EP0037854A1 - Tube for heat exchangers, especially for evaporators, and process for making said tube - Google Patents
Tube for heat exchangers, especially for evaporators, and process for making said tube Download PDFInfo
- Publication number
- EP0037854A1 EP0037854A1 EP80107846A EP80107846A EP0037854A1 EP 0037854 A1 EP0037854 A1 EP 0037854A1 EP 80107846 A EP80107846 A EP 80107846A EP 80107846 A EP80107846 A EP 80107846A EP 0037854 A1 EP0037854 A1 EP 0037854A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube
- corrugated
- roughness
- rollers
- metal strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/424—Means comprising outside portions integral with inside portions
- F28F1/426—Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
Definitions
- the invention relates to a tube for heat exchanger purposes, in particular for evaporators, consisting of a metal tube with an annular or helical corrugation.
- the invention is based, in particular for use as an evaporator, to improve the known corrugated tube heat exchanger tube in such a way that evaporation on the surface of the corrugated tubes is significantly intensified.
- This object is achieved according to the invention in that the inner and / or the outer surface of the corrugated tube is plastically deformed in such a way that a uniform micro-roughness with a depth of 10 to 250 ⁇ m is produced.
- the micro-roughness accelerates the vapor bubble formation, increases the vapor bubble frequency, and increases the number of vapor bubble formation centers per unit area, so that heat Exchangers in which pipes are used according to the teaching of the invention have a higher efficiency than the known heat exchangers.
- the micro roughness is particularly advantageous due to the large number of evenly distributed cones. Such a micro roughness can be produced in a particularly economical manner. Another possibility is to sandblast the surface of the corrugated pipe.
- the invention further relates to a method for producing a heat exchanger tube. In this method, a metal strip, preferably made of copper, drawn continuously from a supply spool is passed between two rollers, at least one of which has knurling on its working surface, the metal strip is deformed to form a slotted tube and its strip edges are connected by means of arc welding under protective gas. Finally the pipe is corrugated. With the aid of the method according to the invention, corrugated pipes with a uniform micro-roughness have been successfully produced. In particular, the method is suitable for economically providing the desired microroughness to the inner surface of a relatively thin-walled tube with a wall thickness of less than 0.5 mm and a diameter of less than 30 mm.
- a copper tube 1 with a helical corrugation which has a wall thickness of 0.3 mm and an outer diameter of 15 mm, has on its inner surface a micro-roughness 2 produced by a large number of uniformly distributed impressions.
- Such a heat exchanger tube is preferably used where a liquid flowing inside a tube is to be evaporated by heat passed through the tube wall from the outside.
- FIG. 2 shows a section through a part of the tube wall which is provided with artificial boiling-point sites (impressions 3) on the inside.
- the shape and arrangement of the germ site geometry is preferably regular.
- a germination point arrangement in which the distances between the germination points are equal to one another (triangles on the same side) has proven particularly favorable.
- ⁇ T In order to keep the energy losses as small as possible, a small value of ⁇ T should be aimed for. However, this means producing relatively large germ sites.
- the germination depths For liquids to be evaporated, whose temperature-dependent densities are in the range from 500 kg / m to 1,600 kg / m, the germination depths should be between 50 to 150 ⁇ m and the opening diameter of the germination points should be between 10 to 200 ⁇ m.
- the circular cone shape represents a favorable germination point geometry. It is particularly easy to produce a cone shape with a square base.
- the distance from the germination point to the germination point should be such that the bubbles do not touch each other when torn off the heating wall.
- a soft annealed copper strip 6 is continuously drawn off from a supply reel 5 and passed between two rollers 7 and 8, which can either be driven or designed as drag rollers.
- the upper roller 8 has knurling on its working surface, which introduces the impressions 3 into the copper strip 6 in a uniform distribution.
- Behind the rollers 7 and 8, the copper strip 6 passes into a shaping device (not shown in more detail), in which the copper strip 6 is shaped into the slotted tube 9, and the last shaping step of which is a drawing ring 10 which holds the strip edges tightly together.
- a welding oxide device 11 Arranged behind the drawing ring 10 is a welding oxide device 11, which welds the slotted tube 9 under protective gas to the tube by means of a non-melting electrode.
- a jaw extraction is designated, which pulls the copper strip 6 and the welded tube through the system and feeds the tube to a corrugated device 13, in which the tube is deformed into a corrugated tube 14.
- the corrugated tube 14 is then drummed onto a conventional coil 15.
- a continuous annealing device can be provided behind the rollers 7 and 8 , which reverses the hardening of the material.
- the heat exchanger tubes according to the teaching of the invention are preferably used as evaporator tubes in heat exchangers for heat pump systems, the refrigerant flowing inside the tube and being vaporized there by supplying heat from the outside.
- Another preferred area of application is the so-called heat pipe.
- This is understood to mean a tube which is closed in a vacuum-tight manner at both ends and which is filled with a working medium in a precisely dimensioned manner. If heat is supplied to this heat pipe at one end, the liquid located there evaporates and flows to the cooler end of the heat pipe, where the steam condenses and the condensate is transported back to the warm end of the pipe due to gravity or capillary forces. Due to the micro roughness, a delay in boiling is avoided with certainty and the heat transfer is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Die Erfindung betrifft ein Rohr für Wärmetauscherzwecke insbesondere für Verdampfer, bestehend aus einem Metallrohr mit ring- oder schraubenförmiger Wellung.The invention relates to a tube for heat exchanger purposes, in particular for evaporators, consisting of a metal tube with an annular or helical corrugation.
Es ist bekannt, Wellrohre für Wärmetauscher einzusetzen und sich hierbei die durch die Wellung erzeugte Oberflächenvergrößerung zunutze zu machen. Derartige Rohre treten in Wettbewerb mit den sogenannten Rippenrohren.It is known to use corrugated pipes for heat exchangers and to take advantage of the surface enlargement generated by the corrugation. Such tubes compete with the so-called finned tubes.
Der Erfindung liegt die Aufgabe zugrunde, insbesondere für den Einsatz als Verdampfer die bekannten Wellrohrwärmetauscherrohce dahingehend zu verbessern, daß eine Verdampfung an der Oberfläche der Wellrohre wesentlich intensiviert wird. Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die innere und/oder die äußere Oberfläche des Wellrohres derart plastisch verformt ist, daß eine gleichmäßige Mikrorauhigkeit mit einer Tiefe von 10 bis 250 µm entsteht. Durch die Mikrorauhigkeit wird die Dampfblasenbildung beschleunigt, die Dampfblasenfrequenz erhöht, und die Anzahl der Dampfblasenbildungszentren pro Flächeneinheit wesentlich vergrößert, so daß Wärmetauscher, in denen Rohre gemäß der Lehre der Erfindung eingesetzt sind, einen höheren Wirkungsgrad als die bekannten Wärmetauscher aufweisen. Mit besonderem Vorteil entsteht die Mikrorauhigkeit durch eine Vielzahl von gleichmäßig verteilten Kegeln. Eine solche Mikrorauhigkeit läßt sich in besonders wirtschaftlicher Weise herstellen. Eine andere Möglichkeit besteht darin, die Oberfläche des Wellrohres sandzustrahlen. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Wärmetauscherrohres. Bei diesem Verfahren wird ein von einer Vorratsspule kontinuierlich abgezogenes Metallband, vorzugsweise aus Kupfer, zwischen zwei Walzen hindurchgeführt, von denen mindestens eine eine Rändelung auf ihrer Arbeitsfläche aufweist, das Metallband wird zum Schlitzrohr verformt und seine Bandkanten werden mittels Lichtbogenschweißung unter Schutzgas verbunden. Abschließend wird das Rohr gewellt. Mit Hilfe des erfindungsgemäßen Verfahrens ist es gelungen, Wellrohre mit einer gleichmäßigen Mikrorauhigkeit wirtschaftlich herzustellen. Insbesondere ist das Verfahren geeignet, die innere Oberfläche eines relativ dünnwandigen Rohres mit einer Wanddicke von weniger als 0,5 mm und einem Durchmesser von weniger als 30 mm in wirtschaftlicher Weise mit der erwünschten Mikrorauhigkeit zu versehen.The invention is based, in particular for use as an evaporator, to improve the known corrugated tube heat exchanger tube in such a way that evaporation on the surface of the corrugated tubes is significantly intensified. This object is achieved according to the invention in that the inner and / or the outer surface of the corrugated tube is plastically deformed in such a way that a uniform micro-roughness with a depth of 10 to 250 μm is produced. The micro-roughness accelerates the vapor bubble formation, increases the vapor bubble frequency, and increases the number of vapor bubble formation centers per unit area, so that heat Exchangers in which pipes are used according to the teaching of the invention have a higher efficiency than the known heat exchangers. The micro roughness is particularly advantageous due to the large number of evenly distributed cones. Such a micro roughness can be produced in a particularly economical manner. Another possibility is to sandblast the surface of the corrugated pipe. The invention further relates to a method for producing a heat exchanger tube. In this method, a metal strip, preferably made of copper, drawn continuously from a supply spool is passed between two rollers, at least one of which has knurling on its working surface, the metal strip is deformed to form a slotted tube and its strip edges are connected by means of arc welding under protective gas. Finally the pipe is corrugated. With the aid of the method according to the invention, corrugated pipes with a uniform micro-roughness have been successfully produced. In particular, the method is suitable for economically providing the desired microroughness to the inner surface of a relatively thin-walled tube with a wall thickness of less than 0.5 mm and a diameter of less than 30 mm.
Die Erfindung ist anhand der in den Figuren 1 bis 3 schematisch dargestellten Ausführungsbeispiele näher erläutert.The invention is explained in more detail with reference to the exemplary embodiments shown schematically in FIGS. 1 to 3.
Ein Kupferrohr 1 mit schraubenlinienförmiger Wellung, welches eine Wanddicke von 0,3 mm und einen Außendurchmesser von 15 mm aufweist, weist an seiner inneren Oberfläche eine durch eine Vielzahl von gleichmäßig verteilten Einprägungen erzeugte Mikrorauhigkeit 2 auf. Ein derartig ausgebildetes Wärmetauscherrohr findet bevorzugt dort Anwendung, wo eine im Innern eines Rohres strömende Flüssigkeit durch von außen durch die Rohrwandung hindurchgeführte Wärme verdampft werden soll.A
Die Figur 2 zeigt einen Schnitt durch einen Teil der Rohrwandung, die innen mit künstlichen Siedekeimstellen (Einprägungen 3) versehen ist. Die Keimstellengeometrie ist in Form und Anordnung vorzugsweise regelmäßig. Besonders günstig erweist sich eine Keimstellenanordnung, bei der die Abstände der Keimstellen untereinander gleich sind (gleichseitige Dreiecke).FIG. 2 shows a section through a part of the tube wall which is provided with artificial boiling-point sites (impressions 3) on the inside. The shape and arrangement of the germ site geometry is preferably regular. A germination point arrangement in which the distances between the germination points are equal to one another (triangles on the same side) has proven particularly favorable.
Die geometrische Form der Keimstellen ist abhängig von den Zustandyrößen des Fluids sowie von der Wandüberhitzung. Je kleiner der Öffnungsdurchmesser der Keimstellen ist, desto größer muß die Wandtemperatur gegenüber der Sattdampftemperatur sein, um die Keimstellen aktiv zu machen. Diese Überhitzungstemperatur der Heizwand kann nach Lord Kelvin und Helmholtz berechnet werden, wenn für den Blasendurchmesser derjenige der Keimstellenöffnung eingesetzt wird:
- Öffnungsdurchmesser der Keimstelle
- = Oberflächenspannung an der Grenzfläche Flüssigkeit - Dampf
- ν"= spezifisches Volumen des Dampfes
- τS = Sattdampf temperatur
- ν - Verdampfungswärme
- ΔT= Temperaturdifferenz zwischen Heizwandtemperatur und Sattdampftemperatur
- Opening diameter of the germ site
- = Surface tension at the liquid-vapor interface
- ν "= specific volume of the steam
- τ S = saturated steam temperature
- ν - heat of vaporization
- ΔT = temperature difference between heating wall temperature and saturated steam temperature
Um die Ekergieverluste so klein wie möglich zu halten, ist ein kleiner Wert von ΔT anzustreben. Dieses aber bedeutet, relativ große Keimstellen herzustellen. Für zu verdampfende Flüssigkeiten, deren temperaturabhängige Dichten im Bereich von 500 kg/m bis 1.600 kg/m liegen, sollten die Keimstellentiefen zwischen 50 bis 150 µm und die Öffnungsdurchmesser der Keimstellen zwischen 10 bis 200 µm liegen. Eine günstige Keimstellengeometrie stellt die Kreiskegelform dar. Besonders einfach ist eine Kegelform mit quadratischer Grundfläche herzustellen.In order to keep the energy losses as small as possible, a small value of ΔT should be aimed for. However, this means producing relatively large germ sites. For liquids to be evaporated, whose temperature-dependent densities are in the range from 500 kg / m to 1,600 kg / m, the germination depths should be between 50 to 150 µm and the opening diameter of the germination points should be between 10 to 200 µm. The circular cone shape represents a favorable germination point geometry. It is particularly easy to produce a cone shape with a square base.
Der Abstand von Keimstelle zu Keimstelle sollte so bemessen sein, daß sich die Blasen beim Abreißen von der Heizwand gegenseitig nicht berühren.The distance from the germination point to the germination point should be such that the bubbles do not touch each other when torn off the heating wall.
Das Verfahren zur Herstellung des in den Figuren 1 und 2 dargestellten Wärmetauscherrohres soll anhand der Figur 3 näher erläutert werden.The method for producing the heat exchanger tube shown in FIGS. 1 and 2 will be explained in more detail with reference to FIG. 3.
Von einer Vorratsspule 5 wird kontinuierlich ein weichgeglühtes Kupferband 6 abgezogen und zwischen zwei Walzen 7 und 8, die entweder angetrieben oder als Schleppwalzen ausgebildet sein können, hindurchgeführt. Die Oberwalze 8 weist an ihrer Arbeitsfläche eine Rändelung auf, welche in das Kupferband 6 die Einprägungen 3 in gleichmäßiger Verteilung einbringt. Hinter den Walzen 7 und 8 gelangt das Kupferband 6 in eine nicht näher dargestellte Formvorrichtung, in welcher das Kupferband 6 zum Schlitzrohr 9 geformt wird, und deren letzte Formstufe ein Ziehring 10 ist, welcher die Bandkanten eng zusammenhält. Hinter dem Ziehring 10 ist eine Schweißioxrichtung 11 angeordnet, welche das Schlitzrohr 9 unter Schutzgas mittels einer nicht abschmelzenden Elektrode zum Rohr verschweißt. Mit 12 ist ein Spannbackenabzug bezeichnet, welcher das Kupferband 6 sowie das verschweißte Rohr durch die Anlage hindurchzieht und das Rohr einer Wellvorrichtung 13 zuführt, in welcher das Rohr zu einem Wellrohr 14 verformt wird. Das Wellrohr 14 wird anschließend auf eine übliche Spule 15 aufgetrommelt.A soft annealed copper strip 6 is continuously drawn off from a
Sollte die durch die Walzen 7 und 8 hervorgerufene plastische Verformung des Kupferbandes 6 zu einer Aufhärtung des Materials führen, die ein Formen des Bandes 6 zum Rohr erschwert bzw. die Flexibilität des Wellrohres 14 einschränkt, kann hinter den Walzen 7 und 8 eine Durchlaufglüheinrichtung vorgesehen werden, die die Aushärtung des Materials wieder rückgängig macht.If the plastic deformation of the copper strip 6 caused by the rollers 7 and 8 leads to a hardening of the material, which makes it difficult to form the strip 6 into the tube or limits the flexibility of the
Für manche Anwendungsfälle kann es vorteilhaft sein, das Kupferband 6 nach dem Rändeln durch die Walzen 7 und 8 durch ein nicht dargestelltes Glättwalzenpaar hindurchzüführen, um die beim Rändeln entstandenen Wülste im Randbereich der Einprägungen einzuebenen bzw. "hinterschnittene" Einprägungen zu erzeugen, die die Dampfblasenablösung noch beschleunigen.For some applications, it may be advantageous to pass the copper strip 6 after knurling through the rollers 7 and 8 through a pair of smoothing rollers, not shown, in order to level the beads formed during knurling in the edge region of the impressions or to produce "undercut" impressions that release the vapor bubble still accelerate.
Die Wärmetauscherrohre gemäß der Lehre der Erfindung finden bevorzugt Anwendung als Verdampferrohre in Wärmetauschern für Wärmepumpenanlagen, wobei das Kältemittel im Innern des Rohres strömt und dort durch Zuführung von Wärme von außen verdampft wird. Ein anderes bevorzugtes Anwendungsgebiet ist das sogenannte Wärmerohr. Hierunter versteht man ein an beiden Enden vakuumdicht verschlossenes Rohr, welches in genau bemessener Weise mit einem Arbeitsmedium gefüllt ist. Wird diesem Wärmerohr an einem Ende Wärme zugeführt, so verdampft die dort befindliche Flüssigkeit und strömt zum kühleren Ende des Wärmerohres, wo der Dampf kondensiert und das Kondensat aufgrund von Schwerkraft oder Kapillarkräften zum warmen Ende des Rohres zurücktransportiert wird. Durch die Mikrorauhigkeit wird ein Siedeverzug mit Sicherheit vermieden und der Wärmeübergang verbessert.The heat exchanger tubes according to the teaching of the invention are preferably used as evaporator tubes in heat exchangers for heat pump systems, the refrigerant flowing inside the tube and being vaporized there by supplying heat from the outside. Another preferred area of application is the so-called heat pipe. This is understood to mean a tube which is closed in a vacuum-tight manner at both ends and which is filled with a working medium in a precisely dimensioned manner. If heat is supplied to this heat pipe at one end, the liquid located there evaporates and flows to the cooler end of the heat pipe, where the steam condenses and the condensate is transported back to the warm end of the pipe due to gravity or capillary forces. Due to the micro roughness, a delay in boiling is avoided with certainty and the heat transfer is improved.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803010450 DE3010450A1 (en) | 1980-03-19 | 1980-03-19 | PIPE FOR HEAT EXCHANGER PURPOSES, ESPECIALLY FOR EVAPORATORS |
DE3010450 | 1980-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0037854A1 true EP0037854A1 (en) | 1981-10-21 |
Family
ID=6097609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80107846A Withdrawn EP0037854A1 (en) | 1980-03-19 | 1980-12-12 | Tube for heat exchangers, especially for evaporators, and process for making said tube |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0037854A1 (en) |
DE (1) | DE3010450A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0119777A2 (en) * | 1983-03-22 | 1984-09-26 | Imperial Chemical Industries Plc | Centrifugal heat pump |
FR2631431A1 (en) * | 1988-05-11 | 1989-11-17 | Frigofrance | Machine making chipped ice from sea water - with scraper and refrigerated cylinder with rough surface |
EP0819908A3 (en) * | 1996-07-19 | 1999-06-09 | Alcan Alluminio S.p.A. | Rolled section for the realization of heat exchangers and relevant production method |
EP1202018A3 (en) * | 2000-10-27 | 2004-04-07 | Alcoa Inc. | Micro-textured heat transfer surfaces |
WO2009071698A1 (en) * | 2007-12-06 | 2009-06-11 | Erk Eckrohrkessel Gmbh | Component for performing heat transfer and/or technical reaction control and method for producing the component |
EP2554292A1 (en) * | 2011-08-05 | 2013-02-06 | Witzenmann GmbH | Conduit element with surface structure and method for production and use of such a conduit element |
WO2013079665A1 (en) * | 2011-12-02 | 2013-06-06 | Wickeder Westfalenstahl Gmbh | Heat exchanger |
EP3097377A1 (en) * | 2014-01-20 | 2016-11-30 | Neotiss SAS | Improved tube for a heat exchanger |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3424658C2 (en) * | 1984-07-02 | 1986-11-13 | Mannesmann AG, 4000 Düsseldorf | Heat transfer pipe, in particular heat pipe, and method for producing the same |
DE19510124A1 (en) * | 1995-03-21 | 1996-09-26 | Km Europa Metal Ag | Exchanger tube for a heat exchanger |
DE102011078730A1 (en) * | 2011-07-06 | 2013-01-10 | BSH Bosch und Siemens Hausgeräte GmbH | dishwasher |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2076034A1 (en) * | 1970-01-12 | 1971-10-15 | Universal Oil Prod Co | |
GB1267149A (en) * | 1970-06-01 | 1972-03-15 | Universal Oil Prod Co | Heat transfer tube with porous boiling-surface |
DE2049420A1 (en) * | 1970-10-08 | 1972-04-13 | Kabel Metallwerke Ghh | Process for the continuous production of longitudinally welded pipes |
DE2420002A1 (en) * | 1974-04-25 | 1975-11-13 | Kurt Friedrich | Corrugated tube for heat exchange applications - ensures specified turbulence conditions due to specific turbulence conditions due to specific corrugation length depth and radius ratio |
GB1427513A (en) * | 1972-03-03 | 1976-03-10 | Yorkshire Imperial Metals Ltd | Method and apparatus for producing heat exchanger tubes |
DE2740582A1 (en) * | 1976-09-13 | 1978-03-16 | Plannja Ab | METHOD AND DEVICE FOR PROFILING A STRAP MADE OF ELASTOPLASTIC OR PLASTIC MATERIAL |
FR2407448A1 (en) * | 1977-11-01 | 1979-05-25 | Borg Warner | HEAT TRANSFER SURFACE, METHOD FOR PREPARING THIS SURFACE AND BOILING PROCESS |
-
1980
- 1980-03-19 DE DE19803010450 patent/DE3010450A1/en not_active Withdrawn
- 1980-12-12 EP EP80107846A patent/EP0037854A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2076034A1 (en) * | 1970-01-12 | 1971-10-15 | Universal Oil Prod Co | |
GB1267149A (en) * | 1970-06-01 | 1972-03-15 | Universal Oil Prod Co | Heat transfer tube with porous boiling-surface |
DE2049420A1 (en) * | 1970-10-08 | 1972-04-13 | Kabel Metallwerke Ghh | Process for the continuous production of longitudinally welded pipes |
GB1427513A (en) * | 1972-03-03 | 1976-03-10 | Yorkshire Imperial Metals Ltd | Method and apparatus for producing heat exchanger tubes |
DE2420002A1 (en) * | 1974-04-25 | 1975-11-13 | Kurt Friedrich | Corrugated tube for heat exchange applications - ensures specified turbulence conditions due to specific turbulence conditions due to specific corrugation length depth and radius ratio |
DE2740582A1 (en) * | 1976-09-13 | 1978-03-16 | Plannja Ab | METHOD AND DEVICE FOR PROFILING A STRAP MADE OF ELASTOPLASTIC OR PLASTIC MATERIAL |
FR2407448A1 (en) * | 1977-11-01 | 1979-05-25 | Borg Warner | HEAT TRANSFER SURFACE, METHOD FOR PREPARING THIS SURFACE AND BOILING PROCESS |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0119777A2 (en) * | 1983-03-22 | 1984-09-26 | Imperial Chemical Industries Plc | Centrifugal heat pump |
US4793154A (en) * | 1983-03-22 | 1988-12-27 | Imperial Chemical Industries Plc | Centrifugal heat pump |
EP0119777A3 (en) * | 1983-03-24 | 1985-08-07 | Imperial Chemical Industries Plc | Centrifugal heat pump |
FR2631431A1 (en) * | 1988-05-11 | 1989-11-17 | Frigofrance | Machine making chipped ice from sea water - with scraper and refrigerated cylinder with rough surface |
EP0819908A3 (en) * | 1996-07-19 | 1999-06-09 | Alcan Alluminio S.p.A. | Rolled section for the realization of heat exchangers and relevant production method |
EP1202018A3 (en) * | 2000-10-27 | 2004-04-07 | Alcoa Inc. | Micro-textured heat transfer surfaces |
US6925711B2 (en) | 2000-10-27 | 2005-08-09 | Alcoa Inc. | Micro-textured heat transfer surfaces |
WO2009071698A1 (en) * | 2007-12-06 | 2009-06-11 | Erk Eckrohrkessel Gmbh | Component for performing heat transfer and/or technical reaction control and method for producing the component |
EP2554292A1 (en) * | 2011-08-05 | 2013-02-06 | Witzenmann GmbH | Conduit element with surface structure and method for production and use of such a conduit element |
WO2013079665A1 (en) * | 2011-12-02 | 2013-06-06 | Wickeder Westfalenstahl Gmbh | Heat exchanger |
EP3097377A1 (en) * | 2014-01-20 | 2016-11-30 | Neotiss SAS | Improved tube for a heat exchanger |
EP3097377B1 (en) * | 2014-01-20 | 2022-04-20 | Neotiss SAS | Improved tube for a heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
DE3010450A1 (en) | 1981-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69215988T3 (en) | Heat exchange tubes and manufacturing processes | |
EP2534382B1 (en) | Product for flow applications | |
DE3332282C2 (en) | Heat exchange tube | |
DE102009007446B4 (en) | Heat exchanger tube and method for its production | |
EP0037854A1 (en) | Tube for heat exchangers, especially for evaporators, and process for making said tube | |
DE1527841A1 (en) | Process for the production of composite tubular elements for use in tubular heat exchangers and in particular in preheaters for heating boilers and composite tubular elements produced by this process | |
DE2053085B2 (en) | Method and device for the continuous production of tubes with helical or annular inner ribs | |
DE102012023800A1 (en) | Heat exchanger tube, heat exchanger tube assembly and method of making same | |
DE19654367A1 (en) | Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet | |
DE3014506A1 (en) | HEAT EXCHANGER WITH A SPIRAL-ROOM FOR HEAT EXCHANGE BETWEEN AT LEAST TWO MEDIA | |
DE2801459C3 (en) | Pipe extrusion press for the production of heat exchanger pipes | |
DE10210016B9 (en) | Heat exchange tube with a ribbed inner surface | |
EP0344570A2 (en) | Method and apparatus for making a spiral tubing | |
DE102012023801A1 (en) | Heat exchanger tube, heat exchanger tube assembly and method of making same | |
DE3416840A1 (en) | Method for the production of a heating boiler with a double-walled, meander-shaped plate as a part for carrying a heat transfer medium | |
DE2320125C3 (en) | Method of manufacturing a pipe unit | |
DE3902046A1 (en) | HEAT EXCHANGER WITH STATUS CHANGE OF A MEDIUM, AS E.g. AN EVAPORATOR FOR AN AIR CONDITIONING, ESPECIALLY FOR A MOTOR VEHICLE | |
DE3132751A1 (en) | Method for producing plate-shaped heat exchanger elements | |
CH639295A5 (en) | Method for the production of a metal plate with holes for receiving tubes | |
DE2803413C2 (en) | Heat exchanger element, process for its production and device for carrying out this process | |
DE3916225A1 (en) | Forming grooves in bore of heat exchange tube - involves tool with convex longitudinal profile with oblique grooves | |
DE691006C (en) | Pusher with a seamless, preferably drawn, tubular part pushed over a pusher pin | |
DE1527290A1 (en) | Methods and devices for bending electrically conductive long materials | |
DE2758134C2 (en) | Process for the production of heat exchanger tubes!) With inner and outer longitudinal ribs | |
DE921867C (en) | Method and device for manufacturing finned tube and finned tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19810827 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19830117 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHIMMELPFENNIG, KLAUS, DIPL.-ING. Inventor name: STASCHEWSKI, HARRY, ING.-GRAD. |