EP0036481B1 - Process to prepare polymer-bonded explosives and products obtained according to this process - Google Patents

Process to prepare polymer-bonded explosives and products obtained according to this process Download PDF

Info

Publication number
EP0036481B1
EP0036481B1 EP81101016A EP81101016A EP0036481B1 EP 0036481 B1 EP0036481 B1 EP 0036481B1 EP 81101016 A EP81101016 A EP 81101016A EP 81101016 A EP81101016 A EP 81101016A EP 0036481 B1 EP0036481 B1 EP 0036481B1
Authority
EP
European Patent Office
Prior art keywords
binder
water
resins
crystalline
explosives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81101016A
Other languages
German (de)
French (fr)
Other versions
EP0036481A3 (en
EP0036481A2 (en
Inventor
Friedrich-Ulf Deisenroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81101016T priority Critical patent/ATE6497T1/en
Publication of EP0036481A2 publication Critical patent/EP0036481A2/en
Publication of EP0036481A3 publication Critical patent/EP0036481A3/en
Application granted granted Critical
Publication of EP0036481B1 publication Critical patent/EP0036481B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient
    • C06B21/0025Compounding the ingredient the ingredient being a polymer bonded explosive or thermic component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K5/00Light sources using charges of combustible material, e.g. illuminating flash devices
    • F21K5/02Light sources using charges of combustible material, e.g. illuminating flash devices ignited in a non-disrupting container, e.g. photo-flash bulb

Definitions

  • the invention relates to a process for the production of plastic-bound explosives from crystalline, water-insoluble explosives and crystalline inorganic oxidizers, energy-providing additives and a polyurethane binder applied from an aqueous dispersion without using organic solvents.
  • polyurethanes have the advantage that, in addition to good mechanical properties, they give the explosives above-average shock and bullet resistance and low mechanical sensitivity.
  • the " Encyclopedia of Explosives” and “ Related Items Explosives” with a polyurethane content of 2.5 to 10% are described.
  • the crystalline explosives are mixed with the polyurethane binder in most cases by the slurry method, in which the polyurethane binder is dissolved in a solvent and added to an aqueous dispersion of the explosive provided with protective colloids. By using a complicated process in which the solvent is distilled off from the mixture, granules of the desired size can be produced.
  • the reactive processes are known to start from liquid, hydroxy-terminated polyesters, ethers and butadienes which are crosslinked with isocyanates.
  • the latter method is mainly used when one wants to obtain pourable explosive mixtures.
  • Explosives are known from US Pat. No. 3,173,817 which are produced from an aqueous dispersion using a polyacrylate.
  • the plastic dispersion is coagulated by adding inorganic salts and the resulting explosive granules are mechanically separated from the water and dried.
  • the disadvantage of the process is the poor thermal stability of the acrylates and the risk of including inorganic coagulants, which have a negative effect on the stability of the explosive.
  • the reproducible granulate formation i.e. the production of a defined granulate, difficult for pressing purposes.
  • the granules must be hot-pressed to ensure the desired properties of the compact.
  • hot pressing is technically and economically very complex.
  • the invention thus relates to a process for the production of plastic-bound explosives from crystalline, water-insoluble explosives and crystalline inorganic oxidizers, the binder being applied from an aqueous dispersion, characterized in that, as a binder with the exclusion of organic solvents, polyurethanes onto the crystallines, water-insoluble explosives and crystallines inorganic oxidizers are applied and the granules obtained are dried and then pressed.
  • novel, aqueous, aliphatic and / or aromatic polyurethane dispersions with a solids content of 30 to 40% are used.
  • Such polyurethane dispersions are commercially available. They have particle sizes in the range from 0.1 to 0.4 ⁇ m and specific weights in the range from 0.9 to 1.2, preferably 1.1.
  • the pH of these dispersions can vary and is generally in the range from 5 to 8. However, the pH of the polyurethane dispersions depends on their preparation and is of no importance for the process according to the invention. From such commercially available aqueous dispersions made transparent, about 0.1 to 0.2 mm thick films have elongations at break, determined according to DIN 53504, over 500% and also have high tensile strengths.
  • Such aqueous polyurethane dispersions dry irreversibly to form highly elastic films which adhere perfectly to the explosive crystals.
  • the thermal stability and the compatibility with explosives of the polymers according to the invention are comparable to those of the polyurethanes used hitherto, so that the advantages of the polyurethanes can be exploited without having the disadvantages of the complicated processing.
  • the explosives obtained with the polymers according to the invention can be cold pressed very well even at pressures of less than 2000 bar. If necessary, the mechanical properties of the polymers can be adjusted in a simple manner by using highly polymeric, water-soluble plasticizers or reinforcing resins which are dissolved in the water of the dispersion in the manner according to the invention and filmed with the polyurethane.
  • Polymeric plasticizers are therefore used to avoid the migration phenomena of the plasticizer observed in polymers plasticized with low molecular weight plasticizers.
  • plasticizers e.g. Polyethylene glycols, polypropylene glycols, polyvinyl pyrrolidone and polyvinyl methyl ether, but preferably polyethylene glycols with a molecular weight of at least 5000, which are water-soluble but not hygroscopic, and polyvinyl ether.
  • Water-soluble reinforcing resins are epoxy resins, such as 3,4-epoxicyclohexylmethyl and 3,4-epoxicyclohexane carboxylate and the reaction product of pentaerythritol and epichlorohydrin, polymethoxymelamines, polyethylene / maleic anhydride copolymers, polyacrylamide and phenolic resins.
  • the mode of action of the reinforcement resins is different. While the epoxy resins are cured with a water-soluble hardener in parallel with the physical drying and film formation process of the polyurethane, the polyethylene / maleic anhydride copolymer co-films with the polyurethane to form films with increased mechanical strength.
  • the polymethoximelamines, phenolic resins and the polyacrylamide are dissolved in the dispersion, but at the temperatures prevailing in the process during drying from 40 to 50 ° C., they become insoluble, crosslinked products which increase the strength.
  • Table I describes both some plasticizers and reinforcing resins and their influence on one of the polyurethane dispersions according to the invention.
  • the proportion of plasticizers in the binder should be 0 to 30%, but preferably 5 to 15%, and that extrudable, elastoplastic explosive compositions can be produced within these limits.
  • the proportion of reinforcing resins is primarily limited by their compatibility with the polyurethane and by their water solubility. The proportion should be 0 to 50%, but preferably 2 to 20%.
  • Crystalline explosives that can be processed with the binder according to the invention must above all be water-insoluble. Therefore all known crystalline, water-insoluble primary and secondary explosives are to be used, e.g. Hexogen, octogen, nitroguanidine, potassium and guanidine picrate, tetryl, diamino and triaminotrinitrobenzene, benzotrifuroxane, diaminohexanitrobiphenyl, hexanitrostilbene and pentaerythritol tetranitrate, the list being no limitation.
  • Hexogen, octogen, nitroguanidine, potassium and guanidine picrate, tetryl, diamino and triaminotrinitrobenzene, benzotrifuroxane, diaminohexanitrobiphenyl, hexanitrostilbene and pentaerythritol tetranitrate the list being no limitation.
  • the proportion of the crystalline explosive in the total mass can be between 50 and 99.8%, depending on the intended use, i.e. even the smallest amounts of binder can be applied without difficulty.
  • Two methods can be used to produce the explosives according to the invention.
  • Either the aqueous polyurethane dispersion with the plasticizers or reinforcing resins is placed in front and the water-moist explosive is mixed in in a suitable mixer.
  • This process is suitable for binder proportions of up to 8%, with the water component being controlled by adding water for smaller binder components.
  • the moist explosive mass can now be safely granulated and dried. This process is known per se. With higher binder proportions, the mass becomes so pasty that mechanical granulation is eliminated. In this case, the binder and explosives are dispersed in a larger amount of water and the binder is coagulated. Granules are formed which are separated from the water and dried.
  • the coagulation is carried out in such a way that, in order to avoid contamination by inorganic salts, coagulation is carried out with the polyvinyl methyl ether already described as a plasticizer.
  • This material has the property of precipitating out of the aqueous solution when it is heated and thus breaking the polyurethane dispersion.
  • Another possibility according to the invention for coagulation consists in the addition of the phenolic resins described as reinforcing resins.
  • the coagulation time can be adjusted by the proportion of phenolic resin extract, thereby achieving controlled granulate formation.
  • the grain size of the crystalline explosives and additives is not critical. For example, Process nitroguanidine with a grain size of 1 to 2 ⁇ m without difficulty to compressible granules, so that one can do without the use of complex, uncrystallized nitroguanidine.
  • the main advantage of the process according to the invention is that the process control and the mechanical equipment are simple and the safety is ensured by processing in the aqueous phase.
  • Rubber-elastic compacts in the pressure range from 800 to 2500 bar can be produced with the same binder content, but with a different plasticizer content.
  • An advantage over the likewise cold-compressible explosives with liquid two-component polyurethanes is that neither pot life has to be taken into account nor thermal post-treatments are necessary for curing, and that the storage of the granulated explosive is unlimited. Due to the good flow properties of the binder, the service life of the presses can be kept short, i.e. in the order of 2 to 3 s.
  • the mechanical properties of the charges made from the explosives according to the invention can be easily adapted to the respective requirements by modifying the binder in the manner described, while the performance data remain the same.
  • the method is not limited to the production of the binder / explosive mixtures described, but also explosives can be produced from the binder according to the invention, organic crystalline explosives and inorganic salts as well as energy-supplying metal powders.
  • These known salts can be perchlorates, such as potassium perchlorate, nitrates, such as barium nitrate, heavy metal oxides, such as lead, iron and copper oxides.
  • Metal powders can be aluminum, aluminum / magnesium alloys, silicon, titanium, zircon and tungsten. After all, it still stands to reason that invent. to use explosives according to the invention as propellant powder instead of conventional nitrocellulose powders.
  • the binder can be adjusted so that the mixtures can be extruded cold or at a moderately elevated temperature and no solvents are required.
  • Example 2 The granules from Example 1 were pressed at 1500, 2000 and 2500 bar at 20 ° C. to give shaped articles with a diameter of 30 mm.
  • the density was 1.68, 1.71 and 1.735 g / cm 3 (98% of the theoretical density).
  • Example 2 The granules from Example 1 were subjected to a stability test at 120 ° C. (weight 2.5 g).
  • the explosive has good thermal stability.
  • the detonation speed was measured from compacts from Example 3. At a density of 1.735 g / cm 3 , 8360140 m / s were obtained.
  • a nitroguanidine with an average grain size of 1.8 11 m was processed according to the procedure of Example 1. Due to the low bulk density, the nitroguanidine was mixed in three parts and an additional 6% water (in the total amount) was added.
  • the mass obtained was excellent to granulate.
  • the press density of the explosive reached at 2000 bar was 95% of theory at 1.6 g / cm 3 .
  • aqueous polyurethane dispersion In a stirrer tank, 800 g of hexogen, 150 g of aluminum (92% metal) and 125 g (5%) of an aqueous polyurethane dispersion were suspended in 51 water. After addition of 20 g of a 50% phenolic resin formaldehyde condensate, the dispersion coagulated within 60 s. Granules with a diameter of 3 to 4 mm were formed. After drying, the granules were to be pressed at 2500 bar and 20 ° C. to give compacts with a density of 1.86 g / cm 3 .
  • a suspension of 820 g of hexogen, 18 g of 20,000 polyethylene glycol and 405 g (16.2%) of the aqueous polyurethane dispersion according to the invention was prepared by the method of Example 6. After adding 50 g of a 10% strength aqueous solution of polyvinyl methyl ether, the mixture was heated to 45 ° C. The dispersion coagulated and granules with a grain size of 1 to 2 were formed (in. The dried, very elastic granules could be extruded into dimensionally stable bodies at 50 ° C.
  • the compositions according to the invention are to be used as smokeless blowing agents.

Abstract

A process for the production of plastic-bonded explosive substances wherein the binder is applied from aqueous dispersion is characterized in that polyurethanes applied in the absence of organic solvents are used as binder and in that the granulates obtained are dried and then compressed. Explosive substances obtained by the process are also provided.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von kunststoffgebundenen Explosivstoffen aus kristallinen, wasserunlöslichen Sprengstoffen und kristallinen anorganischen Oxidatoren, energieliefernden Zusätzen und einem aus wässeriger Dispersion ohne Verwendung von organischen Lösungsmitteln aufgebrachten Polyurethanbinder.The invention relates to a process for the production of plastic-bound explosives from crystalline, water-insoluble explosives and crystalline inorganic oxidizers, energy-providing additives and a polyurethane binder applied from an aqueous dispersion without using organic solvents.

Es ist beispielsweise aus der DE-OS Nr. 2709949 bekannt, Polyurethane in kunststoffgebundenen Explosivstoffen zu verwenden. Polyurethane haben den Vorteil, dass sie den Explosivstoffen neben guten mechanischen Eigenschaften überdurchschnittliche Schock- und Beschusssicherheit sowie eine geringe mechanische Empfindlichkeitverleihen. So sind z.B. in der"Encyclo- pedia of Explosives" and "Related Items Explosivstoffe" mit einem Polyurethananteil von 2,5 bis 10% beschrieben. Die Vermischung der kristallinen Explosivstoffe mit dem Polyurethanbinder erfolgt bei den bekannten Verfahren in den meisten Fällen nach dem Slurry-Verfahren, bei dem der Polyurethanbinder in einem Lösungsmittel gelöst und einer wässerigen, mit Schutzkolloiden versehenen Dispersion des Explosivstoffs zugesetzt wird. Durch die Anwendung eines komplizierten Verfahrens, bei dem das Lösungsmittel aus dem Gemisch abdestilliert wird, können Granulate in der gewünschten Grösse hergestellt werden.It is known, for example from DE-OS No. 2709949, to use polyurethanes in plastic-bound explosives. Polyurethanes have the advantage that, in addition to good mechanical properties, they give the explosives above-average shock and bullet resistance and low mechanical sensitivity. For example, the " Encyclopedia of Explosives" and " Related Items Explosives" with a polyurethane content of 2.5 to 10% are described. In the known methods, the crystalline explosives are mixed with the polyurethane binder in most cases by the slurry method, in which the polyurethane binder is dissolved in a solvent and added to an aqueous dispersion of the explosive provided with protective colloids. By using a complicated process in which the solvent is distilled off from the mixture, granules of the desired size can be produced.

Es sind aber auch Verfahren bekannt geworden, bei denen der Polyurethanbinder unter Verwendung des trockenen Sprengstoffs unter ausschliesslicher Benutzung organischer Lösungsmittel aufgebracht wurde, wobei das Lösungsmittel ebenfalls bis zur Granulatbildung abdestilliert wird. Als Polyurethane kommen dabei feste Polymere mit verhältnismässig hohem Molekulargewicht zum Einsatz, wobei der Bindevorgang physikalisch ist, d.h. es findet keine Reaktion statt.However, processes have also become known in which the polyurethane binder has been applied using the dry explosive with the exclusive use of organic solvents, the solvent likewise being distilled off until the granules form. Solid polymers with a relatively high molecular weight are used as polyurethanes, the binding process being physical, i.e. there is no reaction.

Bei den reaktiven Verfahren wird bekanntlich von flüssigen, hydroxiterminierten Polyestern, -äthern und -butadienen ausgegangen, die mit Isocyanaten vernetzt werden. Das letztere Verfahren wird vorwiegend dann benutzt, wenn man giessfähige Explosivstoffmischungen erhalten will.The reactive processes are known to start from liquid, hydroxy-terminated polyesters, ethers and butadienes which are crosslinked with isocyanates. The latter method is mainly used when one wants to obtain pourable explosive mixtures.

Zwischen dem Slurry-Verfahren und dem reaktiven Verfahren gibt es Zwischenstufen in der verschiedensten Art. Der Nachteil des Slurry-Verfahrens in den beschriebenen Arten ist neben der Verwendung von organischen Lösungsmitteln die komplizierte, technisch und energetisch aufwendige Verfahrensführung. Zusätzlich ist die Wiedergewinnung grosser Mengen Lösungsmittel aufwendig. Bei den reaktiven Verfahren lassen sich Binderanteile von weniger als 6% nur schlecht verteilen. Dazu kommt der Nachteil, absolut wasserfrei arbeiten zu müssen, um Porositäten im Explosivstoff zu vermeiden.There are various stages between the slurry process and the reactive process. In addition to the use of organic solvents, the disadvantage of the slurry process in the types described is the complicated, technically and energetically complex process. In addition, the recovery of large amounts of solvent is complex. With the reactive processes, binder proportions of less than 6% are difficult to distribute. In addition, there is the disadvantage of having to work absolutely water-free in order to avoid porosities in the explosive.

Es sind aus der US-PS Nr. 3173817 Explosivstoffe bekannt, die unter Verwendung eines Polyacrylats aus wässeriger Dispersion hergestellt werden. Dabei wird die Kunststoffdispersion durch Zugabe von anorganischen Salzen koaguliert und die entstandenen Explosivstoffgranulate werden mechanisch vom Wasser getrennt und getrocknet.Explosives are known from US Pat. No. 3,173,817 which are produced from an aqueous dispersion using a polyacrylate. The plastic dispersion is coagulated by adding inorganic salts and the resulting explosive granules are mechanically separated from the water and dried.

Neben dem Vorteil der lösungsmittelfreien Verarbeitung ist der Nachteil des Verfahrens in der schlechten thermischen Stabilität der Acrylate und in der Gefahr des Einschlusses von anorganischen Koagulationsmitteln zu sehen, die sich nachteilig auf die Stabilität des Sprengstoffs auswirken. Ausserdem ist die reproduzierbare Granulatbildung, d.h. die Herstellung eines definierten Granulats, zu Presszwecken schwierig.In addition to the advantage of solvent-free processing, the disadvantage of the process is the poor thermal stability of the acrylates and the risk of including inorganic coagulants, which have a negative effect on the stability of the explosive. In addition, the reproducible granulate formation, i.e. the production of a defined granulate, difficult for pressing purposes.

Ebenso wie die bekannten Explosivstoffe mit Polyurethan als Bindemittel aus dem Slurry-Verfahren müssen die Granulate heiss verpresst werden, um die gewünschten Eigenschaften des Presslings sicherzustellen. Heisspressen ist jedoch technisch und wirtschaftlich sehr aufwendig.Just like the known explosives with polyurethane as a binder from the slurry process, the granules must be hot-pressed to ensure the desired properties of the compact. However, hot pressing is technically and economically very complex.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Herstellung von kunststoffgebundenen Explosivstoffen zur Verfügung zu stellen, bei dem die oben erwähnten Nachteile nicht auftreten. Erfindungsgemäss soll insbesondere ein Verfahren zur Verfügung gestellt werden, bei dem

  • 1. Polyurethanbindemittel verwendet werden,
  • 2. die Herstellung der Explosivstoffe aus wässerigen Dispersionen erfolgt, ohne dass es erforderlich ist, organische Lösungsmittel zu verwenden,
  • 3. die bei dem Verfahren erhaltenen Granulate kaltpressbar und extrudierbar sind,
  • 4. beide Verfahren variiert werden können und Explosivstoffe mit unterschiedlichen Eigenschaften hergestellt werden können.
The present invention is therefore based on the object of providing a method for producing plastic-bound explosives in which the disadvantages mentioned above do not occur. According to the invention, in particular a method is to be made available in which
  • 1. polyurethane binders are used,
  • 2. the explosives are produced from aqueous dispersions without the need to use organic solvents,
  • 3. the granules obtained in the process can be cold pressed and extruded,
  • 4. Both processes can be varied and explosives with different properties can be produced.

Die Erfindung betrifft somit ein Verfahren zur Herstellung von kunststoffgebundenen Explosivstoffen aus kristallinen, wasserunlöslichen Sprengstoffen und kristallinen anorganischen Oxidatoren, wobei der Binder aus wässeriger Dispersion aufgebracht wird, dadurch gekennzeichnet, dass als Binder unter Ausschluss von organischen Lösungsmitteln Polyurethane auf die Kristallinen, wasserunlöslichen Sprengstoffe und Kristallinen anorganischen Oxidatoren aufgebracht werden und die erhaltenen Granulate getrocknet und anschliessend verpresst werden.The invention thus relates to a process for the production of plastic-bound explosives from crystalline, water-insoluble explosives and crystalline inorganic oxidizers, the binder being applied from an aqueous dispersion, characterized in that, as a binder with the exclusion of organic solvents, polyurethanes onto the crystallines, water-insoluble explosives and crystallines inorganic oxidizers are applied and the granules obtained are dried and then pressed.

Erfindungsgemäss werden neuartige, wässerige, aliphatische und/oder aromatische Polyurethandispersionen mit einem Feststoffgehalt von 30 bis 40% verwendet. Solche Polyurethandispersionen sind im Handel erhältlich. Sie besitzen Teilchengrössen im Bereich von 0,1 bis 0,4µrn und spezifische Gewichte in der Grössenordnung von 0,9 bis 1,2, vorzugsweise 1,1. Der pH-Wert dieser Dispersionen kann variieren und liegt im allgemeinen im Bereich von 5 bis 8. Der pH-Wert der Polyurethandispersionen hängt jedoch von ihrer Herstellung ab und ist für das erfindungsgemässe Verfahren ohne Bedeutung. Aus solchen im Handel erhältlichen wässerigen Dispersionen hergestellte transparente, ca. 0,1 bis 0,2 mm starke Filme besitzen Bruchdehnungen, bestimmt nach DIN 53504, über 500% und weisen ausserdem hohe Zugfestigkeiten auf.According to the invention, novel, aqueous, aliphatic and / or aromatic polyurethane dispersions with a solids content of 30 to 40% are used. Such polyurethane dispersions are commercially available. They have particle sizes in the range from 0.1 to 0.4 µm and specific weights in the range from 0.9 to 1.2, preferably 1.1. The pH of these dispersions can vary and is generally in the range from 5 to 8. However, the pH of the polyurethane dispersions depends on their preparation and is of no importance for the process according to the invention. From such commercially available aqueous dispersions made transparent, about 0.1 to 0.2 mm thick films have elongations at break, determined according to DIN 53504, over 500% and also have high tensile strengths.

Solche wässerigen Polyurethandispersionen trocknen irreversibel unter Bildung von hochelastischen Filmen, die hervorragend auf den Sprengstoffkristallen haften. Die thermische Beständigkeit und die Sprengstoffverträglichkeit der erfindungsgemässen Polymere ist vergleichbar mit der von bisher verwendeten Polyurethanen, so dass man die Vorteile der Polyurethane ausnutzen kann, ohne aber die Nachteile der komplizierten Verarbeitung zu haben.Such aqueous polyurethane dispersions dry irreversibly to form highly elastic films which adhere perfectly to the explosive crystals. The thermal stability and the compatibility with explosives of the polymers according to the invention are comparable to those of the polyurethanes used hitherto, so that the advantages of the polyurethanes can be exploited without having the disadvantages of the complicated processing.

Die mit den erfindungsgemässen Polymeren erhaltenen Sprengstoffe sind bereits bei Drücken von weniger als 2000 bar sehr gut kaltpressbar. Die mechanischen Eigenschaften der Polymere können, wenn erforderlich, in einfacher Weise durch Verwendung von hochpolymeren, wasserlöslichen Weichmachern oder Verstärkungsharzen eingestellt werden, die in erfindungsgemässer Art im Wasser der Dispersion gelöst werden und mit dem Polyurethan verfilmen.The explosives obtained with the polymers according to the invention can be cold pressed very well even at pressures of less than 2000 bar. If necessary, the mechanical properties of the polymers can be adjusted in a simple manner by using highly polymeric, water-soluble plasticizers or reinforcing resins which are dissolved in the water of the dispersion in the manner according to the invention and filmed with the polyurethane.

Polymere Weichmacher werden deshalb verwendet, um die bei mit niedermolekularen Weichmachern plastifizierten Polymeren beobachteten Wanderungserscheinungen des Weichmachers zu vermeiden.Polymeric plasticizers are therefore used to avoid the migration phenomena of the plasticizer observed in polymers plasticized with low molecular weight plasticizers.

Erfindungsgemäss verwendet werden als Weichmacher z.B. Polyäthylenglykole, Polypropylenglykole, Polyvinylpyrrolidon und Polyvinylmethyläther, vorzugsweise jedoch Polyäthylenglykole mit einem Molekulargewicht von mindestens 5000, die zwar wasserlöslich, aber nicht hygroskopisch sind, und Polyvinyläther. Wasserlösliche Verstärkungsharze sind Epoxidharze, wie 3,4-Epoxicyclohexylmethyl- und 3,4-Epoxicyclohexancarboxylat und das Reaktionsprodukt aus Pentaerythrit und Epichlorhydrin, Polymethoximelamine, Polyäthylen/Maleinsäureanhydrid-Mischpolymerisate, Polyacrylamid und Phenolharze. Die Wirkungsweise der Verstärkungsharze ist verschieden. Während die Epoxidharze mit einem wasserlöslichen Härter parallel zum physikalischen Trocknungs- und Filmbildungsprozess des Polyurethans gehärtet werden, verfilmt das Polyäthylen/Maleinsäureanhydrid-Mischpolymerisat zusammen mit dem Polyurethan unter Bildung von Filmen mit erhöhter mechanischer Festigkeit.According to the invention are used as plasticizers e.g. Polyethylene glycols, polypropylene glycols, polyvinyl pyrrolidone and polyvinyl methyl ether, but preferably polyethylene glycols with a molecular weight of at least 5000, which are water-soluble but not hygroscopic, and polyvinyl ether. Water-soluble reinforcing resins are epoxy resins, such as 3,4-epoxicyclohexylmethyl and 3,4-epoxicyclohexane carboxylate and the reaction product of pentaerythritol and epichlorohydrin, polymethoxymelamines, polyethylene / maleic anhydride copolymers, polyacrylamide and phenolic resins. The mode of action of the reinforcement resins is different. While the epoxy resins are cured with a water-soluble hardener in parallel with the physical drying and film formation process of the polyurethane, the polyethylene / maleic anhydride copolymer co-films with the polyurethane to form films with increased mechanical strength.

Die Polymethoximelamine, Phenolharze und das Polyacrylamid werden in der Dispersion gelöst, gehen aber bei den im Verfahren herrschenden Temperaturen bei der Trocknung von 40 bis 50°C in unlösliche, vernetzte Produkte über, die eine Erhöhung der Festigkeit bewirken.The polymethoximelamines, phenolic resins and the polyacrylamide are dissolved in the dispersion, but at the temperatures prevailing in the process during drying from 40 to 50 ° C., they become insoluble, crosslinked products which increase the strength.

In Tabelle I sind sowohl einige Weichmacher als auch Verstärkungsharze und ihr Einfluss auf eine der erfindungsgemässen Polyurethandispersionen beschrieben.

Figure imgb0001
Table I describes both some plasticizers and reinforcing resins and their influence on one of the polyurethane dispersions according to the invention.
Figure imgb0001

Es hat sich gezeigt, dass der Anteil der Weichmacher am Binder 0 bis 30%, vorzugsweise jedoch 5 bis 15%, betragen soll, und dass sich innerhalb dieser Grenzen extrudierbare, elastoplastische Sprengstoffmassen herstellen lassen. Der Anteil der Verstärkerharze ist vor allem durch die Verträglichkeit mit dem Polyurethan und durch die Wasserlöslichkeit begrenzt. Der Anteil soll 0 bis 50%, vorzugsweise jedoch 2 bis 20%, betragen.It has been shown that the proportion of plasticizers in the binder should be 0 to 30%, but preferably 5 to 15%, and that extrudable, elastoplastic explosive compositions can be produced within these limits. The proportion of reinforcing resins is primarily limited by their compatibility with the polyurethane and by their water solubility. The proportion should be 0 to 50%, but preferably 2 to 20%.

Kristalline Sprengstoffe, die mit dem erfindungsgemässen Binder verarbeitet werden können, müssen vor allem wasserunlöslich sein. Daher sind alle an sich bekannten kristallinen, wasserunlöslichen Primär- und Sekundärsprengstoffe zu verwenden, wie z.B. Hexogen, Octogen, Nitroguanidin, Kalium- und Guanidinpikrat, Tetryl, Diamino und Triaminotrinitrobenzol, Benzotrifuroxan, Diaminohexanitrobiphenyl, Hexanitrostilben und Pentaerythrittetranitrat, wobei die Aufzählung keine Einschränkung bedeutet.Crystalline explosives that can be processed with the binder according to the invention must above all be water-insoluble. Therefore all known crystalline, water-insoluble primary and secondary explosives are to be used, e.g. Hexogen, octogen, nitroguanidine, potassium and guanidine picrate, tetryl, diamino and triaminotrinitrobenzene, benzotrifuroxane, diaminohexanitrobiphenyl, hexanitrostilbene and pentaerythritol tetranitrate, the list being no limitation.

Nach dem erfindungsgemässen Verfahren kann der Anteil des kristallinen Sprengstoffs an der Gesamtmasse je nach Verwendungszweck zwischen 50 und 99,8% betragen, d.h. es sind auch geringste Bindermengen ohne Schwierigkeiten aufzubringen.According to the method according to the invention, the proportion of the crystalline explosive in the total mass can be between 50 and 99.8%, depending on the intended use, i.e. even the smallest amounts of binder can be applied without difficulty.

Zur Herstellung der erfindungsgemässen Explosivstoffe kann man nach zwei Verfahren vorgehen. Entweder legt man die wässerige Polyurethandispersion mit den Weichmachern oder Verstärkerharzen vor und mischt den wasserfeuchten Explosivstoff in einem geeigneten Mischer ein. Dieses Verfahren eignet sich für Binderanteile bis zu 8%, wobei der Wasseranteil bei geringeren Binderanteilen durch Zugabe von Wasser gesteuert wird. Die feuchte Sprengstoffmasse kann nun gefahrlos granuliert und getrocknet werden. Dieses Verfahren ist an sich bekannt. Bei höheren Binderanteilen wird die Masse so pastös, dass eine mechanische Granulierung ausscheidet. In diesem Fall stellt man eine Dispersion des Binders und Sprengstoffs in einer grösseren Wassermenge her und koaguliert den Binder. Es entstehen Granulate, die vom Wasser getrennt und getrocknet werden.Two methods can be used to produce the explosives according to the invention. Either the aqueous polyurethane dispersion with the plasticizers or reinforcing resins is placed in front and the water-moist explosive is mixed in in a suitable mixer. This process is suitable for binder proportions of up to 8%, with the water component being controlled by adding water for smaller binder components. The moist explosive mass can now be safely granulated and dried. This process is known per se. With higher binder proportions, the mass becomes so pasty that mechanical granulation is eliminated. In this case, the binder and explosives are dispersed in a larger amount of water and the binder is coagulated. Granules are formed which are separated from the water and dried.

Erfindungsgemäss wird die Koagulation so vorgenommen, dass zur Vermeidung von Verunreinigung durch anorganische Salze mit dem schon als Weichmacher beschriebenen Polyvinylmethyläther koaguliert wird. Dieses Material hat die Eigenschaft, aus der wässerigen Lösung beim Erwärmen feinteilig auszufallen und die Polyurethandispersion auf diese Art zu brechen.According to the invention, the coagulation is carried out in such a way that, in order to avoid contamination by inorganic salts, coagulation is carried out with the polyvinyl methyl ether already described as a plasticizer. This material has the property of precipitating out of the aqueous solution when it is heated and thus breaking the polyurethane dispersion.

Eine weitere erfindungsgemässe Möglichkeit zur Koagulation besteht in der Zugabe der als Verstärkerharze beschriebenen Phenolharze. Hier lässt sich die Koagulationszeit durch den Anteil an Phenolharzexakt einstellen und dadurch eine kontrollierte Granulatbildung erreichen. Besonders vorteilhaft ist, dass die Korngrösse der kristallinen Explosivstoffe und Zusatzstoffe nicht kritisch ist. So lässt sich z.B. Nitroguanidin mit einer Korngrösse von 1 bis 2 µm ohne Schwierigkeit zu verpressbarem Granulat verarbeiten, so dass man auf die Verwendung von aufwendig unkristallisiertem Nitroguanidin verzichten kann.Another possibility according to the invention for coagulation consists in the addition of the phenolic resins described as reinforcing resins. Here, the coagulation time can be adjusted by the proportion of phenolic resin extract, thereby achieving controlled granulate formation. It is particularly advantageous that the grain size of the crystalline explosives and additives is not critical. For example, Process nitroguanidine with a grain size of 1 to 2 µm without difficulty to compressible granules, so that one can do without the use of complex, uncrystallized nitroguanidine.

Der Hauptvorteil des erfindungsgemässen Verfahrens liegt jedoch darin, dass die Verfahrensführung und die maschinelle Ausrüstung einfach und die Sicherheit durch die Verarbeitung in wässeriger Phase gewährleistet ist.The main advantage of the process according to the invention, however, is that the process control and the mechanical equipment are simple and the safety is ensured by processing in the aqueous phase.

Ein weiterer sehr wesentlicher Vorteil ist die sehr gute Kaltpressbarkeit der Granulate, die sich durch den Weichmacheranteil steuern lässt. So lassen sich gummielastische Presskörper im Druckbereich von 800 bis 2500 bar bei gleichem Binderanteil, jedoch bei unterschiedlichem Weichmachergehalt herstellen.Another very important advantage is the very good cold pressability of the granules, which can be controlled by the plasticizer content. Rubber-elastic compacts in the pressure range from 800 to 2500 bar can be produced with the same binder content, but with a different plasticizer content.

Ein Vorteil gegenüber den ebenfalls kaltpressbaren Explosivstoffen mit flüssigen Zweikomponentenpolyurethanen ist der, dass weder Topfzeiten zu beachten noch thermische Nachbehandlungen zur Aushärtung notwendig sind, und dass die Lagerung des granulierten Sprengstoffs unbegrenzt möglich ist. Aufgrund der guten Fliesseigenschaften des Binders können die Standzeiten der Pressen kurz gehalten werden, d.h. in der Grössenordnung von 2 bis 3 s.An advantage over the likewise cold-compressible explosives with liquid two-component polyurethanes is that neither pot life has to be taken into account nor thermal post-treatments are necessary for curing, and that the storage of the granulated explosive is unlimited. Due to the good flow properties of the binder, the service life of the presses can be kept short, i.e. in the order of 2 to 3 s.

Schliesslich ergibt sich als wesentlicher Vorteil, dass sich die mechanischen Eigenschaften der aus den erfindungsgemässen Explosivstoffen hergestellten Ladungen bei gleichbleibenden Leistungsdaten den jeweiligen Anforderungen durch Modifizierung des Binders in der beschriebenen Art leicht anpassen lassen. Es liegt nahe, dass das Verfahren nicht auf die Herstellung der beschriebenen Binder/Sprengstoff-Gemische beschränkt ist, sondern auch Explosivstoffe aus dem erfindungsgemässen Binder, organischen kristallinen Sprengstoffen und anorganischen Salzen sowie energieliefernden Metallpulvern hergestellt werden können. Diese an sich bekannten Salze können sein Perchlorate, wie Kaliumperchlorat, Nitrate, wie Bariumnitrat, Schwermetalloxide, wie Blei-, Eisen- und Kupferoxide. Metallpulver können sein Aluminium, Aluminium/Magnesium-Legierungen, Silizium, Titan, Zirkon und Wolfram. Es liegt schliesslich weiterhin nahe, die erfin- . dungsgemässen Explosivstoffe als Treibladungspulver anstelle von herkömmlichen Nitrocellulosepulvern zu verwenden.Finally, there is a significant advantage that the mechanical properties of the charges made from the explosives according to the invention can be easily adapted to the respective requirements by modifying the binder in the manner described, while the performance data remain the same. It is obvious that the method is not limited to the production of the binder / explosive mixtures described, but also explosives can be produced from the binder according to the invention, organic crystalline explosives and inorganic salts as well as energy-supplying metal powders. These known salts can be perchlorates, such as potassium perchlorate, nitrates, such as barium nitrate, heavy metal oxides, such as lead, iron and copper oxides. Metal powders can be aluminum, aluminum / magnesium alloys, silicon, titanium, zircon and tungsten. After all, it still stands to reason that invent. to use explosives according to the invention as propellant powder instead of conventional nitrocellulose powders.

Hierbei ist von grossem Vorteil, dass sich der Binder so einstellen lässt, dass die Mischungen kalt oder bei mässig erhöhter Temperatur extrudierbar sind und keine Lösungsmittel benötigt werden.It is of great advantage here that the binder can be adjusted so that the mixtures can be extruded cold or at a moderately elevated temperature and no solvents are required.

Die folgenden Beispiele dienen zur Erläuterung der Erfindung, ohne jedoch deren Umfang einzuschränken.The following examples serve to illustrate the invention, but without restricting its scope.

Beispiel 1 :Example 1 :

In einem Vertikalkneter wurden 142,5 g einer wässerigen Polyurethandispersion, 3 g Polyäthylenglykol (Molekulargewicht 20000) und 1034 g Hexogen (mittlere Korngrösse 60 gm, 10% H20) 15 min gemischt. Die feuchte krümelige Masse wurde über einen mechanischen Granulator gegeben. Die erhaltenen Granulate wurden 24 h bei 50° C getrocknet. Der Wassergehalt des Sprengstoffs betrug danach 0,1 %.142.5 g of an aqueous polyurethane dispersion, 3 g of polyethylene glycol (molecular weight 20,000) and 1034 g of hexogen (average particle size 60 gm, 10% H 2 O) were mixed in a vertical kneader for 15 minutes. The moist crumbly mass was passed through a mechanical granulator. The granules obtained were dried at 50 ° C. for 24 hours. The water content of the explosive was then 0.1%.

Beispiel 2:Example 2:

Die Granulate aus Beispiel 1 wurden bei 1500, 2000 und 2500 bar bei 20°C zu Formkörpern von 30 mm Durchmesser verpresst. Die Dichte betrug 1,68, 1,71 und 1,735 g/cm3 (98% der theoretischen Dichte).The granules from Example 1 were pressed at 1500, 2000 and 2500 bar at 20 ° C. to give shaped articles with a diameter of 30 mm. The density was 1.68, 1.71 and 1.735 g / cm 3 (98% of the theoretical density).

Beispiel 3:Example 3:

Die Granulate aus Beispiel 1 wurden einem Stabilitätstest bei 120°C ausgesetzt (Einwaage 2,5 g).

Figure imgb0002
The granules from Example 1 were subjected to a stability test at 120 ° C. (weight 2.5 g).
Figure imgb0002

Der Sprengstoff weist eine gute thermische Stabilität auf.The explosive has good thermal stability.

Beispiel 4:Example 4:

Von Presskörpern aus Beispiel 3 wurde die Detonationsgeschwindigkeit gemessen. Bei einer Dichte von 1,735 g/cm3 wurden 8360140 m/s erhalten.The detonation speed was measured from compacts from Example 3. At a density of 1.735 g / cm 3 , 8360140 m / s were obtained.

Beispiel 5:Example 5:

Nach dem Verfahren von Beispiel 1 wurde ein Nitroguanidin mit einer mittleren Korngrösse von 1,8 11m verarbeitet. Aufgrund der geringen Schüttdichte wurden das Nitroguanidin in drei Anteilen untergemischt und zusätzlich 6% Wasser (an der Gesamtmenge) zugegeben.A nitroguanidine with an average grain size of 1.8 11 m was processed according to the procedure of Example 1. Due to the low bulk density, the nitroguanidine was mixed in three parts and an additional 6% water (in the total amount) was added.

Die erhaltene Masse war hervorragend zu granulieren. Die bei 2000 bar erreichte Pressdichte des Sprengstoffs lag mit 1,6 g/cm3 bei 95% der Theorie.The mass obtained was excellent to granulate. The press density of the explosive reached at 2000 bar was 95% of theory at 1.6 g / cm 3 .

Beispiel 6:Example 6:

Ineinem Rührwerkbehälterwurden in 51 Wasser 800 g Hexogen, 150 g Aluminium (92% Metall) und 125 g (5%) einer wässerigen Polyurethandispersion suspendiert. Nach Zugabe von 20 g eines 50%igen Phenolharzformaldehydkondensats koagulierte die Dispersion innerhalb von 60 s. Es bildeten sich Granulate mit einem Durchmesser von 3 bis 4 mm. Nach dem Trocknen war das Granulat bei 2500 bar und 20°C zu Presskörpern mit einer Dichte von 1,86 g/cm3 zu verpressen.In a stirrer tank, 800 g of hexogen, 150 g of aluminum (92% metal) and 125 g (5%) of an aqueous polyurethane dispersion were suspended in 51 water. After addition of 20 g of a 50% phenolic resin formaldehyde condensate, the dispersion coagulated within 60 s. Granules with a diameter of 3 to 4 mm were formed. After drying, the granules were to be pressed at 2500 bar and 20 ° C. to give compacts with a density of 1.86 g / cm 3 .

Beispiel 7:Example 7:

Nach dem Verfahren von Beispiel 6 wurde eine Suspension aus 820 g Hexogen, 18 g Polyäthylenglycol 20 000 und 405 g (16,2%) der erfindungsgemässen wässerigen Polyurethandispersion hergestellt. Nach Zugabe von 50 g einer 10%igen wässerigen Lösung von Polyvinylmethyläther wurde auf 45° C erwärmt. Die Dispersion koagulierte und es bildeten sich Granulate mit einer Korngrösse von 1 bis 2 (im. Die getrockneten, sehr elastischen Granulate konnten bei 50°C zu formstabilen Körpern stranggepresst werden. Die erfindungsgemässen Massen sind als rauchlose Treibmittel zu verwenden.A suspension of 820 g of hexogen, 18 g of 20,000 polyethylene glycol and 405 g (16.2%) of the aqueous polyurethane dispersion according to the invention was prepared by the method of Example 6. After adding 50 g of a 10% strength aqueous solution of polyvinyl methyl ether, the mixture was heated to 45 ° C. The dispersion coagulated and granules with a grain size of 1 to 2 were formed (in. The dried, very elastic granules could be extruded into dimensionally stable bodies at 50 ° C. The compositions according to the invention are to be used as smokeless blowing agents.

Claims (12)

1. A process for the production of plastic- bonded explosive substances from crystalline, water-insoluble explosives and crystalline inorganic oxidizers, the binder being applied from aqueous dispersion, characterized in that polyurethanes are applied as binder to the crystalline, water-insoluble explosives and crystalline inorganic oxidizers in the absence of organic solvents and the granulates obtained are dried and then subjected to compression-forming.
2. A process as claimed in claim 1, characterized in that the granulate obtained is compression- formed in the absence of heat.
3. A process as claimed in claim 1 or 2, characterized in that the polyurethane binder is modified by polymeric plasticizers soluble in water in the processing phases.
4. A process as claimed in claim 1, 2 or 3, characterized in that the polyurethane binder is modified by monomeric or polymeric, thermally cross-linkable or film-forming strengthening resins soluble in water in the processing phase.
5. A process as claimed in claim 3, characterized in that polyethylene glycols having a molecular weight of more than 5000 are used as the plasticizers.
6. A process as claimed in claim 3, characterized in that polyvinyl methyl ether having a molecular weight of from 5,000 to 10,000 is used as the plasticizer.
7. A process as claimed in claim 3, characterized in that the plasticizer is used in a quantity of from 0 to 30% and preferably in a quantity of from 5 to 15%, based on the binder.
8. A process as claimed in claims 3 and 6, characterized in that the binder is coagulated with water-soluble polyvinyl methyl ether.
9. A process as claimed in claims 1, 2, 3, 6 and 7, characterized in that an aqueous suspension of a crystalline explosive, an optionally plasticized polyurethane dispersion and a solution of polyvinyl methyl ether is coagulated by heating and the granulates formed are separated off from the water and dried.
10. A process as claimed in claim 4, characterized in that polyacrylamine, phenolformaldehyde resins, polymethoxymelamines, poly- ethylenemaleic acid anhydride copolymers and epoxy resins are used as the strengthener resins.
11. A process as claimed in claim 10, characterized in that the strengthener resins are used in a quantity of from 0 to 50% and preferably in a quantity of from 2 to 20%, based on the binder.
12. A process as claimed in claims 4, 9 and 10, characterized in that the binder is coagulated with phenolformaldehyde resins.
EP81101016A 1980-03-15 1981-02-13 Process to prepare polymer-bonded explosives and products obtained according to this process Expired EP0036481B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81101016T ATE6497T1 (en) 1980-03-15 1981-02-13 PROCESS FOR THE MANUFACTURE OF PLASTIC BOND EXPLOSIVES AND THE EXPLOSIVES OBTAINED FROM THE PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3010052 1980-03-15
DE3010052A DE3010052C2 (en) 1980-03-15 1980-03-15 Process for the production of plastic-bound explosives

Publications (3)

Publication Number Publication Date
EP0036481A2 EP0036481A2 (en) 1981-09-30
EP0036481A3 EP0036481A3 (en) 1981-10-21
EP0036481B1 true EP0036481B1 (en) 1984-03-07

Family

ID=6097347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101016A Expired EP0036481B1 (en) 1980-03-15 1981-02-13 Process to prepare polymer-bonded explosives and products obtained according to this process

Country Status (4)

Country Link
US (1) US4405534A (en)
EP (1) EP0036481B1 (en)
AT (1) ATE6497T1 (en)
DE (2) DE3010052C2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451716B (en) * 1983-07-13 1987-10-26 Nobel Kemi Ab SET TO ADD INHIBITIVE SUBSTANCE TO POWDER IN A FLUIDIZED BED AND FOR THE TREATMENT OF POWDERED ADDED AGENT
DE3412410A1 (en) * 1984-04-03 1985-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München METHOD AND DEVICE FOR THE PRODUCTION OF PLASTIC-BONDED POWDER CHARGING POWDER AND EXPLOSIVES
US4726919A (en) * 1985-05-06 1988-02-23 Morton Thiokol, Inc. Method of preparing a non-feathering nitramine propellant
US4650617A (en) * 1985-06-26 1987-03-17 Morton Thiokol Inc. Solvent-free preparation of gun propellant formulations
US5413023A (en) * 1985-12-27 1995-05-09 Mcdonnell Douglas Corporation Elastomeric prepreg roving composite
US4764316A (en) * 1986-09-02 1988-08-16 Morton Thiokol, Inc. Process for preparing solid propellant grains using thermoplastic binders and product thereof
DE3729212C1 (en) * 1987-09-02 1999-03-18 Diehl Stiftung & Co Reactive armor protection
DE3729211C1 (en) * 1987-09-02 1998-01-08 Diehl Gmbh & Co Reactive armour=plating
US5049212A (en) * 1991-03-27 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy High energy explosive yield enhancer using microencapsulation
DE4111752C1 (en) * 1991-04-11 1992-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5316600A (en) * 1992-09-18 1994-05-31 The United States Of America As Represented By The Secretary Of The Navy Energetic binder explosive
FR2749008B1 (en) * 1996-05-23 1998-06-26 Poudres & Explosifs Ste Nale CONTINUOUS PROCESS FOR THE SOLVENT-FREE MANUFACTURE OF THERMOSETTING COMPOSITE PYROTECHNICS
US5910638A (en) * 1997-11-28 1999-06-08 The United States Of America As Represented By The Secretary Of The Air Force High density tungsten-loaded castable explosive
US6315847B1 (en) 1999-01-29 2001-11-13 Cordant Technologies Inc. Water-free preparation of igniter granules for waterless extrusion processes
GB9913262D0 (en) * 1999-06-09 2002-08-21 Royal Ordnance Plc Desensitation of energetic materials
DE10058705C1 (en) * 2000-11-25 2002-02-28 Rheinmetall W & M Gmbh Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content
GB0205559D0 (en) * 2002-03-11 2002-04-24 Bae Systems Plc Improvements in and relating to the filling of explosive ordnance
US6884307B1 (en) 2002-04-12 2005-04-26 Diehl Munitionssysteme Gmbh & Co. Kg Insensitive explosive molding powder, paste process
DE20220625U1 (en) * 2002-04-12 2003-11-20 Diehl Munitionssysteme Gmbh Pressed insensitive explosive contains explosive crystals bound by binder system comprising a plasticizer and a composition containing a polyacrylic polymer
ZA200205775B (en) * 2002-04-12 2003-03-28 Diehl Munitionssysteme Gmbh Insensitive hexogen explosive.
AU2003246601A1 (en) * 2003-04-11 2004-11-01 Diehl Munitionssysteme Gmbh And Co. Kg Method for producing insensitive hexogene
FR3013706B1 (en) 2013-11-22 2015-12-25 Herakles COMPOSITE PYROTECHNIC PRODUCT WITH RETICULATED BINDER AND PROCESS FOR PREPARING THE SAME
FR3013705B1 (en) 2013-11-22 2016-07-01 Herakles NON-RETICULATED BINDER COMPOSITE PYROTECHNIC PRODUCT AND PROCESS FOR PREPARING THE SAME
JP7168951B2 (en) * 2018-05-21 2022-11-10 学校法人 中央大学 Kneading method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173817A (en) * 1962-10-31 1965-03-16 Eastman Kodak Co Granular explosive molding powder
US3440115A (en) * 1964-11-09 1969-04-22 Us Navy Shock-gel process for preparing plastic-bonded explosives
US3736194A (en) * 1966-02-18 1973-05-29 Us Navy Method of preparing a composite explosive with a water-wet energetic compound
US3325317A (en) * 1966-10-03 1967-06-13 Jr H William Voigt Lead azide-elastomer explosives in film and sheet form
FR2225979A5 (en) * 1969-12-24 1974-11-08 France Etat Highly explosive composite contg. crosslinked polyurethane binder - and nitro org cpds., with high explosive content
FR2138513A1 (en) * 1971-05-27 1973-01-05 Commissariat Energie Atomique Explosive compsn with elastomer binders - treated with ionizing rays
ZM10572A1 (en) * 1971-07-06 1974-03-21 Ici Australia Ltd Product and process
FR2144988A5 (en) * 1971-07-06 1973-02-16 France Etat Pentrite explosive compsn - with polyurethane or polybutadiene binder
FR2268770A1 (en) * 1974-04-24 1975-11-21 Commissariat Energie Atomique Resin coated explosive compsn - prepd by liquid phase prodn of granules which are then compressed and crosslinked by heating
DE2709949C2 (en) * 1977-03-08 1982-09-16 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Crystalline high performance explosive
JPS5476813A (en) * 1977-11-30 1979-06-19 Nippon Oils & Fats Co Ltd Small granular propellant and production thereof
US4293352A (en) * 1979-08-23 1981-10-06 The United States Of America As Represented By The Secretary Of The Navy Degradable binder explosives

Also Published As

Publication number Publication date
DE3010052C2 (en) 1982-09-09
DE3162454D1 (en) 1984-04-12
ATE6497T1 (en) 1984-03-15
EP0036481A3 (en) 1981-10-21
EP0036481A2 (en) 1981-09-30
DE3010052A1 (en) 1981-09-24
US4405534A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
EP0036481B1 (en) Process to prepare polymer-bonded explosives and products obtained according to this process
DE19549157A1 (en) Pressable explosives with high efficiency
DE2634195C3 (en) Thermostable composite explosive and its manufacturing process
US4098625A (en) Explosive compositions bonded with fluorocarbon polymers
DE19501889B4 (en) Process for the production of an ignition agent granulate
EP0068528B1 (en) Cold formable, plastics-bound high power explosive and process for preparing it
DE4315707A1 (en) High-energy binder with improved mechanical properties
DE1571227A1 (en) Explosives
DE60115327T2 (en) Insensitive melt-cast explosive compositions containing energetic thermoplastic elastomers
DE2048583A1 (en) Pourable white smoke mixture
US5565651A (en) Method for preparing a compactable composite explosive
US4482405A (en) Explosive molding composition and method for preparation thereof
DE69816046T2 (en) COMPOSITION BASED ON HEXANITROHEXAAZAISOWURTIZITAN AND HEXANITROHEXAAZAISOWURTIZITAN COMPOSITION OF EXPLOSIVES
DE1646283C3 (en) Process for the production of high-strength explosive bodies with a selectable, defined detonation speed
US3943017A (en) Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN
US3317361A (en) Flexible plasticized explosive of cyclonitramine and nitrocellose and process therefor
DE3545983A1 (en) POURABLE, SENSITIVE, HIGH-PERFORMANCE EXPLOSIVE
DE3625412C2 (en)
DE2447686A1 (en) DETERGENT CARTRIDGE
DE2063513A1 (en) GLYCIDYL POLYMERISATE AND ITS USE AS AN ENERGETIC BINDING AGENT
DE3033519A1 (en) SMOKE-FREE, CROSS-LINKED, TWO-COMPONENT BLOWING AGENT AND METHOD FOR THE PRODUCTION THEREOF
EP0404853B1 (en) Process for manufacturing explosive charges from non-pourable mixtures
AT305851B (en) Process for making explosive charges from unglazed nitrocellulose grains
EP2872464B1 (en) Insensitive explosive active substance
DE2322140C3 (en) Process for processing the propellant powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19811019

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 6497

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3162454

Country of ref document: DE

Date of ref document: 19840412

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921231

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930108

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

BERE Be: lapsed

Owner name: DEISENROTH FRIEDRICH-ULF

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 81101016.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980127

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980204

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980211

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

EUG Se: european patent has lapsed

Ref document number: 81101016.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST