EP0034855A1 - Process for electrolysing an aqueous alkali-metal halogenide solution in a mercury-cathode cell - Google Patents

Process for electrolysing an aqueous alkali-metal halogenide solution in a mercury-cathode cell Download PDF

Info

Publication number
EP0034855A1
EP0034855A1 EP81200164A EP81200164A EP0034855A1 EP 0034855 A1 EP0034855 A1 EP 0034855A1 EP 81200164 A EP81200164 A EP 81200164A EP 81200164 A EP81200164 A EP 81200164A EP 0034855 A1 EP0034855 A1 EP 0034855A1
Authority
EP
European Patent Office
Prior art keywords
mercury
sole
vibrated
cell
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81200164A
Other languages
German (de)
French (fr)
Other versions
EP0034855B1 (en
Inventor
Pierre Lapointe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Priority to AT81200164T priority Critical patent/ATE9007T1/en
Publication of EP0034855A1 publication Critical patent/EP0034855A1/en
Application granted granted Critical
Publication of EP0034855B1 publication Critical patent/EP0034855B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/36Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in mercury cathode cells

Definitions

  • the subject of the present invention is a process for the electrolysis of an aqueous alkali metal halide solution, in particular a sodium chloride brine, in an electrolysis cell the cathode of which is formed of a sheet of mercury in flow on an inclined floor.
  • an aqueous alkali metal halide solution in particular a sodium chloride brine
  • the invention therefore relates to a process for the electrolysis of an aqueous alkali metal halide solution in an electrolysis cell, the cathode of which is a sheet of mercury flowing on an inclined bottom of the cell, in which vibrate the sole; according to the invention, separate areas of the sole are vibrated separately.
  • the vibrations used must be both sufficient to detach the clusters of large mercury which adhere to the bottom of the cell in the area considered, but insufficient to cause projections of droplets of mercury in the cell or untimely contact of the mercury sheet with the anodes of the cell.
  • the choice of the frequency and amplitude of the vibrations therefore depends on a large number of factors, among which are in particular the nature of the sole material and its roughness, the viscosity of the mercury sheet, as well as its thickness. and its flow speed on the floor, the direction of the vibrations. It must be established in each particular case by routine work.
  • the vibrations can be parallel to the sole or have a component perpendicular thereto.
  • this vibratory component can be parallel, perpendicular or oblique with respect to the direction of flow of the sheet of mercury.
  • vibrations having a vertical component or perpendicular to the sole are preferred, according to the invention, to use vibrations having a vertical component or perpendicular to the sole.
  • the method used to vibrate the sole of the cell is not critical.
  • the vibrators can be embedded in the mercury sheet and applied against the upper face of the hearth. For reasons of convenience, however, it is preferable to place the vibrators against the underside of the hearth.
  • vibration zone is intended to denote a zone of the surface of the sole, which is subjected, independently of the remaining surface of the sole, to vibrations of sufficient intensity and frequency to detach large clusters mercury which could adhere to any part of said zone and allow their entrainment by the sheet of mercury, outside of said zone.
  • the number of vibration zones should preferably be sufficient so that together, these cover the entire floor of the cell. As a variant, several zones may possibly overlap.
  • the optimum choice of the number and dimensions of the vibration zones depends on various factors, among which are the length of the cell, the thickness of the mercury sheet as well as its viscosity and its speed of flow on the floor, the nature of the sole material as well as its roughness and elasticity, the slope of the sole, the importance of the formation of large mercury clusters and the choice of the frequency and intensity of the vibrations. It can be established easily in each particular case by routine work.
  • a first embodiment of the invention it is possible to vibrate simultaneously several distinct zones of the hearth of the cell using vibration characteristics which vary from one zone to another, for example frequencies or amplitudes of different vibrations.
  • the optimum time interval which must be observed between the vibration of one zone and the vibration of the next zone is that set by the clusters of large mercury. to move from the zone that has just been vibrated to the next zone.
  • a first embodiment of this preferred embodiment of the invention consists, for example, in vibrating the areas of the hearth, successively from the upstream end to the downstream end of the sheet of mercury .
  • the sole zones are vibrated successively from the downstream end to the upstream end of the ply of mercury, then they are vibrated successively from the upstream end to the downstream end.
  • this preferred embodiment of the process according to the invention makes it possible to optimize the evacuation of large mercury out of the cell, by reducing to a minimum value the risk of a disturbance of the elective process. ⁇ .rr- lyse.
  • the electrolysis cell shown in Figure 1 includes a trough 1 closed by a cover 2.
  • the trough 1 is delimited by longitudinal legs 3, transverse end walls 4 and a steel base 5 having a moderate slope , for example of the order of 6 mm per running meter.
  • the gauge 1 rests, via the sole 5, on elastic supports 18 fixed to a base 19 generally made of concrete.
  • Anodes 8 are suspended in the cell, vis-à-vis the floor 5, by rods 9 sealingly passing through the cover 2 and also playing the role of electrical conductors to the anodes.
  • the cell is connected, near the upstream end of its bottom 5, to a mercury inlet duct 10 intended to form the cathode 11 flowing on the bottom 5. Near its downstream end, the cell is er communication with a discharge pipe 12 of the amalgam of alkali metal formed by electrolysis of an aqueous solution of chloride of this alkali metal between the anodes 8 and the cathode 11.
  • This solution for example a chloride brine of sodium or potassium, is introduced into the cell via an intake conduit 13, while the solution, exhausted after electrolysis, is drawn out of the cell by an evacuation conduit 14.
  • the cell is also provided with a conduit 15 for the evacuation of the chlorine released at the anodes.
  • a series of vibrators 20, 21, 22, 23, .... 24, 25, 26 are aligned between the upstream end and the downstream end of the floor 5 and applied against the underside of the latter. Their respective positions and their orientation are chosen according to their power, so that when they are actuated simultaneously, they are capable of subjecting the entire sole 5 to vertical vibrations of sufficient intensity to detach clusters of large mercury. normally adhering to the sole, but insufficient to cause mercury droplets to splash into the cell or untimely contact of mercury with the anodes.
  • each vibrator 20, 21, 22, 23, ..., 24, 25, 26 thus controls a limited area of the floor 5 of the cell; these zones, which are contiguous, are shown respectively in 27, 28, 29, 30, ..., 31, 32, 33 in FIG. 2.
  • each of these zones, for example zone 29 is the part from the surface of the hearth 5 from which clusters of large mercury can normally be detached and evacuated by entrainment in the sheet of mercury 11, by actuation only of the vibrator placed directly above said zone, in this case the vibrator 22 in the case of zone 29.
  • the vibrators 20, 21, 22, 23, ..., 24, 25, 26 may advantageously be mechanical vibrators, capable of subjecting the bottom 5 of the cell to vertical forces from the bottom up, for example percussion , of the order of 40,000 to 60,000 N, at a frequency of the order of 140 to 250 Ez.
  • vibrators with a higher frequency, for example of the order of 300 Hz, developing lower forces, for example of the order of 25,000 N.
  • Vibrators with mechanical operation usable in the scope of the invention are those of the eccentric or unbalance type, generally fitted to vibrating screens (Engineering Techniques, General, A 904-5, July 1964, paragraphs 4, 72).
  • Another category of vibrators with mechanical operation which are well suited in the context of the invention is formed of those which are usually fitted to impact screens, and in which percussion masses are projected from bottom to top against the floor 5 of the cell , by cam or ratchet mechanisms (dito, para. 4, 6).
  • the vibrators such as 20, 21, 22, ..., 26 can all be identical or, alternatively, they can be of different power. In the latter case, the vibration zones of the sole, as defined above, have different lengths.
  • the vibrators are periodically actuated according to a well-defined operating cycle.
  • the downstream vibrator 26 is first actuated, for example for a period of 15 to 30 seconds, the other vibrators being stopped, so that only the downstream area 33 of the hearth is the seat of vibrations of sufficient intensity to detach the clusters of large mercury which could adhere to it and allow their entrainment by the sheet of mercury.
  • the vibrator 25 which immediately precedes it is activated, also for 15 to 30 seconds, so that this time it is the area 32 of the floor 5 of the cell which is the seat of vibrations d sufficient to detach possible clusters of large mercury.
  • the time to be respected between the stop of the upstream vibrator 20, at the end of a cycle, and the start of the downstream vibrator 26 at the start of the next cycle depends in particular on the length of the cell, on the number of vibrators , the overall duration of a vibration cycle and the rate of formation of large mercury clusters on the sole. Depending on the case, it can vary from a few minutes to several hours. As a variant, in critical cases of cells which are the site of a large formation of large mercury clusters, it may sometimes be necessary to start a new cycle of vibrations downstream upstream, before the previous cycle be finished.
  • a vibration cycle from upstream to l is started. 'downstream; for this purpose, after actuating the vibrators 26, 25, 24 separately and successively, ..., 23, 22, 21 then 20, the vibrators 20, 21, 22, 23, ..., 24, 25 then 26 are activated separately and in the following order.
  • This variant of the invention ensures optimum cleaning of the bottom 5 of the cell and a regular and optimum evacuation of large mercury clusters from the cell, while reducing to a minimum the disturbances in the flow of the water table. mercury and, consequently, in the course of electrolysis. All other things being equal, it also allows minimum anode-cathode distances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

1. Process for the electrolysis of an aqueous alkali metal halide solution in an electrolysis cell of which the cathode is a sheet of mercury (11) flowing on an inclined baseplate (5) of the cell, in which the baseplate is caused to vibrate, characterized in that distinct zones (27, 28, 29, 30, ... 31, 32, 33) of the baseplate (5) are caused to vibrate separately and successively from the downstream end to the upstream end of the sheet of mercury (11), and the vibrations applied to each of the said distinct zones are controlled.

Description

La présente invention a pour objet un procédé d'électrolyse d'une solution aqueuse d'halogénure de métal alcalin, en particulier une saumure de chlorure de sodium, dans une cellule d'électrolyse dont la cathode est formée d'une nappe de mercure en écoulement sur une sole inclinée.The subject of the present invention is a process for the electrolysis of an aqueous alkali metal halide solution, in particular a sodium chloride brine, in an electrolysis cell the cathode of which is formed of a sheet of mercury in flow on an inclined floor.

Une difficulté importante rencontrée dans l'exploitation des cellules d'électrolyse à cathode de mercure, réside dans la formation intempestive d'amas visqueux adhérant à la sole des cellules et dénommés habituellement "gros mercure" ou "beurre de mercure".A major difficulty encountered in the operation of mercury cathode electrolysis cells lies in the untimely formation of viscous clusters adhering to the bottom of the cells and usually called "coarse mercury" or "mercury butter".

La formation de ces amas de gros mercure adhérant à la sole des cellules d'électrolyse est mal connue, et elle est particulièrement défavorable au bon fonctionnement de celles-ci. Ces amas de gros mercure perturbent en effet l'écoulement régulier de la cathode de mercure sur la sole avec, comme conséquence néfaste, la possibilité de courts-circuits fortuits entre le mercure et les anodes et d'un dégagement d'hydrogène dans la cellule.The formation of these clusters of large mercury adhering to the bottom of the electrolysis cells is poorly understood, and it is particularly unfavorable for the proper functioning of the latter. These clusters of large mercury disturb the regular flow of the mercury cathode on the hearth with, as a harmful consequence, the possibility of accidental short-circuits between the mercury and the anodes and of a release of hydrogen in the cell. .

Pour remédier à ces inconvénients, on propose, dans le brevet belge 800 615 du 7 juin 1973 au nom de la Demanderesse, de faire vibrer périodiquement la sole de la cellule, de manière à détacher les amas de gros mercure adhérant à la sole et de faciliter leur évacuation hors de la cellule par entraînement avec le courant de mercure ou d'amalgame.To remedy these drawbacks, Belgian patent 800,615 of June 7, 1973, in the name of the Applicant, proposes to periodically vibrate the sole of the cell, so as to detach the clusters of large mercury adhering to the bottom and facilitate their evacuation from the cell by entrainment with the current of mercury or amalgam.

On a maintenant trouvé qu'on pouvait améliorer grandement l'efficacité de ce procédé connu, si on fait vibrer la sole de la cellule selon une méthode particulière.We have now found that we could greatly improve the efficiency of this known process, if we vibrate the sole of the cell using a particular method.

L'invention concerne dès lors un procédé d'électrolyse d'une solution aqueuse d'halogénure de métal alcalin dans une cellule d'électrolyse dont la cathode est une nappe de mercure en écoulement sur une sole inclinée de la cellule, dans lequel on fait vibrer la sole; selon l'invention, on fait vibrer séparément des zones distinctes de la sole.The invention therefore relates to a process for the electrolysis of an aqueous alkali metal halide solution in an electrolysis cell, the cathode of which is a sheet of mercury flowing on an inclined bottom of the cell, in which vibrate the sole; according to the invention, separate areas of the sole are vibrated separately.

Dans l'exécution du procédé selon l'invention, les vibrations mises en oeuvre doivent être à la fois suffisantes pour détacher les amas de gros mercure qui adhèrent à la sole de la cellule dans la zone considérée, mais insuffisantes pour provoquer des projections de gouttelettes de mercure dans la cellule ou des contacts intempestifs de la nappe de mercure avec les anodes de la cellule.In carrying out the method according to the invention, the vibrations used must be both sufficient to detach the clusters of large mercury which adhere to the bottom of the cell in the area considered, but insufficient to cause projections of droplets of mercury in the cell or untimely contact of the mercury sheet with the anodes of the cell.

Le choix de la fréquence et de l'amplitude des vibrations dépend dès lors d'un grand nombre de facteurs, parmi lesquels figurent notamment la nature du matériau de la sole et sa rugosité, la viscosité de la nappe de mercure, ainsi que son épaisseur et sa vitesse d'écoulement sur la sole, la direction des vibrations. Il doit être établi dans chaque cas particulier par un travail de routine.The choice of the frequency and amplitude of the vibrations therefore depends on a large number of factors, among which are in particular the nature of the sole material and its roughness, the viscosity of the mercury sheet, as well as its thickness. and its flow speed on the floor, the direction of the vibrations. It must be established in each particular case by routine work.

Les vibrations peuvent être parallèles à la sole ou présenter une composante perpendiculaire à celle-ci. Dans le cas de vibrations présentant une composante parallèle à la sole, cette composante vibratoire peut être parallèle, perpendiculaire ou oblique par rapport à la direction d'écoulement de la nappe de mercure.The vibrations can be parallel to the sole or have a component perpendicular thereto. In the case of vibrations having a component parallel to the hearth, this vibratory component can be parallel, perpendicular or oblique with respect to the direction of flow of the sheet of mercury.

On préfère toutefois, selon l'invention, utiliser des vibrations ayant une composante verticale ou'perpendiculaire à la sole.However, it is preferred, according to the invention, to use vibrations having a vertical component or perpendicular to the sole.

D'une manière générale, la méthode mise en oeuvre pour faire vibrer la sole de la cellule n'est pas critique. On peut par exemple faire usage indifféremment de vibrateurs à fonctionnement mécanique ou électromagnétique, tels que ceux communément utilisés dans les techniques de criblage des minerais et charbons.In general, the method used to vibrate the sole of the cell is not critical. One can for example make use indifferently of vibrators with mechanical or electromagnetic functioning, such as those commonly used in the screening techniques of ores and coals.

Les vibrateurs peuvent être noyés dans la nappe de mercure et appliqués contre la face supérieure de la sole. Pour des raisons de commodité, on préfère toutefois disposer les vibrateurs contre la face inférieure de la sole.The vibrators can be embedded in the mercury sheet and applied against the upper face of the hearth. For reasons of convenience, however, it is preferable to place the vibrators against the underside of the hearth.

D'une manière générale, dans le cas de cellules d'électrolyse industrielles, on obtient habituellement de bons résultats avec des vibrations verticales développant des efforts sur la sole, dF. l'ordre de 10 000 à 150 000 N, de préférence de 20 000 à 75 000 N, à une fréquence comprise entre 50 et 1000 Hz, de préférence entre 150 et 300 Hz.Generally, in the case of industrial electrolysis cells, good results are usually obtained with vertical vibrations developing forces on the sole, dF. on the order of 10,000 to 150,000 N, preferably from 20,000 to 75,000 N, at a frequency between 50 and 1000 Hz, preferably between 150 and 300 Hz.

On entend désigner par "zone de vibrations", une zone de la surface de la sole, que l'on soumet, indépendamment de la surface restante de la sole, à des vibrations d'intensité et de fréquence suffisantes pour détacher les amas de gros mercure qui pourraient adhérer en un endroit quelconque de ladite zone et permettre leur entraînement par la nappe de mercure, hors de ladite zone.The term “vibration zone” is intended to denote a zone of the surface of the sole, which is subjected, independently of the remaining surface of the sole, to vibrations of sufficient intensity and frequency to detach large clusters mercury which could adhere to any part of said zone and allow their entrainment by the sheet of mercury, outside of said zone.

Dans le procédé selon l'invention, le nombre de zones de vibrations doit de préférence être suffisant pour qu'ensemble, celles-ci recouvrent la totalité de la sole de la cellule. En variante, plusieurs zones peuvent éventuellement se chevaucher.In the method according to the invention, the number of vibration zones should preferably be sufficient so that together, these cover the entire floor of the cell. As a variant, several zones may possibly overlap.

Le choix optimum du nombre et des dimensions des zones de vibrations dépend de divers facteurs, parmi lesquels figurent notamment la longueur de la cellule, l'épaisseur de la nappe de mercure ainsi que sa viscosité et sa vitesse d'écoulement sur la sole, la nature du matériau de la sole ainsi que sa rugosité et son élasticité, la pente de la sole, l'importance de la formation d'amas de gros mercure et le choix de la fréquence et de l'intensité des vibrations. Il peut être établi facilement dans chaque cas particulier par un travail de routine.The optimum choice of the number and dimensions of the vibration zones depends on various factors, among which are the length of the cell, the thickness of the mercury sheet as well as its viscosity and its speed of flow on the floor, the nature of the sole material as well as its roughness and elasticity, the slope of the sole, the importance of the formation of large mercury clusters and the choice of the frequency and intensity of the vibrations. It can be established easily in each particular case by routine work.

D'une manière générale, dans le cas où les zones de vibrations sont disposées l'une derrière l'autre entre les extrémités d'amont et d'aval de la nappe de mercure, on obtient habituellement de bons résultats lorsque la longueur de chaque zone est comprise approximativement entre 0,5 et 10 m, de préférence entre 2 et 7 m.In general, in the case where the vibration zones are arranged one behind the other between the upstream and downstream ends of the sheet of mercury, results are usually obtained when the length of each area is approximately between 0.5 and 10 m, preferably between 2 and 7 m.

Selon une première forme de réalisation de l'invention, on peut faire vibrer simultanément plusieurs zones distinctes de la sole de la cellule en utilisant des caractéristiques de vibrations qui varient d'une zone à l'autre, par exemple des fréquences ou des amplitudes de vibrations différentes.According to a first embodiment of the invention, it is possible to vibrate simultaneously several distinct zones of the hearth of the cell using vibration characteristics which vary from one zone to another, for example frequencies or amplitudes of different vibrations.

On préfère toutefois, selon une autre forme de réalisation de l'invention, faire vibrer successivement plusieurs zones distinctes de la sole, qui sont disposées l'une derrière l'autre, entre l'extrémité d'amont et l'extrémité d'aval de la nappe de mercure. Cette forme de réalisation de l'invention présente généralement l'avantage de permettre une évacuation régulière du gros mercure vers l'extrémité d'aval de la cellule, sans perturber l'écoulement normal de la nappe de mercure ni le fonctionnement normal de la cellule.However, it is preferred, according to another embodiment of the invention, to vibrate successively several distinct zones of the sole, which are arranged one behind the other, between the upstream end and the downstream end of the sheet of mercury. This embodiment of the invention generally has the advantage of allowing regular evacuation of the large mercury towards the downstream end of the cell, without disturbing the normal flow of the sheet of mercury or the normal functioning of the cell. .

Dans l'exécution de cette forme de réalisation préférée de l'invention, l'intervalle de temps optimum qu'il convient de respecter entre la vibration d'une zone et la vibration de la zone suivante est celui mis par les amas de gros mercure pour passer de la zone qui vient d'être vibrée à la zone suivante. D'une manière générale, on choisit avantageusement un intervalle de temps approximativement égal au temps mis par la nappe de mercure pour parcourir la longueur de la zone que l'on vient de faire vibrer.In the execution of this preferred embodiment of the invention, the optimum time interval which must be observed between the vibration of one zone and the vibration of the next zone is that set by the clusters of large mercury. to move from the zone that has just been vibrated to the next zone. In general, it is advantageous to choose a time interval approximately equal to the time taken by the sheet of mercury to travel the length of the zone which has just been vibrated.

Un premier mode d'exécution de cette forme de réalisation préférée de l'invention consiste par exemple à faire vibrer les zones de la sole, successivement depuis l'extrémité d'amont jusqu'à l'extrémité d'aval de la nappe de mercure.A first embodiment of this preferred embodiment of the invention consists, for example, in vibrating the areas of the hearth, successively from the upstream end to the downstream end of the sheet of mercury .

En pratique, on a toutefois observé qu'il était préférable ce faire vibrer les zones de la sole, successivement depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la nappe de mercure.In practice, however, it has been observed that it is preferable to vibrate the areas of the sole, successively since the downstream end to the upstream end of the mercury table.

Dans un mode d'exécution du procédé selon l'invention, qui s'est révélé spécialement avantageux, on fait vibrer les zones de la sole successivement depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la nappe de mercure, puis on les fait vibrer successivement depuis l'extrémité d'amont jusqu'à l'extrémité d'aval.In an embodiment of the method according to the invention, which has proved to be particularly advantageous, the sole zones are vibrated successively from the downstream end to the upstream end of the ply of mercury, then they are vibrated successively from the upstream end to the downstream end.

Toutes autres choses étant égales, ce mode d'exécution préféré du procédé selon l'invention permet d'optimaliser l'évacuation du gros mercure hors de la cellule, en ramenant à une valeur minimum le risque d'une perturbation du procédé d'élec±.rr- lyse.All other things being equal, this preferred embodiment of the process according to the invention makes it possible to optimize the evacuation of large mercury out of the cell, by reducing to a minimum value the risk of a disturbance of the elective process. ± .rr- lyse.

Des particularités et détails de l'invention ressortiront de la description suivante d'une forme de réalisation particulière de l'invention, en référence au dessin annexé.Special features and details of the invention will emerge from the following description of a particular embodiment of the invention, with reference to the attached drawing.

  • La figure 1 est une vue schématique en élévation longitudinale, avec arrachement partiel, d'une cellule d'électrolyse à cathode de mercure, conçue pour l'application du procédé selon l'invention;Figure 1 is a schematic view in longitudinal elevation, with partial cutaway, of a mercury cathode electrolysis cell, designed for the application of the method according to the invention;
  • La figure 2 est une représentation schématique en plan de la distribution des zones de vibrations de la sole de la cellule de la figure 1.FIG. 2 is a diagrammatic representation in plan of the distribution of the vibration zones of the hearth of the cell of FIG. 1.

Dans ces figures, des mêmes notations de référence désignent des éléments identiques.In these figures, the same reference notations designate identical elements.

La cellule d'électrolyse représentée à la figure 1, comprend une auge 1 obturée par un couvercle 2. L'auge 1 est délimitée par des piedroits longitudinaux 3, des parois transversales d'extrémité 4 et une sole 5 en acier présentant une pente modérée, par exemple de l'ordre de 6 mm par mètre courant.The electrolysis cell shown in Figure 1, includes a trough 1 closed by a cover 2. The trough 1 is delimited by longitudinal legs 3, transverse end walls 4 and a steel base 5 having a moderate slope , for example of the order of 6 mm per running meter.

L'auge 1 repose, par l'intermédiaire de la sole 5, sur des supports élastiques 18 fixés à une embase 19 généralement en béton.The gauge 1 rests, via the sole 5, on elastic supports 18 fixed to a base 19 generally made of concrete.

Des anodes 8 sont suspendues dans la cellule, vis-à-vis de la sole 5, par des bâtonnets 9 traversant de manière étanche le couvercle 2 et jouant en outre le rôle de conducteurs électriques aux anodes.Anodes 8 are suspended in the cell, vis-à-vis the floor 5, by rods 9 sealingly passing through the cover 2 and also playing the role of electrical conductors to the anodes.

La cellule est raccordée, près de l'extrémité d'amont de sa sole 5, à un conduit d'admission 10 du mercure destiné à former la cathode 11 s'écoulant sur la sole 5. Près de son extrémité d'aval, la cellule est er communication avec un conduit d'évacuation 12 de l'amalgame de métal alcalin formé par électrolyse d'une solution aqueuse de chlorure de ce métal alcalin entre les anodes 8 et la cathode 11. Cette solution, par exemple une saumure de chlorure de sodium ou de potassium, est introduite dans la cellule via un conduit d'admission 13, tandis que la solution épuisée après l'électrolyse, est soutirée hors de la cellule par un conduit d'évacuation 14. La cellule est également munie d'un conduit 15 pour l'évacuation du chlore dégagé aux anodes.The cell is connected, near the upstream end of its bottom 5, to a mercury inlet duct 10 intended to form the cathode 11 flowing on the bottom 5. Near its downstream end, the cell is er communication with a discharge pipe 12 of the amalgam of alkali metal formed by electrolysis of an aqueous solution of chloride of this alkali metal between the anodes 8 and the cathode 11. This solution, for example a chloride brine of sodium or potassium, is introduced into the cell via an intake conduit 13, while the solution, exhausted after electrolysis, is drawn out of the cell by an evacuation conduit 14. The cell is also provided with a conduit 15 for the evacuation of the chlorine released at the anodes.

Une série de vibrateurs 20, 21, 22, 23, .... 24, 25, 26 sont alignés entre l'extrémité d'amont et l'extrémité d'aval de la sole 5 et appliqués contre la face inférieure de celle-ci. Leurs positions respectives et leur orientation sont choisies en fonction de leur puissance, de manière que lorsqu'ils sont actionnés simultanément, ils soient capables de soumettre la totalité de la sole 5 à des vibrations verticales d'intensité suffisante pour détacher des amas de gros mercure adhérant normalement à la sole, mais insuffisante pour provoquer des projections de gouttelettes de mercure dans la cellule ou des contacts intempestifs du mercure avec les anodes.A series of vibrators 20, 21, 22, 23, .... 24, 25, 26 are aligned between the upstream end and the downstream end of the floor 5 and applied against the underside of the latter. Their respective positions and their orientation are chosen according to their power, so that when they are actuated simultaneously, they are capable of subjecting the entire sole 5 to vertical vibrations of sufficient intensity to detach clusters of large mercury. normally adhering to the sole, but insufficient to cause mercury droplets to splash into the cell or untimely contact of mercury with the anodes.

Pris isolément, chaque vibrateur 20, 21, 22, 23, ..., 24, 25, 26 contrôle de la sorte une zone limitée de la sole 5 de la cellule; ces zones, qui sont contiguës, sont schématisées respectivement en 27, 28, 29, 30, ..., 31, 32, 33 à la figure 2. Par définition, chacune de ces zones, par exemple la zone 29, est la partie de la surface de la sole 5 de laquelle des amas de gros mercure peuvent normalement être détachés et évacués par entraînement dans la nappe de mercure 11, par actionnement uniquement du vibrateur disposé à l'aplomb de ladite zone, en l'occurence le vibrateur 22 dans le cas de la zone 29.Taken in isolation, each vibrator 20, 21, 22, 23, ..., 24, 25, 26 thus controls a limited area of the floor 5 of the cell; these zones, which are contiguous, are shown respectively in 27, 28, 29, 30, ..., 31, 32, 33 in FIG. 2. By definition, each of these zones, for example zone 29, is the part from the surface of the hearth 5 from which clusters of large mercury can normally be detached and evacuated by entrainment in the sheet of mercury 11, by actuation only of the vibrator placed directly above said zone, in this case the vibrator 22 in the case of zone 29.

En pratique, on peut généralement obtenir un résultat satisfaisant en maintenant un écart uniforme d'environ 3 à 5 m entre deux vibrateurs successifs, tels que 21 et 22 par exemple, de sorte que la longueur des zones de vibrations soient également de cet ordre de grandeur.In practice, it is generally possible to obtain a satisfactory result by maintaining a uniform gap of approximately 3 to 5 m between two successive vibrators, such as 21 and 22 for example, so that the length of the vibration zones is also of this order of greatness.

Les vibrateurs 20, 21, 22, 23, ..., 24, 25, 26 peuvent avantageusement être des vibrateurs à fonctionnement mécanique, capables de soumettre la sole 5 de la cellule à des efforts verticaux de bas en haut, par exemple des percussions, de l'ordre de 40 000 à 60 000 N, à une fréquence de l'ordre de 140 à 250 Ez. En variante, on peut également faire usage de vibrateurs à frequence plus élevée, par exemple de l'ordre de 300 Hz, développant des efforts moins élevés, par exemple de l'ordre de 25 000 N. Des vibrateurs à fonctionnement mécanique utilisables dans le cadre de l'invention sont ceux du type à excentrique ou à balourd, équipant généralement les cribles vibrants (Techniques de 1'Ingénieur, Généralités, A 904-5, juillet 1964, parag.4, 72). Une autre catégorie de vibrateurs à fonctionnement mécanique qui conviennent bien dans le cadre de l'invention est formée de ceux qui équipent habituellement les cribles à chocs, et dans lesquels des masses de percussion sont projetées de bas en haut contre la sole 5 de la cellule, par des mécanismes à cames ou à rochets (dito, parag.4, 6). Les vibrateurs tels que 20, 21, 22, ..., 26 peuvent être tous identiques ou, en variante, ils peuvent être de puissance différente. Dans ce dernier cas, les zones de vibrations de la sole, telles qu'elles sont définies plus haut, ont des longueurs différentes.The vibrators 20, 21, 22, 23, ..., 24, 25, 26 may advantageously be mechanical vibrators, capable of subjecting the bottom 5 of the cell to vertical forces from the bottom up, for example percussion , of the order of 40,000 to 60,000 N, at a frequency of the order of 140 to 250 Ez. As a variant, it is also possible to use vibrators with a higher frequency, for example of the order of 300 Hz, developing lower forces, for example of the order of 25,000 N. Vibrators with mechanical operation usable in the scope of the invention are those of the eccentric or unbalance type, generally fitted to vibrating screens (Engineering Techniques, General, A 904-5, July 1964, paragraphs 4, 72). Another category of vibrators with mechanical operation which are well suited in the context of the invention is formed of those which are usually fitted to impact screens, and in which percussion masses are projected from bottom to top against the floor 5 of the cell , by cam or ratchet mechanisms (dito, para. 4, 6). The vibrators such as 20, 21, 22, ..., 26 can all be identical or, alternatively, they can be of different power. In the latter case, the vibration zones of the sole, as defined above, have different lengths.

Selon l'invention, pendant le fonctionnement de la cellule, on actionne périodiquement les vibrateurs selon un cycle de fonctionnement bien défini. A cet effet, on actionne d'abord le vibrateur d'aval 26, par exemple pendant une durée de 15 à 30 secondes, les autres vibrateurs étant à l'arrêt, de sorte que seule la zone d'aval 33 de la sole soit le siège de vibrations d'intensité suffisante pour en détacher les amas de gros mercure qui pourraient y adhérer et permettre leur entrainement par la nappe de mercure. Après arrêt du vibrateur d'aval 26, on actionne le vibrateur 25 qui le précède immédiatement, également pendant 15 à 30 secondes, de sorte que ce soit cette fois la zone 32 de la sole 5 de la cellule qui soit le siège de vibrations d'intensité suffisante pour en détacher d'éventuels amas de gros mercure. On procède ensuite d'une manière identique et de proche en proche, pour tous les autres vibrateurs 24, ..., 23, 22, 21, jusqu'au vibrateur d'amont 20.According to the invention, during the operation of the cell, the vibrators are periodically actuated according to a well-defined operating cycle. To this end, the downstream vibrator 26 is first actuated, for example for a period of 15 to 30 seconds, the other vibrators being stopped, so that only the downstream area 33 of the hearth is the seat of vibrations of sufficient intensity to detach the clusters of large mercury which could adhere to it and allow their entrainment by the sheet of mercury. After stopping the downstream vibrator 26, the vibrator 25 which immediately precedes it is activated, also for 15 to 30 seconds, so that this time it is the area 32 of the floor 5 of the cell which is the seat of vibrations d sufficient to detach possible clusters of large mercury. We then proceed in an identical manner and step by step, for all the other vibrators 24, ..., 23, 22, 21, up to the upstream vibrator 20.

Cette manière de procéder a pour résultat que toutes les zones 33, 32, 31, ..., 30, 29, 28, 27 de la sole 5 sont mises à vibrer successivement et dans l'ordre depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la sole. Les amas de gros mercure adhérant à la sole 5 de la cellule sont de la sorte détachés progressivement et de proche en proche depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la sole et évacués hors de la cellule par entraînement dans la nappe de mercure 11, via le conduit 12.This procedure results in all the zones 33, 32, 31, ..., 30, 29, 28, 27 of the sole 5 being vibrated successively and in order from the downstream end to 'at the upstream end of the sole. The clusters of large mercury adhering to the floor 5 of the cell are thus gradually and gradually detached from the downstream end to the upstream end of the floor and evacuated from the cell by entrainment in the layer of mercury 11, via the conduit 12.

A l'issue du cycle de vibrations d'aval en amont qui vient d'être décrit, on peut recommencer un cycle identique de vibrations, d'aval en amont. Le délai à respecter entre l'arrêt du vibrateur d'amont 20, à la fin d'un cycle, et le démarrage du vibrateur d'aval 26 au début du cycle suivant dépend notamment de la longueur de la cellule, du nombre de vibrateurs, de la durée globale d'un cycle de vibrations et de la vitesse de formation des amas de gros mercure sur la sole. Selon les cas, il peut varier de quelques minutes à plusieurs heures. En variante, dans les cas critiques de cellules qui sont le siège d'une formation importante d'amas de gros mercure, il peut parfois s'avérer nécessaire de démarrer un nouveau cycle de vibrations d'aval en amont, avant que le cycle précédent soit terminé.At the end of the downstream upstream vibration cycle which has just been described, it is possible to start again an identical cycle of vibrations, from downstream to upstream. The time to be respected between the stop of the upstream vibrator 20, at the end of a cycle, and the start of the downstream vibrator 26 at the start of the next cycle depends in particular on the length of the cell, on the number of vibrators , the overall duration of a vibration cycle and the rate of formation of large mercury clusters on the sole. Depending on the case, it can vary from a few minutes to several hours. As a variant, in critical cases of cells which are the site of a large formation of large mercury clusters, it may sometimes be necessary to start a new cycle of vibrations downstream upstream, before the previous cycle be finished.

Selon une variante préférée du procédé qui vient d'être décrit en référence aux figures, à l'issue du cycle de vibrations de l'aval vers l'amont de la sole 5, on démarre un cycle de vibrations de l'amont vers l'aval; à cet effet, après avoir actionné séparément et successivement les vibrateurs 26, 25, 24, ..., 23, 22, 21 puis 20, on actionne séparément et dans l'ordre suivant, les vibrateurs 20, 21, 22, 23, ..., 24, 25 puis 26.According to a preferred variant of the method which has just been described with reference to the figures, at the end of the cycle of vibrations from downstream to upstream of the floor 5, a vibration cycle from upstream to l is started. 'downstream; for this purpose, after actuating the vibrators 26, 25, 24 separately and successively, ..., 23, 22, 21 then 20, the vibrators 20, 21, 22, 23, ..., 24, 25 then 26 are activated separately and in the following order.

Cette variante de l'invention assure un nettoyage optimum de la sole 5 de la cellule et une évacuation régulière et optimum des amas de gros mercure hors de la cellule, tout en réduisant à une valeur minimum les perturbations dans l'écoulement de la nappe de mercure et, par voie de conséquence, dans le déroulement de l'électrolyse. Toutes autres choses égales, elle permet par ailleurs des distances anodes-cathodes minimum.This variant of the invention ensures optimum cleaning of the bottom 5 of the cell and a regular and optimum evacuation of large mercury clusters from the cell, while reducing to a minimum the disturbances in the flow of the water table. mercury and, consequently, in the course of electrolysis. All other things being equal, it also allows minimum anode-cathode distances.

Claims (10)

1 - Procédé d'électrolyse d'une solution aqueuse d'halogénure de métal alcalin dans une cellule d'électrolyse dont la cathode est une nappe de mercure (11)en écoulement sur une sole inclinée (5) de la cellule, dans lequel on fait vibrer la sole, caractérisé en.ce qu'on fait vibrer séparément des zones distinctes (27,28,29, 30,... 31,32,33) de la sole (5).1 - Process for the electrolysis of an aqueous solution of alkali metal halide in an electrolysis cell, the cathode of which is a sheet of mercury (11) flowing on an inclined sole (5) of the cell, in which vibrates the sole, characterized in that it makes the separate zones (27, 28, 29, 30, ..., 31, 32, 33) vibrate separately from the sole (5). 2 - Procédé selon la revendication 1, caractérisé en ce que les zones (27,28,29,30,... 31,32,33) de la sole (5), que l'on fait vibrer séparément, sont contiguës.2 - Method according to claim 1, characterized in that the zones (27,28,29,30, ... 31,32,33) of the sole (5), which are vibrated separately, are contiguous. 3 - Procédé selon la revendication 1 ou 2, caractérisé en ce > que les zones distinctes (27,28,29,30... 31,32,33) de la sole (5), que l'on fait vibrer séparément, sont disposées l'une derrière l'autre entre l'extrémité d'amont et l'extrémité d'aval de la nappe de mercure (11).3 - Method according to claim 1 or 2, characterized in that> the distinct zones (27,28,29,30 ... 31,32,33) of the sole (5), which are vibrated separately, are arranged one behind the other between the upstream end and the downstream end of the sheet of mercury (11). 4 - Procédé selon la revendication 3, caractérisé en ce qu'on fait vibrer les zones (27,28,29,30,... 31,32,33) de la sole (5) successivement.4 - Method according to claim 3, characterized in that the areas (27,28,29,30, ... 31,32,33) of the sole (5) are vibrated successively. 5 - Procédé selon la revendication 4, caractérisé en ce qu'on fait vibrer les zones (33,32,31... 30,29,28,27) successivement depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la nappe de mercure (11).5 - Method according to claim 4, characterized in that the zones (33,32,31 ... 30,29,28,27) are vibrated successively from the downstream end to the end d 'upstream of the mercury table (11). 6 - Procédé selon la revendication 5, caractérisé en ce qu'après avoir fait vibrer les zones de la sole successivement depuis l'extrémité d'aval jusqu'à l'extrémité d'amont de la nappe de mercure, on les fait vibrer successivement depuis l'extrémité d'amont jusqu'à l'extrémité d'aval de lâ nappe de mercure.6 - Process according to claim 5, characterized in that after having vibrated the areas of the sole successively from the downstream end to the upstream end of the sheet of mercury, they are vibrated successively from the upstream end to the downstream end of the sheet of mercury. 7 - Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on fait vibrer les zones (27,28,29,30,... 31,32,33) de la sole (5) à une fréquence comprise entre 150 et 300 Hz.7 - Method according to any one of claims 1 to 6, characterized in that the areas (27,28,29,30, ... 31,32,33) of the sole (5) are vibrated. frequency between 150 and 300 Hz. 8 - Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on fait vibrer les zones (27,28,29,30..., 31,32,33) de la sole (5) en développant des efforts verticaux compris entre 20 000 et 75 000 N.8 - Method according to any one of claims 1 to 7, characterized in that the zones (27,28,29,30 ..., 31,32,33) of the sole (5) are vibrated while developing vertical forces between 20,000 and 75,000 N. 9 - Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on fait vibrer chaque zone (27,28,29,30..., 31,32,33) pendant une durée comprise entre 15 et 30 s.9 - Method according to any one of claims 1 to 8, characterized in that each zone (27,28,29,30 ..., 31,32,33) is vibrated for a period of between 15 and 30 s. 10 - Procédé selon l'une quelconque des revendications 4 à 9, caractérisé en ce qu'entre la vibration d'une zone et la vibration de la zone suivante, on maintient un intervalle de temps égal au temps mis par la nappe de mercure (11) pour parcourir la longueur de la zone que l'on vient de faire vibrer.10 - Method according to any one of claims 4 to 9, characterized in that between the vibration of one area and the vibration of the next area, maintaining a time interval equal to the time taken by the sheet of mercury ( 11) to browse the length of the area that has just been vibrated.
EP81200164A 1980-02-20 1981-02-12 Process for electrolysing an aqueous alkali-metal halogenide solution in a mercury-cathode cell Expired EP0034855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81200164T ATE9007T1 (en) 1980-02-20 1981-02-12 PROCESS FOR THE ELECTROLYSIS OF AN AQUEOUS ALKALI METAL HALIDE SOLUTION IN A MERCURY CATHODE CELL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8003770A FR2476147A1 (en) 1980-02-20 1980-02-20 METHOD FOR ELECTROLYSIS OF AQUEOUS ALKALI METAL HALIDE SOLUTION IN A MERCURY CATHODE CELL
FR8003770 1980-02-20

Publications (2)

Publication Number Publication Date
EP0034855A1 true EP0034855A1 (en) 1981-09-02
EP0034855B1 EP0034855B1 (en) 1984-08-15

Family

ID=9238790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81200164A Expired EP0034855B1 (en) 1980-02-20 1981-02-12 Process for electrolysing an aqueous alkali-metal halogenide solution in a mercury-cathode cell

Country Status (6)

Country Link
EP (1) EP0034855B1 (en)
AT (1) ATE9007T1 (en)
BR (1) BR8100834A (en)
DE (1) DE3165477D1 (en)
ES (1) ES8201228A1 (en)
FR (1) FR2476147A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2229461A1 (en) * 1973-05-17 1974-12-13 Ici Ltd

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL91210C (en) * 1953-12-17
DE2304064A1 (en) * 1973-01-27 1974-08-01 Bayer Ag METHOD FOR REDUCING AMALGAM BUT FORMATION IN ALKALICHLORIDE ELECTROLYSIS CELLS
BE800615A (en) * 1973-06-07 1973-10-01 Solvay Mercury cathode electrolytic cell - for prodn of chlorine from alkali metal chlorides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2229461A1 (en) * 1973-05-17 1974-12-13 Ici Ltd

Also Published As

Publication number Publication date
ES499581A0 (en) 1981-12-01
ATE9007T1 (en) 1984-09-15
DE3165477D1 (en) 1984-09-20
EP0034855B1 (en) 1984-08-15
FR2476147B1 (en) 1984-02-10
ES8201228A1 (en) 1981-12-01
FR2476147A1 (en) 1981-08-21
BR8100834A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
FR2847075B1 (en) PROCESS FOR FORMING A FRAGILE ZONE IN A SUBSTRATE BY CO-IMPLANTATION
EP0034855B1 (en) Process for electrolysing an aqueous alkali-metal halogenide solution in a mercury-cathode cell
EP0059500B1 (en) Ballast cleaning machine running on tracks
FR2462253A1 (en) Prod. release station for cheese demoulding machine - grips mould in vibratory frame resiliently mounted on fixed structure
FR2476148A1 (en) Alkali metal hydroxide prodn. - using catalyst and alkali metal amalgam pool with hearth vibration to prevent formation of mercury butter
JP2005046687A (en) Glass substrate cleaning apparatus
KR100607655B1 (en) Drum of peeling off device recycling gravels
KR100827481B1 (en) Apparatus for plating a semiconductor wafer
JP3153717B2 (en) Batch type brush cleaning device
JPH07136591A (en) Deposit removing device
FR2850890A1 (en) Blast cleaning device for hollow casting unit e.g. engine block, of automobile, has elastic suspension system to supply mechanical power necessary to vibrate one vibrating shell, when shell is excited to resonance frequency
JPH0254867A (en) Vibrating filling apparatus of porous electrode frame for battery
KR200403560Y1 (en) Concavo-convex drum of peeling off device recycling gravels
US20020130038A1 (en) Method and apparatus for growth removal in an electrowinning process
CN212100597U (en) Conveyer convenient to separation blasting back soil stone
JP2006007114A (en) Screen filter
EP0495724B1 (en) Method for vibrating concrete, while being poured
EP1384916B1 (en) Device with hanging modular boxes for damping of vibrations and manufacuring method
CN214827066U (en) Feeding device convenient to adjust and used for machining steel purlin
FR2863637A1 (en) Formwork support device for running concrete floors, has tightening unit with certain elasticity such that when force is applied on wall top, pile cap portion is in horizontal position and support unit is in driving position
JPS55128834A (en) Method of ultrasonically cleaning semiconductor wafer
SU1440734A1 (en) Arrangement for removing bulging from mass of raw cellular concrete
KR20220094397A (en) discharge rod vibrator of the electric melting furnace
JP3964797B2 (en) How to remove the tank ceiling
JP2004300454A (en) Method for plating electronic component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19820224

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840815

REF Corresponds to:

Ref document number: 9007

Country of ref document: AT

Date of ref document: 19840915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3165477

Country of ref document: DE

Date of ref document: 19840920

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900117

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900212

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900228

Ref country code: CH

Effective date: 19900228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST