EP0037854A1 - Tube for heat exchangers, especially for evaporators, and process for making said tube - Google Patents

Tube for heat exchangers, especially for evaporators, and process for making said tube Download PDF

Info

Publication number
EP0037854A1
EP0037854A1 EP80107846A EP80107846A EP0037854A1 EP 0037854 A1 EP0037854 A1 EP 0037854A1 EP 80107846 A EP80107846 A EP 80107846A EP 80107846 A EP80107846 A EP 80107846A EP 0037854 A1 EP0037854 A1 EP 0037854A1
Authority
EP
European Patent Office
Prior art keywords
tube
corrugated
roughness
rollers
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80107846A
Other languages
German (de)
French (fr)
Inventor
Klaus Dipl.-Ing. Schimmelpfennig
Harry Ing.-Grad. Staschewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Kabelmetal AG
Original Assignee
KM Kabelmetal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Kabelmetal AG filed Critical KM Kabelmetal AG
Publication of EP0037854A1 publication Critical patent/EP0037854A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex

Definitions

  • the invention relates to a tube for heat exchanger purposes, in particular for evaporators, consisting of a metal tube with an annular or helical corrugation.
  • the invention is based, in particular for use as an evaporator, to improve the known corrugated tube heat exchanger tube in such a way that evaporation on the surface of the corrugated tubes is significantly intensified.
  • This object is achieved according to the invention in that the inner and / or the outer surface of the corrugated tube is plastically deformed in such a way that a uniform micro-roughness with a depth of 10 to 250 ⁇ m is produced.
  • the micro-roughness accelerates the vapor bubble formation, increases the vapor bubble frequency, and increases the number of vapor bubble formation centers per unit area, so that heat Exchangers in which pipes are used according to the teaching of the invention have a higher efficiency than the known heat exchangers.
  • the micro roughness is particularly advantageous due to the large number of evenly distributed cones. Such a micro roughness can be produced in a particularly economical manner. Another possibility is to sandblast the surface of the corrugated pipe.
  • the invention further relates to a method for producing a heat exchanger tube. In this method, a metal strip, preferably made of copper, drawn continuously from a supply spool is passed between two rollers, at least one of which has knurling on its working surface, the metal strip is deformed to form a slotted tube and its strip edges are connected by means of arc welding under protective gas. Finally the pipe is corrugated. With the aid of the method according to the invention, corrugated pipes with a uniform micro-roughness have been successfully produced. In particular, the method is suitable for economically providing the desired microroughness to the inner surface of a relatively thin-walled tube with a wall thickness of less than 0.5 mm and a diameter of less than 30 mm.
  • a copper tube 1 with a helical corrugation which has a wall thickness of 0.3 mm and an outer diameter of 15 mm, has on its inner surface a micro-roughness 2 produced by a large number of uniformly distributed impressions.
  • Such a heat exchanger tube is preferably used where a liquid flowing inside a tube is to be evaporated by heat passed through the tube wall from the outside.
  • FIG. 2 shows a section through a part of the tube wall which is provided with artificial boiling-point sites (impressions 3) on the inside.
  • the shape and arrangement of the germ site geometry is preferably regular.
  • a germination point arrangement in which the distances between the germination points are equal to one another (triangles on the same side) has proven particularly favorable.
  • ⁇ T In order to keep the energy losses as small as possible, a small value of ⁇ T should be aimed for. However, this means producing relatively large germ sites.
  • the germination depths For liquids to be evaporated, whose temperature-dependent densities are in the range from 500 kg / m to 1,600 kg / m, the germination depths should be between 50 to 150 ⁇ m and the opening diameter of the germination points should be between 10 to 200 ⁇ m.
  • the circular cone shape represents a favorable germination point geometry. It is particularly easy to produce a cone shape with a square base.
  • the distance from the germination point to the germination point should be such that the bubbles do not touch each other when torn off the heating wall.
  • a soft annealed copper strip 6 is continuously drawn off from a supply reel 5 and passed between two rollers 7 and 8, which can either be driven or designed as drag rollers.
  • the upper roller 8 has knurling on its working surface, which introduces the impressions 3 into the copper strip 6 in a uniform distribution.
  • Behind the rollers 7 and 8, the copper strip 6 passes into a shaping device (not shown in more detail), in which the copper strip 6 is shaped into the slotted tube 9, and the last shaping step of which is a drawing ring 10 which holds the strip edges tightly together.
  • a welding oxide device 11 Arranged behind the drawing ring 10 is a welding oxide device 11, which welds the slotted tube 9 under protective gas to the tube by means of a non-melting electrode.
  • a jaw extraction is designated, which pulls the copper strip 6 and the welded tube through the system and feeds the tube to a corrugated device 13, in which the tube is deformed into a corrugated tube 14.
  • the corrugated tube 14 is then drummed onto a conventional coil 15.
  • a continuous annealing device can be provided behind the rollers 7 and 8 , which reverses the hardening of the material.
  • the heat exchanger tubes according to the teaching of the invention are preferably used as evaporator tubes in heat exchangers for heat pump systems, the refrigerant flowing inside the tube and being vaporized there by supplying heat from the outside.
  • Another preferred area of application is the so-called heat pipe.
  • This is understood to mean a tube which is closed in a vacuum-tight manner at both ends and which is filled with a working medium in a precisely dimensioned manner. If heat is supplied to this heat pipe at one end, the liquid located there evaporates and flows to the cooler end of the heat pipe, where the steam condenses and the condensate is transported back to the warm end of the pipe due to gravity or capillary forces. Due to the micro roughness, a delay in boiling is avoided with certainty and the heat transfer is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a metal tube for heat exchangers, especially for an evaporator having annular or helical corrugation, the inner and/or outer surface of the corrugated tube is plastically formed so as to produce a uniform micro-roughness with a depth of 10-250 mu m. <IMAGE>

Description

Die Erfindung betrifft ein Rohr für Wärmetauscherzwecke insbesondere für Verdampfer, bestehend aus einem Metallrohr mit ring- oder schraubenförmiger Wellung.The invention relates to a tube for heat exchanger purposes, in particular for evaporators, consisting of a metal tube with an annular or helical corrugation.

Es ist bekannt, Wellrohre für Wärmetauscher einzusetzen und sich hierbei die durch die Wellung erzeugte Oberflächenvergrößerung zunutze zu machen. Derartige Rohre treten in Wettbewerb mit den sogenannten Rippenrohren.It is known to use corrugated pipes for heat exchangers and to take advantage of the surface enlargement generated by the corrugation. Such tubes compete with the so-called finned tubes.

Der Erfindung liegt die Aufgabe zugrunde, insbesondere für den Einsatz als Verdampfer die bekannten Wellrohrwärmetauscherrohce dahingehend zu verbessern, daß eine Verdampfung an der Oberfläche der Wellrohre wesentlich intensiviert wird. Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die innere und/oder die äußere Oberfläche des Wellrohres derart plastisch verformt ist, daß eine gleichmäßige Mikrorauhigkeit mit einer Tiefe von 10 bis 250 µm entsteht. Durch die Mikrorauhigkeit wird die Dampfblasenbildung beschleunigt, die Dampfblasenfrequenz erhöht, und die Anzahl der Dampfblasenbildungszentren pro Flächeneinheit wesentlich vergrößert, so daß Wärmetauscher, in denen Rohre gemäß der Lehre der Erfindung eingesetzt sind, einen höheren Wirkungsgrad als die bekannten Wärmetauscher aufweisen. Mit besonderem Vorteil entsteht die Mikrorauhigkeit durch eine Vielzahl von gleichmäßig verteilten Kegeln. Eine solche Mikrorauhigkeit läßt sich in besonders wirtschaftlicher Weise herstellen. Eine andere Möglichkeit besteht darin, die Oberfläche des Wellrohres sandzustrahlen. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Wärmetauscherrohres. Bei diesem Verfahren wird ein von einer Vorratsspule kontinuierlich abgezogenes Metallband, vorzugsweise aus Kupfer, zwischen zwei Walzen hindurchgeführt, von denen mindestens eine eine Rändelung auf ihrer Arbeitsfläche aufweist, das Metallband wird zum Schlitzrohr verformt und seine Bandkanten werden mittels Lichtbogenschweißung unter Schutzgas verbunden. Abschließend wird das Rohr gewellt. Mit Hilfe des erfindungsgemäßen Verfahrens ist es gelungen, Wellrohre mit einer gleichmäßigen Mikrorauhigkeit wirtschaftlich herzustellen. Insbesondere ist das Verfahren geeignet, die innere Oberfläche eines relativ dünnwandigen Rohres mit einer Wanddicke von weniger als 0,5 mm und einem Durchmesser von weniger als 30 mm in wirtschaftlicher Weise mit der erwünschten Mikrorauhigkeit zu versehen.The invention is based, in particular for use as an evaporator, to improve the known corrugated tube heat exchanger tube in such a way that evaporation on the surface of the corrugated tubes is significantly intensified. This object is achieved according to the invention in that the inner and / or the outer surface of the corrugated tube is plastically deformed in such a way that a uniform micro-roughness with a depth of 10 to 250 μm is produced. The micro-roughness accelerates the vapor bubble formation, increases the vapor bubble frequency, and increases the number of vapor bubble formation centers per unit area, so that heat Exchangers in which pipes are used according to the teaching of the invention have a higher efficiency than the known heat exchangers. The micro roughness is particularly advantageous due to the large number of evenly distributed cones. Such a micro roughness can be produced in a particularly economical manner. Another possibility is to sandblast the surface of the corrugated pipe. The invention further relates to a method for producing a heat exchanger tube. In this method, a metal strip, preferably made of copper, drawn continuously from a supply spool is passed between two rollers, at least one of which has knurling on its working surface, the metal strip is deformed to form a slotted tube and its strip edges are connected by means of arc welding under protective gas. Finally the pipe is corrugated. With the aid of the method according to the invention, corrugated pipes with a uniform micro-roughness have been successfully produced. In particular, the method is suitable for economically providing the desired microroughness to the inner surface of a relatively thin-walled tube with a wall thickness of less than 0.5 mm and a diameter of less than 30 mm.

Die Erfindung ist anhand der in den Figuren 1 bis 3 schematisch dargestellten Ausführungsbeispiele näher erläutert.The invention is explained in more detail with reference to the exemplary embodiments shown schematically in FIGS. 1 to 3.

Ein Kupferrohr 1 mit schraubenlinienförmiger Wellung, welches eine Wanddicke von 0,3 mm und einen Außendurchmesser von 15 mm aufweist, weist an seiner inneren Oberfläche eine durch eine Vielzahl von gleichmäßig verteilten Einprägungen erzeugte Mikrorauhigkeit 2 auf. Ein derartig ausgebildetes Wärmetauscherrohr findet bevorzugt dort Anwendung, wo eine im Innern eines Rohres strömende Flüssigkeit durch von außen durch die Rohrwandung hindurchgeführte Wärme verdampft werden soll.A copper tube 1 with a helical corrugation, which has a wall thickness of 0.3 mm and an outer diameter of 15 mm, has on its inner surface a micro-roughness 2 produced by a large number of uniformly distributed impressions. Such a heat exchanger tube is preferably used where a liquid flowing inside a tube is to be evaporated by heat passed through the tube wall from the outside.

Die Figur 2 zeigt einen Schnitt durch einen Teil der Rohrwandung, die innen mit künstlichen Siedekeimstellen (Einprägungen 3) versehen ist. Die Keimstellengeometrie ist in Form und Anordnung vorzugsweise regelmäßig. Besonders günstig erweist sich eine Keimstellenanordnung, bei der die Abstände der Keimstellen untereinander gleich sind (gleichseitige Dreiecke).FIG. 2 shows a section through a part of the tube wall which is provided with artificial boiling-point sites (impressions 3) on the inside. The shape and arrangement of the germ site geometry is preferably regular. A germination point arrangement in which the distances between the germination points are equal to one another (triangles on the same side) has proven particularly favorable.

Die geometrische Form der Keimstellen ist abhängig von den Zustandyrößen des Fluids sowie von der Wandüberhitzung. Je kleiner der Öffnungsdurchmesser der Keimstellen ist, desto größer muß die Wandtemperatur gegenüber der Sattdampftemperatur sein, um die Keimstellen aktiv zu machen. Diese Überhitzungstemperatur der Heizwand kann nach Lord Kelvin und Helmholtz berechnet werden, wenn für den Blasendurchmesser derjenige der Keimstellenöffnung eingesetzt wird:

Figure imgb0001
Es gilt:

  • Öffnungsdurchmesser der Keimstelle
  • = Oberflächenspannung an der Grenzfläche Flüssigkeit - Dampf
  • ν"= spezifisches Volumen des Dampfes
  • τS = Sattdampf temperatur
  • ν - Verdampfungswärme
  • ΔT= Temperaturdifferenz zwischen Heizwandtemperatur und Sattdampftemperatur
The geometrical shape of the germ sites depends on the state of the fluid and the wall overheating. The smaller the opening diameter of the germination points, the greater the wall temperature must be compared to the saturated steam temperature in order to make the germination points active. This overheating temperature of the heating wall can be calculated according to Lord Kelvin and Helmholtz if that of the opening of the nucleus is used for the bubble diameter:
Figure imgb0001
The following applies:
  • Opening diameter of the germ site
  • = Surface tension at the liquid-vapor interface
  • ν "= specific volume of the steam
  • τ S = saturated steam temperature
  • ν - heat of vaporization
  • ΔT = temperature difference between heating wall temperature and saturated steam temperature

Um die Ekergieverluste so klein wie möglich zu halten, ist ein kleiner Wert von ΔT anzustreben. Dieses aber bedeutet, relativ große Keimstellen herzustellen. Für zu verdampfende Flüssigkeiten, deren temperaturabhängige Dichten im Bereich von 500 kg/m bis 1.600 kg/m liegen, sollten die Keimstellentiefen zwischen 50 bis 150 µm und die Öffnungsdurchmesser der Keimstellen zwischen 10 bis 200 µm liegen. Eine günstige Keimstellengeometrie stellt die Kreiskegelform dar. Besonders einfach ist eine Kegelform mit quadratischer Grundfläche herzustellen.In order to keep the energy losses as small as possible, a small value of ΔT should be aimed for. However, this means producing relatively large germ sites. For liquids to be evaporated, whose temperature-dependent densities are in the range from 500 kg / m to 1,600 kg / m, the germination depths should be between 50 to 150 µm and the opening diameter of the germination points should be between 10 to 200 µm. The circular cone shape represents a favorable germination point geometry. It is particularly easy to produce a cone shape with a square base.

Der Abstand von Keimstelle zu Keimstelle sollte so bemessen sein, daß sich die Blasen beim Abreißen von der Heizwand gegenseitig nicht berühren.The distance from the germination point to the germination point should be such that the bubbles do not touch each other when torn off the heating wall.

Das Verfahren zur Herstellung des in den Figuren 1 und 2 dargestellten Wärmetauscherrohres soll anhand der Figur 3 näher erläutert werden.The method for producing the heat exchanger tube shown in FIGS. 1 and 2 will be explained in more detail with reference to FIG. 3.

Von einer Vorratsspule 5 wird kontinuierlich ein weichgeglühtes Kupferband 6 abgezogen und zwischen zwei Walzen 7 und 8, die entweder angetrieben oder als Schleppwalzen ausgebildet sein können, hindurchgeführt. Die Oberwalze 8 weist an ihrer Arbeitsfläche eine Rändelung auf, welche in das Kupferband 6 die Einprägungen 3 in gleichmäßiger Verteilung einbringt. Hinter den Walzen 7 und 8 gelangt das Kupferband 6 in eine nicht näher dargestellte Formvorrichtung, in welcher das Kupferband 6 zum Schlitzrohr 9 geformt wird, und deren letzte Formstufe ein Ziehring 10 ist, welcher die Bandkanten eng zusammenhält. Hinter dem Ziehring 10 ist eine Schweißioxrichtung 11 angeordnet, welche das Schlitzrohr 9 unter Schutzgas mittels einer nicht abschmelzenden Elektrode zum Rohr verschweißt. Mit 12 ist ein Spannbackenabzug bezeichnet, welcher das Kupferband 6 sowie das verschweißte Rohr durch die Anlage hindurchzieht und das Rohr einer Wellvorrichtung 13 zuführt, in welcher das Rohr zu einem Wellrohr 14 verformt wird. Das Wellrohr 14 wird anschließend auf eine übliche Spule 15 aufgetrommelt.A soft annealed copper strip 6 is continuously drawn off from a supply reel 5 and passed between two rollers 7 and 8, which can either be driven or designed as drag rollers. The upper roller 8 has knurling on its working surface, which introduces the impressions 3 into the copper strip 6 in a uniform distribution. Behind the rollers 7 and 8, the copper strip 6 passes into a shaping device (not shown in more detail), in which the copper strip 6 is shaped into the slotted tube 9, and the last shaping step of which is a drawing ring 10 which holds the strip edges tightly together. Arranged behind the drawing ring 10 is a welding oxide device 11, which welds the slotted tube 9 under protective gas to the tube by means of a non-melting electrode. With 12 a jaw extraction is designated, which pulls the copper strip 6 and the welded tube through the system and feeds the tube to a corrugated device 13, in which the tube is deformed into a corrugated tube 14. The corrugated tube 14 is then drummed onto a conventional coil 15.

Sollte die durch die Walzen 7 und 8 hervorgerufene plastische Verformung des Kupferbandes 6 zu einer Aufhärtung des Materials führen, die ein Formen des Bandes 6 zum Rohr erschwert bzw. die Flexibilität des Wellrohres 14 einschränkt, kann hinter den Walzen 7 und 8 eine Durchlaufglüheinrichtung vorgesehen werden, die die Aushärtung des Materials wieder rückgängig macht.If the plastic deformation of the copper strip 6 caused by the rollers 7 and 8 leads to a hardening of the material, which makes it difficult to form the strip 6 into the tube or limits the flexibility of the corrugated tube 14, a continuous annealing device can be provided behind the rollers 7 and 8 , which reverses the hardening of the material.

Für manche Anwendungsfälle kann es vorteilhaft sein, das Kupferband 6 nach dem Rändeln durch die Walzen 7 und 8 durch ein nicht dargestelltes Glättwalzenpaar hindurchzüführen, um die beim Rändeln entstandenen Wülste im Randbereich der Einprägungen einzuebenen bzw. "hinterschnittene" Einprägungen zu erzeugen, die die Dampfblasenablösung noch beschleunigen.For some applications, it may be advantageous to pass the copper strip 6 after knurling through the rollers 7 and 8 through a pair of smoothing rollers, not shown, in order to level the beads formed during knurling in the edge region of the impressions or to produce "undercut" impressions that release the vapor bubble still accelerate.

Die Wärmetauscherrohre gemäß der Lehre der Erfindung finden bevorzugt Anwendung als Verdampferrohre in Wärmetauschern für Wärmepumpenanlagen, wobei das Kältemittel im Innern des Rohres strömt und dort durch Zuführung von Wärme von außen verdampft wird. Ein anderes bevorzugtes Anwendungsgebiet ist das sogenannte Wärmerohr. Hierunter versteht man ein an beiden Enden vakuumdicht verschlossenes Rohr, welches in genau bemessener Weise mit einem Arbeitsmedium gefüllt ist. Wird diesem Wärmerohr an einem Ende Wärme zugeführt, so verdampft die dort befindliche Flüssigkeit und strömt zum kühleren Ende des Wärmerohres, wo der Dampf kondensiert und das Kondensat aufgrund von Schwerkraft oder Kapillarkräften zum warmen Ende des Rohres zurücktransportiert wird. Durch die Mikrorauhigkeit wird ein Siedeverzug mit Sicherheit vermieden und der Wärmeübergang verbessert.The heat exchanger tubes according to the teaching of the invention are preferably used as evaporator tubes in heat exchangers for heat pump systems, the refrigerant flowing inside the tube and being vaporized there by supplying heat from the outside. Another preferred area of application is the so-called heat pipe. This is understood to mean a tube which is closed in a vacuum-tight manner at both ends and which is filled with a working medium in a precisely dimensioned manner. If heat is supplied to this heat pipe at one end, the liquid located there evaporates and flows to the cooler end of the heat pipe, where the steam condenses and the condensate is transported back to the warm end of the pipe due to gravity or capillary forces. Due to the micro roughness, a delay in boiling is avoided with certainty and the heat transfer is improved.

Claims (5)

1. Rohr für Wärmetauscherzwecke, insbesondere für Verdampfer, bestehend aus einem Metallrohr mit ring- oder schraubenförmiger Wellung, dadurch gekennzeichnet, daß die innere und/oder die äußere Oberfläche des Wellrohres derart plastisch verformt ist, daß eine gleichmäßige Mikrorauhigkeit mit einer Tiefe von 10 bis 250 um entsteht.1. Tube for heat exchanger purposes, in particular for evaporators, consisting of a metal tube with an annular or helical corrugation, characterized in that the inner and / or the outer surface of the corrugated tube is plastically deformed such that a uniform micro-roughness with a depth of 10 to 250 um arises. 2. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrorauhigkeit aus einer Vielzahl von gleichmäßig verteilten Kegeln besteht.2. Pipe according to claim 1, characterized in that the micro roughness consists of a plurality of evenly distributed cones. 3. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche sandgestrahlt ist.3. Pipe according to claim 1, characterized in that the surface is sandblasted. 4. Verfahren zur Herstellung eines Rohres nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein von einer Vorratsspule kontinuierlich abgezogenes Metallband, vorzugsweise aus Kupfer, zwischen zwei Walzen hindurchgeführt wird, von denen mindestens eine eine Rändelung auf ihrer Arbeitsfläche aufweist, daß das Metallband zum Schlitzrohr verformt und seine Bandkanten mittels Lichtbogenschweißung unter Schutzgas verbunden werden und daß das Rohr abschließend gewellt wird.4. A method for producing a tube according to claim 1 or 2, characterized in that a continuously withdrawn from a supply spool metal strip, preferably made of copper, is passed between two rollers, at least one of which has knurling on its working surface, that the metal strip for Slotted tube deformed and its band edges are connected by means of arc welding under protective gas and that the tube is finally corrugated. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Metallband nach dem Rändeln durch ein Glättwalzenpaar hindurchgeführt wird.5. The method according to claim 4, characterized in that the metal strip is passed through a pair of smoothing rollers after knurling.
EP80107846A 1980-03-19 1980-12-12 Tube for heat exchangers, especially for evaporators, and process for making said tube Withdrawn EP0037854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803010450 DE3010450A1 (en) 1980-03-19 1980-03-19 PIPE FOR HEAT EXCHANGER PURPOSES, ESPECIALLY FOR EVAPORATORS
DE3010450 1980-03-19

Publications (1)

Publication Number Publication Date
EP0037854A1 true EP0037854A1 (en) 1981-10-21

Family

ID=6097609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107846A Withdrawn EP0037854A1 (en) 1980-03-19 1980-12-12 Tube for heat exchangers, especially for evaporators, and process for making said tube

Country Status (2)

Country Link
EP (1) EP0037854A1 (en)
DE (1) DE3010450A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119777A2 (en) * 1983-03-22 1984-09-26 Imperial Chemical Industries Plc Centrifugal heat pump
FR2631431A1 (en) * 1988-05-11 1989-11-17 Frigofrance Machine making chipped ice from sea water - with scraper and refrigerated cylinder with rough surface
EP0819908A3 (en) * 1996-07-19 1999-06-09 Alcan Alluminio S.p.A. Rolled section for the realization of heat exchangers and relevant production method
EP1202018A3 (en) * 2000-10-27 2004-04-07 Alcoa Inc. Micro-textured heat transfer surfaces
WO2009071698A1 (en) * 2007-12-06 2009-06-11 Erk Eckrohrkessel Gmbh Component for performing heat transfer and/or technical reaction control and method for producing the component
EP2554292A1 (en) * 2011-08-05 2013-02-06 Witzenmann GmbH Conduit element with surface structure and method for production and use of such a conduit element
WO2013079665A1 (en) * 2011-12-02 2013-06-06 Wickeder Westfalenstahl Gmbh Heat exchanger
EP3097377A1 (en) * 2014-01-20 2016-11-30 Neotiss SAS Improved tube for a heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424658C2 (en) * 1984-07-02 1986-11-13 Mannesmann AG, 4000 Düsseldorf Heat transfer pipe, in particular heat pipe, and method for producing the same
DE19510124A1 (en) * 1995-03-21 1996-09-26 Km Europa Metal Ag Exchanger tube for a heat exchanger
DE102011078730A1 (en) * 2011-07-06 2013-01-10 BSH Bosch und Siemens Hausgeräte GmbH dishwasher

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2076034A1 (en) * 1970-01-12 1971-10-15 Universal Oil Prod Co
GB1267149A (en) * 1970-06-01 1972-03-15 Universal Oil Prod Co Heat transfer tube with porous boiling-surface
DE2049420A1 (en) * 1970-10-08 1972-04-13 Kabel Metallwerke Ghh Process for the continuous production of longitudinally welded pipes
DE2420002A1 (en) * 1974-04-25 1975-11-13 Kurt Friedrich Corrugated tube for heat exchange applications - ensures specified turbulence conditions due to specific turbulence conditions due to specific corrugation length depth and radius ratio
GB1427513A (en) * 1972-03-03 1976-03-10 Yorkshire Imperial Metals Ltd Method and apparatus for producing heat exchanger tubes
DE2740582A1 (en) * 1976-09-13 1978-03-16 Plannja Ab METHOD AND DEVICE FOR PROFILING A STRAP MADE OF ELASTOPLASTIC OR PLASTIC MATERIAL
FR2407448A1 (en) * 1977-11-01 1979-05-25 Borg Warner HEAT TRANSFER SURFACE, METHOD FOR PREPARING THIS SURFACE AND BOILING PROCESS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2076034A1 (en) * 1970-01-12 1971-10-15 Universal Oil Prod Co
GB1267149A (en) * 1970-06-01 1972-03-15 Universal Oil Prod Co Heat transfer tube with porous boiling-surface
DE2049420A1 (en) * 1970-10-08 1972-04-13 Kabel Metallwerke Ghh Process for the continuous production of longitudinally welded pipes
GB1427513A (en) * 1972-03-03 1976-03-10 Yorkshire Imperial Metals Ltd Method and apparatus for producing heat exchanger tubes
DE2420002A1 (en) * 1974-04-25 1975-11-13 Kurt Friedrich Corrugated tube for heat exchange applications - ensures specified turbulence conditions due to specific turbulence conditions due to specific corrugation length depth and radius ratio
DE2740582A1 (en) * 1976-09-13 1978-03-16 Plannja Ab METHOD AND DEVICE FOR PROFILING A STRAP MADE OF ELASTOPLASTIC OR PLASTIC MATERIAL
FR2407448A1 (en) * 1977-11-01 1979-05-25 Borg Warner HEAT TRANSFER SURFACE, METHOD FOR PREPARING THIS SURFACE AND BOILING PROCESS

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119777A2 (en) * 1983-03-22 1984-09-26 Imperial Chemical Industries Plc Centrifugal heat pump
US4793154A (en) * 1983-03-22 1988-12-27 Imperial Chemical Industries Plc Centrifugal heat pump
EP0119777A3 (en) * 1983-03-24 1985-08-07 Imperial Chemical Industries Plc Centrifugal heat pump
FR2631431A1 (en) * 1988-05-11 1989-11-17 Frigofrance Machine making chipped ice from sea water - with scraper and refrigerated cylinder with rough surface
EP0819908A3 (en) * 1996-07-19 1999-06-09 Alcan Alluminio S.p.A. Rolled section for the realization of heat exchangers and relevant production method
EP1202018A3 (en) * 2000-10-27 2004-04-07 Alcoa Inc. Micro-textured heat transfer surfaces
US6925711B2 (en) 2000-10-27 2005-08-09 Alcoa Inc. Micro-textured heat transfer surfaces
WO2009071698A1 (en) * 2007-12-06 2009-06-11 Erk Eckrohrkessel Gmbh Component for performing heat transfer and/or technical reaction control and method for producing the component
EP2554292A1 (en) * 2011-08-05 2013-02-06 Witzenmann GmbH Conduit element with surface structure and method for production and use of such a conduit element
WO2013079665A1 (en) * 2011-12-02 2013-06-06 Wickeder Westfalenstahl Gmbh Heat exchanger
EP3097377A1 (en) * 2014-01-20 2016-11-30 Neotiss SAS Improved tube for a heat exchanger
EP3097377B1 (en) * 2014-01-20 2022-04-20 Neotiss SAS Improved tube for a heat exchanger

Also Published As

Publication number Publication date
DE3010450A1 (en) 1981-09-24

Similar Documents

Publication Publication Date Title
DE69215988T3 (en) Heat exchange tubes and manufacturing processes
EP2534382B1 (en) Product for flow applications
DE3332282C2 (en) Heat exchange tube
DE102009007446B4 (en) Heat exchanger tube and method for its production
EP0037854A1 (en) Tube for heat exchangers, especially for evaporators, and process for making said tube
DE1527841A1 (en) Process for the production of composite tubular elements for use in tubular heat exchangers and in particular in preheaters for heating boilers and composite tubular elements produced by this process
DE2053085B2 (en) Method and device for the continuous production of tubes with helical or annular inner ribs
DE102012023800A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
DE19654367A1 (en) Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet
DE3014506A1 (en) HEAT EXCHANGER WITH A SPIRAL-ROOM FOR HEAT EXCHANGE BETWEEN AT LEAST TWO MEDIA
DE2801459C3 (en) Pipe extrusion press for the production of heat exchanger pipes
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
EP0344570A2 (en) Method and apparatus for making a spiral tubing
DE102012023801A1 (en) Heat exchanger tube, heat exchanger tube assembly and method of making same
DE3416840A1 (en) Method for the production of a heating boiler with a double-walled, meander-shaped plate as a part for carrying a heat transfer medium
DE2320125C3 (en) Method of manufacturing a pipe unit
DE3902046A1 (en) HEAT EXCHANGER WITH STATUS CHANGE OF A MEDIUM, AS E.g. AN EVAPORATOR FOR AN AIR CONDITIONING, ESPECIALLY FOR A MOTOR VEHICLE
DE3132751A1 (en) Method for producing plate-shaped heat exchanger elements
CH639295A5 (en) Method for the production of a metal plate with holes for receiving tubes
DE2803413C2 (en) Heat exchanger element, process for its production and device for carrying out this process
DE3916225A1 (en) Forming grooves in bore of heat exchange tube - involves tool with convex longitudinal profile with oblique grooves
DE691006C (en) Pusher with a seamless, preferably drawn, tubular part pushed over a pusher pin
DE1527290A1 (en) Methods and devices for bending electrically conductive long materials
DE2758134C2 (en) Process for the production of heat exchanger tubes!) With inner and outer longitudinal ribs
DE921867C (en) Method and device for manufacturing finned tube and finned tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19810827

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830117

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHIMMELPFENNIG, KLAUS, DIPL.-ING.

Inventor name: STASCHEWSKI, HARRY, ING.-GRAD.