1 (de) * 1974-03-11 1975-10-10 Occidental Petroleum Corp
US4085039A (en) * 1976-05-24 1978-04-18 Allen James W Magnetic separator with helical classifying path
JPS5479873A (en) * 1977-12-08 1979-06-26 Mitsubishi Electric Corp Magnetic separating method and magnetic separator
JPS5549157A (en) * 1978-10-04 1980-04-09 Mitsubishi Electric Corp Magnetic force screening machine
EP0014564A1 (de) * 1979-02-01 1980-08-20 Cotswold Research Limited Metallsortiersystem zum Abscheiden nicht ferromagnetischer Metalle aus zerkleinertem Material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351569A (en) * 1976-10-21 1978-05-11 Fuji Electric Co Ltd Apparatus for separating non-magnetic metals
GB2025268A (en) * 1978-07-15 1980-01-23 Taylor Hitec Ltd Method and Apparatus for Separating Materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1227281A (fr) * 1959-01-30 1960-08-19 Procédé et dispositif de séparation magnétique
FR2116430A1 (en) * 1970-12-02 1972-07-13 Preussac Ag Electromagnetic particle separation - for electrically conducting and semiconducting materials
FR2263822A1 (de) * 1974-03-11 1975-10-10 Occidental Petroleum Corp
US4085039A (en) * 1976-05-24 1978-04-18 Allen James W Magnetic separator with helical classifying path
JPS5479873A (en) * 1977-12-08 1979-06-26 Mitsubishi Electric Corp Magnetic separating method and magnetic separator
JPS5549157A (en) * 1978-10-04 1980-04-09 Mitsubishi Electric Corp Magnetic force screening machine
EP0014564A1 (de) * 1979-02-01 1980-08-20 Cotswold Research Limited Metallsortiersystem zum Abscheiden nicht ferromagnetischer Metalle aus zerkleinertem Material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, vol. 3, no. 105, 5 septembre 1979, page 86 M 71; & JP-A-54 079 873 (MITSUBISHI DENKI K.K.) 26-06-1979 *
PATENTS ABSTRACTS OF JAPAN, vol. 4, no. 85, 18 juin 1980, page 57 C 15; & JP-A-55 049 157 (MITSUBISHI DENKI K.K.) 09-04-1980 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004194A1 (en) * 1982-05-26 1983-12-08 Eric Roberts Laithwaite Improvements in or relating to linear motor systems
EP0095356A1 (de) * 1982-05-26 1983-11-30 Cotswold Research Limited Linearmotorsysteme
GB2153707A (en) * 1984-02-10 1985-08-29 Frederick Thomas Barwell Electromagnetic rotary separator
EP0154207A1 (de) * 1984-02-29 1985-09-11 Lindemann Maschinenfabrik GmbH Verfahren und Vorrichtung zum Abtrennen elektrisch leitfähiger Nichteisenmetalle
US4668381A (en) * 1984-02-29 1987-05-26 Lindemann Maschinenfabrik Gmbh Method of and apparatus for separating electrically conductive non-ferrous metals
GB2187117B (en) * 1986-02-28 1990-10-24 De Beers Ind Diamond Method and apparatus for separating particles into fractions
US4935122A (en) * 1986-12-22 1990-06-19 Dreyfuss William C Mineral separator system
EP0305881A1 (de) * 1987-09-04 1989-03-08 Huron Valley Steel Corporation Verfahren und Apparat zur Ausscheidung von Nichteisenmetall-Stücken
EP0363166A1 (de) * 1988-10-06 1990-04-11 Peter Thomas Reid Verfahren und Apparat zum Trennen von nichtmagnetischen elektrisch leitenden Materialien
WO1998023378A2 (de) * 1996-11-27 1998-06-04 Meier Staude Robert Verfahren und vorrichtung zur steigerung der trennschärfe von wirbelstromscheidern
WO1998023378A3 (de) * 1996-11-27 2001-05-03 Meier Staude Robert Verfahren und vorrichtung zur steigerung der trennschärfe von wirbelstromscheidern
US6390302B1 (en) 1998-02-26 2002-05-21 Vagiz Nurgalievich Abrarov Method and apparatus for separating particles
US6789679B2 (en) 1998-02-26 2004-09-14 Vagiz Nurgalievich Abrarov Method and apparatus for separating particles
CN114433353A (zh) * 2021-12-22 2022-05-06 长安大学 一种基于铁尾矿品位的分级磁选装置
CN114433353B (zh) * 2021-12-22 2024-01-30 长安大学 一种基于铁尾矿品位的分级磁选装置

Also Published As

Publication number Publication date
FR2480624B1 (de) 1983-11-04
EP0038767A3 (de) 1983-09-28
FR2480624A1 (fr) 1981-10-23

Similar Documents

Publication Publication Date Title
FR2467020A1 (fr) Separateur magnetique pour materiaux a l'etat sec
CA1320173C (en) Method and apparatus for sorting non-ferrous metal pieces
US4781821A (en) Process for operating a short-belt type magnetic separator
EP0038767A2 (de) Verfahren und Vorrichtung zur Trennung von Materialteilchen durch Induktion
EP2289628B1 (de) Wirbelstrom-Magnetabscheider mit optimierter Interaktionszone und Bewegungsbahn der Teilchen
US4055489A (en) Magnetic separator for solid waste
FR2485398A1 (fr) Procede et dispositif de separation de materiaux de densites differentes par un liquide ferromagnetique
EP2855037B1 (de) Vorrichtung und verfahren zur granulometrischen trennung von materialien mit einem hohen gehalt an fadenförmigen teilchen
EP1985370A1 (de) Sortiervorrichtung mit einem Magnetabscheider für nicht-eisenhaltige Metallteilchen und -stücke
EP0439983A2 (de) Magnetscheider für Nichteisenmetall-Teilchen oder -Stücke
US4738367A (en) Magnetic refuse separator
EP1879700B1 (de) Magnetabscheider aus nichteisenmetallelementen und solche abscheider umfassende anlage zum selektiven sortieren
FR3020971A1 (fr) Procede et dispositif de traitement de minerai contenant des particules ferromagnetiques.
RU2284064C2 (ru) Способ снятия оболочки отработанного ядерного топлива и устройство для его осуществления
CA3025370A1 (en) Separation of the constituents of a metalliferous mixture
US20150076039A1 (en) Separator by foucault current
US6938776B2 (en) Method and a device for the separation of particles
JPH10152206A (ja) 空き缶分別回収箱
FR2722434A1 (fr) Procede et dispositif de separation d'objets ou particules en materiaux electriquement conducteurs amagnetiques
WO2012020201A1 (fr) Dispositif de separation de produits ferreux et non ferreux issus de broyage, d'incineration ou autre
FR2635475A1 (en) Method and apparatus for sorting particulate materials by friction
US7296687B2 (en) Methods of separating feed materials using a magnetic roll separator
FR2559683A1 (fr) Separateur magnetique de dechets
BE892501A (fr) Classificateur centrifuge pneumatique de solides pulverulents
JP2004202338A (ja) 渦電流式非鉄系金属物分別方法及びその装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19811027

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19861220

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PORTE, MICHEL

Inventor name: MICHALON, DANIEL