EP0026706B1 - Vorrichtung und Apparat zum Bestimmen der Richtungsparameter eines kontinuierlich untersuchten Bohrloches - Google Patents

Vorrichtung und Apparat zum Bestimmen der Richtungsparameter eines kontinuierlich untersuchten Bohrloches Download PDF

Info

Publication number
EP0026706B1
EP0026706B1 EP80401361A EP80401361A EP0026706B1 EP 0026706 B1 EP0026706 B1 EP 0026706B1 EP 80401361 A EP80401361 A EP 80401361A EP 80401361 A EP80401361 A EP 80401361A EP 0026706 B1 EP0026706 B1 EP 0026706B1
Authority
EP
European Patent Office
Prior art keywords
signal
components
sonde
signals
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80401361A
Other languages
English (en)
French (fr)
Other versions
EP0026706A1 (de
Inventor
Jean Ringot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Schlumberger NV
Schlumberger Ltd USA
Original Assignee
Societe de Prospection Electrique Schlumberger SA
Schlumberger NV
Schlumberger Ltd USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de Prospection Electrique Schlumberger SA, Schlumberger NV, Schlumberger Ltd USA filed Critical Societe de Prospection Electrique Schlumberger SA
Publication of EP0026706A1 publication Critical patent/EP0026706A1/de
Application granted granted Critical
Publication of EP0026706B1 publication Critical patent/EP0026706B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism

Definitions

  • the present invention relates to a method and apparatus for determining direction parameters of a well as a function of depth, and more particularly to a method and apparatus which use the measurement signals of an accelerometer and a magnetometer to three sensitive axes housed in a probe exploring the well.
  • the probe is continuously moved into the well during the measurement.
  • the accelerometer signal is prefiltered, then combined with the magnetometer signal to rid it of the alteration it undergoes due to the displacement of the probe in the well, then subjected to pass filtering. - very selective bottom, and finally again combined with the signal from the magnetometer for the determination of well direction parameters.
  • the earth's crust is made up of layers of natures, of thicknesses of various inclinations, and it has long been apparent that all information concerning the successive layers, and in particular their inclination, was of definite interest in fields such as that of oil research.
  • information on the inclination of the layers is not directly accessible in the current state of the art, it is conventionally used to use probes, which are moved in a well passing through these layers, and which provide information on their orientation in relation to the layers crossed by the well.
  • the three-dimensional topographic orientation of an airplane or a rocket can be determined by using the measurement signals of an accelerometer and a magnetometer with three sensitive axes. . These signals are immediately usable when the aircraft is flying at a constant speed and has a regular trajectory. When there are sudden disturbances or accelerations, the signals from the accelerometer and magnetometer generally lose their interest in this orientation determination.
  • the probe is lowered into the well and stabilized at a certain depth.
  • the signals from an accelerometer and a magnetometer mounted in the probe are noted while the probe is fixed in the well in the absence of any disturbance.
  • These stationary component signals are combined to obtain two well direction parameters, namely the deflection angle, defined as the angle formed between the longitudinal axis of the well and the vertical, and the azimuth, defined as the angle formed between two vertical planes, one of which contains the longitudinal axis of the well and the other the north direction.
  • the probe is moved into the well and stabilized at another depth. New signals are produced when the probe is fixed, and are combined to obtain new values for the deflection angle and azimuth.
  • the first, immediate, is that the need to stabilize the probe for each measurement causes a detrimental increase in the duration of exploration of the well.
  • the object of the present invention is to propose a method and an apparatus for determining parameters of a well which is faster than the known method previously described.
  • Another object of the present invention is to propose a method and an apparatus making it possible to physically determine variations in the orientation of the well at any point of an explored longitudinal portion of this well.
  • the method of the invention according to the preamble of claim 1, is characterized in that the phases consisting in producing said acceleration and location signals and in moving the probe are simultaneous and substantially continuous, and in that said phase determination of the direction parameters includes a virtual stabilization step by which the effects of the displacement of the probe are eliminated, in the components of one of the signals, constituting a signal to be stabilized, by means of the components of the other signal, constituting a stabilizing signal, and an intermediate low-pass filtering operation involving at least stabilized components of said signal to be stabilized and by which frequency variations greater than the maximum frequency of variations attributable to the acceleration of the signal are eliminated gravity.
  • said phase of determining the steering parameters further comprises a preliminary step to said virtual stabilization step, comprising an operation of prefiltering the components of the acceleration signal, by which the signal variations having a frequency greater than the greatest possible frequency of the rotational movement are substantially attenuated of the probe around its longitudinal axis.
  • an accelerometer and a direction indicator each having a first and a second sensitive transverse axis, perpendicular to each other and to the longitudinal axis of the probe, and a third sensitive axis, of longitudinal direction and coincident with the axis of the probe, said signals each comprising two transverse axial components and a longitudinal axial component and said direction indicator being for example a magnetometer giving in the coordinate system of its three sensitive axes the direction of the earth's magnetic field vector.
  • the preliminary step of the direction parameter determination phase comprises determining a transverse diagonal component of the stabilizing signal from the transverse axial components of this signal and eliminating the effects of rotation, using the axial and diagonal components. transverse of this same signal, in the transverse axial components of the signal to be stabilized to obtain stabilized components in rotation, corresponding to a reference position of the probe around its longitudinal axis.
  • the preliminary step comprises the operations consisting in: determining a transverse diagonal component of the locating signal from the transverse axial components of this signal; determine from this transverse diagonal component and the longitudinal axial component of this same locating signal the sign of the difference between a first angle, formed between said vector of fixed direction and the longitudinal axis of the probe, and a limit angle of predetermined value; defining the stabilizing and stabilizing signals, respectively by the locating and acceleration signals when the sign of said difference is positive, and by the acceleration and locating signals when this sign is negative; and determining a transverse diagonal component of the stabilizing signal from its transverse axial components when said stabilizing signal is defined by said acceleration signal.
  • said final step comprises an operation of reintroducing the effects of rotation of the probe, supplying from two stabilized transverse axial components of the acceleration signal and transverse components diagonal and axial of the locating signal, two transverse axial components of the acceleration signal which are no longer stabilized again with respect to said reference position of the probe around its longitudinal axis.
  • the low-pass filtering eliminates, by a rapidly increasing attenuation from 3dB, the signal variations having a frequency higher than 8.10- Z Hz and that the pre-filtration consists an attenuation, increasing from 3dB, of the signal variations having a frequency greater than 2.5 Hz.
  • the method of the invention aims to determine different parameters, related to the topographic orientation taken by a well 1 at a given depth.
  • the cable passes over a measuring wheel 5 connected to a counter 6 recording the rotations of the wheel 5.
  • the depth at which the probe is in the well which obviously depends on the length of cable unwound from the winch, can in a known manner be deduced from the indication of the counter 6.
  • the probe 2 comprises centering poles 7 enabling it to always adopt a position in the well in which its longitudinal axis 2 a is, over the length of this probe at least, substantially coincident with the longitudinal axis 1 a of the well, l orientation of the probe axis thus assimilating to the orientation of the well at the exploration depth.
  • an accelerometer 8 and a magnetometer 9 Inside the probe housed an accelerometer 8 and a magnetometer 9 firmly attached to the probe.
  • the accelerometer provides a signal with three axial components whose amplitudes represent the lengths of the projections, on three respective sensitive axes, of the vector associated with the set of accelerations undergone by the probe, and the magnetometer provides a signal with three axial components of which the amplitudes represent the lengths of the projections, on three respective sensitive axes, of the vector associated with the magnetic field passing through the probe, that is to say in practice with the terrestrial magnetic field.
  • the magnetometer 9 could be replaced by a gyroscope delivering a three-component signal constituting location information of the probe with respect to the characteristic direction of the gyroscope, or by any other direction indicator, provided on the one hand that the direction of the vector represented by the signal that this indicator would provide is fixed and known and on the other hand that it is different from the vertical.
  • the sensitive axes of the accelerometer and the magnetometer form a fixed rectangular trihedron with respect to the probe, the accelerometer and the magnetometer having a first sensitive axis in the longitudinal direction of the probe and two transverse sensitive axes.
  • the probe having been lowered into the well to a known depth is raised using the winch and the cable at a substantially constant speed while the accelerometer and the magnetometer produce their respective signals, which are transmitted to the surface by the cable. 3, and recovered at the surface in correlation with the signal from counter 6.
  • the probe 2 is subjected to accelerations which, in addition to the acceleration of gravity, include the acceleration due to the movement of the probe 2 in the well. Indeed, on the one hand the probe undergoes transverse movements and shocks against the wall and on the other hand, despite the fact that the cable is rewound at substantially constant speed, the probe advances in the longitudinal direction by jerky progressions a movement called "yo-yo". In addition, the probe generally undergoes an additional movement of rotation about its longitudinal axis.
  • phase of determining the direction parameters of the well from the signals from the accelerometer and the magnetometer therefore requires different steps and operations aimed in particular at recovering from these signals the information that they would have provided directly if they had been produced while the probe was at rest and had not undergone any rotation around its longitudinal axis.
  • this phase comprises a preliminary stage ETO, a virtual stabilization stage ET1 itself comprising an operation D 1 or D 2 of elimination rotation effects, and a final step ET2 of combining the processed components of the signals ⁇ S and ⁇ S, the step ET1 and the final step ET2 being separated by an intermediate operation OIF of low-pass filtering F 2 13 or F 2 47.
  • Operations 13 and 46 consist in changing the sign of the components of the signals ⁇ S and ⁇ S and are only necessary when the ETO step relates to the signals directly supplied by the accelerometer and the magnetometer as representative of vectors of directions opposite to those of the vectors of acceleration on the one hand and of terrestrial magnetic field on the other hand.
  • the prefiltering operations F, and delay operations R, will be explained in detail later.
  • the preliminary ETO stage has two essential purposes.
  • the components of the acceleration and location signals generally carry information coming from a parasitic phenomenon, namely the rotation of the probe around its axis.
  • signal to be stabilized To eliminate the effects of this rotation on the values of the transverse axial components of one of the signals hereinafter called “signal to be stabilized”, use is made, in the subsequent step of virtual stabilization ET1, of the use of the components transverse axial and a transverse component, called diagonal, of the other signal, hereinafter called “stabilizing signal”.
  • the preliminary step ETO therefore appears to have the function, on the one hand, of making it possible to determine which of the two signals ⁇ S and ⁇ S must play the role of signal to stabilize p S, the other signal obviously having to play the role of signal stabilizer a S, and on the other hand to supply, for the needs of the virtual stabilization step ET1, the diagonal transverse component of the stabilizer signal, that is to say a S xy according to the notation previously introduced.
  • the operation of determining a S xy is included in block N 3 or in block N, depending, respectively, on whether the role of a S is held by the signal ⁇ S or by the signal ⁇ S.
  • FIGS. 3a and 3b are represented lines of material or virtual information circulation, each assigned, unlike the case of FIG. 2 , single component or signal standard.
  • the blocks N 1 to N 4 , D 1 and D 2 , E 1 , DEV 1, DEV 2, RB 1 and RB 3 AZI1.1 and AZI1.2, AZIM1 and AZIM3 are to be considered as operations in FIG. 2, and as function generators, suitable for carrying out these operations, in FIGS. 3a and 3b.
  • the axial components ⁇ S xo , ⁇ S yo , ⁇ S zo and ⁇ S xo , ⁇ S yo , and ⁇ S zo of the accelerometer and magnetometer output, available at the start of the parameter value determination phase, can be considered as each having on each of the elementary time intervals ⁇ t, a constant amplitude.
  • ⁇ o represents x o , y o or z o for a component before filtering
  • represents x, y, z for a component after filtering
  • k and I represent whole numbers and if ⁇ S ⁇ .i ⁇ t represents the amplitude of the component of ⁇ ⁇ S signal in the j th time interval .DELTA.t
  • the role of filters F, is to very significantly attenuate, in the filtered components, the signal variations having a frequency greater than the maximum possible frequency of the rotational movement of the probe around its axis. We see in Figure 4 that frequencies above 2.5 Hz undergo an attenuation greater than 3 dB.
  • the output signal of the filter F 1 has a certain delay compared to the input signal.
  • the components of the accelerometer and magnetometer signals relating to the same instantaneous depth of the probe in the well must obviously be used together, the components ⁇ S x , ⁇ S Y , ⁇ S z , ⁇ S xy and the standard ⁇ S xyz of the locating signal, coming from the magnetometer, undergoes in cells R 1 .1 to R 1 .5 a delay equivalent to that caused by filtering F, on the components of the acceleration signal.
  • the divider DV to which the components ⁇ S z and ⁇ S xy are then applied, performs the ratio ⁇ S xy / ⁇ S z , which represents the tangent of the angle a formed between the direction of the earth's magnetic field vector and that of of the probe axis.
  • the information ⁇ S xy / ⁇ S z is then applied to the comparator COMP 1 which compares it to a predetermined value limit L 1 .
  • the output T 1 of the comparator COMP 1 will be deactivated if the angle is greater than or equal to 3 ° (general case).
  • the state T, of the output of the comparator COMP 1 makes it possible to operate a switch, symbolically produced by two relays M T 1 and MT 1 .
  • T 1 is zero, (general case), ie when T 1 is equal to 1 (fig. 3a) the signal ⁇ S of the magnetometer is used as the stabilizing signal a S and the signal ⁇ S of the accelerometer as the signal to stabilize p S, which means that the signal from the magnetometer is used to correct the accelerometer signal from the probe rotation effects.
  • the stabilizing signal a S is the signal ⁇ S of the accelerometer, which is used to correct the signal ⁇ S of the magnetometer, constituting the signal to be stabilized p S. _
  • the MV and MT relays define: for the two values of T 1 .
  • the stabilized components P S x and p S y are substantially those which would have been obtained in the absence of rotation of the probe around its longitudinal axis.
  • the role of the filters F 2 is to eliminate, from the filtered components, the variations in the amplitude having a frequency greater than the maximum frequency of the amplitude variations which are attributable to the acceleration of gravity and which essentially derive from the variations the angle formed between the vertical and the longitudinal axis of the probe.
  • frequencies above 8.10- 2 Hz undergo attenuation above 3 dB and very rapidly increasing.
  • the components of the accelerometer signal are normalized.
  • T 1 0 (general case)
  • ⁇ S xo and ⁇ S yo are the components of ⁇ S at the exit of N 2 and ⁇ S x , ⁇ S y , ⁇ S xy the transverse components of ⁇ S at the exit of R 2 .1, R 2 . 2 and R 2 .4, the new components of ⁇ S at the output of E 1 are:
  • these components ⁇ S x and ⁇ S y are not at all identical or proportional to the components of the accelerometer output signal. If, in fact, these new components ⁇ S x and ⁇ S y again contain the information relating to the rotation of the probe around its longitudinal axis relative to a reference position, on the other hand they are rid of disturbing information originating impacts of the probe against the wall of the well.
  • the final step ET2 of combining the components of the acceleration and locating signals results, by different operations described below, in the determination of different parameters representative of the topographic orientation of the well and of the position of the probe in the well relative to a reference position corresponding to a setting of the probe for the rotational movements around its longitudinal axis.
  • the diagonal transverse components ⁇ S xy and longitudinal ⁇ S z of the accelerometer signal, normalized in N 2 or in N 4 , are combined to obtain the value of a first parameter, DEV, representing the angle ⁇ formed between the vertical and the longitudinal axis of the probe.
  • T 1 1, DEV is obtained in DEV 2, providing the information DEV 2.
  • the DEV 1 and DEV 2 function generators are identical and provide the information defined by
  • the information DEV 1 is, in the comparator COMP 2, compared with an angle L2 of predetermined value, for example equal to 0.5 °; according to the result of this comparison, the value of two other pieces of information RB 1 and AZIM 1 is multiplied by 0 or 1, which will be defined later.
  • This is, schematically, represented by the possibility, for the comparator COMP 2, of controlling two relays MT 2 .1 and MT 2 .2 closed or switched to ground.
  • T 2 0
  • T S INT 2 v-
  • INT designates the function "whole part of”.
  • AZI 1 representing the angle ⁇ formed between the horizontal projection of the earth's magnetic field vector and the horizontal projection of a vector perpendicular to the longitudinal axis of the probe and joining this axis to a fixed point P of the probe, distant from this same axis.
  • the double contact relay T 1 T 1 controlled by the comparator COMP 1, schematically represents the connection of the phase for determining the value of the parameters to a display operation AFF of these parameters.
  • this relay T, T makes it possible to obtain, at the end of the determination phase, the parameters DEV, AZIM, AZI1 and RB which, in an explicit form, are expressed by:
  • the display of quantities such as the norm ⁇ S xyz of the signal of the magnetometer, and the norm ⁇ S xyz of the signal of the accelerometer, after low-pass filtering, makes it possible to exercise control over the meaning actual values obtained for the different parameters.
  • the phase of determining the value of the parameters can, using the preceding indications, be carried out according to various methods, and for example by means of a hardware device specially designed for To this end and corresponding to the diagram of FIGS. 3a and 3b, it appeared that the most suitable way consisted in resorting to automatic data processing by means of a computer.
  • the blocks in FIGS. 2, 3a and 3b represent subroutines, with the exception of the comparators in FIG. 3a which represent tests, and relays in FIGS. 3a and 3b, which represent conditional connections.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Claims (6)

1. Verfahren zum Bestimmen mindestens zweier Richtungsparameter (DEV, AZIM) eines Borhlochs in Abhängigkeit von der Tiefe, umfassend die Phasen bestehend aus: Erzeugen eines Beschleunigungssignals (γs) mit drei Komponenten, repräsentierend eine Gesamtheit von Beschleunigungen, denen eine Sonde unterworfen wird, welche in dem Börhloch verlagert wird und erfaßt längs drei mit dieser Sonde verbundenen Bezugsachsen, Erzeugen eines Rapportsignals (µs) mit drei Komponenten, repräsentierend einen festen, von der Vertikalen abweichenden Richtungsvektor, im Rapport mit den genannten drei Bezugsachsen, Bestimmen der Richtungsparameter durch eine Kombination der Komponenten der genannten Signale; dadurch gekennzeichnet,_ daß die. Phasen, in denen die Beschleunigungs- und Rapportsignale erzeugt werden und die Verlagerung der Sonde erfolgt, gleichzeitig und im wesentlichen kontinuierlich ablaufen und daß die genannte Phase der Bestimmung der Richtungsparameter einen virtuellen Stabilisationsschritt (ET1) umfaßt, durch den die Wirkungen der Verlagerung der Sonde in den Komponenten eines der genannten Signale eliminiert werden, wobei ein zu stabilisierendes Signal (Ps) gebildet wird mittels Komponenten des anderen Signals, wobei ein Stabilisiersignal (as) gebildet wird und ein Zwischenschritt der Tiefpaßfilterung (OIF) vorgesehen ist, mit dem mindestens die stabilisierten Komponenten des genannten zu stabilisierenden Signals beeinflußt werden und wodurch diejenigen Komponenten der Frequenzveränderungen eliminiert: werden, die oberhalb der Maximalfrequenz der auf die Erdbeschleunigung zurückzuführenden Veränderungen liegen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die genannte Phase der Bestimmung der Richtungsparameter ferner eine Vorausetappe (ETO) bezüglich des Schrittes der virtuellen Stabilisation umfaßt, umfassend eine Vorfilterung der Komponenten des Beschleunigungssignals (γs), wodurch man im wesentlichen in diesen Komponenten die Veränderungen des Signals dämpft, mit einer Frequenz oberhalb der höchstmöglichen Frequenz der Rotationsbewegung der Sonde um ihre Längsachse.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Beschleunigungssignale (γs) und Rappörtsignale (µs) jeweils zwei transversale Axialkomponenten und eine axiale Longitudinalkomponente in einem System von Achsen umfassen im Rapport zur Längsachse der Sonde, daß vor dem Schritt der virtuellen Stabilisierung (ET1) eine Vorausetappe (ETO) vorgesehen ist, in welcher man eine diagonale Transversalkomponente des Stabilisatorssignals (as) ausgehend von den axialen Transversalkomponenten dieses Signals bestimmt und daß man die genannten Wirkungen der Rotation eliminiert mittels der axialen und diagonalen Transversalkomponenten dieses selben Signals in den axialen Transversalkomponenten des zu stabilisierenden Signals (Ps), um daraus rotationsstabilisierte Komponenten zu gewinnen entsprechend einer Bezugsposition der Sonde um ihre Längsachse.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Vorausetappe (ETO) Schritte umfaßt bestehend aus: Bestimmen einer diagonalen Transversalkomponente des Rapportsignals (µS), ausgehend von den axialen Transversalkomponenten dieses Signals, Bestimmen, ausgehend von dieser diagonalen Transversalkomponente und der axialen. Longitudinalkomponente dieses selben, des Vorzeichens der Differenz zwischen einem ersten Winkel, gebildet zwischen dem genannten festen Richtungsvektor und der Längsachse der Sonde und eines Grenzwinkels vorgegebener Größe, Definieren der Stabilisatorsignals (as) und des zu stabilisierenden Signals (Ps) jeweils durch die Rapportsignale (µs) bzw. Beschleunigungssignale (γs), wenn des Vorzeichen der Differenz positiv ist und durch die Beschleunigungssignale bzw. Rapportsignale, wenn dieses Vorzeichen negative ist, und Bestimmen einer diagonalen Transversalkompanente des Stabilisatorsignals, ausgehend von seinen axialen Transversalkomponenten, wenn dieses Stabilisatorsignal durch das genannte Beschleunigungssignal definiert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß dann, wenn das Vorzeichen der Differenz, das während der genannten Vorausetappe (ETO) bestimmt wird, positiv ist, nach der Zwischenfilterung ein Schritt der Wiedereinführung der Wirkung der Verlagerung der Sonde vorgenommen wird, welcher ausgehend von den beiden stabilisierten axialenTransversalkomponenten des Beschleunigungssignals (γs) und der transversalen Diagonalkomponente und axialen Transversalkomponente des Rapportsignals (µs) zwei axiale Transversalkomponenten des Beschleunigungssignals geliefert werden, die nicht erneut relative zu der genannten Referenzposition der Sonde stabilisiert werden.
6. Vorrichtung zum Bestimmen von mindestens zwei Richtungsparametern (DEV, AZIM) eines Bohrlochs, umfassend:
-eine Sonde (2),
-eine- Winde (4) ein Kable (3) zum Bewirken der Verlagerung der Sonde im Borhloch (1),
-Bogenstützbügel (7) zum Zentrieren der Sonde in einem Bohrloch,
-ein Accelerometer in der Sonde zum Erzeugen erster Signale (Ps), repräsentativ für die Vektoren der Beschleunigung, denen die Sonde bei der Verlagerung im Borhloch unterworfen wird,
-ein in der Sonde enthaltendes Magnetometer (9) oder Gyroskop zum Erzeugen zweiter Signale (,us), die repräsentativ sind für einen festen, von der Vertikalen abweichenden Richtungsvektor, und
-Mittel zum Verarbeiten und Kombinieren der ersten und zweiten Signale zum Bestimmen der genannten Richtungsparameter.

dadurch gekennzeichnet, daß die Verarbeitungs, und Kombinationsmittel Mittel (F1, R1, D1, D2, R2) umfassen zum Befreien der ersten Signale von Wirkungen der Verlagerung der Sonde durch eine Kombination von Komponenten der ersten und zweiten Signale sowie Tiefpaßfiltermittel (F2) zum Eliminieren aus den so behandelten Komponenten der ersten Signale von Frequenzveränderungen, die oberhalb der Maximalfrequenz von auf der Erdbeschleunigung beruhenden Veränderungen liegen.
EP80401361A 1979-09-27 1980-09-25 Vorrichtung und Apparat zum Bestimmen der Richtungsparameter eines kontinuierlich untersuchten Bohrloches Expired EP0026706B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7924029A FR2466607B1 (fr) 1979-09-27 1979-09-27 Procede de determination de parametres de direction d'un puits en continu
FR7924029 1979-09-27

Publications (2)

Publication Number Publication Date
EP0026706A1 EP0026706A1 (de) 1981-04-08
EP0026706B1 true EP0026706B1 (de) 1984-09-12

Family

ID=9230060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401361A Expired EP0026706B1 (de) 1979-09-27 1980-09-25 Vorrichtung und Apparat zum Bestimmen der Richtungsparameter eines kontinuierlich untersuchten Bohrloches

Country Status (10)

Country Link
US (1) US4362054A (de)
EP (1) EP0026706B1 (de)
AU (1) AU538777B2 (de)
BR (1) BR8006088A (de)
CA (1) CA1163325A (de)
DE (1) DE3069162D1 (de)
FR (1) FR2466607B1 (de)
MX (1) MX148779A (de)
NO (1) NO154439C (de)
OA (1) OA06629A (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953399A (en) * 1982-09-13 1990-09-04 Western Atlas International, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4756189A (en) * 1982-09-13 1988-07-12 Western Atlas International, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4622849A (en) * 1982-09-13 1986-11-18 Dresser Industries, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4594887A (en) * 1982-09-13 1986-06-17 Dresser Industries, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4545242A (en) * 1982-10-27 1985-10-08 Schlumberger Technology Corporation Method and apparatus for measuring the depth of a tool in a borehole
CA1211506A (en) * 1983-02-22 1986-09-16 Sundstrand Data Control, Inc. Borehole inertial guidance system
US4703459A (en) * 1984-12-03 1987-10-27 Exxon Production Research Company Directional acoustic logger apparatus and method
US4812977A (en) * 1986-12-31 1989-03-14 Sundstrand Data Control, Inc. Borehole survey system utilizing strapdown inertial navigation
US4783742A (en) * 1986-12-31 1988-11-08 Sundstrand Data Control, Inc. Apparatus and method for gravity correction in borehole survey systems
US4797822A (en) * 1986-12-31 1989-01-10 Sundstrand Data Control, Inc. Apparatus and method for determining the position of a tool in a borehole
US4800981A (en) * 1987-09-11 1989-01-31 Gyrodata, Inc. Stabilized reference geophone system for use in downhole environment
GB2251078A (en) * 1990-12-21 1992-06-24 Teleco Oilfield Services Inc Method for the correction of magnetic interference in the surveying of boreholes
US6618675B2 (en) * 2001-02-27 2003-09-09 Halliburton Energy Services, Inc. Speed correction using cable tension
US20060112754A1 (en) * 2003-04-11 2006-06-01 Hiroshi Yamamoto Method and device for correcting acceleration sensor axis information
US20180003028A1 (en) * 2016-06-29 2018-01-04 New Mexico Tech Research Foundation Downhole measurement system
CN106437683B (zh) * 2016-08-29 2017-09-01 中国科学院地质与地球物理研究所 一种旋转状态下重力加速度测量装置与提取方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342475A (en) * 1970-11-11 1974-01-03 Russell A W Directional drilling of boreholes
US3935642A (en) * 1970-11-11 1976-02-03 Anthony William Russell Directional drilling of bore holes
US4016766A (en) * 1971-04-26 1977-04-12 Systron Donner Corporation Counting accelerometer apparatus
US3899834A (en) * 1972-10-02 1975-08-19 Westinghouse Electric Corp Electronic compass system
US3862499A (en) * 1973-02-12 1975-01-28 Scient Drilling Controls Well surveying apparatus
US4227405A (en) * 1979-04-06 1980-10-14 Century Geophysical Corporation Digital mineral logging system

Also Published As

Publication number Publication date
US4362054A (en) 1982-12-07
FR2466607A1 (fr) 1981-04-10
NO802684L (no) 1981-03-30
MX148779A (es) 1983-06-14
DE3069162D1 (en) 1984-10-18
EP0026706A1 (de) 1981-04-08
OA06629A (fr) 1981-08-31
BR8006088A (pt) 1981-04-07
CA1163325A (en) 1984-03-06
AU538777B2 (en) 1984-08-30
AU6201180A (en) 1981-04-02
NO154439B (no) 1986-06-09
FR2466607B1 (fr) 1985-07-19
NO154439C (no) 1986-09-17

Similar Documents

Publication Publication Date Title
EP0026706B1 (de) Vorrichtung und Apparat zum Bestimmen der Richtungsparameter eines kontinuierlich untersuchten Bohrloches
FR2990276A1 (fr) Appareil et procede de determination de l'orientation d'un dispositif de guidage de flute marine
EP2459966B1 (de) Verfahren zur schätzung der richtung eines beweglichen festkörpers
EP2188654B1 (de) Kalibrieren eines beschleunigungsmessers an einem seismischen kabel
EP0267840B1 (de) Verfahren und Gerät zur Positionsbestimmung von Unterwasserobjekten mit Bezug auf das sie ziehende Schiff
FR2532683A1 (fr) Systeme de controle directionnel par inertie d'un puits de forage
EP0066494B1 (de) Analytisches System mit optischer Anzeige von Vibrationsbewegungen einer Maschine mit rotierendem Teil
FR2897691A1 (fr) Mesure du vecteur deplacement de particules dans une flute marine remorquee
FR2739183A1 (fr) Systeme de determination dynamique de la position et de l'orientation d'un reseau remorque
FR2615900A1 (fr) Procede et appareil pour la mesure de l'azimut d'un trou de forage en cours de forage
FR2682774A1 (fr) Dispositif d'emission acoustique pour sismique marine.
FR2651950A1 (fr) Antenne hydrophonique lineaire et dispositif electronique de levee d'ambiguite droite-gauche associe a cette antenne.
EP0274943A1 (de) Eichvorrichtung für Beschleunigungsmesser mit sehr hoher Empfindlichkeit
EP0597014B1 (de) Tragbare station zur messung und regelung der magnetischen unterschrift eines wasserfahrzeuges
EP0796439B1 (de) Empfangsverfahren mit mehrdeutigkeitsentfernung für akustische lineare schleppantenne
EP3556287B1 (de) Kalibrierungsverfahren eines magnetometernetzwerks
CA2060383A1 (fr) Procede et dispositif de reduction des effets des bruits parasites sur la detection d'une cible par un systeme comprenant une pluralite de capteurs elementaires
FR2662818A1 (fr) Procede et dispositif de correction de la reponse de capteurs sismiques a un signal d'emission non conforme a une reference donnee.
EP0210087A1 (de) Verfahren und Anordnung zur induzierten Magnetisationsmessung in einem Seefahrtbauwerk
EP3899432B1 (de) Verfahren zur charakterisierung eines trägheitsnavigationssystems
EP0301941B1 (de) Vorrichtung zur räumlichen Lagebestimmung eines Modells, insbesondere zur Erforschung seiner Retrodiffusionseigenschaften
FR2591342A1 (fr) Sonde ultrasonique pour tester le materiau de pieces fendues ou creuses
EP0533765B1 (de) Magnetische detektionsvorrichtung für ferromagnetische ankerminen
EP0909961A2 (de) Welletrennungverfahren für Borlochseismischen Wellen für Datenerfassung mit zunemenden Versatz
EP0082779B1 (de) Gerät zur Abstandsmessung zwischen zwei Punkten in einem Massiv

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19811001

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3069162

Country of ref document: DE

Date of ref document: 19841018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911127

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950707

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960702

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970925