EP0035444A1 - Process and installation for reheating a cold fluid - Google Patents

Process and installation for reheating a cold fluid Download PDF

Info

Publication number
EP0035444A1
EP0035444A1 EP81400294A EP81400294A EP0035444A1 EP 0035444 A1 EP0035444 A1 EP 0035444A1 EP 81400294 A EP81400294 A EP 81400294A EP 81400294 A EP81400294 A EP 81400294A EP 0035444 A1 EP0035444 A1 EP 0035444A1
Authority
EP
European Patent Office
Prior art keywords
tube
fluid
elements
installation according
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81400294A
Other languages
German (de)
French (fr)
Other versions
EP0035444B1 (en
Inventor
Pierre Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0035444A1 publication Critical patent/EP0035444A1/en
Application granted granted Critical
Publication of EP0035444B1 publication Critical patent/EP0035444B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser

Definitions

  • the present invention relates to a method and an installation for heating a cryogenic fluid by heat exchange with a circulating fluid whose solidification temperature is higher than the temperature of the cryogenic fluid before its final heating.
  • the object of the present invention is to make it possible to use water or other fluid at a temperature that is relatively cold while avoiding any risk of solidification of the circulating fluid).
  • French patent n ° 70 26.212 describes a process for heating natural gas by countercurrent exchange in a plurality of vertical tubes mounted in parallel, the natural gas always circulating in an upward direction inside the tubes and the circulating water flowing naturally by gravity on the outside of these tubes which are provided with longitudinal fins.
  • an internal section of tube is provided for the passage natural gas which is increasingly reduced, which leads to successive increases in the speed of natural gas flowing in the tubes.
  • Japanese Patent No. 54,7403 describes the heating of natural gas by first co-current exchange with natural gas flowing from bottom to top in a tube bundle and water flowing from bottom to top in a calender according to a flow forced, then an exchange against the current with the gas flowing from top to bottom in another tube bundle and the water flowing from bottom to top in the corresponding grille. This is enough complex and leads to significant deterioration, in particular calenders in the event of accidental freezing of the warming water.
  • Japanese patent n ° 52 144.006 describes a heating comprising a first section in countercurrent exchange with the natural gas flowing from bottom to top in a first plurality of tubes and the water naturally flowing outside, then a second section also in countercurrent exchange, the natural gas flowing from bottom to top in a second plurality of tubes and the water naturally flowing outside, with the particularity that the second plurality of tubes offers a passage section for natural gas lower than the first plurality.
  • This arrangement also does not fulfill the objective of the present invention.
  • the essential characteristic of the invention is, in a heating process in which the cryogenic fluid is led in a plurality of elements of vertical tubes with fins, connected in series, firstly co-current with the circulating fluid flowing at the periphery of said tube elements, then against the flow of said circulating fluid, to provide that the circulating fluid flows by gravity along said tube elements and that each tube element most upstream is supplied with cryogenic fluid at its upper end.
  • the critical temperature of natural gas is generally close to - 60 ° C, its density in the vicinity of this temperature varies rapidly with temperature, even under a pressure higher than the critical pressure (6 kg / m3 / ° C under 75 bars).
  • the flow rate of natural gas in the second tube element is still necessarily low at this temperature to avoid setting in external ice. Under these conditions, a "downward" flow of natural gas would lead to flow disturbances due to the untimely influence of gravity and generating thermodynamic irreversibilities.
  • an upward flow in the second element leads to a natural stratification according to the density and the temperature of the natural gas which therefore does not create any disturbance of flow.
  • the intermediate temperature between the first and second tube elements is close to the critical temperature, it is therefore preferable to provide for an upward circulation of natural gas in the second tube element in order to ensure a final heating of the natural gas. without untimely irreversibilities, which should then be compensated for by a noticeable increase in the exchange surface.
  • the present invention also relates to an installation for heating a cold fluid by heat exchange with a hot liquid, of the type comprising heat exchange passages with substantially vertical extension with means for distributing a runoff liquid to the high end of the passages and this installation is characterized in that said passages comprise at least one module with at least one first tube element or head element, connected at its lower end to the lower end of at least one second element of tube, and means for supplying fluid to be heated at the end su of each head tube element.
  • an installation comprises a plurality of heating tubes 1 forming heat exchange passages, made of aluminum, each consisting of a tube element “upstream” or head 2 and of a "downstream” tube element 3, connected by a lower bend 4.
  • the head tube element 2 is connected to a pipe 5 to a source of cryogenic fluid to be heated by means of a box of connection 10, while the "downstream” tube element 3 is connected directly to a pipe 6 for withdrawing heated fluid: the tube elements 2 and 3 are suspended so as to extend substantially vertically, and all around and along these tube elements, which have external fins 7, flow streams of heating liquid in the form of sheets 8 and 9 which are previously formed by upper distribution devices 11.
  • connection box 10 here comprises (see FIG. 2) welded as an extension of the head element 2, an envelope tube 12 having a constant wall thickness in a lower section 12 ′ and increasing radially in a middle portion 12 ′′, with a constant internal diameter, at the upper end, this casing 12 extends at 13 to a connection end 14 of the pipe 5 for the cryogenic fluid. All of these parts are made of aluminum to be suitably welded between - They and with the heat exchange tube element 1.
  • the end piece 14 has an internal bore of small diameter 16 in which is welded a conduit element 17 leading largely inside the tubular head element 2. Between the conduit element 17 on the one hand and on the other hand the casing 13 - 12 and the upper part of the 'tube element 2 is placed a thermal insulation product 18.
  • the assembly which has just been described is housed inside a distribution well 20 having a ring of perforations 21.
  • This well 20 is fixed on the distribution device 11 enveloping at a short distance the tube element 2 with its fins 7 and the perforations 21 are located at the upper level of the portion 12 "of oversized thickness.
  • the liquid runoff caloric which is intended to flow in layers such as 8 and 9 along the tube elements "upstream '2 and" downstream "3, comes from a general reserve of liquid 25, which itself is supplied by a 25 'source.
  • the runoff caloric liquid is transferred into a lower part of the distribution well 20 in the form of a plurality of veins or liquid jets 26 coming from the reserve 25 and formed from the perforations 21.
  • the cryogenic fluid which circulates inside the pipe 5 and the tube 17 to reach the head tube element 2 is radially isolated from the outside by the insulating body 18.
  • the significant longitudinal refrigeration flow which essentially arises, c8té "upstream", at the level of the end piece 14 and which propagates downstream along the tube-envelope 13 - 12 towards the tube element 2, is substantially derived radially outward at the location of the envelope tube 12 with a progressively increasing wall thickness upstream.
  • This arrangement therefore allows a diversion towards the liquid jets 26 of a substantial part of the refrigerating flow with longitudinal propagation, which thereby alleviates the residual refrigerating flow thereby continuing its longitudinal propagation in the weaker walled portion 12 ′ and especially towards the upper part 2 ′ of the head element 2 which is immersed in an individual reserve of distribution water 29 of a substantially stagnant nature, therefore with a low coefficient of heat exchange with the wall of the tube element 2.
  • the runoff water forms in a runoff layer on the finned external wall of the upstream tube element 2 and gradually cools down to the lower end of this tube element.
  • "upstream" 2 where the runoff water is then evacuated at 30 with, moreover, that which comes from the runoff against the current on the "downstream” tube element 3.
  • the risks of freezing the runoff liquid are significantly reduced, the fluid being heated
  • the temperature flowing in the tube 1 has seen its temperature increase until it is close to that of the runoff liquid, so that the evacuation of the heated fluid from the "downstream” tube element 3 can be carried out, without setting in use of a connection box as described with reference to FIG. 2, by a simple draw-off line 6, with, however, of course, the distribution device 11 allowing the formation of a uniform run-off ply 9, such as shown in Figure 3.
  • a plurality of "upstream” tube elements 42a, 42b, ... 42n are all connected between an upper distribution manifold 50 and a lower connection manifold 51 supplying another plurality 43a, 43b ... 43n of "downstream” tube elements thus forming a first multi-tubular module whose upper end is connected by a manifold 52 to a second multi-tubular module made up of another plurality of "upstream” tube elements 44a, 44b ... 44g, the final module having a plurality of "upstream” tube elements 45a, 45b ... 45r and a plurality of "downstream” tube elements 46a, 46b. .. 46s, delivering the heated liquid to a 52 "final manifold.
  • a bundle of tube elements is formed of a first set of lines 81a, 81b, 81c (for example three in number) consisting of a multi-tubular module (or several multi-tubular modules in series) between a supply collector 83 and an intermediate collector 84 which supplies a second set of lines 82a and 82b (for example two) between this intermediate collector 84 and the final withdrawal collector 85.
  • a first set of a plurality of lines 91a, 91b, 91c (for example three) supplied by a supply collector 93 and withdrawn by a withdrawal collector 95a is connected via a pipe. 96 with expansion valve 97 to a second set of another plurality of lines 92a, 92b connected between a supply manifold 95b and a withdrawal manifold 94.
  • This arrangement can be used for example if the network is at 40 bars and the gas available under higher pressure, for example 80 bars, and it is noted that this delayed expansion which causes refrigeration release is not detrimental to the pipes, since the natural gas is then in the already partially heated state.
  • a separator can be placed at the outlet of the expansion valve 97 for withdrawing and removing the heaviest condensates, such as ethane, propane or butane, while the gaseous fraction is only warmed up.
  • the invention is particularly applicable to the heating and re-vaporization of liquefied natural gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne le réchauffage d'un fluide froid par échange thermique avec un liquide chaud, généralement de l'eau. Le fluide froid circule d'abord dans un tube descendant (2) puis dans un tube ascendant (3), tandis que l'eau ruisselle le long des tubes (2) et (3) depuis une réserve d'alimentations supérieure jusqu'à un collecteur de fond 28. Application notamment au réchauffement et à la revaporisation de gaz naturel liquéfié.The invention relates to the heating of a cold fluid by heat exchange with a hot liquid, generally water. The cold fluid first circulates in a downward tube (2) then in an upward tube (3), while the water flows along the tubes (2) and (3) from an upper supply reserve up to a bottom collector 28. Application in particular to the heating and re-vaporization of liquefied natural gas.

Description

La présente invention concerne un procédé et une installation de réchauffement d'un fluide cryogénique par échange thermique avec un fluide calorigène dont la température de solidification est supérieure à la température du fluide cryogénique avant son réchauffement final.The present invention relates to a method and an installation for heating a cryogenic fluid by heat exchange with a circulating fluid whose solidification temperature is higher than the temperature of the cryogenic fluid before its final heating.

Elle s'applique particulièrement au réchauffement du gaz naturel liquéfié avec de l'eau disponible en grande quantité (rivière, mer...).It is particularly applicable to the heating of liquefied natural gas with water available in large quantities (river, sea ...).

Le but de la présente invention est de faire en sorte qu'on puisse utiliser de l'eau ou autre fluide à température ralati- vement froide tout en évitant tout risque de solidification du fluide calorigène).The object of the present invention is to make it possible to use water or other fluid at a temperature that is relatively cold while avoiding any risk of solidification of the circulating fluid).

On a déjà proposé diverses solutions dont aucune ne permet d'aboutir à ce résultat.Various solutions have already been proposed, none of which allows this result to be achieved.

Le brevet français n° 70 26.212 décrit un procédé de réchauffement de gaz naturel par échange à contrecourant dans une pluralité de tubes verticaux montés en parallèle, le gaz naturel circulant toujours en sens ascendant à l'intérieur des tubes et l'eau calorigène ruisselant naturellement par gravité à l'extérieur de ces tubes qui sont munis d'ailettes longitudinales. Afin d'optimiser l'échange thermique, c'est-à-dire de rendre maximum le flux thermique tout en évitant une prise en glace de l'eau à la périphérie externe des tubes, on prévoit une section interne de tube pour le passage du gaz naturel qui est de plus en plus réduite, ce qui conduit à des augmentations successives de la vitesse du gaz naturel circulant dans les tubes. Ces diminutions successives de section de passage ont notamment été réalisées par la mise en place d'un garnissage interne constitué par un tube borgne à section variable, ce qui constitue une technologie assez complexe.French patent n ° 70 26.212 describes a process for heating natural gas by countercurrent exchange in a plurality of vertical tubes mounted in parallel, the natural gas always circulating in an upward direction inside the tubes and the circulating water flowing naturally by gravity on the outside of these tubes which are provided with longitudinal fins. In order to optimize the heat exchange, that is to say to maximize the heat flow while avoiding icing of the water at the external periphery of the tubes, an internal section of tube is provided for the passage natural gas which is increasingly reduced, which leads to successive increases in the speed of natural gas flowing in the tubes. These successive decreases in cross-section have in particular been achieved by the installation of an internal lining constituted by a blind tube with variable section, which constitutes a fairly complex technology.

Le brevet japonais n° 54 7403 décrit le réchauffement de gaz naturel par échange d'abord à co-courant avec le gaz naturel circulant de bas en haut dans un faisceau tubulaire et l'eau circulant de bas en haut dans une calandre selon un écoulement forcé,puis un échange à contre-courant avec le gaz circulant de haut en bas dans un autre faisceau tubulaire et l'eau circulant de bas en haut dans la calandre correspondante. Cette façon de faire est assez complexe et conduit à des détériorations importantes, notamment des calandres en cas de prise en glace accidentelle de l'eau de réchauffement.Japanese Patent No. 54,7403 describes the heating of natural gas by first co-current exchange with natural gas flowing from bottom to top in a tube bundle and water flowing from bottom to top in a calender according to a flow forced, then an exchange against the current with the gas flowing from top to bottom in another tube bundle and the water flowing from bottom to top in the corresponding grille. This is enough complex and leads to significant deterioration, in particular calenders in the event of accidental freezing of the warming water.

Le brevet japonais n° 52 144.006 décrit un réchauffement comprenant une première section à échange à contre-courant avec le gaz naturel circulant de bas en haut dans une première pluralité de tubes et l'eau ruisselant naturellement à l'extérieur, puis une deuxième section à échange à contre-courant également,le gaz naturel circulant de bas en haut dans une deuxième pluralité de tubes et l'eau ruisselant naturellement à l'extérieur, avec cette particularité que la deuxième pluralité de tubes offre une section de passage au gaz naturel plus faible que la première pluralité. Cet agencement ne permet pas non plus de remplir l'objectif de la présente invention.Japanese patent n ° 52 144.006 describes a heating comprising a first section in countercurrent exchange with the natural gas flowing from bottom to top in a first plurality of tubes and the water naturally flowing outside, then a second section also in countercurrent exchange, the natural gas flowing from bottom to top in a second plurality of tubes and the water naturally flowing outside, with the particularity that the second plurality of tubes offers a passage section for natural gas lower than the first plurality. This arrangement also does not fulfill the objective of the present invention.

La caractéristique essentielle de l'invention est, dans un procédé de réchauffement où le fluide cryogénique est conduit dans une pluralité d'éléments de tubes verticaux à ailettes, branchés en série, d'abord à co-courant du fluide calorigène s'écoulant à la périphérie des dits éléments de tube, puis à contre- courant dudit fluide calorigène, de prévoir que le fluide calorigène ruisselle par gravité le long des dits éléments de tube et que chaque élément de tube le plus en amont est alimenté en fluide cryogénique à son extrémité supérieure.The essential characteristic of the invention is, in a heating process in which the cryogenic fluid is led in a plurality of elements of vertical tubes with fins, connected in series, firstly co-current with the circulating fluid flowing at the periphery of said tube elements, then against the flow of said circulating fluid, to provide that the circulating fluid flows by gravity along said tube elements and that each tube element most upstream is supplied with cryogenic fluid at its upper end.

Les avantages de l'invention s'expliquent de la façon suivante :

  • D'une part, l'existence d'un premier échange à co-courant est décisive en raison de la limitation du flux thermique pour éviter la prise en glace externe. En effet, si la température de l'eau à l'entrée, c'est-à-dire à l'extrémité supérieure de l'élément de tête par exemple est de + 4°c et de + 2°C à la sortie, c'est-à-dire à l'extrémité inférieure de ce même élément de tube, le débit de gaz naturel liquéfié à une température de - 160°C pouvant entrer dans un tube fonctionnant à co-courant est plus de deux fois supérieur à celui qui peut entrer dans ce même tube fonctionnant à contre-courant.
The advantages of the invention can be explained as follows:
  • On the one hand, the existence of a first co-current exchange is decisive due to the limitation of the heat flow to avoid setting in external ice. Indeed, if the water temperature at the inlet, i.e. at the upper end of the head element for example is + 4 ° c and + 2 ° C at the outlet , i.e. at the lower end of this same tube element, the flow rate of liquefied natural gas at a temperature of - 160 ° C which can enter a co-current tube is more than twice as high to one who can enter this same tube operating against the current.

L'existence d'au moins un deuxième échange thermique à contre-courant est également décisive en raison du faible écart de température entre le gaz naturel sortant du second élément et l'eau refroidissant ce second élément. En effet, si la température de l'eau à l'extrémité supérieure, c'est-à-dire, à la sortie supérieure de ce second élément est de + 4°C et de + 2°C à l'entrée inférieure, la longueur de ce second élément fonctionnant à contre- courant est de 30 % inférieure à celle qui serait nécessaire pour un fonctionnement similaire à co-courant.The existence of at least a second countercurrent heat exchange is also decisive due to the small temperature difference between the natural gas leaving the second element and the water. cooling this second element. Indeed, if the temperature of the water at the upper end, that is to say, at the upper outlet of this second element is + 4 ° C and + 2 ° C at the lower inlet, the length of this second element operating against the current is 30% less than that which would be necessary for a similar operation at the co-current.

D'autre part, comme la température critique du gaz naturel est généralement voisine de - 60°C, sa masse volumique au voisinage de cette température varie rapidement avec la température, même sous une pression supérieure à la pression critique ( 6 kg/m3/°C sous 75 bars). Or, la vitesse d'écoulement du gaz naturel dans le second élément de tube est encore nécessairement faible à cette température pour éviter la prise en glace externe. Dans ces conditions, un écoulement "descendant" du gaz naturel conduirait à des perturbations d'écoulement dues à l'influence intempestive de la gravité et génératrice d'irréversibilités thermodynamiques. Par contre et selon l'invention, un écoulement ascendant dans le second élément conduit à une stratification naturelle selon la masse volumique et la température du gaz naturel qui ne crée donc aucune perturbation d'écoulement. Etant donné que la température intermédiaire entre le premier et le deuxième éléments de tube est voisine de la température critique, il est donc préférable de prévoir une circulation ascendante du gaz naturel dans le deuxième élément de tube afin d'assurer un réchauffage final du gaz naturel sans irréversibilités intempestives, qui devraient être alors compensées par une augmentation notoire de la surface d'échange.On the other hand, as the critical temperature of natural gas is generally close to - 60 ° C, its density in the vicinity of this temperature varies rapidly with temperature, even under a pressure higher than the critical pressure (6 kg / m3 / ° C under 75 bars). However, the flow rate of natural gas in the second tube element is still necessarily low at this temperature to avoid setting in external ice. Under these conditions, a "downward" flow of natural gas would lead to flow disturbances due to the untimely influence of gravity and generating thermodynamic irreversibilities. On the other hand and according to the invention, an upward flow in the second element leads to a natural stratification according to the density and the temperature of the natural gas which therefore does not create any disturbance of flow. Since the intermediate temperature between the first and second tube elements is close to the critical temperature, it is therefore preferable to provide for an upward circulation of natural gas in the second tube element in order to ensure a final heating of the natural gas. without untimely irreversibilities, which should then be compensated for by a noticeable increase in the exchange surface.

La présente invention a également pour objet une installation de réchauffement d'un fluide froid par échange thermique avec un liquide chaud, du genre comprenant des passages d'échange thermique à extension substantiellement verticale avec des moyens de distribution d'un liquide de ruissellement à l'extrémité haute des passages et cette installation se caractérise en ce que lesdits passages comprennent au moins un module avec au moins un premier élément de tube ou élément de tête, relié à son extrémité inférieure à l'extrémité inférieure d'au moins un second élément de tube, et des moyens d'alimentation en fluide à réchauffer à l'extrémité supérieure de chaque élément de tube de tête.The present invention also relates to an installation for heating a cold fluid by heat exchange with a hot liquid, of the type comprising heat exchange passages with substantially vertical extension with means for distributing a runoff liquid to the high end of the passages and this installation is characterized in that said passages comprise at least one module with at least one first tube element or head element, connected at its lower end to the lower end of at least one second element of tube, and means for supplying fluid to be heated at the end su of each head tube element.

Les caractéristiques et avantages de l'invention ressortiront de la description qui suit en référence aux dessins annexés dans lesquels :

  • - la figure 1 est une vue partielle en coupe verticale d'une installation de réchauffement de liquide cryogénique selon l'invention;
  • - la figure 2 est un détail, à échelle agrandie, d'une partie de la figure 1 ;
  • - la figure 3 est une vue, à échelle agrandie, en coupe selon la ligne III-III de la figure 2;
  • - les figures 4 - 5 - 6 - 7 - 8 et 9 sont des variantes de réalisation d'une installation selon l'invention.
The characteristics and advantages of the invention will emerge from the description which follows with reference to the appended drawings in which:
  • - Figure 1 is a partial view in vertical section of a cryogenic liquid heating installation according to the invention;
  • - Figure 2 is a detail, on an enlarged scale, of a part of Figure 1;
  • - Figure 3 is a view, on an enlarged scale, in section along the line III-III of Figure 2;
  • - Figures 4 - 5 - 6 - 7 - 8 and 9 are alternative embodiments of an installation according to the invention.

En se référant aux figures 1 à 3, on voit qu'une installation comprend une pluralité de tubes de réchauffement 1 formant passages d'échange thermique, réalisés en aluminium, chacun constitué d'un élément de tube'amont'ou de tête 2 et d'un élément de tube "aval" 3, raccordés par un coude inférieur 4..L'élément de tube de tête 2 est branché à une canalisation 5 à une source de fluide cryogénique à réchauffer par l'intermédiaire d'une boîte de raccordement 10, tandis que l'élément de tube "aval" 3 est branché directement à une conduite 6 de soutirage de fluide réchauffé : les éléments de tube 2 et 3 sont suspendus de façon à s'étendre de façon substantiellement verticale, et tout autour et le long de ces éléments de tube, qui présentent des ailettes extérieures 7, ruissellent des courants de liquide de réchauffement sous forme de nappes 8 et 9 qui sont préalablement formées par des dispositifs de répartition supérieurs 11.With reference to FIGS. 1 to 3, it can be seen that an installation comprises a plurality of heating tubes 1 forming heat exchange passages, made of aluminum, each consisting of a tube element “upstream” or head 2 and of a "downstream" tube element 3, connected by a lower bend 4..The head tube element 2 is connected to a pipe 5 to a source of cryogenic fluid to be heated by means of a box of connection 10, while the "downstream" tube element 3 is connected directly to a pipe 6 for withdrawing heated fluid: the tube elements 2 and 3 are suspended so as to extend substantially vertically, and all around and along these tube elements, which have external fins 7, flow streams of heating liquid in the form of sheets 8 and 9 which are previously formed by upper distribution devices 11.

La boîte de raccordement 10 comprend ici (voir figure 2) soudés en prolongement de l'élément de tête 2, un tube-enveloppe 12 ayant une épaisseur de paroi constante dans une section basse 12' et croissante radialement dans une partie médiane 12", avec un diamètre intérieur constant; à l'extrémité supérieure, ce tube-enveloppe 12 se prolonge en 13 jusqu'à un embout de raccordement 14 de la canalisation 5 pour le fluide cryogénique. Toutes ces pièces sont réalisées en aluminium pour être convenablement soudées entre- elles et avec l'élément de tube d'échange thermique 1. L'embout 14 présente un alésage interne de faible diamètre 16 dans lequel est soudé un élément de conduit 17 aboutissant largement à l'intérieur de l'élément tubulaire de tête 2. Entre l'élément de conduit 17 d'une part et d'autre part le tube-enveloppe 13 - 12 et la partie supérieure de l'élément de tube 2 est placé un produit d'isolation thermique 18. L'ensemble qui vient d'être décrit est logé à l'intérieur d'un puits de répartition 20 présentant une couronne de perforations 21. Ce puits 20 est fixé sur le dispositif de répartition 11 enveloppant à faible distance l'élément de tube 2 avec ses ailettes 7 et les perforations 21 se situent au niveau supérieur de la partie 12" à épaisseur surdimensionnée. En pratique, et comme on le note aux dessins, le liquide calorique de ruissellement, qui est destiné à s'écouler en nappes telles que 8 et 9 le long des éléments de tube "amont' 2 et "aval" 3, provient d'une réserve générale de liquide 25, qui elle-même est alimentée par une source 25'.The connection box 10 here comprises (see FIG. 2) welded as an extension of the head element 2, an envelope tube 12 having a constant wall thickness in a lower section 12 ′ and increasing radially in a middle portion 12 ″, with a constant internal diameter, at the upper end, this casing 12 extends at 13 to a connection end 14 of the pipe 5 for the cryogenic fluid. All of these parts are made of aluminum to be suitably welded between - They and with the heat exchange tube element 1. The end piece 14 has an internal bore of small diameter 16 in which is welded a conduit element 17 leading largely inside the tubular head element 2. Between the conduit element 17 on the one hand and on the other hand the casing 13 - 12 and the upper part of the 'tube element 2 is placed a thermal insulation product 18. The assembly which has just been described is housed inside a distribution well 20 having a ring of perforations 21. This well 20 is fixed on the distribution device 11 enveloping at a short distance the tube element 2 with its fins 7 and the perforations 21 are located at the upper level of the portion 12 "of oversized thickness. In practice, and as noted in the drawings, the liquid runoff caloric, which is intended to flow in layers such as 8 and 9 along the tube elements "upstream '2 and" downstream "3, comes from a general reserve of liquid 25, which itself is supplied by a 25 'source.

En fonctionnement, le liquide calorique de ruissellement est transféré dans une partie inférieure du puits de répartition 20 sous forme d'une pluralité de veines ou jets liquides 26 provenant de la réserve 25 et formées à partir des perforations 21. Grâce à la disposition qui vient d'être décrite, le fluide cryogénique qui circule à l'intérieur de la canalisation 5 et du tube 17 pour aboutir à l'élément de tube de tête 2 est radialement isolé de l'extérieur par le corps isolant 18. En outre, le flux frigorifique longitudinal important, qui prend essentiellement naissance, c8té "amont", au niveau de l'embout 14 et qui se propage vers l'aval le long du tube-enveloppe 13 - 12 vers l'élément de tube 2, est substantiellement dérivé radialement vers l'extérieur à l'endroit du tube-enveloppe 12 à épaisseur de paroi progressivement croissante vers l'amont. En effet, dans la partie médiane de forte épaisseur 12" du tube-enveloppe 12, le flux frigorifique longitudinal se transfère au maximum vers l'eau qui se présente sous forme de jets 26 en écoulement gravifique libre et rapide. Cet effet maximum de transfert thermique radialement vers l'extérieur résulte d'une part de la disposition, au niveau des jets 26, d'une surépaisseur importante de paroi de la partie 12" du tube-enveloppe 12, qui offre une conductance thermique accrue dans le sens radial, d'autre part d'un écoulement rapide de l'eau en chute libre, ce qui a pour effet de porter à sa valeur maximale le coefficient d'échange thermique. Cette disposition permet donc une dérivation vers les jets liquides 26 d'une part substantielle du flux frigorifique à propagation longitudinale, ce qui allège d'autant le flux frigorifique résiduel poursuivant sa propagation longitudinale dans la partie à paroi plus faible 12' et surtout vers la partie haute 2' de l'élément de tête 2 qui baigne dans une réserve individuelle d'eau de répartition 29 de nature substantiellement stagnante, donc à faible coefficient d'échange thermique avec la paroi de l'élément de tube 2. Sans la disposition décrite plus haut, on asssisterait à l'arrivée d'un flux frigorifique important à propagation longitudinale de paroi au niveau de la partie 2' de l'élément de tube 2, enveloppé d'une réserve d'eau stagnante 29, ce qui ne manquerait pas de provoquer des solidifications superficielles préjudiciables de l'eau au niveau de la partie 2' puisque ces solidifications, en se propageant radialement, pourraient atteindre toute la réserve d'eau 29 et rendre ainsi inopérant l'échange thermique du tube 2 - 3. Au contraire, grâce à la disposition décrite, on peut contrôler de façon très précise le flux thermique qui parvient au niveau de la partie 2' de l'élément de tête 2, puisque ce flux thermique est la somme d'un flux thermique résiduel à propagation longitudinale et d'un flux thermique à propagation radiale qui est lui-même faible grâce à l'interposition du produit isolant 18. D'ailleurs, dans certains cas, on peut au contraire accroître légèrement le coefficient d'échange thermique entre la partie 2' de l'élément de tube 2 avec la réserve d'eau 29 en conférant à celle-ci un certain mouvement de convection grâce à la présence de perforations de dégagement 21' pratiquées en position basse dans la cheminée distributrice 20, favorisant ainsi une certaine admission complémentaire d'eau en provenance directe de la réserve principale 25.In operation, the runoff caloric liquid is transferred into a lower part of the distribution well 20 in the form of a plurality of veins or liquid jets 26 coming from the reserve 25 and formed from the perforations 21. Thanks to the arrangement which comes To be described, the cryogenic fluid which circulates inside the pipe 5 and the tube 17 to reach the head tube element 2 is radially isolated from the outside by the insulating body 18. In addition, the significant longitudinal refrigeration flow, which essentially arises, c8té "upstream", at the level of the end piece 14 and which propagates downstream along the tube-envelope 13 - 12 towards the tube element 2, is substantially derived radially outward at the location of the envelope tube 12 with a progressively increasing wall thickness upstream. In fact, in the very thick middle part 12 "of the tube-shell 12, the longitudinal refrigerant flow is transferred as much as possible to the water, which is in the form of jets 26 in free and rapid gravitational flow. This maximum transfer effect radially outwardly thermal results on the one hand from the arrangement, at the level of the jets 26, of a significant excess wall thickness of the part 12 "of the tube-envelope 12, which offers increased thermal conductance in the radial direction, on the other hand, a rapid flow of water in free fall, which has the effect of bringing the coefficient of heat exchange to its maximum value. This arrangement therefore allows a diversion towards the liquid jets 26 of a substantial part of the refrigerating flow with longitudinal propagation, which thereby alleviates the residual refrigerating flow thereby continuing its longitudinal propagation in the weaker walled portion 12 ′ and especially towards the upper part 2 ′ of the head element 2 which is immersed in an individual reserve of distribution water 29 of a substantially stagnant nature, therefore with a low coefficient of heat exchange with the wall of the tube element 2. Without the provision described above, we would witness the arrival of a significant refrigerating flow with longitudinal wall propagation at the level of the part 2 ′ of the tube element 2, enveloped in a reserve of standing water 29, which does not would not fail to cause detrimental surface solidifications of the water at the level of the part 2 'since these solidifications, by propagating radially, could reach all the water reserve 29 and thus make inoperative heat exchange of the tube 2 - 3. On the contrary, thanks to the arrangement described, it is possible to very precisely control the heat flux which reaches the level of the part 2 ′ of the head element 2, since this flux thermal is the sum of a residual thermal flux with longitudinal propagation and a thermal flux with radial propagation which is itself weak thanks to the interposition of the insulating product 18. Besides, in some cases, one can on the contrary slightly increase the heat exchange coefficient between the part 2 'of the tube element 2 with the water reserve 29 by giving the latter a certain convection movement thanks to the presence of relief perforations 21' made in low position in the distribution chimney 20, thus favoring a certain complementary admission of water coming directly from the main reserve 25.

Ainsi qu'il a été expliqué précédemment, l'eau de ruissellement se forme en une nappe de ruissellement sur la paroi externe ailetée de l'élément de tube amont 2 et se refroidit progressivement jusqu'à l'extrémité inférieure de cet élément de tube "amont" 2, où l'eau de ruissellement est ensuite évacuée en 30 avec d'ailleurs celle qui provient du ruissellement à contre-courant sur l'élément de tube "aval" 3. On note qu'au niveau de cet élément de tube "aval" 3, les risques de congélation du liquide de ruissellement sont nettement amoindris, le fluide en cours de réchauffement circulant dans le tube 1 a vu sa température augmenter jusqu'à être voisine de celle du liquide de ruissellement, en sorte que l'évacuation du fluide réchauffé hors de l'élément de tube "aval" 3 peut s'effectuer, sans mise en oeuvre d'un boîtier de raccordement tel que décrit en référence à la figure 2, par une simple canalisation de soutirage 6, avec toutefois, bien entendu, le dispositif de répartition 11 permettant la formation d'une nappe de ruissellement uniforme 9, tel que représenté à la figure 3.As explained above, the runoff water forms in a runoff layer on the finned external wall of the upstream tube element 2 and gradually cools down to the lower end of this tube element. "upstream" 2, where the runoff water is then evacuated at 30 with, moreover, that which comes from the runoff against the current on the "downstream" tube element 3. It is noted that at this element of "downstream" tube 3, the risks of freezing the runoff liquid are significantly reduced, the fluid being heated The temperature flowing in the tube 1 has seen its temperature increase until it is close to that of the runoff liquid, so that the evacuation of the heated fluid from the "downstream" tube element 3 can be carried out, without setting in use of a connection box as described with reference to FIG. 2, by a simple draw-off line 6, with, however, of course, the distribution device 11 allowing the formation of a uniform run-off ply 9, such as shown in Figure 3.

Au lieu d'utiliser un tube de réchauffement dont l'extrémité d'admission "amont" reçoit le fluide brut à réchauffer et dont l'extrémité aval délivre le fluide à la température désirée de réchauffement (ou plus précisément une pluralité de tels tubes agencés en parallèle et branchés directement sur des collecteurs d'admission 30 et de soutirage 31), il est possible d'agencer les éléments de tube'amont' et les éléments de tube "aval" en un certain nombre de combinaisons.Instead of using a heating tube whose inlet end "upstream" receives the raw fluid to be heated and whose downstream end delivers the fluid to the desired temperature of heating (or more precisely a plurality of such tubes arranged in parallel and connected directly to intake manifolds 30 and withdrawal 31), it is possible to arrange the upstream tube elements and the "downstream" tube elements in a number of combinations.

En se référant à la figure 4, on voit qu'une pluralité d'éléments de tube "amont" 42a, 42b,... 42n sont tous branchés entre un collecteur supérieur de distribution 50 et un collecteur de raccordement inférieur 51 alimentant une autre pluralité 43a, 43b ... 43n d'éléments de tube "aval" formant ainsi un premier module multi-tubulaire dont l'extrémité supérieure est raccordée par un collecteur 52 à un second module multi-tubulaire constitué d'une autre pluralité d'éléments de tube "amont" 44a, 44b ...44g, le module final ayant une pluralité d'éléments de tube "amont" 45a, 45b ... 45r et une pluralité d'éléments de tube "aval" 46a, 46b ... 46s, délivrant le liquide réchauffé dans un collecteur final 52".Referring to FIG. 4, it can be seen that a plurality of "upstream" tube elements 42a, 42b, ... 42n are all connected between an upper distribution manifold 50 and a lower connection manifold 51 supplying another plurality 43a, 43b ... 43n of "downstream" tube elements thus forming a first multi-tubular module whose upper end is connected by a manifold 52 to a second multi-tubular module made up of another plurality of "upstream" tube elements 44a, 44b ... 44g, the final module having a plurality of "upstream" tube elements 45a, 45b ... 45r and a plurality of "downstream" tube elements 46a, 46b. .. 46s, delivering the heated liquid to a 52 "final manifold.

Selon la figure 5, des modules monotubulaires tels que décrits en référence à la figure 1, constitué chacun d'un élément de tube amont (54a, 54b, etc...) sont alimentés à leur extrémité supérieure par un collecteur d'alimentation commun 55, et sont raccordés par des raccords individuels 58a, 58b ... à un élément de tube aval (56a, 56b, etc...), eux-mêmes raccordés à leur extrémité supérieure à un collecteur de soutirage commun 57.According to FIG. 5, monotubular modules as described with reference to FIG. 1, each consisting of an upstream tube element (54a, 54b, etc.) are supplied at their upper end by a common supply collector 55, and are connected by individual connectors 58a, 58b ... to a downstream tube element (56a, 56b, etc ...), themselves connected at their upper end to a common withdrawal manifold 57.

Selon la figure 6, plusieurs lignes 61 et 62, telles que celles décrites à la figure 4, c'est-à-dire incorporant chacune plusieurs modules multi-tubulaires en série 63, 64 ... 63', 64'... sont branchés en parallèle entre un collecteur principal d'admission 68 et un collecteur principal de soutirage 69.According to FIG. 6, several lines 61 and 62, such as those described in FIG. 4, that is to say incorporating each several multi-tubular modules in series 63, 64 ... 63 ', 64' ... are connected in parallel between a main intake manifold 68 and a main withdrawal manifold 69.

Selon la figure 7, plusieurs lignes 70, 71, constituées chacune de plusieurs modules multi-tubulaires 72, 73, ..., 72',73'.. sont non seulement branchées entre un collecteur principal d'alimentation 74 et un collecteur principal de soutirage 75, mais des collecteurs intermédiaires d'égalisation 77 relient les modules homologues de plusieurs lignes en parallèle.According to FIG. 7, several lines 70, 71, each consisting of several multi-tubular modules 72, 73, ..., 72 ', 73' .. are not only connected between a main supply collector 74 and a main collector racking 75, but intermediate equalization collectors 77 connect the homologous modules of several lines in parallel.

Selon la figure 8, un faisceau d'éléments de tube est formé d'un premier jeu de lignes 81a, 81b, 81c (par exemple au nombre de trois) constitués d'un module multi-tubulaire (ou plusieurs modules multi-tubulaires en série) entre un collecteur d'alimentation 83 et un collecteur intermédiaire 84 qui alimente un second jeu de lignes 82a et 82b (par exemple deux) entre ce collecteur intermédiaire 84 et le collecteur final de soutirage 85.According to FIG. 8, a bundle of tube elements is formed of a first set of lines 81a, 81b, 81c (for example three in number) consisting of a multi-tubular module (or several multi-tubular modules in series) between a supply collector 83 and an intermediate collector 84 which supplies a second set of lines 82a and 82b (for example two) between this intermediate collector 84 and the final withdrawal collector 85.

Selon la figure 9, un premier jeu d'une pluralité de lignes 91a, 91b, 91c (par exemple trois) alimentées par un collecteur d'alimentation 93 et soutirées par un collecteur de soutirage 95a est raccordé par l'intermédiaire d'une conduite 96 à vanne de détente 97 à un second jeu d'une autre pluralité de lignes 92a, 92b branchées entre un collecteur d'alimentation 95b et un collecteur de soutirage 94. Cet arrangement peut être utilisé par exemple si le réseau est à 40 bars et le gaz disponible sous pression plus élevée, par exemple 80 bars, et l'on note que cette détente différée qui provoque un dégagement frigorifique n'est pas préjudiciable aux conduites, puisque le gaz naturel est alors à l'état déjà partiellement réchauffé. Le cas échéant, on peut placer à la sortie de la vanne de détente 97, un séparateur permettant de soutirer et d'éliminer les condensats les plus lourds, tels l'éthane, le propane ou le butane, tandis que la fraction gazeuse est seule réchauffée.According to FIG. 9, a first set of a plurality of lines 91a, 91b, 91c (for example three) supplied by a supply collector 93 and withdrawn by a withdrawal collector 95a is connected via a pipe. 96 with expansion valve 97 to a second set of another plurality of lines 92a, 92b connected between a supply manifold 95b and a withdrawal manifold 94. This arrangement can be used for example if the network is at 40 bars and the gas available under higher pressure, for example 80 bars, and it is noted that this delayed expansion which causes refrigeration release is not detrimental to the pipes, since the natural gas is then in the already partially heated state. If necessary, a separator can be placed at the outlet of the expansion valve 97 for withdrawing and removing the heaviest condensates, such as ethane, propane or butane, while the gaseous fraction is only warmed up.

L'invention s'applique notamment au réchauffement et à la revaporisation de gaz naturel liquéfié.The invention is particularly applicable to the heating and re-vaporization of liquefied natural gas.

Claims (10)

1. Procédé de réchauffement d'un fluide cryogénique tel le gaz naturel liquéfié par échange thermique avec un fluide calorigène, tel de l'eau, dont la température de solidification est supérieure à la température dudit fluide cryogénique avant son refroidissement final, selon lequel ledit fluide cryogénique est conduit dans une pluralité d'éléments de tubes verticaux à ailettes branchés en série, d'abord à co-courant (2) dudit fluide calorigène s'écoulant à la périphérie des dits éléments de tube (8) puis(en 3) à contre-courant dudit fluide calorigène (en 9), caractérisé en ce que le fluide calorigène (8) (9) ruisselle par gravité le long des dits éléments de tube (2) (3) et en ce que chaque élément de tube le plus en amont (2) est alimenté (en 10, 11) en fluide cryogénique à son extrémité supérieure.1. A method of heating a cryogenic fluid such as liquefied natural gas by heat exchange with a circulating fluid, such as water, the solidification temperature of which is higher than the temperature of said cryogenic fluid before its final cooling, according to which said cryogenic fluid is led into a plurality of elements of vertical tubes with fins connected in series, firstly co-current (2) of said circulating fluid flowing at the periphery of said tube elements (8) then (at 3 ) against the flow of said circulating fluid (at 9), characterized in that the circulating fluid (8) (9) flows by gravity along said tube elements (2) (3) and in that each tube element the most upstream (2) is supplied (at 10, 11) with cryogenic fluid at its upper end. 2. Procédé de réchauffement d'un fluide froid selon la revendication 1, du genre où l'on répartit le fluide calorigène autour d'un élément de tube (2) (3) d'échange thermique à partir d'une réserve de fluide calorigène (29) individuellement affectée à chaque élément (2) (3) autour de la partie basse d'un tube-enveloppe (12) prolongeant vers le haut ledit élément (2) (3) et à l'intérieur duquel s'étend avec interposition d'un isolant (18) un élément de conduit d'alimentation en fluide à réchauffer (17), ledit élément de conduit (17) et ledit tube-enveloppe (12) étant raccordés à un embout de canalisation (14), ladite réserve individuelle de liquide (29) étant elle-même alimentée par du liquide issu d'une réserve liquide générale (25) et ruisselant (en 26) le long d'une partie dudit tube-enveloppe situé au-dessus de ladite réserve individuelle (29), caractérisé en ce qu'on surdimentionne l'épaisseur de ladite partie (12") dudit tube-enveloppe (12), le surdimentionnement d'épaisseur étant de préférence d'autant plus marqué qu'on s'élève au-dessus de ladite réserve liquide individuelle (29).2. A method of heating a cold fluid according to claim 1, of the type in which the circulating fluid is distributed around a tube element (2) (3) heat exchange from a reserve of fluid circulating (29) individually assigned to each element (2) (3) around the lower part of a tube-envelope (12) extending upwards said element (2) (3) and inside which extends with the interposition of an insulator (18) of a pipe element for supplying fluid to be heated (17), said pipe element (17) and said tube-jacket (12) being connected to a pipe end piece (14), said individual liquid reserve (29) being itself supplied with liquid coming from a general liquid reserve (25) and trickling (at 26) along a part of said tube-envelope situated above said individual reserve (29), characterized in that the thickness of said part (12 ") of said envelope tube (12) is oversized, the oversizing of thickness being preferably all the more marked as one rises above said individual liquid reserve (29). 3. Installation de réchauffement d'un fluide cryogénique par échange thermique avec un liquide chaud, du genre comprenant des éléments de tube (2) (3) d'échange thermique à extension substantiellement verticale, avec des moyens de distribution d'un liquide de ruissellement (11) à l'extrémité haute des éléments (2) (3), caractérisée en ce que les dits éléments de tube comprennent au moins un module avec au moins un premier élément (2),élément amont ou de tête, relié par raccord (4) à son extrémité inférieure à l'extrémité inférieure d'au moins un second élément de tube (3), ou élément de tube aval, et des moyens d'alimentation (10) (5) en fluide cryogénique à l'extrémité supérieure de chaque élément de passage amont.3. Installation for heating a cryogenic fluid by heat exchange with a hot liquid, of the type comprising heat exchange tube (2) (3) elements with substantially vertical extension, with means for distributing a liquid of runoff (11) at the high end of the elements (2) (3), characterized in that the said tube elements comprise at least one module with at least one first element (2), upstream or head element, connected by fitting (4) at its lower end to the lower end of at least a second tube element (3), or downstream tube element, and means (10) (5) for supplying cryogenic fluid to the upper end of each upstream passage element. 4. Installation selon la revendication 3, caractérisée en ce qu'un module comprend une première pluralité d'éléments de tubes (42a, 42b ... 42n) dits'hmont" raccordés par leurs extrémités inférieures par un collecteur "bas" (51) aux extrémités inférieures d'une seconde pluralité d'éléments de tubes dits "aval" (43a, 431 ... 43n).4. Installation according to claim 3, characterized in that a module comprises a first plurality of tube elements (42a, 42b ... 42n) dits'hmont "connected by their lower ends by a" low "collector (51 ) at the lower ends of a second plurality of so-called "downstream" tube elements (43a, 4 31 ... 43n). 5. Installation selon la revendication 3 ou 4, caractérisée en ce que plusieurs modules sont raccordés en série par des collecteurs hauts (52) (52") pour former une ligne.5. Installation according to claim 3 or 4, characterized in that several modules are connected in series by tall collectors (52) (52 ") to form a line. 6. Installation selon la revendication 3, caractérisée en ce que plusieurs modules (54a, 56a, 56b) sont branchés en parallèle entre un collecteur "amont" d'alimentation (55) et un collecteur "aval" de soutirage (57).6. Installation according to claim 3, characterized in that several modules (54a, 56a, 56b) are connected in parallel between an "upstream" supply manifold (55) and an "downstream" withdrawal manifold (57). 7. Installation selon la revendication 5, caractérisée en ce que plusieurs lignes (61, 62) sont agencées et branchées à une extrémité des dites lignes à un collecteur d'admission (68) et à l'autre extrémité des dites lignes à un collecteur de soutirage (69).7. Installation according to claim 5, characterized in that several lines (61, 62) are arranged and connected at one end of said lines to an intake manifold (68) and at the other end of said lines to a manifold racking (69). 8. Installation selon la revendication 7, caractérisée en ce qu'une ligne (70 - 71) est formée de plusieurs modules, certains modules homologues (72, 72') (73, 73') de plusieurs lignes en parallèle étant raccordés à des collecteurs intermédiaires (77).8. Installation according to claim 7, characterized in that a line (70 - 71) is formed of several modules, certain homologous modules (72, 72 ') (73, 73') of several lines in parallel being connected to intermediate collectors (77). 9. Installation selon la revendication 7, caractérisée en ce que plusieurs lignes sont agencées, certaines (81a, 81b, 81c) en parallèle, certaines en série (81a ... 82a) avec des collecteurs intermédiaires (84).9. Installation according to claim 7, characterized in that several lines are arranged, some (81a, 81b, 81c) in parallel, some in series (81a ... 82a) with intermediate collectors (84). 10. Installation selon la revendication 9, caractérisée en ce que les collecteurs intermédiaires incorporent des moyens de détente (97), le cas échéant suivis d'un séparateur des condensats.10. Installation according to claim 9, characterized in that the intermediate collectors incorporate expansion means (97), if necessary followed by a condensate separator.
EP81400294A 1980-02-29 1981-02-26 Process and installation for reheating a cold fluid Expired EP0035444B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8004509A FR2477276A1 (en) 1980-02-29 1980-02-29 METHOD AND INSTALLATION FOR HEATING A COLD FLUID
FR8004509 1980-02-29

Publications (2)

Publication Number Publication Date
EP0035444A1 true EP0035444A1 (en) 1981-09-09
EP0035444B1 EP0035444B1 (en) 1985-06-26

Family

ID=9239137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400294A Expired EP0035444B1 (en) 1980-02-29 1981-02-26 Process and installation for reheating a cold fluid

Country Status (9)

Country Link
US (1) US4343156A (en)
EP (1) EP0035444B1 (en)
JP (1) JPS56137084A (en)
AU (1) AU533661B2 (en)
CA (1) CA1154432A (en)
DE (1) DE3171087D1 (en)
ES (1) ES8201302A1 (en)
FR (1) FR2477276A1 (en)
PT (1) PT72581B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450906A1 (en) * 1990-03-30 1991-10-09 Tokyo Gas Company Limited Panel type heat exchanger
WO2008012286A1 (en) * 2006-07-25 2008-01-31 Shell Internationale Research Maatschappij B.V. Method and apparatus for vaporizing a liquid stream
US9951906B2 (en) 2012-06-12 2018-04-24 Shell Oil Company Apparatus and method for heating a liquefied stream
EP3710743A4 (en) * 2017-11-15 2021-08-18 Taylor-Wharton Malaysia Sdn. Bhd Cryogenic fluid vaporizer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676871B2 (en) * 1988-03-25 1994-09-28 サンエンジニアリング株式会社 Heat exchanger
US5251452A (en) * 1992-03-16 1993-10-12 Cryoquip, Inc. Ambient air vaporizer and heater for cryogenic fluids
US5390500A (en) * 1992-12-29 1995-02-21 Praxair Technology, Inc. Cryogenic fluid vaporizer system and process
US5473905A (en) * 1994-07-29 1995-12-12 Cryoquip, Inc. Surge dampening device for cryogenic vaporizers and heater elements
US5937656A (en) * 1997-05-07 1999-08-17 Praxair Technology, Inc. Nonfreezing heat exchanger
DE60024634T2 (en) 2000-10-30 2006-08-03 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for cryogenic air separation integrated with associated method
US6799429B2 (en) * 2001-11-29 2004-10-05 Chart Inc. High flow pressurized cryogenic fluid dispensing system
CN105605950B (en) * 2015-12-24 2017-06-23 浙江东氟塑料科技有限公司 Flue gas water- to-water heat exchanger and its cleaning method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2348601A (en) * 1941-12-17 1944-05-09 Kellogg M W Co Heat exchanger
GB911847A (en) * 1960-04-06 1962-11-28 North Thames Gas Board Improvements relating to the vaporisation of liquefied methane
FR1393641A (en) * 1963-03-14 1965-03-26 Brown Fintube Co Method and apparatus for converting liquids to gas
FR2096919B1 (en) * 1970-07-16 1974-09-06 Air Liquide
DE2052154A1 (en) * 1970-10-23 1972-04-27 Linde Ag, 6200 Wiesbaden Low temp gas evaporator - with low conductivity tube facing to prevent frosting
JPS5427788B2 (en) * 1971-08-28 1979-09-12
FR2353035A1 (en) * 1976-05-26 1977-12-23 Commissariat Energie Atomique DROP-DOWN TYPE SOFT TUBE HEAT EXCHANGER
JPS52144006A (en) * 1976-05-27 1977-12-01 Osaka Gas Co Ltd Vaporizer for liquefied natural gas
JPS5924317B2 (en) * 1977-06-20 1984-06-08 大阪瓦斯株式会社 liquefied natural gas vaporizer
JPS54101539A (en) 1978-01-27 1979-08-10 Kobe Steel Ltd Heat exchange pipe for use with water-sprinkling type, panel-shaped, liquefied natural gas evaporator and combination of such pipes and their manufacturing method
US4226605A (en) * 1978-10-23 1980-10-07 Airco, Inc. Flameless vaporizer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Advances in Instrumentation, Vol. 33, part 4, 1978 Pittsburgh, USA T.J. HANNA: "Operating Experiences with Running Film and Steamtype Vaporizers", pages 43-54. *
PATENTS ABSTRACTS OF JAPAN, Vol. 2, No. 41, 17 Mars 1978, page 4728 C 77; & JP-A-52 144 006, (Osaka Gas) (01-12-1977) * Extrait en Entier: figure 3, de la Demande de Brevet * *
PATENTS ABSTRACTS OF JAPAN, Vol. 3, No. 32, 17 Mars 1979, page 89 c 40; & JP-A-54 007 403, (Osaka Gas) (20-01-1979) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450906A1 (en) * 1990-03-30 1991-10-09 Tokyo Gas Company Limited Panel type heat exchanger
WO2008012286A1 (en) * 2006-07-25 2008-01-31 Shell Internationale Research Maatschappij B.V. Method and apparatus for vaporizing a liquid stream
US9951906B2 (en) 2012-06-12 2018-04-24 Shell Oil Company Apparatus and method for heating a liquefied stream
EP3710743A4 (en) * 2017-11-15 2021-08-18 Taylor-Wharton Malaysia Sdn. Bhd Cryogenic fluid vaporizer
US11371655B2 (en) 2017-11-15 2022-06-28 Taylor-Wharton Malaysia Sdn. Bhd. Cryogenic fluid vaporizer

Also Published As

Publication number Publication date
DE3171087D1 (en) 1985-08-01
US4343156A (en) 1982-08-10
FR2477276B1 (en) 1982-07-30
JPH042876B2 (en) 1992-01-21
PT72581B (en) 1982-03-11
AU533661B2 (en) 1983-12-01
CA1154432A (en) 1983-09-27
ES499734A0 (en) 1981-12-01
PT72581A (en) 1981-03-01
JPS56137084A (en) 1981-10-26
FR2477276A1 (en) 1981-09-04
AU6763281A (en) 1981-09-03
EP0035444B1 (en) 1985-06-26
ES8201302A1 (en) 1981-12-01

Similar Documents

Publication Publication Date Title
EP0035444B1 (en) Process and installation for reheating a cold fluid
EP1853846B1 (en) Plant for regasification of liquefied natural gas
EP0251944B1 (en) Thermally controlled vinification process and apparatus for performing this process
EP0178985B1 (en) Fluid-heating apparatus
WO1999018387A1 (en) Method and installation for filling a tank under pressure
EP0165161B1 (en) Method and plant for freezing soils by means of a cryogenic liquid
FR2469667A1 (en) Water heater energy source conversion system - uses interspace(s) between condenser tube and sheath tube filled with thermal conductive material
EP0325873B1 (en) Liquefied gas transfer line having at least one vapour derivation
EP2045543B1 (en) Boiler with smoke pipes
CA2012714A1 (en) Method and apparatus for heating a gaseous fluid by successive heat exchanges
EP3835641A1 (en) Underwater installation for heating a two-phase liquid/gas effluent circulating inside an underwater enclosure
WO2002046669A1 (en) Evaporator-condenser and air distillation plant comprising same
WO2005114021A1 (en) Active thermal insulating device for gas piping
EP4205508A1 (en) Sub-sea facility and method for heating a multi-phase effluent flowing inside a sub-sea casing
FR2512518A1 (en) Method of vaporising liquid gas - has heat passed externally to tank by pipes containing mixture freezing at predetermined temperature
BE389172A (en)
WO2017103525A1 (en) Cooling device for carbon dioxide methanation catalytic reactor
FR2563530A1 (en) Double-tower continuous wire-making vessel.
FR2538088A1 (en) Heating device e.g. for railway points
BE478960A (en)
BE455273A (en)
FR2800446A1 (en) Method for accumulating heat in container includes storing heat in first fluid in sealed container, transferring heat by condensing vapor phase of fluid on exchanger, and supplying heat to container
FR2725499A1 (en) Building heating circuit installation
BE535744A (en)
BE407610A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810709

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3171087

Country of ref document: DE

Date of ref document: 19850801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81400294.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970113

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970122

Year of fee payment: 17

Ref country code: DE

Payment date: 19970122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970127

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980226

EUG Se: european patent has lapsed

Ref document number: 81400294.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST