EP0026706B1 - Procédé et appareil pour la détermination de paramètres de direction d'un puits exploré en continu - Google Patents

Procédé et appareil pour la détermination de paramètres de direction d'un puits exploré en continu Download PDF

Info

Publication number
EP0026706B1
EP0026706B1 EP80401361A EP80401361A EP0026706B1 EP 0026706 B1 EP0026706 B1 EP 0026706B1 EP 80401361 A EP80401361 A EP 80401361A EP 80401361 A EP80401361 A EP 80401361A EP 0026706 B1 EP0026706 B1 EP 0026706B1
Authority
EP
European Patent Office
Prior art keywords
signal
components
sonde
signals
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80401361A
Other languages
German (de)
English (en)
Other versions
EP0026706A1 (fr
Inventor
Jean Ringot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Schlumberger NV
Schlumberger Ltd USA
Original Assignee
Societe de Prospection Electrique Schlumberger SA
Schlumberger NV
Schlumberger Ltd USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de Prospection Electrique Schlumberger SA, Schlumberger NV, Schlumberger Ltd USA filed Critical Societe de Prospection Electrique Schlumberger SA
Publication of EP0026706A1 publication Critical patent/EP0026706A1/fr
Application granted granted Critical
Publication of EP0026706B1 publication Critical patent/EP0026706B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism

Definitions

  • the present invention relates to a method and apparatus for determining direction parameters of a well as a function of depth, and more particularly to a method and apparatus which use the measurement signals of an accelerometer and a magnetometer to three sensitive axes housed in a probe exploring the well.
  • the probe is continuously moved into the well during the measurement.
  • the accelerometer signal is prefiltered, then combined with the magnetometer signal to rid it of the alteration it undergoes due to the displacement of the probe in the well, then subjected to pass filtering. - very selective bottom, and finally again combined with the signal from the magnetometer for the determination of well direction parameters.
  • the earth's crust is made up of layers of natures, of thicknesses of various inclinations, and it has long been apparent that all information concerning the successive layers, and in particular their inclination, was of definite interest in fields such as that of oil research.
  • information on the inclination of the layers is not directly accessible in the current state of the art, it is conventionally used to use probes, which are moved in a well passing through these layers, and which provide information on their orientation in relation to the layers crossed by the well.
  • the three-dimensional topographic orientation of an airplane or a rocket can be determined by using the measurement signals of an accelerometer and a magnetometer with three sensitive axes. . These signals are immediately usable when the aircraft is flying at a constant speed and has a regular trajectory. When there are sudden disturbances or accelerations, the signals from the accelerometer and magnetometer generally lose their interest in this orientation determination.
  • the probe is lowered into the well and stabilized at a certain depth.
  • the signals from an accelerometer and a magnetometer mounted in the probe are noted while the probe is fixed in the well in the absence of any disturbance.
  • These stationary component signals are combined to obtain two well direction parameters, namely the deflection angle, defined as the angle formed between the longitudinal axis of the well and the vertical, and the azimuth, defined as the angle formed between two vertical planes, one of which contains the longitudinal axis of the well and the other the north direction.
  • the probe is moved into the well and stabilized at another depth. New signals are produced when the probe is fixed, and are combined to obtain new values for the deflection angle and azimuth.
  • the first, immediate, is that the need to stabilize the probe for each measurement causes a detrimental increase in the duration of exploration of the well.
  • the object of the present invention is to propose a method and an apparatus for determining parameters of a well which is faster than the known method previously described.
  • Another object of the present invention is to propose a method and an apparatus making it possible to physically determine variations in the orientation of the well at any point of an explored longitudinal portion of this well.
  • the method of the invention according to the preamble of claim 1, is characterized in that the phases consisting in producing said acceleration and location signals and in moving the probe are simultaneous and substantially continuous, and in that said phase determination of the direction parameters includes a virtual stabilization step by which the effects of the displacement of the probe are eliminated, in the components of one of the signals, constituting a signal to be stabilized, by means of the components of the other signal, constituting a stabilizing signal, and an intermediate low-pass filtering operation involving at least stabilized components of said signal to be stabilized and by which frequency variations greater than the maximum frequency of variations attributable to the acceleration of the signal are eliminated gravity.
  • said phase of determining the steering parameters further comprises a preliminary step to said virtual stabilization step, comprising an operation of prefiltering the components of the acceleration signal, by which the signal variations having a frequency greater than the greatest possible frequency of the rotational movement are substantially attenuated of the probe around its longitudinal axis.
  • an accelerometer and a direction indicator each having a first and a second sensitive transverse axis, perpendicular to each other and to the longitudinal axis of the probe, and a third sensitive axis, of longitudinal direction and coincident with the axis of the probe, said signals each comprising two transverse axial components and a longitudinal axial component and said direction indicator being for example a magnetometer giving in the coordinate system of its three sensitive axes the direction of the earth's magnetic field vector.
  • the preliminary step of the direction parameter determination phase comprises determining a transverse diagonal component of the stabilizing signal from the transverse axial components of this signal and eliminating the effects of rotation, using the axial and diagonal components. transverse of this same signal, in the transverse axial components of the signal to be stabilized to obtain stabilized components in rotation, corresponding to a reference position of the probe around its longitudinal axis.
  • the preliminary step comprises the operations consisting in: determining a transverse diagonal component of the locating signal from the transverse axial components of this signal; determine from this transverse diagonal component and the longitudinal axial component of this same locating signal the sign of the difference between a first angle, formed between said vector of fixed direction and the longitudinal axis of the probe, and a limit angle of predetermined value; defining the stabilizing and stabilizing signals, respectively by the locating and acceleration signals when the sign of said difference is positive, and by the acceleration and locating signals when this sign is negative; and determining a transverse diagonal component of the stabilizing signal from its transverse axial components when said stabilizing signal is defined by said acceleration signal.
  • said final step comprises an operation of reintroducing the effects of rotation of the probe, supplying from two stabilized transverse axial components of the acceleration signal and transverse components diagonal and axial of the locating signal, two transverse axial components of the acceleration signal which are no longer stabilized again with respect to said reference position of the probe around its longitudinal axis.
  • the low-pass filtering eliminates, by a rapidly increasing attenuation from 3dB, the signal variations having a frequency higher than 8.10- Z Hz and that the pre-filtration consists an attenuation, increasing from 3dB, of the signal variations having a frequency greater than 2.5 Hz.
  • the method of the invention aims to determine different parameters, related to the topographic orientation taken by a well 1 at a given depth.
  • the cable passes over a measuring wheel 5 connected to a counter 6 recording the rotations of the wheel 5.
  • the depth at which the probe is in the well which obviously depends on the length of cable unwound from the winch, can in a known manner be deduced from the indication of the counter 6.
  • the probe 2 comprises centering poles 7 enabling it to always adopt a position in the well in which its longitudinal axis 2 a is, over the length of this probe at least, substantially coincident with the longitudinal axis 1 a of the well, l orientation of the probe axis thus assimilating to the orientation of the well at the exploration depth.
  • an accelerometer 8 and a magnetometer 9 Inside the probe housed an accelerometer 8 and a magnetometer 9 firmly attached to the probe.
  • the accelerometer provides a signal with three axial components whose amplitudes represent the lengths of the projections, on three respective sensitive axes, of the vector associated with the set of accelerations undergone by the probe, and the magnetometer provides a signal with three axial components of which the amplitudes represent the lengths of the projections, on three respective sensitive axes, of the vector associated with the magnetic field passing through the probe, that is to say in practice with the terrestrial magnetic field.
  • the magnetometer 9 could be replaced by a gyroscope delivering a three-component signal constituting location information of the probe with respect to the characteristic direction of the gyroscope, or by any other direction indicator, provided on the one hand that the direction of the vector represented by the signal that this indicator would provide is fixed and known and on the other hand that it is different from the vertical.
  • the sensitive axes of the accelerometer and the magnetometer form a fixed rectangular trihedron with respect to the probe, the accelerometer and the magnetometer having a first sensitive axis in the longitudinal direction of the probe and two transverse sensitive axes.
  • the probe having been lowered into the well to a known depth is raised using the winch and the cable at a substantially constant speed while the accelerometer and the magnetometer produce their respective signals, which are transmitted to the surface by the cable. 3, and recovered at the surface in correlation with the signal from counter 6.
  • the probe 2 is subjected to accelerations which, in addition to the acceleration of gravity, include the acceleration due to the movement of the probe 2 in the well. Indeed, on the one hand the probe undergoes transverse movements and shocks against the wall and on the other hand, despite the fact that the cable is rewound at substantially constant speed, the probe advances in the longitudinal direction by jerky progressions a movement called "yo-yo". In addition, the probe generally undergoes an additional movement of rotation about its longitudinal axis.
  • phase of determining the direction parameters of the well from the signals from the accelerometer and the magnetometer therefore requires different steps and operations aimed in particular at recovering from these signals the information that they would have provided directly if they had been produced while the probe was at rest and had not undergone any rotation around its longitudinal axis.
  • this phase comprises a preliminary stage ETO, a virtual stabilization stage ET1 itself comprising an operation D 1 or D 2 of elimination rotation effects, and a final step ET2 of combining the processed components of the signals ⁇ S and ⁇ S, the step ET1 and the final step ET2 being separated by an intermediate operation OIF of low-pass filtering F 2 13 or F 2 47.
  • Operations 13 and 46 consist in changing the sign of the components of the signals ⁇ S and ⁇ S and are only necessary when the ETO step relates to the signals directly supplied by the accelerometer and the magnetometer as representative of vectors of directions opposite to those of the vectors of acceleration on the one hand and of terrestrial magnetic field on the other hand.
  • the prefiltering operations F, and delay operations R, will be explained in detail later.
  • the preliminary ETO stage has two essential purposes.
  • the components of the acceleration and location signals generally carry information coming from a parasitic phenomenon, namely the rotation of the probe around its axis.
  • signal to be stabilized To eliminate the effects of this rotation on the values of the transverse axial components of one of the signals hereinafter called “signal to be stabilized”, use is made, in the subsequent step of virtual stabilization ET1, of the use of the components transverse axial and a transverse component, called diagonal, of the other signal, hereinafter called “stabilizing signal”.
  • the preliminary step ETO therefore appears to have the function, on the one hand, of making it possible to determine which of the two signals ⁇ S and ⁇ S must play the role of signal to stabilize p S, the other signal obviously having to play the role of signal stabilizer a S, and on the other hand to supply, for the needs of the virtual stabilization step ET1, the diagonal transverse component of the stabilizer signal, that is to say a S xy according to the notation previously introduced.
  • the operation of determining a S xy is included in block N 3 or in block N, depending, respectively, on whether the role of a S is held by the signal ⁇ S or by the signal ⁇ S.
  • FIGS. 3a and 3b are represented lines of material or virtual information circulation, each assigned, unlike the case of FIG. 2 , single component or signal standard.
  • the blocks N 1 to N 4 , D 1 and D 2 , E 1 , DEV 1, DEV 2, RB 1 and RB 3 AZI1.1 and AZI1.2, AZIM1 and AZIM3 are to be considered as operations in FIG. 2, and as function generators, suitable for carrying out these operations, in FIGS. 3a and 3b.
  • the axial components ⁇ S xo , ⁇ S yo , ⁇ S zo and ⁇ S xo , ⁇ S yo , and ⁇ S zo of the accelerometer and magnetometer output, available at the start of the parameter value determination phase, can be considered as each having on each of the elementary time intervals ⁇ t, a constant amplitude.
  • ⁇ o represents x o , y o or z o for a component before filtering
  • represents x, y, z for a component after filtering
  • k and I represent whole numbers and if ⁇ S ⁇ .i ⁇ t represents the amplitude of the component of ⁇ ⁇ S signal in the j th time interval .DELTA.t
  • the role of filters F, is to very significantly attenuate, in the filtered components, the signal variations having a frequency greater than the maximum possible frequency of the rotational movement of the probe around its axis. We see in Figure 4 that frequencies above 2.5 Hz undergo an attenuation greater than 3 dB.
  • the output signal of the filter F 1 has a certain delay compared to the input signal.
  • the components of the accelerometer and magnetometer signals relating to the same instantaneous depth of the probe in the well must obviously be used together, the components ⁇ S x , ⁇ S Y , ⁇ S z , ⁇ S xy and the standard ⁇ S xyz of the locating signal, coming from the magnetometer, undergoes in cells R 1 .1 to R 1 .5 a delay equivalent to that caused by filtering F, on the components of the acceleration signal.
  • the divider DV to which the components ⁇ S z and ⁇ S xy are then applied, performs the ratio ⁇ S xy / ⁇ S z , which represents the tangent of the angle a formed between the direction of the earth's magnetic field vector and that of of the probe axis.
  • the information ⁇ S xy / ⁇ S z is then applied to the comparator COMP 1 which compares it to a predetermined value limit L 1 .
  • the output T 1 of the comparator COMP 1 will be deactivated if the angle is greater than or equal to 3 ° (general case).
  • the state T, of the output of the comparator COMP 1 makes it possible to operate a switch, symbolically produced by two relays M T 1 and MT 1 .
  • T 1 is zero, (general case), ie when T 1 is equal to 1 (fig. 3a) the signal ⁇ S of the magnetometer is used as the stabilizing signal a S and the signal ⁇ S of the accelerometer as the signal to stabilize p S, which means that the signal from the magnetometer is used to correct the accelerometer signal from the probe rotation effects.
  • the stabilizing signal a S is the signal ⁇ S of the accelerometer, which is used to correct the signal ⁇ S of the magnetometer, constituting the signal to be stabilized p S. _
  • the MV and MT relays define: for the two values of T 1 .
  • the stabilized components P S x and p S y are substantially those which would have been obtained in the absence of rotation of the probe around its longitudinal axis.
  • the role of the filters F 2 is to eliminate, from the filtered components, the variations in the amplitude having a frequency greater than the maximum frequency of the amplitude variations which are attributable to the acceleration of gravity and which essentially derive from the variations the angle formed between the vertical and the longitudinal axis of the probe.
  • frequencies above 8.10- 2 Hz undergo attenuation above 3 dB and very rapidly increasing.
  • the components of the accelerometer signal are normalized.
  • T 1 0 (general case)
  • ⁇ S xo and ⁇ S yo are the components of ⁇ S at the exit of N 2 and ⁇ S x , ⁇ S y , ⁇ S xy the transverse components of ⁇ S at the exit of R 2 .1, R 2 . 2 and R 2 .4, the new components of ⁇ S at the output of E 1 are:
  • these components ⁇ S x and ⁇ S y are not at all identical or proportional to the components of the accelerometer output signal. If, in fact, these new components ⁇ S x and ⁇ S y again contain the information relating to the rotation of the probe around its longitudinal axis relative to a reference position, on the other hand they are rid of disturbing information originating impacts of the probe against the wall of the well.
  • the final step ET2 of combining the components of the acceleration and locating signals results, by different operations described below, in the determination of different parameters representative of the topographic orientation of the well and of the position of the probe in the well relative to a reference position corresponding to a setting of the probe for the rotational movements around its longitudinal axis.
  • the diagonal transverse components ⁇ S xy and longitudinal ⁇ S z of the accelerometer signal, normalized in N 2 or in N 4 , are combined to obtain the value of a first parameter, DEV, representing the angle ⁇ formed between the vertical and the longitudinal axis of the probe.
  • T 1 1, DEV is obtained in DEV 2, providing the information DEV 2.
  • the DEV 1 and DEV 2 function generators are identical and provide the information defined by
  • the information DEV 1 is, in the comparator COMP 2, compared with an angle L2 of predetermined value, for example equal to 0.5 °; according to the result of this comparison, the value of two other pieces of information RB 1 and AZIM 1 is multiplied by 0 or 1, which will be defined later.
  • This is, schematically, represented by the possibility, for the comparator COMP 2, of controlling two relays MT 2 .1 and MT 2 .2 closed or switched to ground.
  • T 2 0
  • T S INT 2 v-
  • INT designates the function "whole part of”.
  • AZI 1 representing the angle ⁇ formed between the horizontal projection of the earth's magnetic field vector and the horizontal projection of a vector perpendicular to the longitudinal axis of the probe and joining this axis to a fixed point P of the probe, distant from this same axis.
  • the double contact relay T 1 T 1 controlled by the comparator COMP 1, schematically represents the connection of the phase for determining the value of the parameters to a display operation AFF of these parameters.
  • this relay T, T makes it possible to obtain, at the end of the determination phase, the parameters DEV, AZIM, AZI1 and RB which, in an explicit form, are expressed by:
  • the display of quantities such as the norm ⁇ S xyz of the signal of the magnetometer, and the norm ⁇ S xyz of the signal of the accelerometer, after low-pass filtering, makes it possible to exercise control over the meaning actual values obtained for the different parameters.
  • the phase of determining the value of the parameters can, using the preceding indications, be carried out according to various methods, and for example by means of a hardware device specially designed for To this end and corresponding to the diagram of FIGS. 3a and 3b, it appeared that the most suitable way consisted in resorting to automatic data processing by means of a computer.
  • the blocks in FIGS. 2, 3a and 3b represent subroutines, with the exception of the comparators in FIG. 3a which represent tests, and relays in FIGS. 3a and 3b, which represent conditional connections.

Description

  • La présente invention concerne un procédé et un appareil pour la détermination de paramètres de direction d'un puits en fonction de la profondeur, et plus particulièrement un procédé et un appareil qui utilisent les signaux de mesure d'un accéléromètre et d'un magnétomètre à trois axes sensibles logés dans une sonde explorant le puits. La sonde est continûment déplacée dans le puits pendant la mesure. Dans le cas le plus courant, le signal de l'accéléromètre est préfiltré, puis combiné au signal du magnétomètre pour le débarrasser de l'altération qu'il subit en raison du déplacement de la sonde dans le puits, puis soumis à un filtrage passe-bas très sélectif, et enfin à nouveau combiné au signal du magnétomètre pour la détermination de paramètres de direction du puits.
  • L'écorce terrestre est constituée de couches de natures, d'epaisseurs de d'inclinaisons diverses, et il est depuis longtemps apparu que toute information concernant les couches successives, et en particulier leur inclinaison, présentait un intérêt certain dans des domaines tels que celui de la recherche pétrolière. Cependant, de telles informations sur l'inclinaison des couches n'étant pas directement accessibles dans l'état actuel de la technique, on a classiquement recours à des sondes, que l'on déplace dans un puits traversant ces couches, et qui fournissent des informations sur leur orientation par rapport aux couches traversées par le puits.
  • On comprend aisément que ces informations représentatives d'une orientation de nature relative soient insuffisantes et qu'il soit par conséquent nécessaire, pour connaître l'orientation des couches, de déterminer l'orientation topographique tridimensionnelle du puits et la position prise par la sonde dans le puits à la profondeur d'investigation.
  • Il est aussi bien connu, dans les techniques d'aviation, que l'orientation topographique tridimensionnelle d'un avion ou d'une fusée peut être déterminée en utilisant les signaux de mesure d'un accéléromètre et d'un magnétomètre à trois axes sensibles. Ces signaux sont immédiatement utilisables quand l'avion vole à une vitesse constante et qu'il a une trajectoire régulière. Quand il y a des perturbations ou des accélérations soudaines, les signaux de l'accéléromètre et du magnétomètre perdent généralement leur intérêt dans cette détermination d'orientation.
  • C'est dans ce cadre très général que s'inscrivent le procédé décrit dans le brevet des Etats Unis n° 3 862 499 délivré à C. E. Isham et al, ainsi que celui de la présente invention selon le préambule de la revendication 1, qui vise à la détermination de paramètres représentatifs de l'orientation topographique du puits ét, bien que de façon facultative, à la détermination de la position prise par la sonde dans le puits.
  • Selon le procédé connu, la sonde est descendue dans le puits et stabilisée à une certaine profondeur. Les signaux d'un accéléromètre et d'un magnétomètre montés dans la sonde sont relevés alors que la sonde est fixe dans le puits en l'absence de toute perturbation. Ces signaux à composantes stationnaires sont combinés pour obtenir deux paramètres de direction du puits, à savoir l'angle de déviation, défini comme l'angle formé entre l'axe longitudinal du puits et la verticale, et l'azimut, défini comme l'angle formé entre deux plans verticaux dont l'une contient l'axe longitudinal du puits et l'autre la direction du nord. Puis la sonde est déplacée dans le puits et stabilisée à une autre profondeur. De nouveaux signaux sont produits lorsque la sonde est fixe, et sont combinés pour obtenir de nouvelles valeurs de l'angle de déviation et de l'azimut.
  • Ce procédé, en dépit de ce qu'il permit d'obtenir une précision satisfaisante sur les paramètres mesurés à chaque station de la sonde, présente plusieurs limitations, et notamment les deux inconvénients importants ci-dessous.
  • La premier, immédiat, est que la nécessité de stabiliser la sonde pour chaque mesure occasionne une augmentation préjudiciable de la durée de l'exploration du puits.
  • Le second est que l'orientation du puits entre deux mesures étant physiquement inobservable, toute variation de l'orientation, qui apparaît et disparaît entre deux mesures successives, augmente de façon critique l'erreur sur la localisation des points du puits situés au-dessous de cette variation d'orientation.
  • Dans ce contexte, la présente invention a pour but de proposer un procédé et un appareil pour la détermination de paramètres d'un puits qui soit plus rapide que le procédé connu précédemment décrit.
  • La présente invention a également pour but de proposer un procédé et un appareil permettant de déterminer physiquement des variations de l'orientation du puits en tout point d'une portion longitudinale explorée de ce puits.
  • Le procédé de l'invention selon la préambule de la revendication 1, est caractérisé en ce que les phases consistant à produire lesdits signaux d'accélération et de repérage et à déplacer la sonde sont simultanées et sensiblement continues, et en ce que ladite phase de détermination des paramètres de direction inclut une étape de stabilisation virtuelle par laquelle on élimine les effets du déplacement de la sonde, dans les composantes de l'un des signaux, constituant un signal à stabiliser, au moyen des composantes de l'autre signal, constituant un signal stabilisateur, et une opération intermédiaire de filtrage passe-bas portant au moins sur des composantes stabilisées dudit signal à stabiliser et par laquelle on élimine de ces composantes les variations de fréquence supérieure à la fréquence maximale des variations imputables à l'accélération de la pesanteur.
  • De préférence, ladite phase de détermination des paramètres de direction comprend en outre une étape préliminaire à ladite étape de stabilisation virtuelle, comportant une opération de préfiltrage des composantes du signal d'accélération, par laquelle on atténue sensiblement, dans ces composantes, les variations de signal présentant une fréquence supérieure à la plus grande fréquence possible du mouvement de rotation de la sonde autour de son axe longitudinal.
  • De façon simple, on utilise respectivement, pour produire lesdits signaux d'accélération et de repérage, un accéléromètre et un indicateur de direction, cet accéléromètre et cet indicateur de direction ayant chacun un premier et un second axe sensibles transversaux, perpendiculaires entre eux et à l'axe longitudinal de la sonde, et un troisième axe sensible, de direction longitudinale et confondu avec l'axe de la sonde, lesdits signaux comprenant chacun deux composantes axiales transversales et une composante axiale longitudinale et ledit indicateur de direction étant par exemple un magnétomètre donnant dans le repère de ses trois axes sensibles la direction du vecteur de champ magnétique terrestre.
  • L'étape préliminaire de la phase de détermination des paramètres de direction comprend la détermination d'une composante diagonale transversale du signal stabilisateur à partir des composantes axiales transversales de ce signal et l'élimination des effets de rotation, au moyen des composantes axiales et diagonale transversales de ce même signal, dans les composants axiales transversales du signal à stabiliser pour en obtenir des composantes stabilisées en rotation, correspondant à une position de référence de la sonde autour de son axe longitudinal.
  • L'étape préliminaire comprend les opérations consistant à: déterminer une composante diagonale transversale du signal de repérage à partir des composantes axiales transversales de ce signal; déterminer à partir de cette composante diagonale transversale et de la composante axiale longitudinale de ce même signal de repérage le signe de la différence entre un premier angle, formé entre ledit vecteur de direction fixe et l'axe longitudinal de la sonde, et un angle limite de valeur prédéterminée; définir les signaux stabilisateur et à stabiliser, respectivement par les signaux de repérage et d'accélération lorsque le signe de ladite différence est positif, et par les signaux d'accélération et de repérage lorsque ce signe est négatif; et déterminer une composante diagonale transversale du signal stabilisateur à partir des ses composantes axiales transversales lorsque ce signal stabilisateur est défini par ledit signal d'accélération.
  • Lorsque le signe de la différence déterminé au cours de ladite étape préliminaire est positif, ladite étape finale comprend une opération de réintroduction des effets de rotation de la sonde, fournissant à partir de deux composantes axiales transversales stabilisées du signal d'accélération et des composantes transversales diagonale et axiales du signal de repérage, deux composantes aixales transversales du signal d'accélération qui ne sont à nouveau plus stabilisées par rapport à ladite position de référence de la sonde autour de son axe longitudinal.
  • Dans ces conditions courantes d'exploration du puits, il est avantageux que le filtrage passe-bas élimine, par une atténuation croissante rapidement à partir de 3dB, les variations de signal présentant une fréquence supérieure à 8.10-Z Hz et que lé préfiltrage consiste en une atténuation, croissante à partir de 3dB, des variations de signal présentant une fréquence supérieure à 2,5 Hz.
  • Un appareil, selon l'invention, est décrit dans la revendication 6.
  • Un mode particulier de réalisation de l'invention sera décrit ci-après, à titre indicatif et nullement limitatif, en référence ou dessin annexé, sur lequel,
    • -La figure 1 est une vue schématique représentant, en coupe un puits exploré par une sonde;
    • - La figure 2 est un diagramme fonctionnel (flow-chart) représentant les principales opérations de la phase de détermination de valeurs de paramètres dans le procédé de l'invention;
    • -Les figures 3a et 3b sont des représentations schématiques de circuits multifilaires pour la circulation et le traitement des composantes des signaux d'accélération et de repérage dans la phase de détermination des paramètres, et sur lesquelles chaque conducteur est assigné à une seule composante d'un des deux signaux; ces figures sont raccordées par les faisceaux de conducteurs 01 et Y'2%
    • -La figure 4 est un diagrame représentant les caractéristiques du filtre de préfiltrage;
    • -La figure 5 est un diagramme représentant les caractéristiques du filtre passe-bas.
  • Comme il a précédemment été indiqué, le procédé de l'invention vise à la détermination de différents paramètres, liés à l'orientation topographique prise par un puits 1 à une profondeur donnée.
  • A cette fin, on dispose d'une sonde allongée 2 que l'on descend initialement dans le puits 1 au moyen d'un câble 3 solidaire la sonde et enroulé sur un treuil 4.
  • Entre le treuil et le bord supérieur du puits, le câble passe sur une roue de mesure 5 reliée à un compteur 6 enregistrant les rotations de la roue 5. La profondeur à laquelle la sonde se trouve dans le puits, qui est évidemment fonction de la longueur de câble déroulée du treuil, peut de façon connue, être déduite de l'indication du compteur 6.
  • La sonde 2 comporte des arceaux de centrage 7 lui permettant de toujours adopter dans le puits une position dans laquelle son axe longitudinal 2 a est, sur la longueur de cette sonde au moins, sensiblement confondu avec l'axe longitudinal 1 a du puits, l'orientation de l'axe de la sonde s'assimilant ainsi à l'orientation du puits à la profondeur d'exploration.
  • A l'intérieur de la sonde logés un accéléromètre 8 et un magnétomètre 9 fermement solidaires de la sonde.
  • L'accéléromètre fournit un signal à trois composantes axiales dont les amplitudes représentent les longueurs des projections, sur trois axes sensibles respectifs, du vecteur associé à l'ensemble des accélérations que subit la sonde, et le magnétomètre fournit un signal à trois composantes axiales dont les amplitudes représentent les longueurs des projections, sur trois axes sensibles respectifs, du vecteur associé au champ magnétique traversant la sonde, c'est-à-dire en pratique au champ magnétique terrestre.
  • Toutefois, le magnétomètre 9 pourrait être remplacé par un gyroscope délivrant un signal à trois composantes constituant une information de repérage de la sonde par rapport à la direction caractéristique du gyroscope, ou par tout autre indicateur de direction, pourvu d'une part que la direction du vecteur représentée par le signal que fournirait cet indicateur soit fixe et connue et d'autre part qu'elle soit différente de la verticale.
  • Les axes sensibles de l'accéléromètre et du magnétomètre forment un trièdre rectangle fixe par rapport à la sonde, l'accéléromètre et le magnétomètre ayant un premier axe sensible dans la direction longitudinale de la sonde et deux axes sensibles transversaux.
  • La sonde ayant été descendue dans le puits à une profondeur connue est remontée à l'aide du treuil et du câble à une vitesse sensiblement constante tandis que l'accéléromètre et le magnétomètre produisent leurs signaux respectifs, qui sont transmis vers la surface par le câble 3, et récupérés en surface en corrélation avec le signal du compteur 6.
  • En raison notamment des irrégularités de la paroi du puits et de l'élasticité du câble 3, la sonde 2 est soumise à des accélérations qui, outre l'accélération de la pesanteur, comprennent l'accélération due au mouvement de la sonde 2 dans le puits. En effet, d'une part la sonde subit des mouvements transversaux et des chocs contre la paroi et d'autre part, en dépit du fait que le câble est réenroulé à vitesse sensiblement constante, la sonde avance dans la direction longitudinale par progressions saccadées en un mouvement dit de "yo-yo". En outre, la sonde subit généralement un mouvement supplémentaire de rotation autour de son axe longitudinal.
  • Si l'on peut considérer les composantes du signal de repérage, issu du magnétomètre, comme sensiblement indépendantes des mouvements brusques de la sonde, par contre les composantes du signal d'accélération, issu de l'accéléromètre, sont, dans une très large mesure, représentatives de ces mouvements parasites d'amplitude limitée, qui le perturbent de façon critique.
  • Aussi la phase de détermination des paramètes de direction du puits à partir des signaux de l'accéléromètre et du magnétomètre suppose-t-elle différentes étapes et opérations visant notamment à récupérer de ces signaux les informations qu'ils auraient directement fournies s'ils avaient été produits alors que la sonde était au repos etn'avait subi aucune rotation autour de son axe longitudinal.
  • Dans la description qui est faite ci-dessous de ces différentes étapes et opérations, les définitions suivantes seront utilisées:
    • -S désigne un signal quelconque de nature vectorielle, de composantes axiales Sx, Sv et Sz;
    • ―Sxy désigne la norme partielle ou composante diagonale de ce signal;
      Figure imgb0001
      ;
    • ―Sxyz désigne la norme:
      Figure imgb0002
      du signal S;
    • ―Sξo et Sξ désignent une même composante axiale du signal S, respectivement avant et après une opération modifiant cette composante; ξo et ξ peuvent respectivement adopter les significations suivantes: xo et x; yo et y; zo et z; xoyo et xy;
    • -Sc désigne une composante normée si
      Figure imgb0003
    • γS et µS désignent respectivement les signaux d'accélération et de repérage, de nature vectorielle, respectivement issus de l'accéléromètre et du magnétomètre et ayant les composantes axiales respectives γSx, γSy, γSz et µSx, µSy et µSz;
    • aS et PS (a=actif; p=passif) désignent respectivement un signal stabilisateur et un signal à stabiliser, la nature de la stabilisation étant expliquée en détail ultérieurement.
  • En se référant à la figure 2, qui représente la phase de détermination des valeurs des paramètres, on voit que cette phase comprend une étape préliminaire ETO, une étape de stabilisation virtuelle ET1 comportant elle-même une opération D1 ou D2 d'élimination des effets de rotation, et une étape finale ET2 de combinaison des composantes traitées des signaux γS et µS, l'étape ET1 et l'étape finale ET2 étant séparées par une opération intermédiaire OIF de filtrage passe-bas F2 13 ou F2 47.
  • L'étape préliminaire ETO comprend, outre d'éventuelles opérations 1 13 et 1 46 d'inversion du signe des composantes des signaux γS et µS, des opérations de préfiltrage F1 du signal γS, de retard R1 du signal µS, de normation N1 du signal µS, de choix avec test "T=0?" et, éventuellement de normation N3 du signal γS.
  • Les opérations 13 et 46 consistent à changer le signe des composantes des signaux γS et µS et ne sont nécessaires que lorsque l'étape ETO porte sur les signaux directement fournis par l'accéléromètre et le magnétomètre comme représentatifs de vecteurs de directions opposées à celles des vecteurs d'accélération d'une part et de champ magnétique terrestre d'autre part.
  • Les opérations de préfiltrage F, et de retard R, seront expliquées en détail ultérieurement.
  • Outre l'obtention de composantes préfiltrées du signal d'accélération, l'étape préliminaire ETO a deux finalités essentielles. En effet, comme cela a été précédemment mentionné, les composantes des signaux d'accélération et de repérage sont généralement porteuses d'une information provenant d'un phénomène parasite, à savoir la rotation de la sonde autour de son axe. Pour éliminer les effets de cette rotation sur les valeurs des composantes axiales transversales de l'un des signaux ci-après dénommé "signal à stabiliser", on a recours, dans l'étape ultérieure de stabilisation virtuelle ET1, à l'utilisation des composantes axiales transversales et d'une composante transversale, dite diagonale, de l'autre signal, ci-après dénommé "signal stabilisateur". Or, suivant l'orientation topographique de l'axe longitudinal de la sonde, il peut être préférable, soit d'utiliser les composantes du signal du magnétomètre pour corriger les composantes du signal de l'accéléromètre, soit, inversement, d'utiliser les composantes du signal de l'accéléromètre pour corriger les composantes du signal du magnétomètre. L'étape préliminaire ETO apparaît donc avoir notamment pour fonction d'une part de permettre de déterminer lequel des deux signaux γS et µS doit jouer le rôle de signal à stabiliser pS, l'autre signal devant évidemment jouer le rôle de signal stabilisateur aS, et d'autre part de fournir, pour les besoins de l'étape de stabilisation virtuelle ET1, la composante transversale diagonale du signal stabilisateur, c'est-à-dire aSxy selon la notation précédemment introduite.
  • L'opération de détermination de aSxy, est incluse dans le bloc N3 ou dans le bloc N, selon, respectivement, que le rôle de aS est tenu par le signal γS ou par le signal µS. Cependant, comme le choix avec test "T1=0 ?" suppose, ainsi qu'il apparaîtra ci-dessous, l'utilisation de la composante diagonale de l'un des deux signaux, et très préférablement de µS, on détermine d'abord µSxy au cours de l'opération N1, on utilise ensuite µSxy pour conduire le test "T1=0 ?" qui permet de décider lequel des deux signaux doit jouer le rôle de signal stabilisateur aS et détermine aSxy=γSxy au cours de l'opération N3 si le test "T1=0 ?" a conduit à assigner à γS le rôle de signal stabilisateur aS.
  • La description détaillée des différentes opérations de toute la phase de détermination des paramètres se réfère généralement ci-après aux figures 3a et 3b sur lesquelles sont représentées des lignes de circulation matérielle ou virtuelle d'information, affectées chacune, contrairement au cas de la figure 2, à une seule composante ou norme de signal.
  • Aux blocks I 13, I 46; F1; R1, R2.14, R2.59; F2.13 et F2.47 de la figure 2 correspondent respectivement les inverseurs I1 à I13 et I4 à I6, les filtres de préfiltrage F1.1 à F1.3, les cellules-tampons R1.1 à R1.5, R2.1 à R2.4 et R2.5 à R2.9 et les filtres F2.1 à F2.3 et F2.4 à F2.7 des figures 3a et 3b.
  • Les blocs N1 à N4, D1 et D2, E1, DEV 1, DEV 2, RB 1 et RB 3 AZI1.1 et AZI1.2, AZIM1 et AZIM3 sont à considérer comme des opérations sur la figure 2, et comme des générateurs de fonctions, propres à effectuer ces opérations, sur les figures 3a et 3b.
  • Sur les figures 3a et 3b, les notations des composantes des signaux ne tiennent pas compte, pour des raisons de simplification, de ce que ces composantes gardent évidement, à tous les niveaux, la mémoire des traitements qui leur ont été appliqués dans les blocs qu'elles ont traversés antérieurement.
  • Les composantes axiales γSxo, γSyo, γSzo et µSxo, µSyo, et µSzo de sortie de l'accéléromètre et du magnétomètre, disponibles au début de la phase de détermination des valeurs de paramètres, peuvent être considérées comme ayant chacune sur chacun des intervalles de temps élémentaires Δt, une amplitude constante.
  • Les composantes axiales du magnétomètre, de signe éventuellement corrigé par les inverseurs I4, I5 et I6, sont appliquées au générateur de fonction N1, qui délivre à sa sortie la norme µSxyz, les composantes axiales normées µSx=µSxo/µSxtz, µSy=µSyo/µSxyz, µSz=µSzo/µSxyz et la composante diagonale transversale normée
    Figure imgb0004
  • Les composantes axiales de l'accéléromètre, de signe éventuellement corrigé par les inverseurs I1, I2 et I3, sont appliquées aux filtres de préfiltrage identiques F1.1 à F1.3.
  • Siξo représente xo, yo ou zo pour une composante avant filtrage, si ξ représente x, y, z pour une composante après filtrage, si k et I représentent des nombres entiers et si γSξ.iΔt représente l'amplitude de la composante ξ du signal γS au cours du jieme intervalle de temps Δt, le caractéristique des filtres F1.1 à F1.3 est de délivrer pour I, un signal de sortie tel que:
    Figure imgb0005
    avec ak=0,54-0,46 cos
    Figure imgb0006
  • La caractéristique de ces filtres F, est représentée sur la figure 4 qui porte, en abscisse, la fréquence et, en ordonnée l'atténuation, dans le cas où la valeur de chaque composante du signal γS de l'accéléromètre est échantillonnée toutes les 8,3 millisecondes (At=8,3 ms). De nouvelles composantes filtrées apparaissent donc tous les 15.5 Δt, soit environ toutes les 1/7,5 secondes. Le rôle des filtres F, est d'atténuer très sensiblement, dans les composantes filtrées, les variations de signal présentant une fréquence supérieure à la fréquence maximale possible du mouvement de rotation de la sonde autour de son axe. On voit sur la figure 4 que les fréquences supérieures à 2,5 Hz subissent une atténuation supérieure à 3 dB.
  • Comme l'apparition de la composante filtrée γSξ,15.51Δt suppose l'apparition antérieure de la composante nonfiltrée γSξo,(15.5)(1+1)Δt le signal de sortie du filtre F1 présente un certain retard par rapport au signal d'entrée. Comme il convient évidemment d'utiliser ensemble les composantes des signaux de l'accéléromètre et du magnétomètre relatives à une même profondeur instantanée de la sonde dans le puits, les composantes µSx, µSY, µSz, µSxy et la norme µSxyz du signal de repérage, issu du magnétomètre, subissent dans les cellules R1.1 à R1.5 un retard équivalent à celui que provoque le filtrage F, sur les composantes du signal d'accélération.
  • Le diviseur DV, auquel sont appliquées ensuite les composantes µSz et µSxy, effectue le rapport µSxy/µSz, qui représente la tangente de l'angle a formé entre la direction du vecteur de champ magnétique terrestre et celle de l'axe de la sonde. L'information µSxy/µSzest ensuite appliquée au comparateur COMP 1 qui la compare à une limite de valeur prédéterminée L1. Si la quantité
    Figure imgb0007
    est positive ou nulle, la sortie du comparateur COMP 1 se met dans l'état T,=0 (cas général), et, si u est négatif, dans l'état T1=1 (cas particulier, le moins fréquent), T1 étant par exemple défini par la fonction explicite T1=1-INT 2 u-|u| où "INT" désigne la fonction "partie entière de". Ainsi, pour la valeur, généralement appropriée, de 5.10-2 pour L1, la sortie T1 du comparateur COMP 1 sera désactivée si l'angle
    Figure imgb0008
    est supérieur ou égal à 3° (cas général).
  • L'état T, de la sortie du comparateur COMP 1 permet d'opérer un aiguillage, symboliquement réalisé par deux relais MT 1 et MT1. Le relais MT, ferme ses contacts lorsque T1=1―T1 est égal à 1 et le relais MT1 ferme ses contacts lorsque T1 est égal à 1. Lorsque T1 est nul, (cas général), c'est-à-dire Iorsque T 1 est égal à 1 (fig. 3a) le signal µS du magnétomètre est utilisé comme signal stabilisateur aS et le signal γS de l'accéléromètre comme signal à stabiliser pS, ce qui signifie que le signal du magnétomètre est utilisé pour corriger le signal de l'accéléromètre des effets de rotation de la sonde. Inversement lorsque T1 est égal à 1 (cas particulier), c'est-à-dire lorsque T1 est nul, le signal stabilisateur aS est le signal γS de l'accéléromètre, qui sert à corriger le signal µS du magnétomètre, constituant le signal à stabiliser pS. _
  • De façon plus concise, les relais MT, et MT, réalisent la définition:
    Figure imgb0009
    pour les deux valeurs de T1.
  • Dans le cas T1=1 (cas particulier), les composantes γSxo et γSyo provenant de F1.1 et F1.2 sont combinées en N3 pour obtenir la composante transversale diagonale
    Figure imgb0010
  • L'étape ET1 de stabilisation virtuelle consiste essentiellement à corriger les composantes axiales transversales du signal à stabiliser, en éliminant dans ces composantes les effets de la rotation de la sonde, au moyen des composantes transversales diagonale et axiales du signal stabilisateur, dans les blocks D1 ou D2; pour des composantes pSxo, pSyo, aSx, aSy, aSxy d'entrée, D1 et D2 fournissent en sortie les nouvelles composantes pSx et PSy telles que:
    Figure imgb0011
    Figure imgb0012
    PSxo et PSγo proviennent de F1.1 et F1.2 si T1=0 (cas général) et de R1.1 et R1.2 si T1=1 (cas particulier); aSx et aSy proviennent de R1.1 et R1.2 si T1=0 (cas général) et de F1.1 et F1.2 si T1=1 (cas particulier); et aSxy provient de N1 par R1.4 lorsque T1=0 (cas général), et de N3 lorsque T1=1 (cas particulier). Les composantes PSx et pSy stabilisées sont sensiblement celles qui auraient été obtenues en absence de rotation de la sonde autour de son axe longitudinal. Les composantes pSx et PSy provenant des blocks D1 ou D2, la composante axiale longitudinale γSz du signal de l'accéléromètre (définissant PSz si T1=0 et aSz si T1=1 et, si T1=1 (cas particulier), la composante diagonale γSxy=aSxy du signal stabilisateur, subissent ensuite, dans les blocs F2.1 à F2.7 un filtrage passe-bas dont la caractéristique est donnée par:
    Figure imgb0013
    avec bk=0,54-0,46 cos
    Figure imgb0014
  • La caractéristique de ces filtres F2 est représentée sur la figure 5 qui porte, en abscisse, la fréquence et en ordonnée, l'amplitude transmise, dans le cas où la valeur de chaque composante devant être filtrée est échantillonnée toutes les 1/7,5 seconds (At=1/7,5 s). De nouvelles composantes filtrées apparaissent donc tous les 31.5At, soit environ toutes les 4.2 secondes.
  • Le rôle des filtres F2 est d'éliminer, des composantes filtrées, les variations de l'amplitude présentant une fréquence supérieure à la fréquence maximale des variations d'amplitude qui sont imputables à l'accélération de la pesanteur et qui dérivent essentiellement des variations de l'angle formé entre la verticale et l'axe longitudinal de la sonde. On voit sur la figure 5 que les fréquences supérieures à 8.10-2 Hz subissent une atténuation supérieure à 3 dB et très rapidement croissante.
  • Comme l'apparition d'une composante filtrée Sξ,(31.5)lΔt suppose l'apparition antérieure de la composante non filtrée Sξo,(31.5)(I+1)Δt les composantes à la sortie des filtres F2.1· à F2.7 subissent un retard de 31.5 Δt. Pour éliminer les incidences de ce retard, les composantes non filtrées subissent des retards équivalents dans les cellules tampons R2.1 à R2.9.
  • Après le filtrage passe-bas, les composantes du signal de l'accéléromètre sont normées. Lorsque T1=0 (cas général), les composantes de γS=pS sont normées en N2, qui fournit la norme γSxyz=pSxyz et les composantes normées diagonale γSxy=pSxy et axiales γSx=pSx, γSy=pSy et γSz=pS2. Lorsque T1=1 (cas particulier), les composantes de γS=aS sont normées en N4, qui fournit la norme γSxyz=aSxyz et les composantes normées longitudinale γSz=aSz et diagonale γSxy=aSxy.
  • En outre, lorsque T1=0 (cas général), de nouvelles composantes transversales γSx=pSx et γSy=pSy du signal de l'accéléromètre sont obtenues dans E1, à la sortie de N2, en utilisant les composantes transversales aSx=µSx, aSy=µSy et aSxyS xy, du signal de repérage issu du magnétomètre. Cette opération E1 constitute l'opération inverse de l'opération D1 précédemment mentionnée et a pour effet de réintroduire, dans les composantes du signal de l'accéléromètre, l'information relative à la rotation de la sonde autour de son axe longitudinal.
  • Si γSxo et γSyo sont les composantes de γS à la sortie de N2 et µSx, µSy, µSxy les composantes transversales de µS à la sortie de R2.1, R2.2 et R2.4, les nouvelles composantes de γS à la sortie de E1 sont:
    Figure imgb0015
    Figure imgb0016
  • II convient ici de faire remarquer que ces composantes γSx et γSy ne sont pas du tout identiques ni proportionnelles aux composantes du signal de sortie de l'accéléromètre. Si, en effet, ces nouvelles composantes γSx et γSy contiennent à nouveau l'information relative à la rotation de la sonde autour de son axe longitudinal par rapport à une position de référence, par contre elles sont débarassées des informations perturbatrices provenant des chocs de la sonde contre la paroi du puits.
  • L'étape finale ET2 de combinaison des composantes des signaux d'accélération et de repérage aboutit, par différentes opérations décrites ci-après, à la détermination de différents paramètres représentatifs de l'orientation topographique du puits et de la position de la sonde dans le puits par rapport à une position de référence correspondant à un calage de la sonde pour les mouvements de rotation autour de son axe longitudinal.
  • Les composantes transversale diagonale γSxy et longitudinale γSz du signal de l'accéléromètre, normées en N2 ou en N4, sont combinées pour obtenir la valeur d'un premier paramètre, DEV, représentant l'angle β formé entre la verticale et l'axe longitudinal de la sonde.
  • Si T1=0 (cas général), le paramètre DEV est obtenu en DEV 1 qui fournit l'information de même nom DEV 1, et si T1=1, DEV est obtenu en DEV 2, fournissant l'information DEV 2. Les générateurs de fonctions DEV 1 et DEV 2 sont identiques et fournissent l'information définie par
    Figure imgb0017
  • Dans le cas T1=0 (cas général), l'information DEV 1 est, dans le comparateur COMP 2, comparée à un angle L2 de valeur prédéterminée, par exemple égale à 0.5°; en fonction du résultat de cette comparaison, on multiplie par 0 ou 1 la valeur de deux autres informations RB 1 et AZIM 1, qui seront définies ultérieurement. Ceci est, de façon schématique, représenté par la possibilité, pour le comparateur COMP 2, de commander deux relais MT2.1 et MT2.2 fermés ou commutés à la masse. Le comparateur COMP 2 et les relais MT2.1 et MT2.2 sont équivalents à un test "T2=0 ?" dans lequel T2 est une fonction à valeur 1 si l'angle v défin par v=DEV 1-L2 est positif ou nul et à valeur nulle si v est négatif. La fonction T2 peut par exemple prendre la forme explicite: TS=INT 2 v-|vl où INT désigne la fonction "partie entière de". Pour définir les informations RB1 et AZIM 1, précédemment évoquées, il est avantageux de définir deux fonctions, H et J, de deux variables N et D, telles que:
    Figure imgb0018
    et
    Figure imgb0019
    Autrement dit J(N,D) est égal à:
    Figure imgb0020
    si D est négatif, et à
    Figure imgb0021
    si D est positif, 2π étant ajoutés si
    Figure imgb0022
    est négatif.
  • Les deux composantes transversales axiales du signal à stabiliser PSx, pSy, débarassées des effets de rotation de la sonde et filtrées, provenant de N2 lorsque T1=0 (cas général) et de F2.6 et F2.7 lorsque T1=1, la composante longitudinale normée PSz de ce même signal, provenant de N2 lorsque T1=0 (cas général) et de R2.9 lorsque T1=1, et les composantes diagonale et longitudinale aSxy et aSz du vecteur stabilisateur, provenant de R2.4 et R2.3 lorsque T1=0 (cas général) et de N4 lorsque T1=1, sont combinées pour obtenir la valeur d'un second paramètre, AZIM, représentant l'angle ξ formé entre la trace horizontale du plane vertical passant par l'axe longitudinal de la sonde et la projection horizontale du vecteur de champ magnétique terrestre.
  • Pour T1=0 (cas général), le bloc AZIM 1 réalise la fonction élaborant l'information de même nom, AZIM 1 précédemment évoquée et définie par:
    • AZIM 1=J(N,D) avec
      Figure imgb0023
    • Après le test "T2=0 ?", l'information AZIM 1 devient AZIM 2 telle que AZIM 2=T2.AZIM 1. Pour T1=1, le bloc AZIM 3 réalise la fonction élaborant l'information AZIM 3, définie par: AZIM 3=J(N,D) avec
      Figure imgb0024
      Le paramètre AZIM est donc égal à AZIM 2 si T1=0 (cas général) et à AZIM 3 si T1=1.
  • Les trois composantes axiales γSx, γSy et γSz du signal de l'accéléromètre; contenant les effets de rotation de la sonde, c'est-à-dire provenant, lorsque T1=O (cas général) de F1 en ce que concerne γSx et γSy et de N2 pour γSz, et, lorsque T1=1, de R2.5 et R2.6 en ce qui concerne γSx et γSy, et dé N4 pour γSz, et les trois composantes axiales µSx, µSy et µSz du signal du magnétomètre, contenant également les effets de rotation de la sonde, c'est-à-dire provenant, lorsque T1=0 (cas général), de R2.1, R2.2 et R2.3 et, lorsque T1=1, de R2.7, R2:8 et R2.9, sont combinées pour obtenir la valeur d'un troisième paramètre, AZI 1, représentant l'angle δ formé entre la projection horizontale du vecteur de champ magnétique terrestre et la projection horizontale d'un vecteur perpendiculaire à l'axe longitudinal de la sonde et joignant cet axe à un point fixe P de la sonde, distant de ce même axe. Cette combinaison est faite, lorsque T1=0 (cas général) par AZI1.1 qui fournit l'information AZI1.1 telle que AZI1.1=J(N,D) avec
    Figure imgb0025
    et
    Figure imgb0026
    Lorsque T1=1, la combinaison des six composantes axiales des signaux est réalisée par AZI1.2, de la même façon, c'est-à-dire avec les mêmes espressions pour N et D. Le paramètre AZI 1 est donc égal à AZI1.1 si T1=0 et à AZI1.2 si T1=1.
  • Les deux composantes axiales transversales γSx et γSy du signal de l'accéléromètre, contenant les effets de rotation de la. sonde, c'est-à-dire provenant de E1 lorsque T1=0 (cas général) et de R2.5 et R2.6 lorsque T1=1, sont combinées respectivement en RB1 et RB3 pour obtenir la valeur d'un quatrième paramètre, RB, représentant l'angle maximal θ, ou angle dièdre, formé entre un plan vertical contenant l'axe longitudinal de la sonde et un plan contenant l'axe de la sonde et passant par le point fixe P de celle-ci. Les informations RB1 et RB3 s'expriment par la mème combinaison de composantes, à savoir J(N,D) avec N=γSy et D=―γSx. Après le test "T2=0 ?", l'information RB1 devient RB2 telle que RB2=T2.RB 1. Le paramètre RB est donc égal à RB2 si T1=0 et à RB3 si T1=1.
  • Sur la figure 3b, le relais à doubles contacts T1T1, commandé par le comparateur COMP 1, représente de façon schématique le raccordement de la phase de détermination de la valeur des paramètres à une opération d'affichage AFF de ces paramètres. Ainsi ce relais T,T, permet d'obtenir, à la fin la phase de détermination, les paramètres DEV, AZIM, AZI1 et RB qui, sous une forme explicite, s'expriment par:
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
  • Il est toutefois possible et éventuellment avantageux, de déterminer au cours de l'étape finale ET2, la valeur d'autres paramètres tels qu Sin i, i étant l'angle d'inclinaison du vecteur de champ magnétique terrestre. Cette possibilité est illustrée sur la figure 3b (cas T1=1 ). Le paramètre Sin i est donné par:
    Figure imgb0031
  • D'autre part, l'affichage de grandeurs telles que la norme µSxyz du signal du magnétomètre, et la norme γSxyz du signal de l'accéléromètre, après filtrage passe-bas, permet d'exercer un contrôle sur le signification réelle des valeurs obtenues pour les différents paramètres.
  • Comme il est dit précédemment, la valeur de L1 doit être choisie assez faible. de préférence inférieure ou égale à 5.10-2 (5.10-2=tg 3°). En effet, le signal γS de l'accéléromètre étant très perturbé par les accélérations subies par la sonde en raison de son mouvement, il est avantageux de restreindre au maximum l'utilisation du signal S de l'accéléromètre en tant que signal stabilisateur aS pour débarasser le signal de magnétomètre des effets de rotation de la sonde, donc de restreindre au maximum les cas T1=1.
  • Bien que, dans le procédé de l'invention, la phase de détermination de la valeur des paramètres puisse, en utilisant les indications précédentes, être mise en oeuvre selon des modalités diverses, et par exemple au moyen d'un dispositif matériel conçu spécialement à cette fin et répondant au schéma des figures 3a et 3b, il est apparu que la voie la plus adaptée consistait à recourir à un traitement automatique de données au moyen d'un ordinateur. Dans une telle composante, les blocs des figures 2, 3a et 3b représentent des sous-programmes, à l'exception des comparateurs de la figure 3a qui représentent des tests, et des relais des figures 3a et 3b, qui représentent des branchements conditionnels.

Claims (6)

1. Procédé de détermination d'au moins deux paramètres de direction (DEV, AZIM) d'un puits en fonction de la profondeur, comprenant les phases consistant à: produire un signal d'accélération (ys) à trois composantes représentant un ensemble d'accélérations subies par une sonde qui est déplacée dans le puits et détectées suivant trois axes de référence liés à cette sonde; produire un signal de repérage (µs) à trois composantes représentant un vecteur de direction fixe différente de la verticale, rapporté auxdits trois axes de référence; déterminer lesdits paramètres de direction par une combinaison des composantes desdits signaux, caractérisé en ce que les phases consistant à produire lesdits signaux d'accélération et de repérage et le déplacement de la sonde sont simultanées et sensiblement continues, et en ce que ladite phase de détermination des paramètres de direction inclut une étape de stabilisation virtuelle (ET1 ) par laquelle on élimine les effets du déplacement de la sonde dans les composantes de l'un desdits signaux, constituant un signal à stabiliser (ps), au moyen des composantes de l'autre signal, constituant un signal stabilisateur (as), et une opération intermédiaire de filtrage passe-bas (OIF), portant au moins sur des composantes stabilisées dudit signal à stabiliser et par laquelle on élimine de ces composantes les variations de fréquence supérieure à la fréquence maximale des variations imputables à l'accélération de la pesanteur.
2. Procédé suivant la revendication 1, caractérisé en ce que ladite phase de détermination des paramètres de direction comprend en outre une étape préliminaire (ETO) à ladite étape de stabilisation virtuelle, comportant une opération de préfiltrage des composantes du signal d'accélération (ys), par laquelle on atténue sensiblement, dans ces composantes, les variations de signal présentant une fréquence supérieure à la plus grande fréquence possible du mouvement de rotation de la sonde autour de son axe longitudinal.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que, les signaux d'accélération (γs) et de repérage (µs) comprenant chacun deux composantes axiales transversales et une composante axiale longitudinale dans un système d'axes rapporté à l'axe longitudinal de la sonde, il est prévu, avant l'étape de stabilisation virtuelle (ET1), une étape préliminaire (ETO) dans laquelle on détermine une composante diagonale transversale du signal stabilisateur (as) à partir des composantes axiales transversales de ce signal, et en ce qu'on élimine lesdits effets de rotation, au moyen des composantes axiales et diagonale transversales de ce même signal, dans les composantes axiales transversales du signal à stabiliser (ps), pour en obtenir des composantes stabilisées en rotation, correspondant à une position de référence de la sonde autour de son axe longitudinal.
4. Procédé suivant la revendication 3, caractérisé en ce que l'étape préliminaire (ETO) comprend les opérations consistant à: déterminer une composante diagonale transversale du signal de repérage (µs) à partir des composantes axiales transversales de ce signal; déterminer à partir de cette composante diagonale transversale et de la composante axiale longitudinale de ce même signal de repérage le signe de la différence entre un premier angle, formé entre ledit vecteur de direction fixe et l'axe longitudinal de la sonde, et un angle limite de valeur prédéterminée; définer les signaux stabilisateur (as) et à stabiliser (ps), respectivement par les signaux de repérage (µs) et d'accélération (γs) lorsque le signe de ladite différence est positif, et par les signaux d'accélération et de repérage lorsque ce signe est négatif; et déterminer une composante diagonale transversale du signal stabilisateur à partir de ses composantes axiales transversales lorsque ce signal stabilisateur est défini par ledit signal d'accélération.
5. Procédé suivant la revendication 4, caractérisé en ce que, lorsque le signe de la différence déterminé au cours de ladite étape préliminaire (ETO) est positif, il est prévu après le filtrage intermédiaire, une opération de réintroduction des effets du déplacement de la sonde, fournissant, à partir des deux composantes axiales transversales stabilisées du signal d'accélération (ys) et des composantes transversales diagonale et axiales du signal de repérage (µs), deux composantes axiales transversales du signal d'accélération qui ne sont à nouveau plus stabilisées par rapport à ladite position de référence de la sonde.
6. Appareil pour la détermination d'au moins deux paramètres de direction (DEV,AZIM) d'un puits, comprenant:
-une sonde (2),
-un treuil (4) et un cable (3) pour effectuer le déplacement de la sonde dans le puits (1),
-des arceaux (7) pour centrer la sonde dans un puits,
-un accéléromètre (8) compris dans la sonde, pour produire des premiers signaux (ys) représentant les vecteurs d'accélération subie par la sonde quand la sonde est déplacée dans le puits,
-un magnétomètre (9) ou un gyroscope, compris dans la sonde, pour produire des seconds signaux (µs) représentant un vecteur de direction fixe différente de la verticale, et
-des moyens de traitement et de combinaison desdits premiers et seconds signaux pour déterminer lesdits paramètres de direction.

caractérisé en ce que lesdits moyens de traitement et de combinaison incluent des moyens (F1, R1, D1, D2, RZ) pour débarrasser les premiers signaux des effets du déplacement de la sonde, par une combinaison des composantes des premiers et des seconds signaux, et des moyens de filtrage passe-bas (F2) pour éliminer des composantes des premiers signaux ainsi traités les variations de fréquence supérieure à la fréquence maximale des variations imputables à l'accélération de la pesanteur.
EP80401361A 1979-09-27 1980-09-25 Procédé et appareil pour la détermination de paramètres de direction d'un puits exploré en continu Expired EP0026706B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7924029A FR2466607B1 (fr) 1979-09-27 1979-09-27 Procede de determination de parametres de direction d'un puits en continu
FR7924029 1979-09-27

Publications (2)

Publication Number Publication Date
EP0026706A1 EP0026706A1 (fr) 1981-04-08
EP0026706B1 true EP0026706B1 (fr) 1984-09-12

Family

ID=9230060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401361A Expired EP0026706B1 (fr) 1979-09-27 1980-09-25 Procédé et appareil pour la détermination de paramètres de direction d'un puits exploré en continu

Country Status (10)

Country Link
US (1) US4362054A (fr)
EP (1) EP0026706B1 (fr)
AU (1) AU538777B2 (fr)
BR (1) BR8006088A (fr)
CA (1) CA1163325A (fr)
DE (1) DE3069162D1 (fr)
FR (1) FR2466607B1 (fr)
MX (1) MX148779A (fr)
NO (1) NO154439C (fr)
OA (1) OA06629A (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953399A (en) * 1982-09-13 1990-09-04 Western Atlas International, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4622849A (en) * 1982-09-13 1986-11-18 Dresser Industries, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4594887A (en) * 1982-09-13 1986-06-17 Dresser Industries, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4756189A (en) * 1982-09-13 1988-07-12 Western Atlas International, Inc. Method and apparatus for determining characteristics of clay-bearing formations
US4545242A (en) * 1982-10-27 1985-10-08 Schlumberger Technology Corporation Method and apparatus for measuring the depth of a tool in a borehole
CA1211506A (fr) * 1983-02-22 1986-09-16 Sundstrand Data Control, Inc. Systeme de guidage intertiel dans un forage
US4703459A (en) * 1984-12-03 1987-10-27 Exxon Production Research Company Directional acoustic logger apparatus and method
US4783742A (en) * 1986-12-31 1988-11-08 Sundstrand Data Control, Inc. Apparatus and method for gravity correction in borehole survey systems
US4812977A (en) * 1986-12-31 1989-03-14 Sundstrand Data Control, Inc. Borehole survey system utilizing strapdown inertial navigation
US4797822A (en) * 1986-12-31 1989-01-10 Sundstrand Data Control, Inc. Apparatus and method for determining the position of a tool in a borehole
US4800981A (en) * 1987-09-11 1989-01-31 Gyrodata, Inc. Stabilized reference geophone system for use in downhole environment
GB2251078A (en) * 1990-12-21 1992-06-24 Teleco Oilfield Services Inc Method for the correction of magnetic interference in the surveying of boreholes
US6618675B2 (en) * 2001-02-27 2003-09-09 Halliburton Energy Services, Inc. Speed correction using cable tension
CN1774206A (zh) * 2003-04-11 2006-05-17 松下电器产业株式会社 加速度传感器轴信息校正装置、及其校正方法
US20180003028A1 (en) * 2016-06-29 2018-01-04 New Mexico Tech Research Foundation Downhole measurement system
CN106437683B (zh) * 2016-08-29 2017-09-01 中国科学院地质与地球物理研究所 一种旋转状态下重力加速度测量装置与提取方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342475A (en) * 1970-11-11 1974-01-03 Russell A W Directional drilling of boreholes
US3935642A (en) * 1970-11-11 1976-02-03 Anthony William Russell Directional drilling of bore holes
US4016766A (en) * 1971-04-26 1977-04-12 Systron Donner Corporation Counting accelerometer apparatus
US3899834A (en) * 1972-10-02 1975-08-19 Westinghouse Electric Corp Electronic compass system
US3862499A (en) * 1973-02-12 1975-01-28 Scient Drilling Controls Well surveying apparatus
US4227405A (en) * 1979-04-06 1980-10-14 Century Geophysical Corporation Digital mineral logging system

Also Published As

Publication number Publication date
BR8006088A (pt) 1981-04-07
US4362054A (en) 1982-12-07
OA06629A (fr) 1981-08-31
FR2466607B1 (fr) 1985-07-19
CA1163325A (fr) 1984-03-06
AU538777B2 (en) 1984-08-30
DE3069162D1 (en) 1984-10-18
AU6201180A (en) 1981-04-02
NO802684L (no) 1981-03-30
EP0026706A1 (fr) 1981-04-08
NO154439B (no) 1986-06-09
NO154439C (no) 1986-09-17
FR2466607A1 (fr) 1981-04-10
MX148779A (es) 1983-06-14

Similar Documents

Publication Publication Date Title
EP0026706B1 (fr) Procédé et appareil pour la détermination de paramètres de direction d'un puits exploré en continu
FR2990276A1 (fr) Appareil et procede de determination de l'orientation d'un dispositif de guidage de flute marine
EP2188654B1 (fr) Étalonnage d'un accéléromètre sur un câble sismique
EP0267840B1 (fr) Procédé et dispositif pour déterminer la position d'objets immerges par rapport au navire qui les rémorque
FR2532683A1 (fr) Systeme de controle directionnel par inertie d'un puits de forage
EP0066494B1 (fr) Système d'analyse par visualisation des mouvements vibratoires d'une machine tournante
FR2897691A1 (fr) Mesure du vecteur deplacement de particules dans une flute marine remorquee
FR2739183A1 (fr) Systeme de determination dynamique de la position et de l'orientation d'un reseau remorque
FR2615900A1 (fr) Procede et appareil pour la mesure de l'azimut d'un trou de forage en cours de forage
FR2682774A1 (fr) Dispositif d'emission acoustique pour sismique marine.
EP0274943B1 (fr) Dispositif d'étalonnage d'accéléromètres ultrasensibles
FR2651950A1 (fr) Antenne hydrophonique lineaire et dispositif electronique de levee d'ambiguite droite-gauche associe a cette antenne.
FR2795521A1 (fr) Procede et dispositif pour determiner la resistivite d'une formation traversee par un puits tube
WO1992010642A1 (fr) Methode pour corriger des mesures magnetiques faites pour determiner l'azimut d'un puits
EP0597014B1 (fr) Station portable de mesure et de reglage de la signature magnetique d'un batiment naval
EP3556287B1 (fr) Procédé de calibration d'un réseau de magnétomètres
WO1996018116A1 (fr) Procede de reception avec levee d'ambiguite pour une antenne acoustique lineaire remorquee
CA2060383A1 (fr) Procede et dispositif de reduction des effets des bruits parasites sur la detection d'une cible par un systeme comprenant une pluralite de capteurs elementaires
EP0210087A1 (fr) Procédé de mesure de l'aimantation induite dans un bâtiment naval, et dispositif de mise en oeuvre
FR3043791A1 (fr)
FR2511145A1 (fr) Appareil gyroscopique pour la determination de la direction du nord
FR2591342A1 (fr) Sonde ultrasonique pour tester le materiau de pieces fendues ou creuses
EP0533765B1 (fr) Dispositif de detection magnetique pour mines a orin ferromagnetiques
EP0909961A2 (fr) Procédé de séparation d'ondes en sismique de puits pour des acquisitions de type à déport croissant
EP3899432B1 (fr) Procede de caracterisation d'une unite de mesure inertielle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19811001

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3069162

Country of ref document: DE

Date of ref document: 19841018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911127

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950707

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960702

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970925