EP0032641B1 - Système de réchauffage pour installation de production d'énergie à turbine à vapeur - Google Patents

Système de réchauffage pour installation de production d'énergie à turbine à vapeur Download PDF

Info

Publication number
EP0032641B1
EP0032641B1 EP80400077A EP80400077A EP0032641B1 EP 0032641 B1 EP0032641 B1 EP 0032641B1 EP 80400077 A EP80400077 A EP 80400077A EP 80400077 A EP80400077 A EP 80400077A EP 0032641 B1 EP0032641 B1 EP 0032641B1
Authority
EP
European Patent Office
Prior art keywords
heater
turbine
steam
condensates
biphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400077A
Other languages
German (de)
English (en)
Other versions
EP0032641A1 (fr
Inventor
André Jules Paquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to DE8080400077T priority Critical patent/DE3071745D1/de
Priority to AT80400077T priority patent/ATE22152T1/de
Priority to EP80400077A priority patent/EP0032641B1/fr
Priority to US06/199,193 priority patent/US4408460A/en
Priority to AU63856/80A priority patent/AU537612B2/en
Priority to JP18270780A priority patent/JPS56124611A/ja
Priority to ZA00810290A priority patent/ZA81290B/xx
Publication of EP0032641A1 publication Critical patent/EP0032641A1/fr
Application granted granted Critical
Publication of EP0032641B1 publication Critical patent/EP0032641B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Definitions

  • the present invention relates to condensed water heating systems used in steam turbine power generation installations such as power plants.
  • reheating systems generally comprise a certain number of reheaters arranged between the condenser and the steam generator of the installation for reheating the water condensed in the condenser and supplied with steam at different pressures by respective withdrawals on the turbine. Between some of the heaters and the immediately adjacent heater supplied by a steam extraction at a lower pressure is disposed a phase separator receiving the water-steam mixture of the heater purge associated with the higher pressure withdrawal and supplying the heater associated with the withdrawal at lower pressure, in parallel with this drawing off at lower pressure, with steam separated from said mixture in the phase separator device. Furthermore, in pressurized water nuclear power stations, a superheater is provided, the condensates of which are sent to the heater associated with the highest pressure withdrawal via a phase separator.
  • CH-A-320 887 a system has been described for heating the condensates of a steam turbine of an energy production installation comprising at least one condensing exchanger whose condensates are expanded to a water tank d 'supply, said system comprising at least one turbine disposed between said condensing exchanger and said tank and supplied by the condensates of said condensing exchanger.
  • Said turbine operates with a mixture of liquid and steam, however an effort is made to limit the rate of steam.
  • the invention therefore aims to provide a heating system which makes it possible to use part of the energy lost in the heating systems of the prior art so as to increase the overall energy efficiency of the energy production installation. with which the heating system is associated.
  • the invention also aims to provide a heating system for a steam turbine power generation installation which, while having better efficiency than the heating systems of the prior art, is of simpler construction than the latter.
  • Another object of the invention is to provide a heating system for a steam turbine energy production installation which at least partially avoids the erosion phenomena which are encountered in heating systems.
  • the invention as characterized in the claims, achieves these goals thanks to the fact that the two-phase turbine produces mechanical energy by recovering the kinetic energy of the condensers of the exchanger by condensation which l 'feeds. This results in an increase in the energy efficiency of the installation with which the heating system according to the invention is associated and the elimination of erosion phenomena in the main control valve and the phase separator since these are eliminated at the profit from the biphasic turbine.
  • FIG. 1 there is shown the diagram of a conventional heating system with seven heaters R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 .
  • the heaters R 1 to R 7 heat the condensed water and taken up by an extraction pump PE in the condenser (not shown) of the fossil-fuel power station and steam turbine with which this heating system is associated.
  • the heater R 1 is supplied from a racking Si with steam at 0.3 bar and at a flow rate representing 4.5% by weight of the total flow rate (100% by weight) supplied by the heater R 7 to the generator. steam (not shown) from the installation.
  • the steam condensed in the heater R 1 is returned by a drain pipe P o to the condenser.
  • the second heater R 2 disposed in series in the main circuit CP of condensed water, downstream of the heater R 1 ′ is supplied from a withdrawal S 2 with steam at a pressure of 1 bar, with a flow rate of 4, 5% in weight.
  • the third heater R 3 arranged downstream relative to R 2 on the circuit CP, is supplied from a racking S 3 with steam at a pressure of 2 bars, with a flow rate representing 3% by weight of the total flow rate.
  • the flow rate of the main circuit CP at the outlet of the heater R 3 which represents 75% by weight of the total flow rate at the outlet of the heater R 7 , is sent to a heater by mixing or degassing tank R 4 which is supplied from a racking S 4 with steam at a pressure of 4 bars and at a flow rate representing 3.5% by weight of the total flow rate.
  • the water coming from the heater R 3 and the steam coming from the racking S 4 are mixed in the heater by mixing R 4 and this mixture is taken up by a food pump PA which sends it to the heater R 5 , which is supplied, at from a S 5 racking with steam at a pressure of 9 bars and at a flow rate representing 7% of the total flow rate.
  • the water leaving the heater R 5 is then sent to a heater R 6 which is supplied, from a racking S 6 , with steam at a pressure of 18 bars and at a flow rate representing 7% of the total flow rate.
  • the water leaving the heater R 6 is further heated in the last heater R 7 which is supplied, from a racking S 7 , with steam at a pressure of 36 bars and at a flow rate representing 7.5 % by weight of the total flow.
  • the condensed water leaving the heater R 7 therefore represents, as indicated above, 100% of the total flow rate which is sent under a pressure of the order of 200 to 220 bars to the steam generator GV (not shown) of the installation where this water is vaporized to be returned to the turbine (not shown).
  • the vapor from the racking S 7 condenses in the heater R 7 and the condensates of this vapor thus formed are discharged from the heater R 7 by a drain pipe P 1 connected to a first phase separator SP 1 via a main control valve SR 1 .
  • a motorized emergency control valve V 1 is connected as a bypass with respect to the main control valve SR 1 on the drain pipe P 1 to return, if necessary, the condensate from the drain pipe P 1 directly to the condenser.
  • the regulation valves SR 1 and V 1 are controlled by a level regulator RN 1 intended to regulate the water level in the heater R 7 .
  • the mixture at 244 ° C of the purge line P 1 is sent via the main control valve SR 1 into the phase separator SP 1 which separates the water from the steam resulting from the expansion, the latter being sent by a CV 1 pipe on the steam side in the R 6 heater and the water being sent by a CE 1 pipe on the water side in the R 6 heater.
  • the condensates collected in the heater R e are sent by a drain pipe P 2 to a phase separator SP 2 via a main control valve SR 2 with which is connected in parallel a motorized emergency control valve V 2 .
  • the condensates at 207 ° C of the drain pipe P 2 are separated in the phase separator SP 2 and the steam is sent by a pipe CV 2 on the steam side of the heater R 5 , while the water is sent by a pipe CE 2 water side of heater R 5 .
  • phase separator SP 2 as well as the regulation valves SR 2 and V 2 which are controlled by a level regulator RN 2 which regulates the water level in the heater R 6 , operate in the same way and play the same role as the phase separator SP 1 and the regulation valves SR 1 and V 1 described above.
  • the condensates at 175 ° C collected in the heater R 5 are sent by a drain pipe P 3 to the heater by mixing R 4 , via a main regulating valve SR 3 with which a bypass valve is connected. motorized emergency control V 3 .
  • the valves SR 3 and V 3 are controlled by a level regulator RN 3 which regulates the level in the heater R 5 .
  • the mixture circulating in the drain pipe P 3 which represents 21.5% by weight of the total flow rate, is mixed in the degassing tank R 4 with the water coming from the heater R 3 and the steam coming from the drawing off S 4 so that the food pump PA has a flow rate representing 100% of the total flow rate.
  • the condensates collected in the heater R 3 are sent by means of a drain pipe P 4 to a phase separator SP 3 , by means of a main regulating valve SR 4 with which a bypass valve is connected.
  • motorized emergency regulation V 4 which, like the valves V 1 , V 2 and V 3 , returns condensates directly to the condenser in the event of an incident.
  • the regulation valves SR 4 and V 4 are controlled by a level regulator RN 4 which regulates the water level in the heater R 3 .
  • the condensates at 120 ° C of the drain pipe P 4 are divided in the phase separator SP 3 , from where the steam is sent to the steam side of the heater R 2 by a pipe CV 3 while the water is sent to the water side of the heater R 2 by a pipe CE3.
  • the drain pipe P 5 which collects the condensates at 100 ° C. from the heater R 2 is connected in RA to a branch pipe CD which is connected between, on the one hand, the condenser and, on the other hand, the main line CP, between the heaters R 2 and R 3 .
  • a motorized emergency control valve V5 is arranged in the bypass line CD between the RA connection and the condenser, and a main control valve SR S is arranged in the line CD between the RA connection and the line connection CD with the main pipeline CP.
  • the regulation valves SR 5 and V5 are controlled by a level regulator RN 5 which regulates the water level in the heater R 2 .
  • a PR pump from condensate recovery is arranged in the line CD between the connection RA and the regulating valve SR 5 to reinject the condensates from the drain line P5 into the main line CP. If the PR pump stops, the condensate is returned to the condenser by the emergency control valve V5.
  • part of the heat energy of the mixture from the heaters R 7 , R 6 , R 5 , R 3 and R 2 is used to heat the water in the main circuit, either by direct reinjection into the latter from the heaters R 5 and R 2 , either by sending to the following heater after separation of the liquid phase and the vapor phase in the phase separators SP 1 , SP 2 and SP 3 .
  • part of the energy of this mixture present in the form of pressure is lost in the phase separators which, moreover, have the drawback of being subject to strong erosion due to the high speed of the mixing at the regulating valve outlet.
  • the heating system according to the invention differs essentially from that of FIG. 1 in that the main control valves SR 1 , SR 2 , SR 3 and SR 4 , as well as the phase separators SP ,, SP 2 and SP 3 have been eliminated and replaced by two-phase turbines.
  • Biphasic turbines are turbines of a particular design which are fed by means of a mixture of a liquid and a gas or vapor to drive in rotation a shaft, thus providing a mechanical work, while ensuring a separation of the liquid and gas, so that these can be collected separately at the outlet of the turbine. Since this type of turbine is known, in particular from US Pat. Nos. 3,879,949, 3,972,195 and 4,087,261 to which reference may be made, no detailed description will be given in this specification.
  • the condensates of the heater R 7 are introduced into the two-phase turbine TB, as a function of the level in this heater by adjusting the position of the moderator V ', of the two-phase turbine TB, controlled by the level regulator RN ,. These condensates are directed to the condenser by the emergency control valve V, in the event of the unavailability of the two-phase turbine TB,.
  • the vapor separated therein is directed to the steam zone of the heater R s , while the separated water joins the condensates of the heater R 6 .
  • This mixture is introduced into the following two-phase turbine TB 2 as a function of the level in the heater R s , by adjusting the position of its moderator V ' 2 controlled by the level regulator RN 2 . If the TB 2 two-phase turbine is not available, the mixture is directed to the condenser by the emergency control valve V 2 . The steam separated in the two-phase turbine TB 2 is directed to the steam zone of the heater R 5 , while the separated water joins the condensates of this heater. Again, this mixture is introduced into the next two-phase turbine TB 3 as a function of the level in the heater R 5 , by adjusting its moderator V ' 3 controlled by the level regulator RN 3 .
  • the mixture is directed to the condenser by the emergency control valve V 3 .
  • the vapor separated in the two-phase turbine TB 3 is directed to the heater by mixing R 4 , while the separated water is sent directly to the next two-phase turbine TB 4 .
  • the vapor separated therein is directed to the vapor zone of the heater R 3 , while the separated water joins the condensates of this heater.
  • this mixture is introduced into the last two-phase turbine TB S as a function of the level in the heater R 3 , by adjusting its moderator V ' 4 controlled by the level regulator RN 4 . If the TB S two-phase turbine is unavailable, the mixture is directed to the condenser by the emergency control valve V 4 .
  • the steam separated in the two-phase turbine TB 5 is directed to the steam zone of the heater R 2 , while the separated water joins the condensates of this heater in RA.
  • the more downstream part of this system then functions as the corresponding part of the conventional heating system of FIG. 1.
  • the energy of the mixture of water and steam in each of the two-phase turbines is collected on a common shaft A to drive an auxiliary alternator, a pump or the like.
  • the two-phase turbines may not be coupled on the same shaft.
  • FIG. 3 shows a conventional heating system for a nuclear power plant and on which the same reference letters as those used in FIGS. 1 and 2 have been used to designate similar elements. Since the heating system of FIG. 3 is conventional and also has many similarities with that of FIG. 1, it will be described more succinctly than this.
  • This heating system comprises, on the main circuit CP, a sub-cooler SOR and six heaters R 11 to R 16 supplied with steam by withdrawals S 11 to S, 6 respectively.
  • the heater R, 6 is also supplied by steam separated by a phase separator SP 11 from the condensates of a superheater SU (not shown) producing steam condensates at an even higher pressure than that of the heater R 16 .
  • Main regulation valves SR 11 and relief valves V 11 controlled as a function of the level in the superheater make it possible to direct the condensates from the latter to the phase separator SP 11 or to the condenser as required, as described above.
  • the following heater R, 5 is supplied with steam separated from the condensates of the heater R 16 by a phase separator SP 12 .
  • Main regulation valves SR 12 and emergency valves V 12 controlled by a level regulator RN 11 are provided.
  • the condensates of the heater R, 5 are sent to a recovery tank for the DRT purges via a main regulation valve SR 13 .
  • an emergency regulating valve V 13 allows these condensates to be sent directly to the condenser.
  • the DRT tank also receives condensate from a SE dryer (not shown) via a main regulation valve SR 15 .
  • An emergency regulating valve V 15 controlled like the SR 15 valve depending on the level in the dryer, makes it possible to direct these condensates directly to the condenser if necessary.
  • the DRT tank finally receives the condensates from the heater R 14 , an emergency regulation valve V 14 controlled by the level regulator R 14 being however provided to send them to the condenser if necessary.
  • the content of the DRT tank is reinjected by a condensate recovery pump PR into the main circuit CP, between the feed pump PA and the heater R 14 , via a main control valve SR 16 controlled by a RN 13 level regulator associated with the DRT tank.
  • This regulator RN 13 also controls an emergency regulation valve V, 6 making it possible to return the condensates from the DRT tank to the condenser.
  • the condensates from the heater R 13 are sent either to a phase separator SP 13 via a main control valve SR 17 or to the condenser via an emergency control valve V 17 , in function of the level regulator RN 15 of the heater R 13 .
  • the condensates from the heater R 12 are sent, either directly to the sub-heater SOR and, from there, to the condenser via a main regulating valve SR 18 , or directly to the condenser via a emergency control valve V 18 , depending on the control of the level regulator RN 16 of the heater R 12 .
  • two-phase turbines TB 11 , TB 12 , TB 13 , TB 14 and TB 15 are substituted respectively for the main control valves SR 11 , SR 12 , SR 13 , SR 17 and SR 18 , and 'for the phase separators SP 11 , SP 12 and SP 13 deleted.
  • the steam separated by the turbines TB 11 and TB 12 feeds the heaters R 16 and R 15 respectively , while the water joins the respective condensates of these heaters to feed the following turbines TB 12 and TB 13 respectively.
  • the vapor separated by the two-phase turbine TB i3 is directed to the DRT tank, while the water is sent upstream from the condensate recovery pump PR to be reinjected with the purges from the DRT tank in the main circuit CP.
  • the two-phase turbine TB 14 separates the steam from the condensates of the heater R 13 and sends it on the steam side of the heater R 12 , while the water joins the condensates of this heater.
  • This mixture is introduced into the two-phase turbine TB 15 and the vapor separated therein is directed to the steam zone of the heater R 11 .
  • the water joins the condensates of this heater and the mixture thus formed feeds the SOR sub-cooler.
  • the turbine biphasic TB 11 to TB 15 are supplied to the level in the heat exchanger by condensation from which they receive the condensate by adjusting the position of their respective moderator V '11, V' 12, V '13, V '14 and V' 15 .
  • the energy of the mixture of water and steam in each of the turbines is collected on a common shaft A to drive auxiliary members or individually on the shaft of each turbine.
  • the two-phase turbine heating system makes it possible both to supply the heaters in cascade with steam drawn from the condensates of a previous heater or of a superheater and to provide mechanical power additional. This therefore makes it possible to increase the overall yield of the energy production installation with which the heating system is associated.
  • the heating system according to the invention makes it possible to eliminate the static phase separators from the heating systems of the prior art since it is the two-phase turbines themselves which carry out the separation. This therefore results in the elimination of the aforementioned erosion phenomena in the phase separators and a simplification of the pipeline diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • External Artificial Organs (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Water Treatment By Sorption (AREA)

Description

  • La présente invention concerne les systèmes de réchauffage d'eau condensée utilisés dans les installations de production d'énergie à turbine à vapeur telles que les centrales électriques.
  • Ces systèmes de réchauffage comprennent généralement un certain nombre de réchauffeurs disposés entre le condenseur et le générateur de vapeur de l'installation pour réchauffer l'eau condensée dans le condenseur et alimentés en vapeur à des pressions différentes par des soutirages respectifs sur la turbine. Entre certains des réchauffeurs et le réchauffeur immédiatement adjacent alimenté par un soutirage en vapeur à une pression inférieure est disposé un séparateur de phases recevant le mélange eau-vapeur de la purge du réchauffeur associé au soutirage à pression plus élevée et alimentant le réchauffeur associé au soutirage à pression moins élevée, en parallèle avec ce soutirage à pression moins élevée, avec de la vapeur séparée dudit mélange dans le dispositif séparateur de phase. En outre, dans les centrales nucléaires à eau pressurisée, il est prévu un surchauffeur dont les condensats sont envoyés au réchauffeur associé au soutirage à pression la plus élevée par l'intermédiaire d'un séparateur de phases.
  • Grâce à cet agencement, une partie de l'énergie du mélange eau-vapeur de la purge de certains des échangeurs par condensation, surchauffeurs ou réchauffeurs, est utilisée pour contribuer au réchauffage du fluide du circuit condenseur-turbine dans un échangeur à condensation alimenté en vapeur à une pression moins élevée. Toutefois, une partie de cette énergie est perdue sous forme thermique dans la soupape de régulation principale prévue dans le conduit de purge en amont du séparateur de phase, ainsi que dans ce dernier.
  • Dans CH-A-320 887 on a décrit un système de réchauffage des condensats d'une turbine à vapeur d'une installation de production d'énergie comprenant au moins un échangeur à condensation dont les condensats sont détendus vers un réservoir d'eau d'alimentation, ledit système comprenant au moins une turbine disposée entre ledit échangeur à condensation et ledit réservoir et alimenté par les condensats dudit échangeur à condensation. Ladite turbine fonctionne avec un mélange de liquide et de vapeur dont on s'efforce toutefois de limiter le taux de vapeur.
  • L'invention vise donc à réaliser un système de réchauffage qui permette d'utiliser une partie de l'énergie perdue dans les systèmes de réchauffage de l'art antérieur de manière à accroître le rendement énergétique global de l'installation de production d'énergie à laquelle le système de réchauffage est associé.
  • L'invention vise également à réaliser un système de réchauffage pour installation de production d'énergie à turbine à vapeur qui, tout en ayant un meilleur rendement que les systèmes de réchauffage de la technique antérieure, soit de construction plus simple que ces derniers.
  • Enfin, un autre but de l'invention est de réaliser un système de réchauffage pour installation de production d'énergie à turbine à vapeur qui permette d'éviter au moins partiellement les phénomènes d'érosion que l'on rencontre dans les systèmes de réchauffage classiques à soupape de régulation principale et séparateur de phase dans lesquels le phénomène d'érosion est dû à la grande vitesse du mélange eau-vapeur à la sortie de la soupape de régulation principale.
  • L'invention, telle qu'elle est caractérisée dans les revendications, permet d'atteindre ces buts grâce au fait que la turbine biphasique produit de l'énergie mécanique par récupération de l'énergie cinétique des condensats de l'échangeur par condensation qui l'alimente. Il en résulte un accroissement du rendement énergétique de l'installation à laquelle le système de réchauffage suivant l'invention est associé et la suppression des phénomènes d'érosion dans la soupape de régulation principale et le séparateur de phases car ceux-ci sont supprimés au profit de la turbine biphasique.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre de deux exemples particuliers de sa réalisation illustrés par les dessins annexés sur lesquels :
    • la Figure 1 est un schéma d'un système de réchauffage conventionnel pour centrale électrique à combustible fossile ;
    • la Figure 2 est un schéma d'un système de réchauffage suivant l'invention pour centrale électrique à combustible fossile ;
    • la Figure 3 est un schéma d'un système de réchauffage conventionnel pour centrale électrique nucléaire ; et
    • la Figure 4 est un schéma d'un système de réchauffage suivant l'invention pour centrale électrique nucléaire.
  • En se reportant à la Fig. 1, on a représenté le schéma d'un système de réchauffage classique à sept réchauffeurs R1, R2, R3, R4, R5, R6 et R7. Les réchauffeurs R1 à R7 réchauffent l'eau condensée et reprise par une pompe d'extraction PE dans le condenseur (non représenté) de la centrale électrique à combustion fossile et turbine à vapeur à laquelle est associé ce système de réchauffage.
  • Le réchauffeur R1 est alimenté à partir d'un soutirage Si avec de la vapeur à 0,3 bar et à un débit représentant 4,5 % en poids du débit total (100 % en poids) fourni par le réchauffeur R7 au générateur de vapeur (non représenté) de l'installation. La vapeur condensée dans le réchauffeur R1 est renvoyée par une canalisation de purge Po vers le condenseur. Le second réchauffeur R2 disposé en série dans le circuit principale CP d'eau condensée, en aval du réchauffeur R1' est alimenté à partir d'un soutirage S2 en vapeur à une pression de 1 bar, avec un débit de 4,5 % en poids. Le troisième réchauffeur R3, disposé en aval par rapport à R2 sur le circuit CP, est alimenté à partir d'un soutirage S3 en vapeur à une pression de 2 bars, avec un débit représentant 3 % en poids du débit total.
  • Le débit du circuit principal CP à la sortie du réchauffeur R3, qui représente 75 % en poids du débit total à la sortie du réchauffeur R7, est envoyé dans un réchauffeur par mélange ou bâche dégazante R4 qui est alimentée à partir d'un soutirage S4 avec de la vapeur à une pression de 4 bars et à un débit représentant 3,5 % en poids du débit total. L'eau provenant du réchauffeur R3 et la vapeur provenant du soutirage S4 sont mélangées dans le réchauffeur par mélange R4 et ce mélange est repris par une pompe alimentaire PA qui l'envoie dans le réchauffeur R5, lequel est alimenté, à partir d'un soutirage S5 avec de la vapeur à une pression de 9 bars et à un débit représentant 7 % du débit total. L'eau sortant du réchauffeur R5 est ensuite envoyée dans un réchauffeur R6 qui est alimenté, à partir d'un soutirage S6, avec de la vapeur à une pression de 18 bars et à un débit représentant 7 % du débit total.
  • Enfin, l'eau sortant du réchauffeur R6 est encore réchauffée dans le dernier réchauffeur R7 qui est alimenté, à partir d'un soutirage S7, avec de la vapeur à une pression de 36 bars et à un débit représentant 7,5 % en poids du débit total. L'eau condensée sortant du réchauffeur R7 représente donc, comme indiqué précédemment, 100 % du débit total qui est envoyé sous une pression de l'ordre de 200 à 220 bars au générateur de vapeur GV (non représenté) de l'installation où cette eau est vaporisée pour être renvoyée dans la turbine (non représentée).
  • La vapeur issue du soutirage S7 se condense dans le réchauffeur R7 et les condensats de cette vapeur ainsi formés sont évacués à partir du réchauffeur R7 par une canalisation de purge P1 raccordée à un premier séparateur de phases SP1 par l'intermédiaire d'une soupape de régulation principale SR1. Une soupape de régulation motorisée de secours V1 est branchée en dérivation par rapport à la soupape de régulation principale SR1 sur la canalisation de purge P1 pour renvoyer, si nécessaire, les condensats de la canalisation de purge P1 directement au condenseur. Les soupapes de régulation SR1 et V1 sont commandées par un régulateur de niveau RN1 destiné à régler le niveau d'eau dans le réchauffeur R7. Le mélange à 244 °C de la canalisation de purge P1 est envoyé par l'intermédiaire de la soupape de régulation principale SR1 dans le séparateur de phases SP1 qui sépare l'eau de la vapeur résultant de la détente, cette dernière étant envoyée par une canalisation CV1 côté vapeur dans le réchauffeur R6 et l'eau étant envoyée par une canalisation CE1 côté eau dans le réchauffeur R6.
  • Les condensats recueillis dans le réchauffeur Re sont envoyés par une canalisation de purge P2 à un séparateur de phases SP2 par l'intermédiaire d'une soupape de régulation principale SR2 avec laquelle est branchée en parallèle une soupape de régulation motorisée de secours V2. Les condensats à 207 °C de la canalisation de purge P2 sont séparés dans le séparateur de phases SP2 et la vapeur est envoyée par une canalisation CV2 côté vapeur du réchauffeur R5, tandis que l'eau est envoyée par une canalisation CE2 côté eau du réchauffeur R5. Le séparateur de phases SP2, ainsi que les soupapes de régulation SR2 et V2 qui sont commandées par un régulateur de niveau RN2 qui règle le niveau d'eau dans le réchauffeur R6, fonctionnent de la même manière et jouent le même rôle que le séparateur de phases SP1 et les soupapes de régulation SR1 et V1 décrits précédemment.
  • Les condensats à 175 °C recueillis dans le réchauffeur R5 sont envoyés par une canalisation de purge P3 au réchauffeur par mélange R4, par l'intermédiaire d'une soupape de régulation principale SR3 avec laquelle est branchée en dérivation une soupape de régulation motorisée de secours V3. Les soupapes SR3 et V3 sont commandées par un régulateur de niveau RN3 qui règle le niveau dans le réchauffeur R5. Le mélange circulant dans la canalisation de purge P3, qui représente 21,5 % en poids du débit total, est mélangé dans la bâche dégazante R4 avec l'eau provenant du réchauffeur R3 et la vapeur issue du soutirage S4 de sorte que la pompe alimentaire PA a un débit représentant 100 % du débit total.
  • Les condensats recueillis dans le réchauffeur R3 sont envoyés au moyen d'une canalisation de purge P4 à un séparateur de phases SP3, par l'intermédiaire d'une soupape de régulation principale SR4 avec laquelle est branchée en dérivation une soupape de régulation motorisée de secours V4 qui, comme les soupapes V1, V2 et V3, renvoie directement les condensats au condenseur en cas d'incident. Les soupapes de régulation SR4 et V4 sont commandées par un régulateur de niveau RN4 qui règle le niveau d'eau dans le réchauffeur R3. Les condensats à 120 °C de la canalisation de purge P4 sont divisés dans le séparateur de phases SP3, d'où la vapeur est envoyée côté vapeur du réchauffeur R2 par une canalisation CV3 tandis que l'eau est envoyée côté eau du réchauffeur R2 par une canalisation CE3.
  • Enfin, la canalisation de purge P5 qui recueille les condensats à 100 °C issus du réchauffeur R2 est raccordée en RA à une canalisation de dérivation CD qui est branchée entre, d'une part, le condenseur et, d'autre part, la canalisation principale CP, entre les réchauffeurs R2 et R3. Une soupape de régulation motorisée de secours V5 est disposée dans la canalisation de dérivation CD entre le raccord RA et le condenseur, et une soupape de régulation principale SRS est disposée dans la canalisation CD entre le raccord RA et le raccord de la canalisation CD avec la canalisation principale CP. Les soupapes de régulation SR5 et V5 sont commandées par un régulateur de niveau RN5 qui assure la régulation du niveau d'eau dans le réchauffeur R2. Une pompe PR de reprise de condensat est disposée dans la canalisation CD entre le raccord RA et la soupape de régulation SR5 pour réinjecter les condensats de la canalisation de purge P5 dans la canalisation principale CP. En cas d'arrêt de la pompe PR, les condensats sont retournés au condenseur par la soupape de régulation de secours V5.
  • En fonctionnement, une partie de l'énergie calorifique du mélange issu des réchauffeurs R7, R6, R5, R3 et R2 est utilisée pour réchauffer l'eau du circuit principal, soit par réinjection directe dans ce dernier à partir des réchauffeurs R5 et R2, soit par envoi dans le réchauffeur suivant après séparation de la phase liquide et de la phase vapeur dans les séparateurs de phases SP1, SP2 et SP3. Néanmoins, une partie de l'énergie de ce mélange présente sous forme de pression est perdue dans les séparateurs de phases qui, en outre, ont l'inconvénient d'être soumis à une forte érosion du fait de la vitesse élevée du mélange à la sortie des soupapes de régulation.
  • Ces inconvénients sont éliminés grâce au système de réchauffage suivant l'invention dont le schéma est représenté à la Fig. 2 sur laquelle les mêmes numéros de référence que ceux employés à la Fig. 1 ont été utilisés pour désigner les éléments similaires. On notera en outre que les débits, pressions et températures en différents points du circuit suivant l'invention sont sensiblement les mêmes que ceux indiqués à propos de la Fig. 1 et ils ne seront pas précisés à nouveau. Le système de réchauffage suivant l'invention de la Fig. 2 diffère essentiellement de celui de la Fig. 1 en ce que les soupapes de régulation principale SR1, SR2, SR3 et SR4, ainsi que les séparateurs de phases SP,, SP2 et SP3 ont été supprimés et remplacés par des turbines biphasiques. C'est ainsi que la turbine biphasique TB, remplace la soupape de régulation SR1 et le séparateur de phases SP1, la turbine biphasique TB2 remplace la soupape de régulation SR2 et le séparateur de phases SP2, la turbine biphasique TB3 remplace la soupape de régulation SR3, la turbine biphasique TB5 remplace la soupape de régulation SR4 et le séparateur de phases SP3 et une turbine biphasique supplémentaire TB4 est disposée entre les turbines biphasiques TB3 et TBs.
  • Les turbines biphasiques sont des turbines d'une conception particulière qui sont alimentées au moyen d'un mélange d'un liquide et d'un gaz ou vapeur pour entraîner en rotation un arbre, fournissant ainsi un travail mécanique, tout en assurant une séparation du liquide et du gaz, de sorte que ces derniers peuvent être recueillis séparément à la sortie de la turbine. Etant donné que ce type de turbine est connu, notamment par les brevets US-3 879 949, 3 972 195 et 4 087 261 auxquels on pourra se reporter, il n'en sera pas donné de description détaillée dans le présent mémoire.
  • Les condensats du réchauffeur R7 sont introduits dans la turbine biphasique TB, en fonction du niveau dans ce réchauffeur par ajustement de la position du modérateur V', de la turbine biphasique TB, commandé par le régulateur de niveau RN,. Ces condensats sont dirigés vers le condenseur par la soupape de régulation de secours V, en cas d'indisponibilité de la turbine biphasique TB,. La vapeur séparée dans celle-ci est dirigée vers la zone vapeur du réchauffeur Rs, tandis que l'eau séparée rejoint les condensats du réchauffeur R6. Ce mélange est introduit dans la turbine biphasique suivante TB2 en fonction du niveau dans le réchauffeur Rs, par ajustement de la position de son modérateur V'2 commandé par le régulateur de niveau RN2. En cas d'indisponibilité de la turbine biphasique TB2, le mélange est dirigé vers le condenseur par la soupape de régulation de secours V2. La vapeur séparée dans la turbine biphasique TB2 est dirigée vers la zone vapeur du réchauffeur R5, tandis que l'eau séparée rejoint les condensats de ce réchauffeur. A nouveau, ce mélange est introduit dans la turbine biphasique suivante TB3 en fonction du niveau dans le réchauffeur R5, par ajustement de son modérateur V'3 commandé par le régulateur de niveau RN3. En cas d'indisponibilité de la turbine biphasique TB3, le mélange est dirigé vers le condenseur par la soupape de régulation de secours V3. La vapeur séparée dans la turbine biphasique TB3 est dirigée vers le réchauffeur par mélange R4, tandis que l'eau séparée est envoyée directement dans la turbine biphasique suivante TB4. La vapeur séparée dans celle-ci est dirigée vers la zone vapeur du réchauffeur R3, tandis que l'eau séparée rejoint les condensats de ce réchauffeur. Enfin, ce mélange est introduit dans la dernière turbine biphasique TBS en fonction du niveau dans le réchauffeur R3, par ajustement de son modérateur V'4 commandé par le régulateur de niveau RN4. En cas d'indisponibilité de la turbine biphasique TBS, le mélange est dirigé vers le condenseur par la soupape de régulation de secours V4. La vapeur séparée dans la turbine biphasique TB5 est dirigée vers la zone vapeur du réchauffeur R2, tandis que l'eau séparée rejoint les condensats de ce réchauffeur en RA. La partie plus aval de ce système fonctionne ensuite comme la partie correspondante du système de réchauffage conventionnel de la Fig. 1.
  • En fonctionnement, l'énergie du mélange d'eau et de vapeur dans chacune des turbines biphasiques est recueillie sur un arbre commun A pour entraîner un alternateur auxiliaire, une pompe ou autre. En variante, les turbines biphasiques peuvent ne pas être couplées sur le même arbre.
  • On se reportera maintenant à la Fig. 3 qui montre un système de réchauffage conventionnel pour centrale nucléaire et sur laquelle les mêmes lettres de référence que celles utilisées sur les Fig. 1 et 2 ont été employées pour désigner des éléments analogues. Etant donné que le système de réchauffage de la Fig. 3 est classique et présente en outre de nombreuses similitudes avec celui de la Fig. 1, il sera décrit plus succinctement que celui-ci.
  • Ce système de réchauffage comprend, sur le circuit principal CP, un sous-refroidisseur SOR et six réchauffeurs R11 à R16 alimentés en vapeur par des soutirages S11 à S,6 respectivement. Le réchauffeur R,6 est également alimenté par de la vapeur séparée par un séparateur de phases SP11 des condensats d'un surchauffeur SU (non représenté) produisant des condensats de vapeur à une pression encore plus élevée que celle du réchauffeur R16. Des soupapes de régulation principale SR11 et de secours V11 commandées en fonction du niveau dans le surchauffeur permettent de diriger les condensats de celui-ci vers le séparateur de phases SP11 ou vers le condenseur suivant les besoins, comme décrit précédemment. Le réchauffeur suivant R,5 est alimenté par de la vapeur séparée des condensats du réchauffeur R16 par un séparateur de phases SP12. Des soupapes de régulation principale SR12 et de secours V12 commandées par un régulateur de niveau RN11 sont prévues.
  • Les condensats du réchauffeur R,5 sont dirigés vers un réservoir de récupération des purges DRT par l'intermédiaire d'une soupape de régulation principale SR13. En cas d'incident, une soupape de régulation de secours V13 permet d'envoyer ces condensats directement au condenseur. Le réservoir DRT reçoit également les condensats d'un sécheur SE (non représenté) par l'intermédiaire d'une soupape de régulation principale SR15. Une soupape de régulation de secours V15, commandée comme la soupape SR15 en fonction du niveau dans le sécheur, permet de diriger ces condensats directement vers le condenseur si nécessaire. Le réservoir DRT reçoit enfin les condensats du réchauffeur R14, une soupape de régulation de secours V14 commandée par le régulateur de niveau R14 étant toutefois prévue pour les envoyer au condenseur si nécessaire.
  • Le contenu du réservoir DRT est réinjecté par une pompe de reprise des condensats PR dans le circuit principal CP, entre la pompe d'alimentation PA et le réchauffeur R14, par l'intermédiaire d'une soupape de régulation principale SR16 commandée par un régulateur de niveau RN13 associé au réservoir DRT. Ce régulateur RN13 commande également une soupape de régulation de secours V,6 permettant de renvoyer les condensats du réservoir DRT au condenseur.
  • Les condensats du réchauffeur R13 sont envoyés, soit à un séparateur de phases SP13 par l'intermédiaire d'une soupape de régulation principale SR17, soit au condenseur par l'intermédiaire d'une soupape de régulation de secours V17, en fonction de la commande du régulateur de niveau RN15 du réchauffeur R13. Enfin, les condensats du réchauffeur R12 sont envoyés, soit directement au sous-réchauffeur SOR et, de là, au condenseur par l'intermédiaire d'une soupape de régulation principale SR18, soit directement au condenseur par l'intermédiaire d'une soupape de régulation de secours V18, en fonction de la commande du régulateur de niveau RN16 du réchauffeur R12.
  • Dans le système de réchauffage suivant l'invention pour centrale nucléaire, comme représenté à la Fig. 4, des turbines biphasiques TB11, TB12, TB13, TB14 et TB15 sont substituées respectivement aux soupapes de régulation principales SR11, SR12, SR13, SR17 et SR18, et' aux séparateurs de phases SP11, SP12 et SP13 supprimés.
  • La vapeur séparée par les turbines TB11 et TB12 alimente respectivement les réchauffeurs R16 et R15, tandis que l'eau rejoint les condensats respectifs de ces réchauffeurs pour alimenter les turbines suivantes TB12 et TB13 respectivement. La vapeur séparée par la turbine biphasique TBi3 est dirigée vers le réservoir DRT, tandis que l'eau est envoyée en amont de la pompe PR de reprise des condensats pour être réinjectée avec les purges du réservoir DRT dans le circuit principal CP.
  • La turbine biphasique TB14 sépare la vapeur des condensats du réchauffeur R13 et envoie celle-ci côté vapeur du réchauffeur R12, tandis que l'eau rejoint les condensats de ce réchauffeur. Ce mélange est introduit dans la turbine biphasique TB15 et la vapeur séparée dans celle-ci est dirigée vers la zone vapeur du réchauffeur R11. L'eau rejoint les condensats de ce réchauffeur et le mélange ainsi formé alimente le sous-refroidisseur SOR.
  • Bien entendu, comme dans le cas de la Fig. 2, les turbines biphasiques TB11 à TB15 sont alimentées en fonction du niveau dans l'échangeur par condensation dont elles reçoivent les condensats, par ajustement de la position de leur modérateur respectif V'11, V'12, V'13, V'14 et V'15. De même également, dans cet exemple, l'énergie du mélange d'eau et de vapeur dans chacune des turbines est recueillie sur un arbre commun A pour entraîner des organes auxiliaires ou individuellement sur l'arbre de chaque turbine.
  • Ainsi, le système de réchauffage à turbine biphasique suivant l'invention permet à la fois d'alimenter en cascade les réchauffeurs avec de la vapeur prélevée à partir des condensats d'un réchauffeur précédent ou d'un surchauffeur et de fournir de la puissance mécanique supplémentaire. Ceci permet donc d'accroître le rendement global de l'installation de production d'énergie à laquelle est associé le système de réchauffage.
  • Outre cet avantage au niveau du rendement, qui peut se chiffrer par un apport de puissance supplémentaire de 0,5 à 0,8 %, le système de réchauffage suivant l'invention permet de supprimer les séparateurs de phases statiques des systèmes de réchauffage de la technique antérieure puisque ce sont les turbines biphasiques elles-mêmes qui effectuent la séparation. Il en résulte par là même une suppression des phénomènes d'érosion précités dans les séparateurs de phases et une simplification du schéma de canalisation.

Claims (7)

1. Système de réchauffage des condensats d'une turbine à vapeur d'une installation de production d'énergie, comprenant une série de réchauffeurs disposés en cascade et alimentés par des soutirages de vapeur à des pressions progressivement croissantes et au moins une turbine biphasique alimentée par les condensats d'un réchauffeur, caractérisé en ce qu'il comprend au moins deux turbines biphasiques disposées en cascade (TB1, TB2 ; TB12, TB13) dont la première (TB1, TB12) est alimentée par les condensats du réchauffeur (R7 ; R16) alimenté par la vapeur à la pression la plus élevée, et la première turbine biphasique (TB1, TB12) sépare une phase vapeur qui est renvoyée vers le réchauffeur précédent (R6 ; R15) alimenté en vapeur à plus faible pression et une phase liquide qui est renvoyée avec les condensats du réchauffeur précédent (R6 ; R15) vers la seconde turbine biphasique (TB2 ; TB13).
2. Système selon la revendication 1, caractérisé en ce qu'il comprend plusieurs turbines biphasiques (TB1, TB2, TB3) disposées en cascade, chacune de ces turbines étant alimentée par les condensats d'un réchauffeur (R7, Rs, R5) et séparant une phase vapeur qui est renvoyée vers le réchauffeur précédent (R6, Rs) à plus faible pression, d'une phase liquide qui est renvoyée avec les condensats du réchauffeur précédent (R6, Rs) vers la turbine biphasique (TB2, TB3) suivante.
3. Système selon l'une quelconque des revendications 1 et 2, comprenant un réchauffeur par mélange intermédiaire, caractérisé en ce qu'il comprend une turbine biphasique (TB4) associée au réchauffeur (R3) disposé immédiatement en amont du réchauffeur par mélange (R4) qui est alimentée uniquement par le liquide de sortie de la turbine biphasique (TB3) alimentant le réchauffeur par mélange (R4).
4. Système selon l'une quelconque des revendications 1 et 2 de réchauffage des condensats dans une installation nucléaire de production d'énergie comprenant en aval du réchauffeur à pression la plus élevée, un surchauffeur produisant des condensats de vapeur à une pression encore plus élevée que celle de ce dernier réchauffeur, caractérisé en ce qu'il comprend une turbine biphasique (TB11) entre ledit surchauffeur (SU) et ledit réchauffeur (R16).
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend une turbine biphasique associée à chacun de plusieurs réchauffeurs consécutifs.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend plusieurs turbines biphasiques (TB1-TB5 ; TBn-TB15) couplées à un arbre commun (A).
7. Système selon l'une quelconque des revendications 1 à 6, dans lequel ladite turbine biphasique comporte un modérateur de réglage de son alimentation, caractérisé en ce que ledit modérateur (V1-V'4 ; V'11-V'15) est commandé par un régulateur (RN1-RN4 ; RN11, RN15, RN10) du niveau des condensats dans ledit échangeur à condensation.
EP80400077A 1980-01-18 1980-01-18 Système de réchauffage pour installation de production d'énergie à turbine à vapeur Expired EP0032641B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE8080400077T DE3071745D1 (en) 1980-01-18 1980-01-18 Reheating system for a steam-turbine power plant
AT80400077T ATE22152T1 (de) 1980-01-18 1980-01-18 System zur wiedererwaermung fuer eine dampfturbinenkraftanlage.
EP80400077A EP0032641B1 (fr) 1980-01-18 1980-01-18 Système de réchauffage pour installation de production d'énergie à turbine à vapeur
US06/199,193 US4408460A (en) 1980-01-18 1980-10-21 Heating system for a steam turbine energy producing plant
AU63856/80A AU537612B2 (en) 1980-01-18 1980-10-30 Feed-water preheating system
JP18270780A JPS56124611A (en) 1980-01-18 1980-12-23 Condensing heating apparatus for steam turbine of energy manufacturing plant
ZA00810290A ZA81290B (en) 1980-01-18 1981-01-16 Heating system for a steam turbine energy producing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP80400077A EP0032641B1 (fr) 1980-01-18 1980-01-18 Système de réchauffage pour installation de production d'énergie à turbine à vapeur

Publications (2)

Publication Number Publication Date
EP0032641A1 EP0032641A1 (fr) 1981-07-29
EP0032641B1 true EP0032641B1 (fr) 1986-09-10

Family

ID=8187354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400077A Expired EP0032641B1 (fr) 1980-01-18 1980-01-18 Système de réchauffage pour installation de production d'énergie à turbine à vapeur

Country Status (7)

Country Link
US (1) US4408460A (fr)
EP (1) EP0032641B1 (fr)
JP (1) JPS56124611A (fr)
AT (1) ATE22152T1 (fr)
AU (1) AU537612B2 (fr)
DE (1) DE3071745D1 (fr)
ZA (1) ZA81290B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188183B1 (fr) * 1985-01-16 1989-03-08 Hamon-Sobelco S.A. Procédé et dispositif de récupération de l'énergie thermique des gaz brûlés dans des centrales thermiques
ATE43699T1 (de) * 1985-02-25 1989-06-15 Hamon Sobelco Sa Vorwaermer fuer umwandlungsanlage von thermischer energie.
EP1806533A1 (fr) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Cycle à vapeur d'une centrale électrique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH320887A (de) * 1954-04-06 1957-04-15 Sulzer Ag Verfahren zum Betrieb einer Dampfkraftanlage mit Zwischendampfentnahme zur Speisewasservorwärmung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR377826A (fr) * 1906-06-27 1907-09-16 Sebastian Ziani De Ferranti Perfectionnements aux installations de production de force motrice au moyen de turbines à fluide élastique
US2921441A (en) * 1953-12-17 1960-01-19 Sulzer Ag Feed water preheating system for steam power plants
US2900793A (en) * 1954-04-06 1959-08-25 Sulzer Ag Condensing steam heated boiler feed water heating system including a condensate operated turbine
FR1290451A (fr) * 1961-04-20 1962-04-13 Siemens Ag Installation d'énergie thermique, en particulier installation groupée, avec chaudière à circulation forcée
CH521514A (de) * 1970-07-15 1972-04-15 Linde Ag Entspannungsturbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH320887A (de) * 1954-04-06 1957-04-15 Sulzer Ag Verfahren zum Betrieb einer Dampfkraftanlage mit Zwischendampfentnahme zur Speisewasservorwärmung

Also Published As

Publication number Publication date
AU6385680A (en) 1981-07-23
ZA81290B (en) 1982-02-24
ATE22152T1 (de) 1986-09-15
DE3071745D1 (en) 1986-10-16
EP0032641A1 (fr) 1981-07-29
US4408460A (en) 1983-10-11
AU537612B2 (en) 1984-07-05
JPS56124611A (en) 1981-09-30

Similar Documents

Publication Publication Date Title
EP1495473B1 (fr) Procede et dispositif de production d'electricite a partir de la chaleur produite dans le coeur d'au moins un reacteur nucleaire a haute temperature
US8984894B2 (en) Method for operating a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method
US4674285A (en) Start-up control system and vessel for LMFBR
US20140033676A1 (en) Unique method of solar integration in combined cycle power plant
US20090136337A1 (en) Method and Apparatus for Improved Reduced Load Operation of Steam Turbines
FR2511210A1 (fr) Centrale electrique utilisant des turbines a plusieurs etages
WO1993023702A1 (fr) Chaudiere de recuperation de chaleur a circulation induite
JPS595793B2 (ja) 地熱エネルギ−変換システム
EP2630341B1 (fr) Procédé d'opération d'une centrale électrique à cycle combiné à cogénération et centrale électrique à cycle combiné réalisant le procédé
US7032373B2 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
EP0032641B1 (fr) Système de réchauffage pour installation de production d'énergie à turbine à vapeur
EP0093724A1 (fr) Reservoir de chasse a pression de glissement.
FR2690512A1 (fr) Réacteur à lit fluidisé circulant comportant des échangeurs extérieurs alimentés par la recirculation interne.
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
BE1010594A3 (fr) Procede de conduite d'une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.
US2636485A (en) Closed feed system for steam power plants
US2201615A (en) Hydroelectric steam power generating station including plural prime movers and method of operating said station and said prime movers
JP3122234B2 (ja) 汽力発電設備のリパワリングシステム
WO2022233874A1 (fr) Centrale thermique améliorée
US409698A (en) Grease and oil separator
EP3942160B1 (fr) Centrale électrique et procédé de d'épuration de l'eau pour un cycle eau/vapeur à passage unique d'une centrale électrique
KR100201587B1 (ko) 복합발전 폐열회수 보일러 절탄기 증발현상 방지구조
BE518548A (fr)
FR2651860A1 (fr) Procede et installation pour la recuperation intensive de la chaleur de milieux fluides a temperature elevee, ainsi que des particules en suspension eventuellement presentes dans de tels milieux fluides.
BE362746A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801014

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 22152

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3071745

Country of ref document: DE

Date of ref document: 19861016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861223

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870131

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19880131

BERE Be: lapsed

Owner name: HAMON-SOBELCO S.A.

Effective date: 19880131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19881001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890131

EUG Se: european patent has lapsed

Ref document number: 80400077.6

Effective date: 19880913