EP0028343A2 - Verfahren und Wärmetauscher zur Führung des Heizmediums in einer Sorptionswärmepumpe - Google Patents

Verfahren und Wärmetauscher zur Führung des Heizmediums in einer Sorptionswärmepumpe Download PDF

Info

Publication number
EP0028343A2
EP0028343A2 EP80106362A EP80106362A EP0028343A2 EP 0028343 A2 EP0028343 A2 EP 0028343A2 EP 80106362 A EP80106362 A EP 80106362A EP 80106362 A EP80106362 A EP 80106362A EP 0028343 A2 EP0028343 A2 EP 0028343A2
Authority
EP
European Patent Office
Prior art keywords
condenser
absorber
heating medium
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80106362A
Other languages
English (en)
French (fr)
Other versions
EP0028343A3 (de
Inventor
Hans Dipl.-Ing. Sommers
Heinrich Dr. rer. nat. Dipl.-Chem. Mühlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EON Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19792944654 external-priority patent/DE2944654A1/de
Priority claimed from DE19803010601 external-priority patent/DE3010601A1/de
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Publication of EP0028343A2 publication Critical patent/EP0028343A2/de
Publication of EP0028343A3 publication Critical patent/EP0028343A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the invention relates to methods for countercurrent flow of the heating medium to the solvent and / or refrigerant circulated in a sorption heat pump and heat exchanger for carrying out the method.
  • Sorption heat pumps of the type mentioned which are often referred to as absorption or absorption heat pumps, are known per se.
  • compression heat pumps which are also known, they have so far found little use because their heating output is lower than that of the compression heat pumps.
  • the heat to be used is transferred to the absorber and condenser or resorber.
  • the heating medium for example heating water
  • the heat exchangers of these known sorption heat pumps are generally designed as tube bundle exchangers.
  • the operating conditions of sorption heat pumps can be very different: On the one hand, the desired maximum temperature of the heating medium to be heated with the help of it can vary, depending on whether this is led through conventional room radiators or a floor heating system or, if necessary, additionally or solely for domestic hot water. Heating serves. On the other hand, the heat that can be obtained from the environment (air, water, soil) can be available in different amounts and at different temperature levels. - The measures for the use of environmental heat when operating sorption heat pumps are known. Their description is omitted because they are not the subject of this invention.
  • the object of the invention is to develop generic methods and heat exchangers for their implementation, which enable optimal use of the available heat quantities in all operating modes and in which the heating medium is heated to the highest possible temperature.
  • the temperatures in these parts of the plant or the evaporation, condensation and absorption temperatures depend on the solvent and / or refrigerant, that is to say on the pair of substances used, the concentrations of the pair of substances and the prevailing pressures, so that they depend on the operating conditions either the maximum temperature in the absorber is higher than that in the capacitor or resorber or the maximum temperature in the capacitor or resorber is higher than that in the absorber.
  • the heating medium for example water
  • the heating medium should always flow first and last through a condenser or resorber heat exchanger area. In between, depending on the number of exchanger areas, it flows either through an absorber-exchanger area or alternately through several absorber and capacitor or resorber-exchanger areas in succession.
  • salt / water In addition to ammonia / water, mainly salt / water, salt / alcohols or salt / amines are used as material pairs.
  • Lithium bromide or lithium iodide / zinc bromide are used in particular as salts, for example methanol or butanediol as alcohols and methylamine as amines.
  • the highest temperature in the case of a low refrigerant concentration and appropriate determination of the pressures and if an internal heat exchange takes place between the rich solution from the absorber and the refrigerant vapor upstream of the condenser Absorber in the entrance area of the refrigerant.
  • the heating water can be heated to the highest possible temperature.
  • the heating medium should flow through at least four separate heat exchanger areas. It first enters the condenser exchanger area and then flows alternately between the absorber and the condenser, depending on the number of exchanger areas. The heating medium leaves the heat exchanger from the absorber exchange area, in which the heating medium is brought to its highest temperature.
  • the total number of heat exchanger areas should be according to claim 1 nindestens three are: Two areas for the capacitor or R esorber and a region for the absorber.
  • the number of exchanger areas is not limited upwards 1 in, since it depends on the size and performance of the system. In view of the fact that the expenditure on apparatus increases greatly with the increasing number of areas, a total of five or seven areas is regarded as optimal.
  • a division of the absorber and capacitor or resorber into at least four exchanger regions is necessary, namely at least two absorber and two capacitor exchanger regions.
  • each absorber heat exchanger area is at least the same size, preferably larger than the largest condenser heat exchanger area.
  • the highest temperature in the condenser or resorber is practically always above the highest temperature in the A b sorber, i.e. the highest possible temperature would be the heating water under the condition of the counterflow principle in the last condenser exchanger area - there, where the ammonia vapor enters the condenser.
  • a dephlegmator is usually arranged between the expeller and the condenser, which serves to condense and return (to the expeller) the water evaporated with the ammonia vapor.
  • the temperature of the vapors in the dephlegmator is always higher than the entry temperature of the ammonia vapor into the condenser.
  • An advantageous further embodiment of the inventive method according to claim 2 is that the heating medium as the last stage (before discharge to the consumer) in heat exchange with the dephlegmator (as far as the is not cooled by internal heat exchange) where it reaches its highest temperature. Because the dephlegmator heat exchanger is used to heat the heating medium, the temperature of the ammonia vapor flowing from the dephlegmator to the condenser is simultaneously lowered, so that the highest temperature in the condenser is not higher, but preferably lower than the highest absorber temperature. - A dephlegmator is not necessary for salts as part of the pair of substances, since salts cannot evaporate at the pressures and temperatures prevailing in sorption heat pumps.
  • the type of heat exchanger used depends on the heating medium. If the heating medium is a liquid, coaxial pipes are advantageous according to the invention. In order to increase the heat exchange surface, two or more inner tubes can also be provided instead of the one inner tube that is usually used. If air is used as the heating medium, finned tubes, for example, are more appropriate.
  • FIG 1 and 2 schematically illustrate the example arrangement and design of the tubes of the condenser and absorber heat exchanger of an absorption heat pump according to the method of claim 1.
  • the heat exchangers are operated with water as the heating medium and are made up of coaxial pipes. These are bent into three concentric rings of different diameters to save space and arranged in several layers one above the other.
  • the circulating medium flows in the inner pipe, the heating water in the outer pipe flows in the opposite direction.
  • the outer tubes of the condenser and absorber heat exchangers are divided into several separate areas, specifically the condenser part in three and the absorber part in the present example in two areas.
  • the four superimposed outer rings and the five rings of medium diameter form the absorber heat exchanger, which, as already described, is divided into two areas A1 and A2 on the heating water side - once two and once seven rings.
  • the remaining four rings with the smallest diameter form the three condenser heat exchanger areas; the lowest ring is divided as the heat exchanger area K1, the two rings above it as area K2.
  • the uppermost inner ring forms the heat exchanger area K3.
  • Fig. 1 serves to illustrate the heating water circuit in the outer tube.
  • the order in which the heating medium flows through the pipes is given by the alphabetical order of the small letters.
  • the still unheated or cooled heating water flows according to the invention first through the condenser heat exchanger area K1 (a), then through the absorber heat exchanger area A1 (b, c), and then through a further condenser heat exchanger area K2 (d, e ), through the second absorber heat exchanger area A2 (f to 1) to finally exit the last condenser area K3 (m).
  • FIG. 2 shows how the circulating medium flows through the absorber and the condenser.
  • the order is given as in Fig. 1 by the alphabetical order of the small letters.
  • the circulating agent enters the uppermost ring with the smallest diameter (a), flows through the three rings below (b, c, d) and leaves the condenser exchanger.
  • the circulating medium enters the uppermost ring with the largest diameter (a) and flows through all exchanger tubes in the order given (a to i).
  • the circulating medium always flows in countercurrent to the heating medium in all inner pipes.
  • the total heating output is increased. This increase was about 10% in tests. This results in an increase in the heating rate. This is defined as the ratio of the useful heat achieved to the amount of heat supplied in the form of fuel. In the case of a comparable known sorption heat pump, the heating rate determined in tests is approximately 1.15. This could be increased to approximately 1.26 using the methods according to the invention and the new heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Gegenstromführung des Heizmediums zu dem in einer Sorptionswärmepumpe im Kreislauf geführten Lösungs- und/oder Kältemittel und Wärmetauscher zur Durchführung der Verfahren. Zur optimalen Nutzung der am Absorber und Kondensator bzw. Resorber verfügbaren Wärme wird erfindungsgemäß das Heizmedium wechselweise im Wärmeaustausch mit Teilen des Absorbers und Kondensators bzw. Resorbers geführt. Das zu erwärmende Heizmedium tritt in jedem Fall zunächst in Wärmeaustausch mit einer Kondensator- bzw. Resorberzone und durchströmt danach mindestens je eine Absorber- und Kondensator- bzw. Resorberzone. Abhängig vom Stoffpaar sowie den Betriebsbedingungen ist die letzte Tauscherzone entweder eine Kondensator- oder eine Absorberzone oder, falls vorhanden, der Dephlegmator. Die Zahl der vom Heizmedium durchströmten Bereiche der Wärmetauscher, die vorzugsweise aus konzentrischen Rohrschlangen bestehen, beträgt deshalb mindestens drei, vorzugsweise fünf oder sieben, wenn eine Kondensatorzone, mindestens vier, wenn eine Absorberzone und mindestens fünf, wenn der Dephlegmator die letzte Wärmetauscherzone für das Heizungsmedium bildet.

Description

  • Die Erfindung betrifft Verfahren zur Gegenstrom-Führung des Heizmediums zu dem in einer Sorptionswärmepumpe im Kreislauf geführten Lösungs- und/oder Kältemittel und Wärmetauscher zur Durchführung der Verfahren.
  • Sorptionswärmepumpen der genannten Art, die oft als Absorptions- beziehungsweise Resorptionswärmepumpen bezeichnet werden, sind an sich bekannt. Im Gegensatz zu den ebenfalls bekannten Kompressionswärmepumpen haben sie bisher nur wenig Anwendung gefunden, da ihre Heizleistung geringer als die der Kompressionswärmepumpen ist.
  • Bei den Sorptionswärmepumpen erfolgt die Abgabe der zu nutzenden Wärme am Absorber und Kondensator beziehungsweise Resorber. Bei den bisher bekannten Sorptionswärmepumpen strömt das Heizmedium, zum Beispiel Heizungswasser, durch je einen als Wärmetauscher ausgebildeten Absorber und Kondensator bzw. Resorber, wobei die Reihenfolge, in der die beiden Wärmetauscher vom Heizmedium durchströmt werden, unterschiedlich ist. Die Wärmetauscher dieser bekannten Sorptionswärmepumpen sind im allgemeinen als Rohrbündeltauscher ausgebildet.
  • Mit dieser bekannten Verfahrensweise und derartigen Wärmetauschern ist es nicht möglich, die verfügbaren Wärmemengen vollständig und optimal zu nutzen, die dem Lösungs-/oder Kältemittel, im folgenden Kreislaufmedium genannt, in Desorber und Verdampfer durch Beheizung sowie Umwelt-Wärme aus Luft oder Wasser zugeführt werden.
  • Die Betriebsbedingungen von Sorptionswärmepumpen können sehr unterschiedlich sein: Einerseits kann die gewünschte maximale Temperatur des mit ihrer Hilfe zu erwärmenden Heizmediums unterschiedlich sein, je nachdem ob dieses durch konventionelle Raum-Heizkörper oder ein Fußboden-Heizungssystem geführt wird oder ggf. zusätzlich oder allein zur Brauchwasser-Erwärmung dient. Andererseits kann die aus der Umgebung (Luft, Wasser, Erdboden) gewinnbare Wärme in unterschiedlicher Menge und mit verschiedenen Temperaturniveaus zur Verfügung stehen. - Die Maßnahmen zur Nutzung von Umweltwärme beim Betrieb von Sorptionswärmepumpen sind bekannt. Auf ihre Beschreibung wird verzichtet, da sie nicht Gegenstand dieser Erfindung sind.
  • Aufgabe der Erfindung ist es, gattungsgemäße Verfahren und Wärmetauscher zu deren Durchführung zu entwickeln, die bei allen Betriebsweisen eine optimale Nutzung der verfügbaren Wärmemengen ermöglichen und bei denen das Heizmedium auf eine möglichst hohe Temperatur erwärmt wird.
  • Diese Aufgabe wird durch die in den Ansprüchen 1 bis 7 angegebenen Maßnahmen gelöst.
  • Die erfindungsgemäßen Verfahrensweisen und die Ausbildung der Wärmetauscher zu deren Durchführung werden nachfolgend näher erläutert. - Der Aufbau und die Funktionsweise einer Sorptionswärmepumpe wird als bekannt vorausgesetzt und nicht mehr beschrieben. - Bei einer Sorptionswärmepumpe sind bekanntlich Absorber und Kondensator bzw. Resorber als Wärmetauscher ausgebildet und stellen so die Verbindungselemente zum Heizsystem dar. In den Wärmetauschern strömen üblicherweise das Kreislaufmedium und das Heizmedium im Gegenstrom zueinander.
  • Die Temperaturen in diesen Anlagenteilen bzw. die Verdampfungs-, Kondensations- und Absorptionstemperaturen sind abhängig vom Lösungs- und/oder Kältemittel, das heißt vom verwendeten Stoffpaar, den Konzentrationen der Stoff - paar-Komponenten und den herrschenden Drücken, so daß abhängig von den Betriebsbedingungen entweder die maximale Temperatur im Absorber höher ist als die im Kondensator bzw. Resorber oder die maximale Temperatur im Kondensator bzw. Resorber höher ist als die im Absorber.
  • Bei Versuchen wurde festgestellt, daß es in den Fällen, bei denen im Kondensator bzw. Resorber höhere Temperaturen als im Absorber vorliegen - was meistens bei Verwendung des Stoffpaares Ammoniak/Wasser zutrifft - thermodynamisch am günstigsten ist, den Kältemitteldampf mit dem in den Heizkörpern abgekühlten Heizmedium am Kondensatoraustritt sehr weit herunterzukühlen, ebenso wie die reiche Lösung am Absorberaustritt, danach ggf. mit dem Heizmedium einen weiteren Teil des Kondensators und den übrigen Absorberteil zu kühlen und zum Schluß am Kondensator das Heizmedium auf die höchstmögliche Temperatur zu erwärmen.
  • Daher soll nach dem erfindungsgemäßen Verfahren entsprechend Anspruch 1 das Heizmedium, zum Beispiel Wasser, immer als erstes und letztes durch einen Kondensator- bzw. Resorber-Wärmetauscherbereich strömen. Dazwischen strömt es - je nach Anzahl der Tauscherbereiche - entweder durch einen Absorber-Tauscherbereich oder abwechselnd durch mehrere Absorber- und Kondensator- bzw. Resorber-Tauscherbereiche hintereinander.
  • Um bei möglichst allen vorkommenden Betriebsbedingungen eine optimale Wärmenutzung zu erreichen, ist es notwendig, von Fall zu Fall das am besten geeignete Stoffpaar, dessen Konzentrationen sowie die anzuwendenden bzw. zulässigen Drücke mit Hilfe der aus der Fachliteratur bekannten Daten auszuwählen.
  • Als Stoffpaare kommen neben Ammoniak/Wasser hauptsächlich Salz/Wasser, Salz/Alkohole oder Salz/Amine zur Anwendung. Als Salze werden insbesondere Lithiumbromid oder Lithiumjodid/Zinkbromid, als Alkohole zum Beispiel Methanol oder Butandiol und als Amine zum Beispiel Methylamin verwendet.
  • Bei Verwendung der genannten Stoffpaare, bei denen Wasser, Alkohole oder Amine das Kältemittel bilden, tritt bei geringer Kältemittelkonzentration und entsprechender Festlegung der Drücke und wenn ein innerer Wärmetausch zwischen der reichen Lösung aus dem Absorber und dem Kältemitteldampf vor dem Kondensator stattfindet, die höchste Temperatur im Absorber im Eingangsbereich des Kältemittels auf. In diesem Bereich des Absorber-Wärmetauschers kann also das Heizwasser auf die höchstmögliche Temperatur erhitzt werden.
  • Daher soll nach dem erfindungsgemäßen Verfahren entsprechend Anspruch 2 das Heizmedium mindestens vier getrennte Wärmetauscherbereiche durchströmen. Dabei tritt es zuerst in den Kondensatortauscherbereich ein und fließt dann abwechselnd je nach Anzahl der Tauscherbereiche zwischen Absorber und Kondensator. Das Heizmedium verläßt den Wärmetauscher aus dem Absorbertauscherbereich, in dem das Heizmedium auf seine höchste Tempertatur gebracht wird.
  • Zur Durchführung des erfindungsgemäßen Verfahrens ist es notwendig, die Absorber- und Kondensator- beziehungsweise Resorber-Wärmetauscher, die vom Heizmedium durchströmt werden, in mehrere Bereiche aufzuteilen. Die Anzahl der Wärmetauscherbereiche soll gemäß Anspruch 1 insgesamt nindestens drei betragen: Zwei Bereiche für den Kondensator bzw. Resorber und ein Bereich für den Absorber. Nach oben 1in ist die Zahl der Tauscherbereiche nicht begrenzt, da sie von der Anlagengröße bzw. -leistung abhängt. In Anbetracht ies sich mit steigender Anzahl der Bereiche stark vergrößernden apparativen Aufwands, wird eine Zahl von ingesamt fünf oder sieben Bereichen als optimal angesehen. Zur Durchführung des Verfahrens nach Anspruch 2 ist eine Aufteilung des Absorbers und Kondensators bzw. Resorbers in mindestens vier Tauscherbereiche nötig, und zwar mindestens je zwei Absorber- und zwei Kondensatortauscherbereiche. Hier ist eine Zahl von insgesamt vier oder sechs Bereichen als optimal anzusehen. Die Länge bzw. die Abmessungen der einzelnen Bereiche hängt von der AnlagengröBe ab. Jeder Absorber-Wärmetauscherbereich ist jedoch mindestens gleich groß, vorzugsweise größer, als der größte Kondensator-Wärmetauscherbereich.
  • Bei dem häufig verwendeten Stoffpaar Ammoniak/Wasser liegt die höchste Temperatur im Kondensator bzw. Resorber praktisch immer oberhalb der höchsten Temperatur im Ab-sorber, das heißt die höchstmögliche Temperatur würde das Heizwasser unter der Voraussetzung des Gegenstromprinzips im letzten Kondensator-Tauscherbereich - dort, wo der Ammoniak-Dampf in den Kondensator eintritt -, erreichen. Bei Anwendung des Stoffpaares Ammoniak/Wasser als Kreislaufmedium ist zwischen Austreiber und Kondensator jedoch üblicherweise ein Dephlegmator angeordnet, der zur Kondensation und Rückführung (in den Austreiber) des mit dem Ammoniak-Dampf verdampften Wassers dient. Die Temperatur der Dämpfe im Dephlegmator ist jedoch immer höher als die Eintrittstemperatur des Ammoniak-Dampfes in den Kondensator. Eine vorteilhafte weitere Ausbildung des erfindungsgemäßen Verfahrens nach Anspruch 2 besteht darin, daß das Heizmedium als letzte Stufe (vor der Abführung zum Verbraucher) in Wärmetausch mit dem Dephlegmator (soweit dieser nicht durch inneren Wärmetausch gekühlt wird) gebracht wird, wo es seine höchste Temperatur annimmt. Dadurch, daß der Dephlegmator-Wärmetauscher zur Erhitzung des Heizmediums benutzt wird, wird gleichzeitig die Temperatur des vom Dephlegmator zum Kondensator strömenden Ammoniak-Dampfes gesenkt, so daß die höchste Temperatur im Kondensator nicht höher, sondern vorzugsweise niedriger liegt als die höchste Absorber-Temperatur. - Bei Salzen als Bestandteil des Stoffpaares ist ein Dephlegmator nicht notwendig, da Salze bei den in Sorptionswärmepumpen herrschenden Drücken und Temperaturen nicht verdampfen können.
  • Die Art des verwendeten Wärmetauschers hängt vom Heizmedium ab. Ist das Heizmedium eine Flüssigkeit, sind erfindungsgemäß Koaxialrohre vorteilhaft. Um die Wärmeaustauschfläche zu vergrößern, können auch statt des üblicherweise verwendeten einen Innenrohres zwei oder mehrere Innenrohre vorgesehen werden. Wird Luft als Heizmedium verwendet, sind zum Beispiel Rippenrohre zweckmäßiger.
  • Fig. 1 und 2 stellen schematisch die beispielsweise Anordnung und Ausführung der Rohre des Kondensator- und Absorber-Wärmetauschers einer Absorptionswärmepumpe entsprechend dem Verfahren nach Anspruch 1 dar.
  • Die Wärmetauscher werden mit Wasser als Heizmedium betrieben und sind aus-Koaxialrohren aufgebaut. Diese sind platzsparend in drei konzentrische Ringe unterschiedlichen Durchmessers gebogen und in mehreren Lagen übereinander angeordnet.
  • Das Kreislaufmedium fließt im inneren Rohr, das im äußeren Rohr befindliche Heizungswasser fließt in Gegenrichtung dazu. Die Außenrohre der Kondensator- und Absorber-Wärmetauscher sind erfindungsgemäß in mehrere voneinander getrennte Bereiche aufgeteilt, und zwar im vorliegenden Beispiel der Kondensatorteil in drei und der Absorber-Teil in zwei Bereiche.
  • Die vier übereinanderliegenden äußersten Ringe und die fünf Ringe mittleren Durchmessers bilden den Absorber-Wärmetauscher, der, wie schon beschrieben, heizwasserseitig in zwei Bereiche A1 und A2 - einmal zwei und einmal sieben Ringe - unterteilt ist. Die übrigen vier Ringe mit dem kleinsten Durchmesser bilden die drei Kondensator-Wärmetauscherbereiche; der unterste Ring ist als Wärmetauscherbereich K1 abgeteilt, die darüber liegenden zwei Ringe als Bereich K2. Der darüberliegende oberste innere Ring bildet den Wärmetauscherbereich K3.
  • Fig. 1 dient zur Veranschaulichung des Heizwasserkreislaufes im Außenrohr. Die Reihenfolge, in der die Rohre vom Heizmedium durchströmt werden, ist durch die alphabetische Reihenfolge der kleinen Buchstaben gegeben.
  • Bei dem vorliegenden Ausführungsbeispiel strömt das noch unerwärmte bzw. abgekühlte Heizwasser erfindungsgemäß als erstes durch den Kondensator-Wärmetauscherbereich K1 (a), dann durch den Absorber-Wärmetauscherbereich A1 (b, c), danach durch einen weiteren Kondensator-Wärmetauscherbereich K2 (d, e), durch den zweiten Absorber-Wärmetauscherbereich A2 (f bis 1), um zum Schluß aus dem letzten Kondensatorbereich K3 (m) auszutreten.
  • In Fig. 2 ist dargestellt, wie das Kreislaufmedium durch Absorber und Kondensator fließt. Die Reihenfolge ist wie bei Fig. 1 durch die alphabetische Reihenfolge der kleinen Buchstaben gegeben. In die vier mit K bezeichneten Kondensator-Tauscherrohre tritt das Kreislaufmittel in den obersten Ring mit dem kleinsten Durchmesser ein (a), durchströmt die darunter liegenden drei Ringe (b, c, d) und verläßt den Kondensator-Tauscher.
  • In den mit "A" bezeichneten Absorber-Wärmetauscher tritt das Kreislaufmedium in den obersten Ring mit dem größten Durchmesser (a) ein und durchströmt in der angegebenen Reihenfolge (a bis i) alle Tauscherrohre. In allen Innenrohren fließt das Kreislaufmedium immer im Gegenstrom zum Heizmedium.
  • Mit den neuen Verfahren und den Wärmetauschern zu deren Durchführung ist es erstmals möglich, die aus Heiz- und Umweltenergie bestehenden verfügbaren Wärmemengen vollständig und optimal zu nutzen, das heißt die Gesamtheizleistung wird erhöht. Diese Erhöhung betrug bei Versuchen etwa 10 %. Daraus resultiert eine Erhöhung der Heizziffer. Diese ist definiert als Verhältnis der erzielten Nutzwärme zur zugeführten Wärmemenge in Form von Brennstoff. Bei einer vergleichbaren bekannten Sorptions-Wärmepumpe beträgt die bei Versuchen festgestellte Heizziffer etwa 1,15. Diese konnte bei Anwendung der erfindungsgemäßen Verfahren und der neuen Wärmetauscher auf etwa.1,26 erhöht werden.

Claims (7)

1. Verfahren zur Gegenstrom-Führung des Heizmediums zu dem in einer Sorptionswärmepumpe im Kreislauf geführten Lösungs- und/oder Kältemittel,
dadurch gekennzeichnet,
daß das Heizmedium wechselweise im Wärmeaustausch mit Teilen des Absorbers und des Kondensators bzw. Resorbers geführt wird derart,
daß das Heizmedium mindestens drei, vorzugsweise fünf getrennte Wärmeaustauschbereiche durchströmt, in deren erstem und letztem ein Wärmeaustausch mit dem Kondensator bzw. Resorber erfolgt, während in dem bzw. den dazwischenliegenden Wärmeaustauschbereich(en) der Wärmeaustausch allein mit dem Absorber bzw. bei mehr als drei Wärmeaustauschbereichen wechselweise mit Absorber- und Kondensator- bzw. Resorberzonen erfolgt.
2. Verfahren zur Gegenstrom-Führung des Heizmediums zu dem in einer Sorptionswärmepumpe im Kreislauf geführten Lösungs- und/oder Kältemittel,
dadurch gekennzeichnet,
daß das Heizmedium wechselweise im Wärmetausch
mit Teilen des Absorbers und des Kondensators bzw. Resorbers geführt wird, derart, daß das Heizmedium mindestens vier getrennte Wärmetauscherbereiche durchströmt, in deren erstem ein Wärmetausch mit dem Kondensator bzw. Resorber und in deren letztem ein Wärmetausch mit dem Absorber erfolgt.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß das Heizmedium zusätzlich als letzte Stufe in Wärmeaustausch mit einem Dephlegmator gebracht wird.
4. Wärmetauscher zur Durchführung des Verfahrens nach Anspruch 1,
dadurch gekennzeichnet,
daß die Bereiche der Absorber- und Kondensator- bzw. Resorber-Wärmetauscher, die vom Heizmedium durchströmt werden, in insgesamt mindestens drei, vorzugsweise fünf oder sieben Abschnitte aufgeteilt sind, wobei der Kondensator-Wärmetauscher in mindestens zwei Wärmetauscherbereiche unterteilt ist.
5. Wärmetauscher zur Durchführung des Verfahrens nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
daß der Absorber und der Kondensator bzw. Resorber in mindestens je zwei Tauscherbereiche unterteilt sind.
6. Wärmetauscher nach Anspruch 4 oder 5 dadurch gekennzeichnet,
daß jeder Absorber-Wärmetauscherbereich mindestens gleich groß, vorzugsweise größer als der größte Kondensator-Wärmetauscherbereich ist.
7. Wärmetauscher nach Anspruch 4 bis 6
dadurch gekennzeichnet,
daß die Wärmetauscher aus Koaxialrohren gebildet werden, die in Ringe unterschiedlichen Durchmessers gebogen und in mehreren Lagen übereinander angeordnet sind.
EP80106362A 1979-11-06 1980-10-20 Verfahren und Wärmetauscher zur Führung des Heizmediums in einer Sorptionswärmepumpe Withdrawn EP0028343A3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19792944654 DE2944654A1 (de) 1979-11-06 1979-11-06 Verfahren und waermetauscher zur fuehrung des heizmediums in einer sorptionswaermepumpe
DE2944654 1979-11-06
DE19803010601 DE3010601A1 (de) 1980-03-20 1980-03-20 Verfahren und waermetauscher zur fuehrung des heizmediums in einer sorptionswaermepumpe
DE3010601 1980-03-20

Publications (2)

Publication Number Publication Date
EP0028343A2 true EP0028343A2 (de) 1981-05-13
EP0028343A3 EP0028343A3 (de) 1981-05-27

Family

ID=25781840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106362A Withdrawn EP0028343A3 (de) 1979-11-06 1980-10-20 Verfahren und Wärmetauscher zur Führung des Heizmediums in einer Sorptionswärmepumpe

Country Status (1)

Country Link
EP (1) EP0028343A3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2536513A1 (fr) * 1982-11-22 1984-05-25 Gaz De France Perfectionnements a une installation de chauffage equipee d'une pompe a chaleur a absorption

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR723901A (fr) * 1931-10-06 1932-04-18 Groupe frigorifique automatique à action continue par absorption et à dispositif de contrôle du froid
US2003310A (en) * 1932-06-04 1935-06-04 Standard Oil Co Refrigeration
US2112537A (en) * 1935-11-23 1938-03-29 Servel Inc Refrigeration
US2212869A (en) * 1938-09-27 1940-08-27 Herbert W Prafcke Reversible heating and cooling means and method
US2552071A (en) * 1947-09-11 1951-05-08 Mills Ind Inc Absorption refrigeration apparatus
FR1056314A (fr) * 1952-02-15 1954-02-25 Procédé et dispositifs concernant les machines frigorifiques à absorption
DE1021389B (de) * 1953-03-05 1957-12-27 Eugen Bucher Verfahren und Vorrichtung zum Betrieb einer kontinuierlich wirkenden Absorptionskaeltemaschine
DE1027216B (de) * 1955-04-04 1958-04-03 Borsig Ag Verfahren und Vorrichtung zum Betrieb einer Waermepumpe
US3041843A (en) * 1958-09-08 1962-07-03 Nat Tank Co Absorption type refrigeration system
US3273350A (en) * 1964-09-14 1966-09-20 Robert S Taylor Refrigeration systems and methods of refrigeration
US3466893A (en) * 1968-04-05 1969-09-16 Whirlpool Co Absorber-condenser apparatus
US3509732A (en) * 1965-10-20 1970-05-05 Whirlpool Co Absorption refrigeration system
US3638452A (en) * 1969-10-20 1972-02-01 Whirlpool Co Series water-cooling circuit for gas heat pump
US3828575A (en) * 1973-04-13 1974-08-13 Columbia Gas Syst Service Corp Compact heating and cooling system
DE2402777A1 (de) * 1974-01-22 1975-07-24 Reinhard F Dr Hoehne Raumwaermepumpe
JPS5483159A (en) * 1977-12-16 1979-07-03 Hitachi Ltd Absorbing type freezer
DE2854055A1 (de) * 1978-12-14 1980-07-03 Linde Ag Verfahren zum erhitzen eines waermetraegers mit einer absorptionswaermepumpe

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR723901A (fr) * 1931-10-06 1932-04-18 Groupe frigorifique automatique à action continue par absorption et à dispositif de contrôle du froid
US2003310A (en) * 1932-06-04 1935-06-04 Standard Oil Co Refrigeration
US2112537A (en) * 1935-11-23 1938-03-29 Servel Inc Refrigeration
US2212869A (en) * 1938-09-27 1940-08-27 Herbert W Prafcke Reversible heating and cooling means and method
US2552071A (en) * 1947-09-11 1951-05-08 Mills Ind Inc Absorption refrigeration apparatus
FR1056314A (fr) * 1952-02-15 1954-02-25 Procédé et dispositifs concernant les machines frigorifiques à absorption
DE1021389B (de) * 1953-03-05 1957-12-27 Eugen Bucher Verfahren und Vorrichtung zum Betrieb einer kontinuierlich wirkenden Absorptionskaeltemaschine
DE1027216B (de) * 1955-04-04 1958-04-03 Borsig Ag Verfahren und Vorrichtung zum Betrieb einer Waermepumpe
US3041843A (en) * 1958-09-08 1962-07-03 Nat Tank Co Absorption type refrigeration system
US3273350A (en) * 1964-09-14 1966-09-20 Robert S Taylor Refrigeration systems and methods of refrigeration
US3509732A (en) * 1965-10-20 1970-05-05 Whirlpool Co Absorption refrigeration system
US3466893A (en) * 1968-04-05 1969-09-16 Whirlpool Co Absorber-condenser apparatus
US3638452A (en) * 1969-10-20 1972-02-01 Whirlpool Co Series water-cooling circuit for gas heat pump
US3828575A (en) * 1973-04-13 1974-08-13 Columbia Gas Syst Service Corp Compact heating and cooling system
DE2402777A1 (de) * 1974-01-22 1975-07-24 Reinhard F Dr Hoehne Raumwaermepumpe
JPS5483159A (en) * 1977-12-16 1979-07-03 Hitachi Ltd Absorbing type freezer
DE2854055A1 (de) * 1978-12-14 1980-07-03 Linde Ag Verfahren zum erhitzen eines waermetraegers mit einer absorptionswaermepumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 3, Nr. 108, 11. September 1979, Seite 76 M 72, Tokyo, JP, & JP-A-54 083 159 (HITACHI SEISAKUSHO KK). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2536513A1 (fr) * 1982-11-22 1984-05-25 Gaz De France Perfectionnements a une installation de chauffage equipee d'une pompe a chaleur a absorption
EP0110763A1 (de) * 1982-11-22 1984-06-13 Gaz De France Mit einer Absorptionswärmepumpe versehene Heizungsanlage

Also Published As

Publication number Publication date
EP0028343A3 (de) 1981-05-27

Similar Documents

Publication Publication Date Title
DE3739831C2 (de) Verfahren zur Wärmeabsorption durch eine Absorptionskältemaschine und Vorrichtung für die Verwendung als Absorptionskältemaschine
DE102007034710B4 (de) Zweistufiger Absorptionskühler
DE2900153C2 (de) Sprühgenerator zur Erwärmung der Lösung in einer Absorbtionskälteanlage
DE3808257C1 (de)
DD284081A5 (de) Verfahren zur abkuehlung eines fluids
EP0001296A1 (de) Verfahren und Vorrichtung zur Nutzung von Wärme-, insbesondere Sonnenenergie für Raumheizung
DE2703429C2 (de) Verfahren zum Eindampfen von Lösungen fester Stoffe in einem Mehrstufen-Zweifacheffekt-Verdampfungssystem
EP0028343A2 (de) Verfahren und Wärmetauscher zur Führung des Heizmediums in einer Sorptionswärmepumpe
DE2316051A1 (de) Verfahren zum kondensieren von kuehlmittel und kondensator zur durchfuehrung des verfahrens
DE2839638A1 (de) Trockenkuehlsystem fuer kraftwerkanlagen
AT504399B1 (de) Absorptionskältemaschine
DE2219083C3 (de) Absorptionskälteanlage
DE3541375A1 (de) Absorptions-kuehlsystem
DE2248124A1 (de) Destillationsanlage
DE3242807C2 (de)
DE2944654A1 (de) Verfahren und waermetauscher zur fuehrung des heizmediums in einer sorptionswaermepumpe
DE3101857A1 (de) "verfahren zur regenerativen nutzung des waermeinhaltes armer loesungen"
EP0130404A2 (de) Mehrstufiger Wärmetauscher
DE7404294U (de) Absorptionskaelteapparat mit rektifikator im kocher
DE3010601A1 (de) Verfahren und waermetauscher zur fuehrung des heizmediums in einer sorptionswaermepumpe
DE2507886A1 (de) Verfahren und einrichtung, den abdampf einer dampfturbine niederzuschlagen
DE612962C (de) Absorptionskaelteapparat mit indifferentem Gas
DE625571C (de) Verfahren zum Betriebe von Absorptionskaelteapparaten
WO2006074699A1 (de) Asorptionskälteaggregat
DE540395C (de) Verfahren zum Betriebe von Absorptionskaelteapparaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL

17P Request for examination filed

Effective date: 19811024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830901

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUEHLMANN, HEINRICHDR. RER. NAT. DIPL.-CHEM.

Inventor name: SOMMERS, HANS, DIPL.-ING.