EP0035444B1 - Process and installation for reheating a cold fluid - Google Patents

Process and installation for reheating a cold fluid Download PDF

Info

Publication number
EP0035444B1
EP0035444B1 EP81400294A EP81400294A EP0035444B1 EP 0035444 B1 EP0035444 B1 EP 0035444B1 EP 81400294 A EP81400294 A EP 81400294A EP 81400294 A EP81400294 A EP 81400294A EP 0035444 B1 EP0035444 B1 EP 0035444B1
Authority
EP
European Patent Office
Prior art keywords
fluid
installation
tube element
upstream
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400294A
Other languages
German (de)
French (fr)
Other versions
EP0035444A1 (en
Inventor
Pierre Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP0035444A1 publication Critical patent/EP0035444A1/en
Application granted granted Critical
Publication of EP0035444B1 publication Critical patent/EP0035444B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser

Definitions

  • the present invention relates to a method and an installation for heating a cryogenic fluid by heat exchange with a circulating fluid, the solidification temperature of which is higher than the temperature of the cryogenic fluid before its final heating, and firstly a method for heating d a cryogenic fluid, such as liquefied natural gas, by heat exchange with a circulating fluid, such as water, the solidification temperature of which is higher than the temperature of said cryogenic fluid, according to which said cryogenic fluid is led into the at least one module comprising two vertical tube elements with fins connected in series, and the circulating fluid is made to flow by gravity in the form of a free sheet along the periphery of said tube elements.
  • a cryogenic fluid such as liquefied natural gas
  • FR-A-2 096 919 describes a process for heating natural gas by countercurrent exchange in a plurality of elements of vertical tubes mounted in parallel, the natural gas always circulating in an upward direction inside the elements of tubes and circulating water naturally flowing by gravity outside these tube elements, which are provided with longitudinal fins.
  • an internal section of tube is provided for the passage natural gas which is increasingly reduced, which leads to successive increases in the speed of natural gas flowing in the tubes.
  • JP-A-54-7403 describes the heating of natural gas by first co-current exchange with the natural gas flowing from bottom to top in a tube bundle and the water flowing from bottom to top in a calender according to a forced flow, then an exchange against the current with the gas circulating from top to bottom in another tube bundle and the water circulating from bottom to top in the corresponding grille. This way of doing things is quite complex and leads to significant deterioration, in particular calenders in the event of accidental freezing of the heating water.
  • JP-A-52-144 006 describes a process of the type indicated above.
  • a heating is carried out comprising a first stage in countercurrent exchange with the natural gas flowing from bottom to top in a first plurality of upstream tube elements and the water naturally flowing outside, then a second stage in countercurrent exchange also, the natural gas flowing from bottom to top in a second plurality of downstream tube elements and the water flowing naturally outside, with the particularity that the second plurality of elements tubes offers a smaller cross section for natural gas than the first plurality.
  • This arrangement does not allow the objective of the present invention to be fulfilled either, because the icing around the upstream tube elements cannot be avoided.
  • the object of the invention is to ensure that water or other fluid at relatively cold temperature can be used as circulating fluid while avoiding any risk of solidification of this fluid.
  • the essential characteristic of the invention resides in the fact that, in a heating process of the aforementioned type, the cryogenic fluid is made to circulate firstly co-current with said circulating fluid and then counter-current with said circulating fluid, the element upstream tube being supplied with cryogenic fluid at its upper end, and in that the heat exchange between the cryogenic fluid and the circulating fluid at this end is slowed down by means of an insulating sleeve.
  • the intermediate temperature between the upstream and downstream tube elements is close to the critical temperature, it is therefore preferable to provide for an upward circulation of natural gas in the downstream tube element in order to ensure a final heating of the natural gas. without untimely irreversibilities, which should then be compensated for by a noticeable increase in the exchange surface.
  • the present invention also relates to an installation for heating a cryogenic fluid, such as liquefied natural gas, by heat exchange with a circulating fluid, such as water, the solidification temperature of which is higher than the temperature of said cryogenic fluid, of the type comprising at least one heat exchange module comprising two vertical tube elements with fins connected in series and in which the cryogenic fluid circulates, and means for causing the circulating fluid to flow by gravity in the form of a free ply along the periphery of said tube elements, characterized in that the two tube elements are connected by their lower ends, and in that said means comprise a runoff liquid distributor disposed at the upper end of each element of tube and an insulating sleeve disposed at the upper end of the single element of upstream tube and interposed between the two fluids.
  • a cryogenic fluid such as liquefied natural gas
  • an installation comprises a plurality of heating tubes 1 forming heat exchange passages, made of aluminum, each consisting of a tube element "upstream 2 2 and a downstream tube element 3, connected by a lower bend 4.
  • the upstream tube element 2 2 is connected to a pipe 5 to a source of cryogenic fluid to be heated via a connection box 10, while that the downstream tube element 3 is connected directly to a pipe 6 for withdrawing heated fluid: the tube elements 2 and 3 are suspended so as to extend substantially vertically, and all around and along these tube elements, which have external fins 7, flow streams of heating liquid in the form of sheets 8 and 9 which are previously formed by upper distribution devices 11.
  • connection box 10 here comprises (see FIG. 2) welded as an extension of the upstream element 2, an envelope tube 12 having a constant wall thickness in a lower section 12 ′ and increasing radially in a middle part 12 ′′, with constant internal diameter, at the upper end, this casing 12 extends at 13 to a connection end 14 of the pipe 5 for the cryogenic fluid All of these parts are made of aluminum to be suitably welded between them and with the heat exchange tube element 1.
  • the end piece 14 has an internal bore of small diameter 16 in which is welded a conduit element 17 leading- largely inside the upstream tube element 2 Between the conduit element 17 on the one hand and on the other hand the envelope-tube 13-12 and the upper part of the tube element 2 is placed a thermal insulation product 18.
  • the assembly which comes to be described is housed inside a repair well rtition 20 having a ring of perforations 21.
  • This well 20 is fixed to the distribution device 11 enveloping at a short distance the tube element 2 with its fins 7 and the perforations 21 are located at the upper level of the part 12 "thick oversized.
  • the runoff caloric liquid which is intended to flow in layers such as 8 and 9 along the tube elements "upstream 2 2 and" downstream 3, comes from a general liquid reserve 25, which itself is supplied by a source 25 '.
  • the circulating circulating liquid is transferred into a lower part of the distribution well 20 in the form of a plurality of veins or liquid jets 26 coming from the reserve 25 and formed from the perforations 21.
  • the cryogenic fluid which circulates inside the pipe 5 and the tube 17 to reach the upstream tube element 2 is radially isolated from the outside by the insulating body 18.
  • the flow significant longitudinal refrigeration, which essentially arises, on the "upstream" side, at the end piece 14 and which propagates downstream along the casing-tube 13-12 towards the tube element 2 is substantially derived radially outwards at the location of the wall thickness of the envelope tube 12 progresses sively increasing upstream.
  • This arrangement therefore allows a diversion towards the liquid jets 26 of a substantial part of the refrigerating flow with longitudinal propagation, which thereby alleviates the residual refrigerating flow thereby continuing its longitudinal propagation in the weaker walled portion 12 ′ and especially towards the upper part 2 ′ of the upstream tube element 2 which is immersed in an individual reserve of distribution water 29 of a substantially stagnant nature, therefore with a low coefficient of heat exchange with the wall of the tube element 2.
  • the runoff water forms in a runoff layer on the finned external wall of the upstream tube element 2 and gradually cools down to the lower end of this tube element.
  • "Upstream 2 where the runoff water is then evacuated at 30 with besides that which comes from the runoff against the current on the tube element” downstream 3.
  • the risks of freezing of the runoff liquid are significantly reduced, the fluid being heated circulating in the tube 1 has seen its temperature increase until it is close to that of the runoff liquid. so that the evacuation of the heated fluid from the “downstream” tube element 3 can be carried out, without using a connection box as described with reference to FIG. 2, by a simple pipe of racking 6, however, of course, the distribution device 11 allowing the formation of a uniform run-off ply 9, as shown in FIG. 3.
  • a plurality of tube elements "upstream 42a, 42b, ... 42n are all connected between an upper distribution manifold 50 and a lower connection manifold 51 supplying another plurality 43a, 43b ... 43n of downstream tube elements thus forming a first multi-tubular module whose upper end is connected by a manifold 52 to a second multi-tubular module consisting of another plurality of elements "upstream” tube 44a, 44b ... 44q, the final module having a plurality of "upstream” tube elements 45a, 45b ... 45r and a plurality of "downstream” tube elements 46a, 46b ... 46s, delivering the heated liquid to a 52 "final manifold.
  • a bundle of tube elements is formed of a first set of lines 81a, 81b, 81c (for example three in number). killed by a multi-tubular module (or several multi-tubular modules in series) between a supply collector 83 and an intermediate collector 84 which supplies a second set of lines 82a and 82b (for example two) between this intermediate collector 84 and the final withdrawal manifold 85.
  • a first set of a plurality of lines 91 a, 91 b, 91 c (for example three) supplied by a supply collector 93 and withdrawn by a withdrawal collector 95a is connected via a pipe 96 with expansion valve 97 to a second set of another plurality of lines 92a, 92b connected between a supply manifold 95b and a withdrawal manifold 94.
  • This arrangement can be used for example if the network is 40 bars and the gas available under higher pressure, for example 80 bars, and it is noted that this delayed expansion which causes a refrigeration release is not detrimental to the pipes, since the natural gas is then in a state already partially warmed up.
  • a separator can be placed at the outlet of the expansion valve 97 for withdrawing and removing the heaviest condensates, such as ethane, propane or butane, while the gaseous fraction is only warmed up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

La présente invention concerne un procédé et une installation de réchauffement d'un fluide cryogénique par échange thermique avec un fluide calorigène dont la température de solidification est supérieure à la température du fluide cryogénique avant son réchauffement final, et en premier lieu un procédé de réchauffement d'un fluide cryogénique, tel que le gaz naturel liquéfié, par échange thermique avec un fluide calorigène, tel que de l'eau, dont la température de solidification est supérieure à la température dudit fluide cryogénique, selon lequel ledit fluide cryogénique est conduit dans au moins un module comprenant deux éléments de tube verticaux à ailettes branchés en série, et l'on fait ruisseler le fluide calorigène par gravité sous forme d'une nappe libre le long de la périphérie desdits éléments de tube.The present invention relates to a method and an installation for heating a cryogenic fluid by heat exchange with a circulating fluid, the solidification temperature of which is higher than the temperature of the cryogenic fluid before its final heating, and firstly a method for heating d a cryogenic fluid, such as liquefied natural gas, by heat exchange with a circulating fluid, such as water, the solidification temperature of which is higher than the temperature of said cryogenic fluid, according to which said cryogenic fluid is led into the at least one module comprising two vertical tube elements with fins connected in series, and the circulating fluid is made to flow by gravity in the form of a free sheet along the periphery of said tube elements.

Elle s'applique particulièrement à la revaporisa- tion et au réchauffement du gaz naturel liquéfié avec de l'eau disponible en grande quantité (rivière, mer...), par opposition au réchauffement par brûleurs (voir par exemple le FR-A-1 393 641), qui ne convient pour des raisons économiques qu'à des débits de gaz relativement faibles.It is particularly applicable to the re-vaporization and reheating of liquefied natural gas with water available in large quantities (river, sea ...), as opposed to reheating by burners (see for example FR-A- 1,393,641), which is suitable for economic reasons only at relatively low gas flow rates.

On a déjà proposé diverses solutions, mais aucune d'entre elles n'a donné entière satisfaction.Various solutions have already been proposed, but none of them has been entirely satisfactory.

Le FR-A-2 096 919 décrit un procédé de réchauffement de gaz naturel par échange à contre-courant dans une pluralité d'éléments de tubes verticaux montés en parallèle, le gaz naturel circulant toujours en sens ascendant à l'intérieur des éléments de tubes et l'eau calorigène ruisselant naturellement par gravité à l'extérieur de ces éléments de tubes, qui sont munis d'ailettes longitudinales. Afin d'optimiser l'échange thermique, c'est-à-dire de rendre maximum le flux thermique tout en évitant une prise en glace de l'eau à la périphérie externe des tubes, on prévoit une section interne de tube pour le passage du gaz naturel qui est de plus en plus réduite, ce qui conduit à des augmentations successives de la vitesse du gaz naturel circulant dans les tubes. Ces diminutions successives de section de passage ont notamment été réalisées par la mise en place d'un garnissage interne constitué par un tube borgne à section variable, ce qui constitue une technologie assez complexe.FR-A-2 096 919 describes a process for heating natural gas by countercurrent exchange in a plurality of elements of vertical tubes mounted in parallel, the natural gas always circulating in an upward direction inside the elements of tubes and circulating water naturally flowing by gravity outside these tube elements, which are provided with longitudinal fins. In order to optimize the heat exchange, that is to say to maximize the heat flow while avoiding icing of the water at the external periphery of the tubes, an internal section of tube is provided for the passage natural gas which is increasingly reduced, which leads to successive increases in the speed of natural gas flowing in the tubes. These successive decreases in cross-section have in particular been achieved by the installation of an internal lining constituted by a blind tube with variable section, which constitutes a fairly complex technology.

Le JP-A-54-7403 décrit le réchauffement de gaz naturel par échange d'abord à co-courant avec le gaz naturel circulant de bas en haut dans un faisceau tubulaire et l'eau circulant de bas en haut dans une calandre selon un écoulement forcé, puis un échange à contre-courant avec le gaz circulant de haut en bas dans un autre faisceau tubulaire et l'eau circulant de bas en haut dans la calandre correspondante. Cette façon de faire est assez complexe et conduit à des détériorations importantes, notamment des calandres en cas de prise en glace accidentelle de l'eau de réchauffement.JP-A-54-7403 describes the heating of natural gas by first co-current exchange with the natural gas flowing from bottom to top in a tube bundle and the water flowing from bottom to top in a calender according to a forced flow, then an exchange against the current with the gas circulating from top to bottom in another tube bundle and the water circulating from bottom to top in the corresponding grille. This way of doing things is quite complex and leads to significant deterioration, in particular calenders in the event of accidental freezing of the heating water.

Le JP-A-52-144 006 décrit un procédé du type indiqué plus haut. Suivant ce procédé, on effectue un réchauffement comprenant un premier stade à échange à contre-courant avec le gaz naturel circulant de bas en haut dans une première pluralité d'éléments de tubes amont et l'eau ruisselant naturellement à l'extérieur, puis un deuxième stade à échange à contre-courant également, le gaz naturel circulant de bas en haut dans une deuxième pluralité d'éléments de tubes aval et l'eau ruisselant naturellement à l'extérieur, avec cette particularité que la deuxième pluralité d'éléments de tubes offre une section de passage au gaz naturel plus faible que la première pluralité. Cet agencement ne permet pas non plus de remplir l'objectif de la présente invention, car la prise en glace autour des éléments de tubes amont ne peut être évitée.JP-A-52-144 006 describes a process of the type indicated above. According to this method, a heating is carried out comprising a first stage in countercurrent exchange with the natural gas flowing from bottom to top in a first plurality of upstream tube elements and the water naturally flowing outside, then a second stage in countercurrent exchange also, the natural gas flowing from bottom to top in a second plurality of downstream tube elements and the water flowing naturally outside, with the particularity that the second plurality of elements tubes offers a smaller cross section for natural gas than the first plurality. This arrangement does not allow the objective of the present invention to be fulfilled either, because the icing around the upstream tube elements cannot be avoided.

Le but de l'invention est de faire en sorte qu'on puisse utiliser comme fluide calorigène de l'eau ou autre fluide à température relativement froide tout en évitant tout risque de solidification de ce fluide.The object of the invention is to ensure that water or other fluid at relatively cold temperature can be used as circulating fluid while avoiding any risk of solidification of this fluid.

La caractéristique essentielle de l'invention réside dans le fait que, dans un procédé de réchauffement du type précité, on fait circuler le fluide cryogénique d'abord à co-courant dudit fluide calorigène puis à contre-courant dudit fluide calorigène, l'élément de tube amont étant alimenté en fluide cryogénique à son extrémité supérieure, et en ce qu'on freine l'échange thermique entre le fluide cryogénique et le fluide calorigène à cette extrémité au moyen d'un man- chan isolant.The essential characteristic of the invention resides in the fact that, in a heating process of the aforementioned type, the cryogenic fluid is made to circulate firstly co-current with said circulating fluid and then counter-current with said circulating fluid, the element upstream tube being supplied with cryogenic fluid at its upper end, and in that the heat exchange between the cryogenic fluid and the circulating fluid at this end is slowed down by means of an insulating sleeve.

Les avantages de l'invention s'expliquent de la façon suivante :

  • D'une part, l'existence d'un premier échange à co-courant, freiné au début au moyen d'un manchon isolant, est décisive en raison de la limitation du flux thermique pour éviter la prise en glace externe. En effet, si la température de l'eau à l'entrée, c'est-à-dire à l'extrémité supérieure de l'élément de tube amont, est par exemple de + 4 °C et de + 2 °C à la sortie, c'est-à-dire à l'extrémité inférieure de ce même élément de tube, le débit de gaz naturel liquéfié à une température de - 160 °C pouvant entrer dans un tube fonctionnant à co-courant est plus de deux fois supérieur à celui qui peut entrer dans ce même tube fonctionnant à contre-courant.
The advantages of the invention can be explained as follows:
  • On the one hand, the existence of a first co-current exchange, braked at the start by means of an insulating sleeve, is decisive due to the limitation of the heat flow to avoid setting in external ice. In fact, if the temperature of the water at the inlet, that is to say at the upper end of the upstream tube element, is for example + 4 ° C and + 2 ° C at the outlet, that is to say at the lower end of this same tube element, the flow of liquefied natural gas at a temperature of - 160 ° C which can enter a tube operating in co-current is more than two times greater than that which can enter this same tube operating against the current.

L'existence d'au moins un deuxième échange thermique à contre-courant est également décisive en raison du faible écart de température entre le gaz naturel sortant de l'élément de tube aval et l'eau refroidissant cet élément. En effet, si la température de l'eau à l'extrémité supérieure, c'est-à-dire à la sortie supérieure de cet élément, est de + 4 °C et de + 2 °C à l'entrée inférieure, la longueur de cet élément de tube aval fonctionnant à contre-courant est de 30 % inférieure à celle qui serait nécessaire pour un fonctionnement similaire à co-courant.The existence of at least a second countercurrent heat exchange is also decisive because of the small temperature difference between the natural gas leaving the downstream tube element and the water cooling this element. Indeed, if the temperature of the water at the upper end, that is to say at the upper outlet of this element, is + 4 ° C and + 2 ° C at the lower inlet, the The length of this downstream tube element operating in counter-current is 30% less than that which would be necessary for similar operation in co-current.

D'autre part, comme la température critique du gaz naturel est généralement voisine de - 60 °C, sa masse volumique au voisinage de cette température varie rapidement avec la température, même sous une pression supérieure à la pression critique (T kg/m3/°C sous 75 bars). Or, la vitesse d'écoulement du gaz naturel dans l'élément de tube aval est encore nécessairement faible à cette température pour éviter la prise en glace externe. Dans ces conditions, un écoulement « descendant du gaz naturel conduirait à des perturbations d'écoulement dues à l'influence intempestive de la gravité et génératrices d'irréversibilités thermodynamiques. Par contre et selon l'invention, un écoulement ascendant dans l'élément aval conduit à une stratification naturelle selon la masse volumique et la température du gaz naturel qui ne crée donc aucune perturbation d'écoulement. Etant donné que la température intermédiaire entre les éléments de tube amont et aval est voisine de la température critique, il est donc préférable de prévoir une circulation ascendante du gaz naturel dans l'élément de tube aval afin d'assurer un réchauffage final du gaz naturel sans irréversibilités intempestives, qui devraient être alors compensées par une augmentation notoire de la surface d'échange.On the other hand, as the critical temperature of natural gas is generally close to - 60 ° C, its density in the vicinity of this temperature varies rapidly with temperature, even under a pressure higher than the critical pressure (T kg / m3 / ° C under 75 bars). However, the flow rate of natural gas in the downstream tube element is still necessarily low at this temperature to avoid setting in external ice. Under these conditions, a downward flow of natural gas would lead to flow disturbances due to the untimely influence of gravity and generating thermodynamic irreversibilities. On the other hand and according to the invention, an upward flow in the downstream element leads to a natural stratification according to the density and the temperature of the natural gas which therefore does not create any disturbance of flow. Since the intermediate temperature between the upstream and downstream tube elements is close to the critical temperature, it is therefore preferable to provide for an upward circulation of natural gas in the downstream tube element in order to ensure a final heating of the natural gas. without untimely irreversibilities, which should then be compensated for by a noticeable increase in the exchange surface.

La présente invention a également pour objet une installation de réchauffement d'un fluide cryogénique, tel que le gaz naturel liquéfié, par échange thermique avec un fluide calorigène, tel que de l'eau, dont la température de solidification est supérieure à la température dudit fluide cryogénique, du type comprenant au moins un module d'échange thermique comprenant deux éléments de tube verticaux à ailettes branchés en série et dans lesquels circule le fluide cryogénique, et des moyens pour faire ruisseler le fluide calorigène par gravité sous la forme d'une nappe libre le long de la périphérie desdits éléments de tube, caractérisée en ce que les deux éléments de tube sont reliés par leurs extrémités inférieures, et en ce que lesdits moyens comprennent un distributeur de liquide de ruissellement disposé à l'extrémité haute de chaque élément de tube ainsi qu'un manchon isolant disposé à l'extrémité haute du seul élément de tube amont et interposé entre les deux fluides.The present invention also relates to an installation for heating a cryogenic fluid, such as liquefied natural gas, by heat exchange with a circulating fluid, such as water, the solidification temperature of which is higher than the temperature of said cryogenic fluid, of the type comprising at least one heat exchange module comprising two vertical tube elements with fins connected in series and in which the cryogenic fluid circulates, and means for causing the circulating fluid to flow by gravity in the form of a free ply along the periphery of said tube elements, characterized in that the two tube elements are connected by their lower ends, and in that said means comprise a runoff liquid distributor disposed at the upper end of each element of tube and an insulating sleeve disposed at the upper end of the single element of upstream tube and interposed between the two fluids.

Les caractéristiques et avantages de l'invention ressortiront de la description qui suit en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue partielle en coupe verticale d'une installation de réchauffement de liquide cryogénique selon l'invention ;
  • la figure 2 est un détail, à échelle agrandie, d'une partie de la figure 1 ;
  • la figure 3 est une vue, à échelle agrandie, en coupe selon la ligne III-III de la figure 2 ;
  • les figures 4, 5, 6, 7, 8 et 9 sont des variantes de réalisation d'une installation selon l'invention.
The characteristics and advantages of the invention will emerge from the description which follows with reference to the appended drawings in which:
  • Figure 1 is a partial view in vertical section of a cryogenic liquid heating installation according to the invention;
  • Figure 2 is a detail, on an enlarged scale, of part of Figure 1;
  • Figure 3 is a view, on an enlarged scale, in section along the line III-III of Figure 2;
  • Figures 4, 5, 6, 7, 8 and 9 are alternative embodiments of an installation according to the invention.

En se référant aux figures 1 à 3, on voit qu'une installation comprend une pluralité de tubes de réchauffement 1 formant passages d'échange thermique, réalisés en aluminium, chacun constitué d'un élément de tube « amont 2 2 et d'un élément de tube « aval 3, raccordés par un coude inférieur 4. L'élément de tube « amont 2 2 est branché à une canalisation 5 à une source de fluide cryogénique à réchauffer par l'intermédiaire d'une boîte de raccordement 10, tandis que l'élément de tube « aval 3 est branché directement à une conduite 6 de soutirage de fluide réchauffé : les éléments de tube 2 et 3 sont suspendus de façon à s'étendre de façon substantiellement verticale, et tout autour et le long de ces éléments de tube, qui présentent des ailettes extérieures 7, ruissellent des courants de liquide de réchauffement sous forme de nappes 8 et 9 qui sont préalablement formées par des dispositifs de répartition supérieurs 11.Referring to Figures 1 to 3, we see that an installation comprises a plurality of heating tubes 1 forming heat exchange passages, made of aluminum, each consisting of a tube element "upstream 2 2 and a downstream tube element 3, connected by a lower bend 4. The upstream tube element 2 2 is connected to a pipe 5 to a source of cryogenic fluid to be heated via a connection box 10, while that the downstream tube element 3 is connected directly to a pipe 6 for withdrawing heated fluid: the tube elements 2 and 3 are suspended so as to extend substantially vertically, and all around and along these tube elements, which have external fins 7, flow streams of heating liquid in the form of sheets 8 and 9 which are previously formed by upper distribution devices 11.

La boîte de raccordement 10 comprend ici (voir figure 2) soudés en prolongement de l'élément amont 2, un tube-enveloppe 12 ayant une épaisseur de paroi constante dans une section basse 12' et croissante radialement dans une partie médiane 12", avec un diamètre intérieur constant ; à l'extrémité supérieure, ce tube-enveloppe 12 se prolonge en 13 jusqu'à un embout de raccordement 14 de la canalisation 5 pour le fluide cryogénique. Toutes ces pièces sont réalisées en aluminium pour être convenablement soudées entre-elles et avec l'élément de tube d'échange thermique 1. L'embout 14 présente un alésage interne de faible diamètre 16 dans lequel est soudé un élément de conduit 17 aboutissant- largement à l'intérieur de l'élément de tube amont 2. Entre l'élément de conduit 17 d'une part et d'autre part le tube-enveloppe 13-12 et la partie supérieure de l'élément de tube 2 est placé un produit d'isolation thermique 18. L'ensemble qui vient d'être décrit est logé à l'intérieur d'un puits de répartition 20 présentant une couronne de perforations 21. Ce puits 20 est fixé sur le dispositif de répartition 11 enveloppant à faible distance l'élément de tube 2 avec ses ailettes 7 et les perforations 21 se situent au niveau supérieur de la partie 12" à épaisseur surdimensionnée. En pratique, et comme on le note aux dessins, le liquide calorique de ruissellement, qui est destiné à s'écouler en nappes telles que 8 et 9 le long des éléments de tube « amont 2 2 et « aval 3, provient d'une réserve générale de liquide 25, qui elle-même est alimentée par une source 25'.The connection box 10 here comprises (see FIG. 2) welded as an extension of the upstream element 2, an envelope tube 12 having a constant wall thickness in a lower section 12 ′ and increasing radially in a middle part 12 ″, with constant internal diameter, at the upper end, this casing 12 extends at 13 to a connection end 14 of the pipe 5 for the cryogenic fluid All of these parts are made of aluminum to be suitably welded between them and with the heat exchange tube element 1. The end piece 14 has an internal bore of small diameter 16 in which is welded a conduit element 17 leading- largely inside the upstream tube element 2 Between the conduit element 17 on the one hand and on the other hand the envelope-tube 13-12 and the upper part of the tube element 2 is placed a thermal insulation product 18. The assembly which comes to be described is housed inside a repair well rtition 20 having a ring of perforations 21. This well 20 is fixed to the distribution device 11 enveloping at a short distance the tube element 2 with its fins 7 and the perforations 21 are located at the upper level of the part 12 "thick oversized. In practice, and as noted in the drawings, the runoff caloric liquid, which is intended to flow in layers such as 8 and 9 along the tube elements "upstream 2 2 and" downstream 3, comes from a general liquid reserve 25, which itself is supplied by a source 25 '.

En fonctionnement, le liquide calorigène de ruissellement est transféré dans une partie inférieure du puits de répartition 20 sous forme d'une pluralité de veines ou jets liquides 26 provenant de la réserve 25 et formées à partir des perforations 21. Grâce à la disposition qui vient d'être décrite, le fluide cryogénique qui circule à l'intérieur de la canalisation 5 et du tube 17 pour aboutir à l'élément de tube amont 2 est radialement isolé de l'extérieur par le corps isolant 18. En outre, le flux frigorifique longitudinal important, qui prend essentiellement naissance, côté « amont », au niveau de l'embout 14 et qui se propage vers l'aval le long du tube-enveloppe 13-12 vers l'élément de tube 2, est substantiellement dérivé radialement vers l'extérieur à l'endroit du tube-enveloppe 12 à épaisseur de paroi progressivement croissante vers l'amont. En effet, dans la partie médiane de forte épaisseur 12" du tube-enveloppe 12, le flux frigorifique longitudinal se transfère au maximum vers l'eau qui se présente sous forme de jets 26 en écoulement gravifique libre et rapide. Cet effet maximum de transfert thermique radialement vers l'extérieur résulte d'une part de la disposition, au niveau des jets 26, d'une surépaisseur importante de paroi de la partie 12" du tube-enveloppe 12, qui offre une conductance thermique accrue dans le sens radial, d'autre part d'un écoulement rapide de l'eau en chute libre, ce qui a pour effet de porter à sa valeur maximale le coefficient d'échange thermique. Cette disposition permet donc une dérivation vers les jets liquides 26 d'une part substantielle du flux frigorifique à propagation longitudinale, ce qui allège d'autant le flux frigorifique résiduel poursuivant sa propagation longitudinale dans la partie à paroi plus faible 12' et surtout vers la partie haute 2' de l'élément de tube amont 2 qui baigne dans une réserve individuelle d'eau de répartition 29 de nature substantiellement stagnante, donc à faible coefficient d'échange thermique avec la paroi de l'élément de tube 2. Sans la disposition décrite plus haut, on assisterait à l'arrivée d'un flux frigorifique important à propagation longitudinale de paroi au niveau de la partie 2' de l'élément de tube 2, enveloppé d'une réserve d'eau stagnante 29, ce qui ne manquerait pas de provoquer des solidifications superficielles préjudiciables de l'eau au niveau de la partie 2' puisque ces solidifications, en se propageant radialement, pourraient attein- dre toute la réserve d'eau 29 et rendre ainsi inopérant l'échange thermique du tube 2-3. Au contraire, grâce à la disposition décrite, on peut contrôler de façon très précise le flux thermique qui parvient au niveau de la partie 2' de l'élément du tube amont 2 puisque ce flux thermique est la somme d'un flux thermique résiduel à propagation longitudinale et d'un flux thermique à propagation radiale qui est lui-même faible grâce à l'interposition du produit isolant 18. D'ailleurs, dans certains cas, on peut au contraire accroître légèrement le coefficient d'échange thermique entre la partie 2' de l'élément de tube 2 avec la réserve d'eau 29 en conférant à celle-ci un certain mouvement de convection grâce à la présence de perforations de dégagement 21' pratiquées en position basse dans la cheminée distributrice 20, favorisant ainsi une certaine admission complémentaire d'eau en provenance directe de la réserve principale 25.In operation, the circulating circulating liquid is transferred into a lower part of the distribution well 20 in the form of a plurality of veins or liquid jets 26 coming from the reserve 25 and formed from the perforations 21. Thanks to the arrangement which comes to be described, the cryogenic fluid which circulates inside the pipe 5 and the tube 17 to reach the upstream tube element 2 is radially isolated from the outside by the insulating body 18. Furthermore, the flow significant longitudinal refrigeration, which essentially arises, on the "upstream" side, at the end piece 14 and which propagates downstream along the casing-tube 13-12 towards the tube element 2, is substantially derived radially outwards at the location of the wall thickness of the envelope tube 12 progresses sively increasing upstream. In fact, in the very thick middle part 12 "of the tube-shell 12, the longitudinal refrigerant flow is transferred as much as possible to the water, which is in the form of jets 26 in free and rapid gravitational flow. This maximum transfer effect radially outwardly thermal results on the one hand from the arrangement, at the level of the jets 26, of a significant excess wall thickness of the part 12 "of the tube-envelope 12, which offers increased thermal conductance in the radial direction, on the other hand, a rapid flow of water in free fall, which has the effect of bringing the coefficient of heat exchange to its maximum value. This arrangement therefore allows a diversion towards the liquid jets 26 of a substantial part of the refrigerating flow with longitudinal propagation, which thereby alleviates the residual refrigerating flow thereby continuing its longitudinal propagation in the weaker walled portion 12 ′ and especially towards the upper part 2 ′ of the upstream tube element 2 which is immersed in an individual reserve of distribution water 29 of a substantially stagnant nature, therefore with a low coefficient of heat exchange with the wall of the tube element 2. Without the arrangement described above, we would witness the arrival of a significant refrigeration flow with longitudinal wall propagation at the level of the part 2 ′ of the tube element 2, enveloped in a reserve of standing water 29, which would not fail to cause detrimental surface solidifications of water at the level of the part 2 ′ since these solidifications, by propagating radially, could reach the entire water reserve 29 and render e thus inoperative the heat exchange of the tube 2-3. On the contrary, thanks to the arrangement described, it is possible to very precisely control the heat flux which reaches the level of the part 2 ′ of the element of the upstream tube 2 since this heat flux is the sum of a residual heat flux at longitudinal propagation and of a radially propagating heat flux which is itself weak thanks to the interposition of the insulating product 18. Moreover, in certain cases, it is on the contrary possible to slightly increase the heat exchange coefficient between the part 2 ′ of the tube element 2 with the water reserve 29, giving it a certain convection movement thanks to the presence of relief perforations 21 ′ practiced in the low position in the distribution chimney 20, thus promoting a certain additional water intake coming directly from the main reserve 25.

Ainsi qu'il a été expliqué précédemment, l'eau de ruissellement se forme en une nappe de ruissellement sur la paroi externe ailetée de l'élément de tube amont 2 et se refroidit progressivement jusqu'à l'extrémité inférieure de cet élément de tube « amont 2, où l'eau de ruissellement est ensuite évacuée en 30 avec d'ailleurs celle qui provient du ruissellement à contre-courant sur l'élément de tube « aval 3. On note qu'au niveau de cet élément de tube « aval 3, les risques de congélation du liquide de ruissellement sont nettement amoindris, le fluide en cours de réchauffement circulant dans le tube 1 a vu sa température augmenter jusqu'à être voisine de celle du liquide de ruissellement. en sorte que l'évacuation du fluide réchauffé hors de l'élément de tube « aval » 3 peut s'effectuer, sans mise en oeuvre d'un boîtier de raccordement tel que décrit en référence à la figure 2, par une simple canalisation de soutirage 6, avec toutefois, bien entendu, le dispositif de répartition 11 permettant la formation d'une nappe de ruissellement uniforme 9, tel que représenté à la figure 3.As explained above, the runoff water forms in a runoff layer on the finned external wall of the upstream tube element 2 and gradually cools down to the lower end of this tube element. "Upstream 2, where the runoff water is then evacuated at 30 with besides that which comes from the runoff against the current on the tube element" downstream 3. It is noted that at the level of this tube element " downstream 3, the risks of freezing of the runoff liquid are significantly reduced, the fluid being heated circulating in the tube 1 has seen its temperature increase until it is close to that of the runoff liquid. so that the evacuation of the heated fluid from the “downstream” tube element 3 can be carried out, without using a connection box as described with reference to FIG. 2, by a simple pipe of racking 6, however, of course, the distribution device 11 allowing the formation of a uniform run-off ply 9, as shown in FIG. 3.

Au lieu d'utiliser un tube de réchauffement dont l'extrémité d'admission « amont reçoit le fluide brut à réchauffer et dont l'extrémité aval délivre le fluide à la température désirée de réchauffement (ou plus précisément une pluralité de tels tubes agencés en parallèle et branchés directement sur des collecteurs d'admission 31A et de soutirage 31 B), il est possible d'agencer les éléments de tube « amont et les éléments de tube « aval en un certain nombre de combinaisons.Instead of using a heating tube whose inlet end “upstream receives the raw fluid to be heated and whose downstream end delivers the fluid to the desired heating temperature (or more precisely a plurality of such tubes arranged in parallel and connected directly to intake manifolds 31A and withdrawal 31 B), it is possible to arrange the tube elements "upstream and the tube elements" downstream in a number of combinations.

En se référant à la figure 4, on voit qu'une pluralité d'éléments de tube « amont 42a, 42b, ... 42n sont tous branchés entre un collecteur supérieur de distribution 50 et un collecteur de raccordement inférieur 51 alimentant une autre pluralité 43a, 43b ... 43n d'éléments de tube « aval formant ainsi un premier module multi-tubulaire dont l'extrémité supérieure est raccordée par un collecteur 52 à un second module multi-tubulaire constitué d'une autre pluralité d'éléments de tube « amont » 44a, 44b ... 44q, le module final ayant une pluralité d'éléments de tube « amont » 45a, 45b ... 45r et une pluralité d'éléments de tube « aval » 46a, 46b ... 46s, délivrant le liquide réchauffé dans un collecteur final 52".Referring to Figure 4, we see that a plurality of tube elements "upstream 42a, 42b, ... 42n are all connected between an upper distribution manifold 50 and a lower connection manifold 51 supplying another plurality 43a, 43b ... 43n of downstream tube elements thus forming a first multi-tubular module whose upper end is connected by a manifold 52 to a second multi-tubular module consisting of another plurality of elements "upstream" tube 44a, 44b ... 44q, the final module having a plurality of "upstream" tube elements 45a, 45b ... 45r and a plurality of "downstream" tube elements 46a, 46b ... 46s, delivering the heated liquid to a 52 "final manifold.

Selon la figure 5, des modules monotubulaires tels que décrits en référence à la figure 1, constitué chacun d'un élément de tube amont (54a, 54b, etc...) sont alimentés à leur extrémité supérieure par un collecteur d'alimentation commun 55, et sont raccordés par des raccords individuels 58a, 58b ... à un élément de tube aval (56a, 56b, etc...), eux-mêmes raccordés à leur extrémité supérieure à un collecteur de soutirage commun 57.According to FIG. 5, monotubular modules as described with reference to FIG. 1, each consisting of an upstream tube element (54a, 54b, etc.) are supplied at their upper end by a common supply collector 55, and are connected by individual connectors 58a, 58b ... to a downstream tube element (56a, 56b, etc ...), themselves connected at their upper end to a common withdrawal manifold 57.

Selon la figure 6, plusieurs lignes 61 et 62, telles que celles décrites à la figure 4, c'est-à-dire incorporant chacune plusieurs modules multi-tubulaires en série 63, 64 ... 63', 64' ..., sont branchées en parallèle entre un collecteur principal d'admission 68 et un collecteur principal de soutirage 69.According to Figure 6, several lines 61 and 62, such as those described in Figure 4, that is to say each incorporating several multi-tubular modules in series 63, 64 ... 63 ', 64' ... , are connected in parallel between a main intake manifold 68 and a main withdrawal manifold 69.

Selon la figure 7, plusieurs lignes 70, 71, constituées chacune de plusieurs modules multi-tubulaires 72, 73, ... 72', 73' ... sont non seulement branchées entre un collecteur principal d'alimentation 74 et un collecteur principal de soutirage 75, mais des collecteurs intermédiaires d'égalisation 77 relient les modules homologues de plusieurs lignes en parallèle.According to FIG. 7, several lines 70, 71, each consisting of several multi-tubular modules 72, 73, ... 72 ', 73' ... are not only connected between a main supply collector 74 and a main collector racking 75, but intermediate equalization collectors 77 connect the homologous modules of several lines in parallel.

Selon la figure 8, un faisceau d'éléments de tube est formé d'un premier jeu de lignes 81a, 81 b, 81 c (par exemple au nombre de trois) constitués d'un module multi-tubulaire (ou plusieurs modules multi-tubulaires en série) entre un collecteur d'alimentation 83 et un collecteur intermédiaire 84 qui alimente un second jeu de lignes 82a et 82b (par exemple deux) entre ce collecteur intermédiaire 84 et le collecteur final de soutirage 85.According to FIG. 8, a bundle of tube elements is formed of a first set of lines 81a, 81b, 81c (for example three in number). killed by a multi-tubular module (or several multi-tubular modules in series) between a supply collector 83 and an intermediate collector 84 which supplies a second set of lines 82a and 82b (for example two) between this intermediate collector 84 and the final withdrawal manifold 85.

Selon la figure 9, un premier jeu d'une pluralité de lignes 91 a, 91 b, 91 c (par exemple trois) alimentées par un collecteur d'alimentation 93 et soutirées par un collecteur de soutirage 95a est raccordé par l'intermédiaire d'une conduite 96 à vanne de détente 97 à un second jeu d'une autre pluralité de lignes 92a, 92b branchées entre un collecteur d'alimentation 95b et un collecteur de soutirage 94. Cet arrangement peut être utilisé par exemple si le réseau est à 40 bars et le gaz disponible sous pression plus élevée, par exemple 80 bars, et l'on note que cette détente différée qui provoque un dégagement frigorifique n'est pas préjudiciable aux conduites, puisque le gaz naturel est alors à l'état déjà partiellement réchauffé. Le cas échéant, on peut placer à la sortie de la vanne de détente 97, un séparateur permettant de soutirer et d'éliminer les condensats les plus lourds, tels l'éthane, le propane ou le butane, tandis que la fraction gazeuse est seule réchauffée.According to FIG. 9, a first set of a plurality of lines 91 a, 91 b, 91 c (for example three) supplied by a supply collector 93 and withdrawn by a withdrawal collector 95a is connected via a pipe 96 with expansion valve 97 to a second set of another plurality of lines 92a, 92b connected between a supply manifold 95b and a withdrawal manifold 94. This arrangement can be used for example if the network is 40 bars and the gas available under higher pressure, for example 80 bars, and it is noted that this delayed expansion which causes a refrigeration release is not detrimental to the pipes, since the natural gas is then in a state already partially warmed up. If necessary, a separator can be placed at the outlet of the expansion valve 97 for withdrawing and removing the heaviest condensates, such as ethane, propane or butane, while the gaseous fraction is only warmed up.

Claims (14)

1. Process for reheating a cryogenic fluid, such as liquefied natural gas, by heat exchange with a calorific fluid, such as water, the temperature of solidification of which is higher than the temperature of said cryogenic fluid, according to which said cryogenic fluid is conducted in at least one module comprising two vertical tube elements (2, 3) having wings (7) serially connected, and one causes that the calorific fluid trickles under gravity in the form of a free nappe (8, 9) along the periphery of said tube elements (2, 3), characterized in that the cryogenic fluid is caused to circulate first cocurrently (at 2) with said calorific fluid, then (at 3) countercurrently with said calorific fluid, the upstream tube element (2) being fed with cryogenic fluid at its upper end, and the heat exchange between the cryogenic fluid and the calorific fluid is braked at said end by means of an insulating sleeve (18).
2. Process for reheating according to claim 1, characterized in that the calorific liquid is passed over an upper part (2') of each upstream tube element (2) provided with said insulating sleeve (18) in the form of a crown of jets (26), and a reserve (29) of this liquid is formed around the said upper part (2') before distributing as nappe around said upstream tube element.
3. Process for reheating according to claim 2, characterized in that in the region of the jets (26) the radial derivation to the exterior of the longitudinal frigorific flux is augmented, preferably as much as the said reserve (29) is exceeded.
4. Installation for reheating a cryogenic fluid, such as a liquified natural gas, by heat exchange with a calorific fluid, such as water, the temperature of solidification of which is higher than the temperature of said cryogenic fluid, of the type comprising at least one module of heat exchange comprising two vertical tube elements (2, 3) with wings (7) serially connected and in which the cryogenic fluid is circulated, and means (11) for trickling the calorific fluid under gravity in the form of a free nappe (8, 9) along the periphery of said tube elements (2, 3), characterized in that the two tube elements (2, 3) are connected by their lower ends (at 4) and that the said means comprise a distributor for trickling liquid (11) arranged at the upper end of each tube element (2, 3) as well as an insulating sleeve (18) arranged at the upper end (2') of the same upstream tube element (2) and interposed between the two fluids.
5. Installation for reheating according to claim 4, characterized in that the said means comprise a shaft (20) which surrounds the upstream tube element (2) above said distributor (11), delimitat- ing with it a reserve (29) of calorific liquid, and a crown of holes (21) for the formation of jets (26) pierced in said shaft.
6. Installation for reheating according to claim 5, characterized in that the upper end (12") of the upstream tube element (2) has a thickening in the region comprised between the crown of holes (21) and the reserve (29), preferably a thickening growing upwardly.
7. Installation for reheating according to one of the claims 4 to 6, characterized in that it comprises a plurality of modules mounted parallely between an upstream feed collector (50 ; 55 ; 68 ; 74; 83) and a downstream withdrawal collector (52 ; 57 ; 69 ; 75 ; 84).
8. Installation for reheating according to claim 7, characterized in that the modules define a first plurality of upstream tube elements (42a, 42b, ... 42n) connected by their lower ends by a common « low collector (51) to lower ends of a second plurality of « downstream tube elements (43a, 43b, ... 43n).
9. Installation according to claim 8, characterized in that the upstream tube element (54a, 54b) of each module is connected individually to the downstream tube element (56a, 56b) of the same module.
10. Installation according to one of the claims 7 to 9, characterized in that it comprises a plurality of modules connected serially by high collectors (52, 52") to form a line.
11. Installation according to claim 10, characterized in that several lines (61, 62 ; 70, 71) are arranged and branched at one end of said lines at a main admission collector (68) and at the other end of said lines at a main withdrawal collector (69).
12. Installation according to claim 11, characterized in that certain homologous modules (72, 72', 73, 73') of several parallel lines (70, 71) are connected by intermediate collectors (77).
13. Installations according to claim 11, characterized in that several lines are arranged, certain (81a, 81b, 81c ; 91 a, 91 b, 91c) parallely, certain serially (81a, 82a ; 91a, 92a) with intermediate collectors (84).
14. Installation according to claim 13, characterized in that the intermediate collectors incorporate means of expansion (97), optionally followed by a condensate separator.
EP81400294A 1980-02-29 1981-02-26 Process and installation for reheating a cold fluid Expired EP0035444B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8004509A FR2477276A1 (en) 1980-02-29 1980-02-29 METHOD AND INSTALLATION FOR HEATING A COLD FLUID
FR8004509 1980-02-29

Publications (2)

Publication Number Publication Date
EP0035444A1 EP0035444A1 (en) 1981-09-09
EP0035444B1 true EP0035444B1 (en) 1985-06-26

Family

ID=9239137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400294A Expired EP0035444B1 (en) 1980-02-29 1981-02-26 Process and installation for reheating a cold fluid

Country Status (9)

Country Link
US (1) US4343156A (en)
EP (1) EP0035444B1 (en)
JP (1) JPS56137084A (en)
AU (1) AU533661B2 (en)
CA (1) CA1154432A (en)
DE (1) DE3171087D1 (en)
ES (1) ES499734A0 (en)
FR (1) FR2477276A1 (en)
PT (1) PT72581B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495795B (en) * 2006-07-25 2012-06-13 国际壳牌研究有限公司 Method and apparatus for vaporizing a liquid stream

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676871B2 (en) * 1988-03-25 1994-09-28 サンエンジニアリング株式会社 Heat exchanger
US5163303A (en) * 1990-03-30 1992-11-17 Tokyo Gas Co. Ltd. Double-walled tube type open rack evaporating device
US5251452A (en) * 1992-03-16 1993-10-12 Cryoquip, Inc. Ambient air vaporizer and heater for cryogenic fluids
US5390500A (en) * 1992-12-29 1995-02-21 Praxair Technology, Inc. Cryogenic fluid vaporizer system and process
US5473905A (en) * 1994-07-29 1995-12-12 Cryoquip, Inc. Surge dampening device for cryogenic vaporizers and heater elements
US5937656A (en) * 1997-05-07 1999-08-17 Praxair Technology, Inc. Nonfreezing heat exchanger
EP1202012B1 (en) 2000-10-30 2005-12-07 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Process and installation for cryogenic air separation integrated with an associated process
US6799429B2 (en) * 2001-11-29 2004-10-05 Chart Inc. High flow pressurized cryogenic fluid dispensing system
CN104508416B (en) 2012-06-12 2016-12-14 国际壳牌研究有限公司 Equipment and method for heats liquefied stream
CN105605950B (en) * 2015-12-24 2017-06-23 浙江东氟塑料科技有限公司 Flue gas water- to-water heat exchanger and its cleaning method
EP3710743B1 (en) * 2017-11-15 2023-06-07 Taylor-Wharton Malaysia Sdn. Bhd Cryogenic fluid vaporizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB911847A (en) * 1960-04-06 1962-11-28 North Thames Gas Board Improvements relating to the vaporisation of liquefied methane
FR1393641A (en) * 1963-03-14 1965-03-26 Brown Fintube Co Method and apparatus for converting liquids to gas
FR2096919A1 (en) * 1970-07-16 1972-03-03 Air Liquide
DE2052154A1 (en) * 1970-10-23 1972-04-27 Linde Ag, 6200 Wiesbaden Low temp gas evaporator - with low conductivity tube facing to prevent frosting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2348601A (en) * 1941-12-17 1944-05-09 Kellogg M W Co Heat exchanger
JPS5427788B2 (en) * 1971-08-28 1979-09-12
FR2353035A1 (en) * 1976-05-26 1977-12-23 Commissariat Energie Atomique DROP-DOWN TYPE SOFT TUBE HEAT EXCHANGER
JPS52144006A (en) * 1976-05-27 1977-12-01 Osaka Gas Co Ltd Vaporizer for liquefied natural gas
JPS5924317B2 (en) * 1977-06-20 1984-06-08 大阪瓦斯株式会社 liquefied natural gas vaporizer
JPS54101539A (en) 1978-01-27 1979-08-10 Kobe Steel Ltd Heat exchange pipe for use with water-sprinkling type, panel-shaped, liquefied natural gas evaporator and combination of such pipes and their manufacturing method
US4226605A (en) * 1978-10-23 1980-10-07 Airco, Inc. Flameless vaporizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB911847A (en) * 1960-04-06 1962-11-28 North Thames Gas Board Improvements relating to the vaporisation of liquefied methane
FR1393641A (en) * 1963-03-14 1965-03-26 Brown Fintube Co Method and apparatus for converting liquids to gas
FR2096919A1 (en) * 1970-07-16 1972-03-03 Air Liquide
DE2052154A1 (en) * 1970-10-23 1972-04-27 Linde Ag, 6200 Wiesbaden Low temp gas evaporator - with low conductivity tube facing to prevent frosting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495795B (en) * 2006-07-25 2012-06-13 国际壳牌研究有限公司 Method and apparatus for vaporizing a liquid stream

Also Published As

Publication number Publication date
EP0035444A1 (en) 1981-09-09
AU533661B2 (en) 1983-12-01
JPS56137084A (en) 1981-10-26
DE3171087D1 (en) 1985-08-01
PT72581A (en) 1981-03-01
ES8201302A1 (en) 1981-12-01
AU6763281A (en) 1981-09-03
ES499734A0 (en) 1981-12-01
CA1154432A (en) 1983-09-27
US4343156A (en) 1982-08-10
JPH042876B2 (en) 1992-01-21
PT72581B (en) 1982-03-11
FR2477276B1 (en) 1982-07-30
FR2477276A1 (en) 1981-09-04

Similar Documents

Publication Publication Date Title
EP0035444B1 (en) Process and installation for reheating a cold fluid
EP0251944B1 (en) Thermally controlled vinification process and apparatus for performing this process
EP1853846B1 (en) Plant for regasification of liquefied natural gas
EP0178985B1 (en) Fluid-heating apparatus
FR2702831A1 (en) Process and device for cooling the enclosure of a heat exchanger
FR2951242A1 (en) Supplying sub-cooled cryogenic liquid from a reservoir to a consumer equipment, comprises placing a liquid nitrogen bath in a heat exchanger immersed in a bath of (non)cryogenic liquid, and controlling the bath at a predetermined level
FR2509140A1 (en) METHOD AND INSTALLATION FOR COOKING, DEFELERATION OR COOLING OF FOOD PRODUCTS, ESPECIALLY HAM
WO1999018387A1 (en) Method and installation for filling a tank under pressure
CH502548A (en) Liquefied gas loading
FR2937115A1 (en) METHOD FOR REGAZEIFYING NATURAL GAS WITH AMBIENT AIR PRECAUTIVELY DEHUMIDIFIED
EP0706188B1 (en) Thermal valve operated heat flux control system
EP0165161B1 (en) Method and plant for freezing soils by means of a cryogenic liquid
EP1610082A1 (en) Device for temperature control of a fluid to be treated
EP3105520B1 (en) Column for separating air by cryogenic distillation, air separation device comprising such a column and method for producing such a column
CA2012714A1 (en) Method and apparatus for heating a gaseous fluid by successive heat exchanges
EP3835641A1 (en) Underwater installation for heating a two-phase liquid/gas effluent circulating inside an underwater enclosure
FR2624949A1 (en) LIQUEFIED GAS TRANSFER LINE COMPRISING AT LEAST ONE VAPOR DERIVATION FROM THIS GAS
EP0086695B1 (en) Steam generator with u-tube bundle and superheater
WO2002046669A1 (en) Evaporator-condenser and air distillation plant comprising same
EP2045543A1 (en) Boiler with smoke pipes
EP0044792A2 (en) Cooling plates for a blast-furnace cooling arrangement
FR2801098A1 (en) Heat exchanger for pressed grapes has pipe section containing inner duct for heat exchange fluid, outer shell and insulating sleeve
BE389172A (en)
EP1774215A1 (en) Active thermal insulating device for gas piping
FR2927160A1 (en) Heating and/or cooling method for room in hotel, involves connecting heating device and heat exchanger by delivery and return ducts to form closed loop heat-transfer fluid circuit, where delivery duct has fluid circulation device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810709

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3171087

Country of ref document: DE

Date of ref document: 19850801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81400294.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970113

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970122

Year of fee payment: 17

Ref country code: DE

Payment date: 19970122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970127

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980226

EUG Se: european patent has lapsed

Ref document number: 81400294.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST