EP0022532B1 - Verfahren zur Herstellung von Neopentylamin - Google Patents

Verfahren zur Herstellung von Neopentylamin Download PDF

Info

Publication number
EP0022532B1
EP0022532B1 EP80103848A EP80103848A EP0022532B1 EP 0022532 B1 EP0022532 B1 EP 0022532B1 EP 80103848 A EP80103848 A EP 80103848A EP 80103848 A EP80103848 A EP 80103848A EP 0022532 B1 EP0022532 B1 EP 0022532B1
Authority
EP
European Patent Office
Prior art keywords
ammonia
hydrogen
nickel
neopentanol
neopentylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103848A
Other languages
English (en)
French (fr)
Other versions
EP0022532A1 (de
Inventor
Friedrich Dr. Werner
Heinz Ulrich Dr. Blank
Günther Dr. Cramm
Rudolf Dr. Braden
Heinz Dr. Ziemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6075879&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0022532(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0022532A1 publication Critical patent/EP0022532A1/de
Application granted granted Critical
Publication of EP0022532B1 publication Critical patent/EP0022532B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings

Definitions

  • the invention relates to a process for the preparation of neopentylamine.
  • Neopentylamine is known and, for example, by hydrogenating trimethylacetaldoxime on Raney nickel (J. Am. Chem. Soc. 60, 657 (1938)), by reducing pivalonitrile with lithium alanate in ether (J. Am. Chem. Soc. 74, 4052 (1952)), by the Hofmann degradation of tert-butylacetamide (J. Am. Chem. Soc. 71, 2808 (1949)), or by reduction of trimethylacetamide with lithium aluminum hydride (J. Am. Chem. Soc. 81, 3728 (1959)) or with diborane (J. Am. Chem. Soc. 86, 3566 (1964)). These syntheses are unsuitable for industrial implementation because they use starting materials which are themselves difficult to obtain and in poor yields.
  • GB 1 074 603 also describes the reaction of secondary alcohols with ammonia in the presence of hydrogen over nickel, cobalt or copper catalysts in the liquid phase to give the associated amines; it is further referred to here that a mixture of the primary, secondary and tertiary amines is obtained in the gas phase reaction of primary alcohols with ammonia.
  • DE-OS 24 56 006 describes the preparation of isomer-free 3-methylbutylamine in an amination reaction with ammonia, in the presence of hydrogen over hydrogenation catalysts, which is distinguished by the fact that a 3- obtained by thermal addition of formaldehyde to isobutene and subsequent hydrogenation Methylbutanol uses.
  • This process is aimed at the freedom from isomers of this special primary amine and does not contain any information about the secondary and tertiary amines which are formed.
  • a 15 to 20 molar excess of ammonia, based on the amount of alcohol is described.
  • a ratio of NH 3 : alcohol such as 22: 1 is even required to achieve an 85% yield of 3-methylbutylamine. There is no information about the amount of higher alkylated amines.
  • Neopentanol is known and can be prepared, for example, by reacting hydrogen peroxide with diisobutylene in the presence of sulfuric acid (J. Am. Chem. Soc. 77, 3139 (1955)).
  • Ammonia can be used in the process according to the invention in the form of a solution, for example an aqueous solution, or as free ammonia, such as gaseous or liquid ammonia.
  • Ammonia is preferably used as liquefied ammonia.
  • Ammonia can be used in the process according to the invention, for example in an amount of 0.5 to 10 moles, preferably 1 to 5 moles, per mole of neopentanol.
  • the ammonia not reacted in the reaction can be recovered from the reaction mixture and returned to the reaction according to the invention. It is of course possible to use even larger amounts than the specified amounts of ammonia, but this is not advantageous for economic reasons.
  • the process according to the invention is carried out, for example, at a temperature of 200 to 300 ° C., preferably 220 to 280 ° C.
  • the other process parameters such as activity of the hydrogenation catalyst, desired conversion or predetermined residence time, can be taken into account. For example, with a smaller target sales, a more active contact and / or a longer specified residence time, work can be carried out at a lower temperature within the specified range.
  • a higher temperature enables either a higher turnover and / or a shorter residence time and / or the use of a less active hydrogenation catalyst.
  • a reaction temperature of 230 ° C. was found to be suitable for an approximately 50% conversion of pilled Raney nickel with a residence time of 10 minutes.
  • Adherence to a certain pressure is not critical to the success of the method according to the invention, so that work can be carried out at reduced pressure, at normal pressure or at elevated pressure.
  • the preferred mode of operation for the method according to the invention is that at elevated pressure.
  • a pressure of 10 to 500 bar, preferably 20 to 300 bar, may be mentioned as an increased pressure.
  • the process according to the invention can be carried out both in the gas phase and in the liquid phase.
  • the preferred procedure is in the liquid phase. Execution in the liquid phase at elevated pressure is particularly preferred.
  • the process according to the invention can be carried out batchwise or continuously.
  • the preferred embodiment is the continuous one.
  • the process according to the invention is carried out in the presence of a catalyst which can be used for the catalysis of hydrogenations or dehydrogenations and is referred to below as the hydrogenation catalyst.
  • a hydrogenation catalyst which may be mentioned is, for example, one which contains at least one metal from Group VIII of the Periodic Table (Mendeleev) and / or copper or at least one of these metals in combination with at least one metal from the group vanadium, chromium and manganese in metallic and / or oxidic form Contains form.
  • the hydrogenation catalyst can be used together with an inert support material or without a support material.
  • inert carrier materials are synthetic and naturally occurring, possibly physically or chemically modified substances such as aluminum oxides, silicic acid, kieselguhr, silicates, aluminum silicates, montmorillionite, zeolites, spinels, kaolin, clay, magnesium silicate, asbestos, pumice stone, dolomite, alkaline earth carbonates, zinc oxide alkaline earth metal sulfates , Zirconium oxide, solicium carbide, boron phosphate, aluminum phosphate or activated carbon.
  • Such supported catalysts generally contain about 1 to 70, preferably 5 to 65% by weight of the catalytically active metal, based on the total mass of the supported catalyst.
  • the catalytically active metals can be distributed homogeneously in the support material or stored in the outer layer or on the surface of the support.
  • the catalysts can also contain one or more accelerators or activators, such as lithium, sodium, potassium, calcium, barium, silver, gold, beryllium, lanthanum, cerium, vanadium, niobium, tantalum, molybdenum or tungsten in amounts of up to 10% by weight. , preferably contained in amounts up to 1 wt .-%.
  • accelerators or activators such as lithium, sodium, potassium, calcium, barium, silver, gold, beryllium, lanthanum, cerium, vanadium, niobium, tantalum, molybdenum or tungsten in amounts of up to 10% by weight. , preferably contained in amounts up to 1 wt .-%.
  • Examples of active substances in metallic or oxidic form for the hydrogenation catalysts which can be used according to the invention are: palladium, platinum, ruthenium, rhodium, nickel, cobalt, iron or copper.
  • the metals mentioned can be present both individually and as a mixture of several in the hydrogenation catalyst according to the invention. They can also be combined with a metal from the group consisting of aluminum, vanadium, chromium and manganese.
  • Preferred hydrogenation catalysts for the process according to the invention are those which contain nickel in metallic or oxidic form, alone or in combination with at least one of the metals mentioned, for example catalysts of the Raney type, such as Raney nickel, Raney nickel iron, Raney nickel Metallic nickel, such as urushibara nickel, produced by reduction of nickel oxide or mixtures of nickel oxide and mixtures of nickel oxide and at least one further metal oxide with hydrogen, is produced from cobalt, Raney nickel copper, by reduction of nickel salts with tin dust, alkali metal hydride, boranants, hydrogen boron, metal alkyl compounds or hydrazine Catalysts, nickel oxide or mixtures of nickel oxide with at least one further metal oxide, such as nickel oxide-chromium oxide, nickel oxide-manganese oxide-copper oxide, nickel oxide-chromium oxide-copper oxide, or supported catalysts, such as nickel on diatomaceous earth, nickel on aluminum oxide, nickel-copper on aluminum oxide or nickel Manganese on aluminum oxi d
  • catalysts are Raney nickel, Raney nickel iron, Raney nickel cobalt, Raney nickel copper, nickel on aluminum oxide, nickel on diatomaceous earth, nickel, and nickel oxide-chromium oxide.
  • the catalysts mentioned can be used individually or in a mixture of 2 or more of the catalysts mentioned.
  • the amount in which the catalyst or the catalyst mixture is used can vary within wide limits. For example, an amount of 1 to 100% by weight, preferably 5 to 50% by weight, of catalyst metal, based on the amount of neopentanol used, may be mentioned in a batchwise procedure.
  • the hydrogenation catalysts mentioned can be used repeatedly in batchwise operation in the process according to the invention. When carried out in a continuous mode of operation, they have an outstandingly long service life. As a result, the use of high catalyst concentrations within the stated ranges is also quite economical.
  • the method according to the invention can basically be carried out without or with simultaneous use of hydrogen.
  • the implementation of the process in the presence of hydrogen is the preferred variant, since particularly long catalyst service lives and particularly high selectivity in relation to the conversion of neopentanol to neopentylamine are achieved.
  • the use of a large excess of hydrogen, based on the neopentanol used, is for the The method according to the invention is harmless.
  • a large excess of hydrogen is not expedient for an industrial process. It is therefore particularly advantageous that the process according to the invention shows the described advantages of the long catalyst life and the high selectivity even in the presence of catalytic amounts of hydrogen.
  • the catalytic amount of hydrogen is, for example, 0.001 to 1 mol, preferably 0.001 to 0.5 mol, based on the neopentanol used.
  • a quantity of hydrogen between 0.01 and 0.1 mol per mol of neopentanol is particularly preferred.
  • the hydrogen optionally used to carry out the process according to the invention can be used as molecular hydrogen or can be hydrogen which is split off from a suitable substance under the conditions of the process according to the invention.
  • suitable substances for this purpose are tetralin, decalin, cyclohexane or isobutane.
  • Hydrogen is preferably used as molecular hydrogen.
  • a mixture of neopentanol and liquid ammonia is pumped over the hydrogenation catalyst in a pressure tube, optionally with simultaneous injection of catalytic amounts of hydrogen at the selected pressure and the selected reaction temperature.
  • the reaction mixture can be worked up in the same manner as described above.
  • a mixture of neopentanol and liquefied ammonia can also be circulated through the pressure tube over the hydrogenation catalyst, with only a part of the circulation stream being removed and worked up behind the hydrogenation catalyst, while upstream of the hydrogenation catalyst
  • Corresponding amounts of neopentanol and liquefied ammonia and, if appropriate, catalytic amounts of hydrogen are continuously added to the circulating stream. Maintaining a certain pressure is not critical for the successful implementation of the process according to the invention in the preferred variant of the liquid phase reaction, as long as it is ensured that the total pressure of the system is significantly above the vapor pressure of the reaction mixture at the chosen reaction temperature.
  • the unused ammonia and the unreacted neopentanol can be recovered during the workup of the reaction mixture and recycled into the process according to the invention.
  • the neopentylamine which can be prepared in the process according to the invention is practically free from more highly alkylated amines and therefore does not need to be subjected to an additional separation operation in many cases.
  • a neopentylamine with a content of more highly alkylated amines of at most 3% by weight, preferably at most 1% by weight, based on the amount of neopentylamine, may be mentioned as practically free of higher alkylated amines.
  • neopentylamine which can be prepared by the process according to the invention is an important intermediate for the preparation of 1-neopentyl-tetrahydro-1,3,5-triazine-2,6-diones which are active as herbicides in accordance with DE-OS 22 54 200, for example neopentylamine reacted with a 1-alkyl-tetrahydro-1,3,5-triazine-2,6-dione or first converted neopentylamine by phosgenation into the N-neopentyl-bis (chlorocarbonyl) amine and this with a substituted formamidine or its Hydrochloride converts.
  • Example 1 are carried out analogously to Example 1. The numerical values are summarized in Table 1. The catalyst shows no loss of activity during 14 days of operation.
  • the temperature in the pressure pipe is 250 ° C.
  • 1,210 kg of mixture are obtained per hour in the bottom of the column, which comprises 15% water, 71.3% neopentylamine and 12.8% neopentanol.
  • the yield of neopentylamine is 76.3%, the selectivity 88.2% of theory.
  • a 0.7 l stirred autoclave is charged with 115 g of neopentyl alcohol (water content 9% by weight) and 45 g of Raney nickel iron (iron content 15% by weight) and rinsed air-free with nitrogen and hydrogen. Then 180 ml of liquid ammonia are added at room temperature and hydrogen is injected to a pressure of 30 bar. The mixture is then heated to 265 ° C. with stirring and reacted at this temperature for 6 hours, a pressure of about 300 bar being established. After cooling to room temperature, the autoclave is let down and carefully emptied.
  • the reaction mixture separated from the catalyst by filtration contains, in addition to 86 g of neopentylamine (yield 83% of theory), 10.5 g of starting material (conversion 90%) and 8 g of by-products, mainly pivalic acid amide. This corresponds to a selectivity of 92%. Pure neopentylamine is isolated from the mixture by fractional distillation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Neopentylamin.
  • Neopentylamin ist bekannt und beispielsweise durch Hydrierung von Trimethylacetaldoxim an Raney-Nickel (J. Am. Chem. Soc. 60, 657 (1938)), durch Reduktion von Pivalonitril mit Lithiumalanat in Ether (J. Am. Chem. Soc. 74, 4052 (1952)), durch den Hofmann'schen Abbau von tert.-Butylacetamid (J. Am. Chem. Soc. 71, 2808 (1949)), bzw. durch Reduktion von Trimethylacetamid mit Lithiumaiuminiumhydrid (J. Am. Chem. Soc. 81, 3728 (1959)) oder mit Diboran (J. Am. Chem. Soc. 86, 3566 (1964)) erhalten worden. Für eine technische Durchführung sind diese Synthesen unzweckmäßig, da sie Ausgangsstoffe benutzen, die selbst nur schwer und in schlechten Ausbeuten zugänglich sind.
  • Weiterhin ist es bekannt, aliphatische Alkohole, wie beispielsweise Ethanol oder Butanol, mit einem etwa 6-fachen molaren Überschuß an Ammoniak, in Gegenwart von etwa 6 bis 9 Mol Wasserstoff pro Mol Alkohol an pelletisiertem Nickel in der Gasphase zu einem Gemischder entsprechenden Mono-, Di- und Tri-Alkylamine umzusetzen, wobei für die 3 verschieden hoch alkylierten Amine Ausbeuten von 25 %, 45 % und 10 bis 15 % der theoretischen Ausbeute erzielt werden (US 2 365 721 Ein weiteres Verfahren zur Aminierung von aliphatischen Alkoholen arbeitet in der Gasphase an einem Skelett-Kupfer-Katalysator, der vor der Reaktion mit Bariumhydroxid vorbehandelt wird, und erzielt beispielsweise bei der Reaktion von Ethanol mit 0,9 Mol Ammoniak und 4,5 Mol Wasserstoff, jeweils pro 1 Mol Ethanol ein Reaktionsgemisch, das 13 % Monoethylamin, 35 % Diethylamin und 19 % Triethylamin enthält.
  • Aus DE-OS 1493781 ist es bekannt, sekundäre Alkohole mit Ammoniak in Gegenwart geringer Mengen Wasserstoff an einem Nickel-, Kobalt- oder-Kupferchromitkatalysator zu dem zugehörigen Amin umzusetzen. Es wird beschrieben, daß diese Umsetzung nicht in wirksamer Weise mit einem primären Alkohol durchgeführt werden kann, weiterhin, daß primäre Alkohole unter scharfen Reaktionsbedingungen in unerwünschte Kondensations- und Zersetzungsprodukte umgewandelt werden.
  • Auch GB 1 074 603 beschreibt die Umsetzung von sekundären Alkoholen mit Ammoniak in Gegenwart von Wasserstoff an Nickel-, Kobalt- oder Kupferkatalysatoren in flüssiger Phase zu den zugehörigen Aminen ; hierin wird weiter darauf verwiesen, daß bei der Gasphasenreaktion von primären Alkoholen mit Ammoniak ein Gemisch der primären, sekundären und tertiären Amine erhalten wird.
  • In DE-OS 24 56 006 wird die Herstellung von isomerenfreiem 3-Methylbutylamin in einer Aminierungsreaktion mit Ammoniak, in Gegenwart von Wasserstoff an Hydrierkatalysatoren beschrieben, das dadurch ausgezeichnet ist, daß man ein durch thermische Anlagerung von Formaldehyd an Isobuten und anschließende Hydrierung gewonnenes 3-Methylbutanol einsetzt. Dieses Verfahren ist auf die Isomerenfreiheit dieses speziellen primären Amins gerichtet, es enthält keine Angaben über die mitentstehenden sekundären und tertiären Amine. Um Ausbeuten an primärem Amin zu erzielen, wird ein 15 bis 20 molarer Ammoniak-Überschuß, bezogen auf die Alkoholmenge, beschrieben. Im Ausführungsbeispiel ist zur Erzielung von 85 % Ausbeute an 3-Methylbutylamin sogar ein Verhältnis von NH3 : Alkohol wie 22 : 1 erforderlich. Über die Menge an höher alkylierten Aminen fehlt eine Aussage.
  • In Houben-Weyl, Methoden der Organischen Chemie, 4. Aufl., Band XI/1, Seite 127, letzter Absatz bis S. 128, 1. Absatz wird auf die Dimerisierung des Alkohols unter Wasserabspaltung als Nebenreaktion hingewiesen. Diese Reaktion ist besonders bei primären Alkoholen ausgeprägt. Auf S. 128, 2. Absatz dieser Literaturstelle wird auf die Notwendigkeit der Gegenwart von Wasserstoff bei der Aminierung sekundärer cyclischer und leicht aromatisierbarer Alkohole, beispielsweise des 1, 2, 3, 4-Tetrahydro-2-naphthols, hingewiesen, um Nebenproduktbildung durch Aromatisierung zu vermeiden.
  • Es wurde nun ein Verfahren zur Herstellung von Neopentylamin, das praktisch frei von höher alkylierten Aminen ist, durch Aminierung mit Ammoniak an Hydrier-/Dehydrierkatalysatoren bei erhöhter Temperatur, gegebenenfalls erhöhtem Druck und gegebenenfalls in Gegenwart von Wasserstoff gefunden, das dadurch gekennzeichnet ist, daß man Neopentanol mit 0,5-10 Mol Ammoniak umsetzt.
  • Neopentanol ist bekannt und kann beispielsweise durch Reaktion von Wasserstoffperoxid mit Diisobutylen in Gegenwart von Schwefelsäure hergestellt werden (J. Am. Chem. Soc. 77, 3139 (1955)).
  • Ammoniak kann im erfindungsgemäßen Verfahren in Form einer Lösung, beispielsweise einer wäßrigen Lösung, oder als freies Ammoniak, wie gasförmiges oder flüssiges Ammoniak, eingesetzt werden. Bevorzugt wird Ammoniak als verflüssigtes Ammoniak eingesetzt. Ammoniak kann im erfindungsgemäßen Verfahren beispielweise in einer Menge von 0,5 bis 10 Mol, bevorzugt 1 bis 5 Mol pro Mol Neopentanol eingesetzt werden. Das bei der Reaktion nicht umgesetzte Ammoniak kann aus dem Reaktionsgemisch wiedergewonnen werden und in die erfindungsgemäße Reaktion zurückgeführt werden. Es ist selbstverständlich möglich, noch größere als die angegebenen Mengen Ammoniak einzusetzen, jedoch ist dies aus wirtschaftlichen Gründen nicht vorteilhaft.
  • Das erfindungsgemäße Verfahren wird beispielsweise bei einer Temperatur von 200 bis 300 °C, bevorzugt von 220 bis 280°C durchgeführt. Bei der Wahl der Reaktionstemperatur innerhalb des angegebenen Bereiches können die übrigen Verfahrensparameter, wie Aktivität des Hydrierungskatalysators, gewünschter Umsatz oder vorgegebene Verweilzeit, Berücksichtigung finden. So kann beispielsweise bei einem kleineren angestrebten Umsatz, einem stärker aktiven Kontakt und/oder einer längeren vorgegebenen Verweilzeit bei einer tieferen Temperatur innerhalb des angegebenen Bereiches gearbeitet werden. Umgekehrt ermöglicht eine höhere Temperatur entweder einen höheren Umsatz und/oder eine kürzere Verweilzeit und/oder die Verwendung eines weniger aktiven Hydrierungskatalysators. Beispielsweise wurde für einen ca. 50 %igen Umsatz an gepilltem Raney-Nickel bei einer Verweilzeit von 10 Minuten eine Reaktionstemperatur von 230 °C als geeignet gefunden.
  • Die Einhaltung eines bestimmten Druckes ist für den Erfolg des erfindungsgemäßen Verfahrens unkritisch, so daß bei vermindertem Druck, bei normalem Druck oder bei erhöhtem Druck gearbeitet werden kann. Die bevorzugte Arbeitsweise für das erfindungsgemäße Verfahren ist die bei erhöhtem Druck. Als erhöhter Druck sei beispielsweise ein Druck von 10 bis 500 bar, bevorzugt 20 bis 300 bar, genannt.
  • Das erfindungsgemäße Verfahren kann sowohl in der Gasphase als auch in der Flüssigphase durchgeführt werden. Die bevorzugte Durchführung ist die in der Flüssigphase. Besonders bevorzugt ist die Durchführung in der Flüssigphase bei erhöhtem Druck.
  • Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden. Die bevorzugte Ausführungsart ist die kontinuierliche.
  • Das erfindungsgemäße Verfahren wird in Gegenwart eines Katalysators durchgeführt, der für die Katalyse von Hydrierungen, bzw. Dehydrierungen eingesetzt werden kann und im weiteren Hydrierungskatalysator genannt wird. Als Hydrierungskatalysator sei beispielsweise ein solcher genannt, der mindestens ein Metall der VIII. Gruppe des Periodensystems (Mendelejew) und/oder Kupfer oder mindestens eines dieser Metalle in Kombination mit mindestens einem Metall aus der Gruppe Vanadin, Chrom und Mangan in metallischer und/oder oxidischer Form enthält. Der Hydrierungskatalysator kann zusammen mit einem inerten Trägermaterial oder ohne Trägermaterial zur Anwendung gelangen. Beispiele für inerte Trägermaterialien sind synthetische und natürlich vorkommende, gegebenenfalls physikalisch oder chemisch veränderte Stoffe wie Aluminiumoxide, Kieselsäure, Kieselgur, Silikate, Aluminiumsilikate, Montmorillionit, Zeolithe, Spinelle, Kaolin, Ton, Magnesiumsilikat, Asbest, Bimstein, Dolomit, Erdalkalicarbonate, Erdalkalisulfate, Zinkoxid, Zirkonoxid, Soliciumcarbid, Borphosphat, Aluminiumphosphat oder Aktivkohle. Solche Trägerkatalysatoren enthalten im allgemeinen etwa 1 bis 70, vorzugsweise 5 bis 65 Gew.-% des katalytisch aktiven Metalls, bezogen auf die Gesamtmasse des Trägerkatalysators. Die katalytisch aktiven Metalle können homogen im Trägermaterial verteilt oder in der äußeren Schicht oder auf der Oberfläche des Trägers gelagert sein.
  • Die Katalysatoren können ferner einen oder mehrere Beschleuniger oder Aktivatoren, wie Lithium, Natrium, Kalium, Calcium, Barium, Silber, Gold, Beryllium, Lanthan, Cer, Vanadin, Niob, Tantal, Molybdän oder Wolfram in Mengen bis zu 10 Gew.-%, bevorzugt in Mengen bis zu 1 Gew.-% enthalten.
  • Als aktive Stoffe in metallischer oder oxidischer Form für die erfindungsgemäß einsetzbaren Hydrierungskatalysatoren seien beispielsweise genannt : Palladium, Platin, Ruthenium, Rhodium, Nickel, Kobalt, Eisen oder Kupfer. Die genannten Metalle können sowohl einzeln, als auch als Gemisch mehrerer im erfindungsgemäßen Hydrierungskatalysator enthalten sein. Sie können ferner mit einem Metall aus der Gruppe Aluminium, Vanadin, Chrom und Mangan kombiniert sein. Bevorzugte Hydrierungskatalysatoren für das erfindungsgemäße Verfahren sind solche, die Nickel in metallischer oder oxidischer Form allein oder in Kombination mit mindestens einem der genannten Metalle enthalten, beispielsweise Katalysatoren vom Raney-Typ, wie Raney-Nickel, Raney-Nickel-Eisen, Raney-Nickel-Kobalt, Raney-Nickel-Kupfer, durch Reduktion von Nickelsalzen mit Zinstaub, Alkalihydrid, Borananten, Borwasserstoff, Metallalkylverbindungen oder Hydrazin hergestelltes metallisches Nickel, wie Urushibara-Nickel, durch Reduktion von Nickeloxid oder Gemischen aus Nickeloxid und mindestens einem weiteren Metalloxid mit Wasserstoff hergestellte metallische Katalysatoren, Nickeloxid oder Gemische aus Nickeloxid mit mindestens einem weiteren Metalloxid, wie Nickeloxid-Chromoxid, Nickeloxid-Manganoxid-Kupferoxid, Nickeloxid-Chromoxid-Kupferoxid, oder Trägerkatalysatoren, wie Nickel auf Kieselgur, Nickel auf Aluminiumoxid, Nickel-Kupfer auf Aluminiumoxid oder Nickel-Mangan auf Aluminiumoxid.
  • Besonders bevorzugte Katalysatoren sind Raney-Nickel Raney-Nickel-Eisen, Raney-Nickel-Kobalt, Raney-Nickel-Kupfer Nickel auf Aluminiumoxid, Nickel auf Kieselgur Nickel, sowie Nickeloxid-Chromoxid.
  • Die genannten Katalysatoren können einzeln oder im Gemisch aus 2 oder mehreren der genannten Katalysatoren verwendet werden. Die Menge, in der der Katalysator oder das Katalysatorgemisch verwendet wird, kann in weiten Grenzen schwanken. Beispielsweise sei eine Menge von 1 bis 100 Gew.-%, bevorzugt von 5 bis 50 Gew.-% Katalysatormetall, bezogen auf die Menge des eingesetzten Neopentanols, bei einer diskontinuierlichen Arbeitsweise genannt. Für die kontinuierliche Arbeitsweise sei beispielsweise eine Katalysatormenge von 5 bis 500 Gew.-%, bevorzugt 50 bis 250 Gew.-% Katalysatormetall, bezogen auf pro Stunde eingesetztes Neopentanol, genannt. Die genannten Hydrierungskatalysatoren können im erfindungsgemäßen Verfahren im diskontinuierlichen Betrieb wiederholt eingesetzt werden. Bei der Durchführung in kontinuierlicher Arbeitsweise zeigen sie hervorrangend lange Standzeiten. Dadurch ist auch die Verwendung hoher Katalysatorkonzentrationen innerhalb der angegebenen Bereiche durchaus wirtschaftlich.
  • Das erfindungsgemäße Verfahren ist grundsätzlich ohne oder mit gleichzeitiger Verwendung von Wasserstoff durchführbar. Die Durchführung des Verfahrens in Gegenwart von Wasserstoff ist die bevorzugte Variante, da hierbei besonders hohe Katalysatorstandzeiten und eine besonders hohe Selektivität in Bezug auf die Umsetzung von Neopentanol zu Neopentylamin erzielt wird. Die Verwendung eines großen Überschusses an Wasserstoff, bezogen auf das eingesetzte Neopentanol, ist für das erfindungsgemäße Verfahren unschädlich. Jedoch ist ein großer Überschuß an Wasserstoff für ein technisches Verfahren nicht zweckmäßig. Es ist daher besonders günstig, daß das erfindungsgemäße Verfahren bereits in Gegenwart katalytischer Mengen Wasserstoff die geschilderten Vorteile der hohen Katalysator-Standzeit und der hohen Selektivität zeigt. Als katalytische Menge Wasserstoff sei beispielsweise 0,001 bis 1 Mol, bevorzugt 0,001 bis 0,5 Mol, bezogen auf eingesetztes Neopentanol, genannt. Besonders bevorzugt ist eine Wasserstoffmenge zwischen 0,01 und 0,1 Mol pro Mol Neopentanol.
  • Der zur Durchführung des erfindungsgemäßen Verfahrens gegebenenfalls eingesetzte Wasserstoff kann als molekularer Wasserstoff eingesetzt werden oder Wasserstoff sein, der aus einem geeigneten Stoff unter den Bedingungen des erfindungsgemäßen Verfahren abgespalten wird. Als hierzu geeigneter Stoff sei beispielsweise Tetralin, Dekalin, Cyclohexan oder isobutan genannt. Bevorzugt wird Wasserstoff als molekularer Wasserstoff eingesetzt.
  • Die Reaktion des erfindungsgemäßen Verfahren kann durch die folgende Formelgleichung erläutert werden :
    Figure imgb0001
  • Das erfindungsgemäße Verfahren kann beispielsweise wie folgt ausgeführt werden :
    • Zur diskontinuierlichen Durchführung in der Flüssigphase wird das Neopentanol, der Hydrierungskatalysator und verflüssigtes Ammoniak in einen Rührautoklaven eingefüllt. Anschließend wird Wasserstoff bis zu dem gewünschten Druck aufgepreßt. Das Gemisch wird sodann unter Rühren für einige Stunden auf die gewählte Reaktionstemperatur erhitzt. Nach dem Abkühlen und dem Entspannen wird das Reaktionsgemisch vom Katalysator, beispielsweise durch Filtration, getrennt und das hierbei entstehende Filtrat durch geeignete Methoden, wie Destillation, Extraktion oder Kristallisation, auf reines Neopentylamin aufgearbeitet.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens in kontinuierlicher Form in der Flüssigphase wird eine Mischung aus Neopentanol und flüssigem Ammoniak, gegebenenfalls unter gleichzeitiger Einspeisung katalytischer Mengen Wasserstoff bei dem gewählten Druck und der gewählten Reaktionstemperatur in einem Druckrohr über den Hydrierungskatalysator gepumpt. Das Reaktionsgemisch kann nach Verlassen des Druckrohres in der gleichen Weise wie oben beschrieben aufgearbeitet werden. In an sich bekannter Weise kann ebenso ein Gemisch aus Neopentanol und verflüssigtem Ammoniak, gegebenenfalls unter Einspeisung katalytischer Mengen Wasserstoff im Kreislauf durch das Druckrohr über den Hydrierungskatalysator gefahren werden, wobei hinter dem Hydrierungskatalysator nur ein Teil des Kreislaufstromes entnommen und aufgearbeitet wird, während vor dem Hydrierungskatalysator ständig entsprechende Mengen Neopentanol und verflüssigtes Ammoniak, sowie gegebenenfalls katalytische Mengen Wasserstoff dem Kreislaufstrom zugefügt werden. Die Einhaltung eines bestimmten Druckes ist für die erfolgreiche Druchführung des erfindungsgemäßen Verfahrens in der bevorzugten Variante der Flüssigphasenreaktion nicht kritisch, solange gewährleistet ist, daß der Gesamtdruck des Systems deutlich über dem Dampfdruck des Reaktionsmisches bei der gewählten Reaktionstemperatur liegt.
  • Bei allen aufgezeigten Varianten des erfindungsgemäßen Verfahrens können das nicht verbrauchte Ammoniak und das nicht umgesetzte Neopentanol bei der Aufarbeitung des Reaktionsgemisches zurückgewonnen werden und erneut in das erfindungsgemäßen Verfahren zurückgeführt werden.
  • Das im erfindungsgemäßen Verfahren herstellbare Neopentylamin ist praktisch frei von höher alkylierten Aminen und braucht daher in vielen Fällen keiner zusätzlichen Trennungsoperation unterzogen zu werden. Als praktisch frei von höher alkylierten Aminen sei ein Neopentylamin mit einem Gehalt an höher alkylierten Aminen von höchstens 3 Gew.-%, bevorzugt höchstens 1 Gew.-%, bezogen auf die Menge Neopentylamin, genannt.
  • Es ist überraschend, daß im erfindungsgemäßen Verfahren bei relativ kleinem Ammoniak-Überschuß über das Neopentanol mit hoher Selektivität das Mono-neopentylamin erhalten wird.
  • Das nach dem erfindungsgemäßen Verfahren herstellbare Neopentylamin ist ein wichtiges Zwischenprodukt für die Herstellung von als Herbizide wirksamen 1-Neopentyl-tetrahydro-1,3,5-triazin-2,6-dionen nach der DE-OS 22 54 200, wobei man beispielsweise Neopentylamin mit einem 1-Alkyl-tetrahydro-1,3,5-triazin-2,6-dion umsetzt oder Neopentylamin durch Phosgenierung zunächst in das N-Neopentyl-bis-(chlorcarbonyl)-amin umwandelt und dieses mit einem substituierten Formamidin bzw. dessen Hydrochlorid umsetzt.
  • Beispiel 1
  • Durch ein Reaktionsrohr von 50 mm Durchmesser und 340 mm Länge, das mit 1,3 kg gepilltem Raney-Nickel gefüllt ist, werden stündlich 1,5 125-C flüssiges Ammoniak (53 Mol), 1,5 165.c Neopentanol (13,4 Mol) mit 6,7 I25 °C gasförmigem Wasserstoff (0,3 Moi) bei 200 bar gepumpt. Die Temperatur im Druckrohr beträgt 230 °C. Die Reaktionsmischung wird auf 16 bar entspannt und Ammoniak in einer Druckkolonne abdestilliert. Im Sumpf der Kolonne werden stündlich 1.183 kg eines Gemisches gewonnen, das zu 5 % aus Wasser, 22,9 % aus Neopentylamin und zu 70,3 % aus Neopentanol besteht. Die Ausbeute an Neopentylamin beträgt 24 %, die Selektivität 87,7 % der Theorie.
  • Beispiele 2 bis 5
  • werden analog Beispiel 1 durchgeführt. Die Zahlenwerte sind in der Tabelle 1 zusammengefaßt. Der Katalysator zeigt bei einem 14-tägigen Betrieb keinen Aktivitätsverlust.
  • Beispiel 6
  • Durch ein Reaktionsrohr von 50 mm Durchmesser und 340 mm Länge, das mit 0,56 kg tablettiertem Nickel auf Kieselgur (Nickelgehalt 52 %) werden stündlich 0,75 I25 °C flüssiges Ammoniak (26,5 Mol), 1,5 I65 °C Neopentanol (13 Mol) mit 6,7 I25 °C gasförmigem Wasserstoff (0,3 Mol) bei 250 bar gepumpt. Die Temperatur im Druckrohr beträgt 250 °C. Nach Abdestillation des Ammoniaks gewinnt man im Sumpf der Kolonne stündlich 1.210 kg Gemisch, das zu 15 % aus Wasser, 71,3 % aus Neopentylamin und zu 12,8 % aus Neopentanol besteht. Die Ausbeute an Neopentylamin beträgt 76,3 %, die Selektivität 88,2 % der Theorie.
  • (Siehe die Tabelle 1, Seite 6)
    Figure imgb0002
  • Beispiel 7
  • Ein 0,7 I fassender Rührautoklav wird mit 115 g Neopentylalkohol (Wassergehalt 9 Gew.-%) und 45 g Raney-Nickel-Eisen (Eisengehalt 15 Gew.-%) beschickt und mit Stickstoff und Wasserstoff luftfrei gespült. Dann werden bei Raumtemperatur 180 ml flüssiges Ammoniak zugefügt und Wasserstoff bis zu einem Druck von 30 bar aufgepreßt. Anschließend wird das Gemisch unter Rühren auf 265 °C erhitzt und 6 Stunden bei dieser Temperatur umgesetzt, wobei sich ein Druck von etwa 300 bar einstellt. Nach Abkühlen auf Raumtemperatur wird der Autoklav entspannt und sorgfältig entleert. Das durch Filtration vom Katalysator getrennte Reaktionsgemisch enthält außer 86 g Neopentylamin (Ausbeute 83 % der Theorie) noch 10,5 gAusgangsmaterial (Umsatz 90 %) und 8 g Nebenprodukte, hauptsächlich Pivalinsäureamid. Das entspricht einer Selektivität von 92 %. Durch fraktionierte Destillation wird aus dem Gemisch reines Neopentylamin isoliert.
  • Beispiele 8 bis 10
  • Verwendet man bei der in Beispiel 7 beschriebenen Arbeitsweise anstelle des Raney-Nickel-Eisen-Kontaktes die in der Tabelle 2 aufgeführten Katalysatoren, so erhält man die in derselben Tabelle angegebenen Ergebnisse.
    Figure imgb0003

Claims (4)

1. Verfahren zur Herstellung von Neopentylamin, das praktisch frei von höher alkylierten Aminen ist, durch Aminierung mit Ammoniak an Hydrier-/Dehydrierkatalysatoren bei erhöhter Temperatur, gegebenenfalls erhöhtem Druck und gegebenenfalls in Gegenwart von Wasserstoff, dadurch gekennzeichnet, daß man Neopentanol mit 0,5 bis 10 Mol Ammoniak umsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Umsetzung in flüssiger Phase bei einem Druck von mindestens 10 bar durchführt.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man die Umsetzung kontinuierlich durchführt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man 1 bis 5 Mol Ammoniak pro Mol Neopentanol einsetzt.
EP80103848A 1979-07-17 1980-07-07 Verfahren zur Herstellung von Neopentylamin Expired EP0022532B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792928742 DE2928742A1 (de) 1979-07-17 1979-07-17 Verfahren zur herstellung von neopentylamin
DE2928742 1979-07-17

Publications (2)

Publication Number Publication Date
EP0022532A1 EP0022532A1 (de) 1981-01-21
EP0022532B1 true EP0022532B1 (de) 1983-02-16

Family

ID=6075879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103848A Expired EP0022532B1 (de) 1979-07-17 1980-07-07 Verfahren zur Herstellung von Neopentylamin

Country Status (8)

Country Link
US (1) US4495369A (de)
EP (1) EP0022532B1 (de)
JP (1) JPS5643249A (de)
BR (1) BR8004432A (de)
CA (1) CA1160645A (de)
DE (2) DE2928742A1 (de)
DK (1) DK307480A (de)
IL (1) IL60581A0 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374273A (en) * 1981-04-28 1983-02-15 E. I. Du Pont De Nemours And Company Method for production of methylamines
SE461095B (sv) * 1983-09-09 1990-01-08 Berol Kemi Ab Amineringsfoerfarande med anvaendning av en ruteniumdopad nickel och/eller kovoltkatalysator
US4665195A (en) * 1983-12-23 1987-05-12 Exxon Research And Engineering Company Process for preparing di-amino-polyalkenyl ethers
US4609685A (en) * 1985-05-06 1986-09-02 Texaco Inc. Polyether polyols modified with amino alcohol-epoxy resin adducts
US4612335A (en) * 1985-05-06 1986-09-16 Texaco, Inc. Polyoxyalkylene polyether amino alcohols containing a tertiary hydroxyl group and flexible polyurethanes made therefrom
GB8519425D0 (en) * 1985-08-01 1985-09-04 Ici Plc Amine production
GB8707304D0 (en) * 1987-03-26 1987-04-29 Bp Chem Int Ltd Chemical process
US4918234A (en) * 1987-10-13 1990-04-17 Air Products And Chemicals, Inc. Shape selective catalysts for C2 to C4 alkanol amination
US4922024A (en) * 1988-04-14 1990-05-01 The Dow Chemical Company Amination process employing group vib metal catalysts
US4888447A (en) * 1988-06-30 1989-12-19 Ethyl Corporation Process for preparing alkoxylated tertiary amines
FR2633927B1 (fr) * 1988-07-08 1991-06-07 Ceca Sa Procede perfectionne pour l'obtention de n,n-dimethyl-alkylamines par hydrogenation catalytique de n,n-dimethyl-alkylamides
US5030740A (en) * 1988-10-14 1991-07-09 The Dow Chemical Company Process for preparing linearly-extended polyalkylenepolyamines
US4973569A (en) * 1988-11-01 1990-11-27 The Dow Chemical Company Preparation of group VB metal phosphate catalysts therefor
US4927931A (en) * 1988-11-01 1990-05-22 The Dow Chemical Company Preparation of alkyl-extended, alcohol-extended or amine-extended piperazines
US5166442A (en) * 1988-12-20 1992-11-24 The Dow Chemical Company Catalytic reforming of alkyleneamines
US4996363A (en) * 1988-12-20 1991-02-26 The Dow Chemical Company Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
US5210307A (en) * 1988-12-20 1993-05-11 The Dow Chemical Company Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
US5011999A (en) * 1989-02-23 1991-04-30 The Dow Chemical Company Process of preparing non-cyclic polyalkylenepolyamines employing group VB metal catalysts
US5118851A (en) * 1989-06-21 1992-06-02 Bowman Robert G Process of preparing mixtures of polyalkylenepolyamines and alkanolpolyamines
US5331101A (en) * 1990-01-05 1994-07-19 The Dow Chemical Company Process for preparation of amines from alcohols, aldehydes or ketones
US5073635A (en) * 1990-06-22 1991-12-17 The Dow Chemical Company Process of preparing linearly-extended polyalkylenepolyamines employing metal silicate catalysts
US5099070A (en) * 1990-12-07 1992-03-24 Eastman Kodak Company Method of producing neopentyldiamine
CN101343233A (zh) * 2007-07-13 2009-01-14 上海药明康德新药开发有限公司 特戊胺草酸盐工业化制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782237A (en) * 1952-03-17 1957-02-19 British Celanese Manufacture of aliphatic primary amines
GB781230A (en) * 1954-10-28 1957-08-14 Derives De L Acetylene S I D A Manufacture of amines
US3022349A (en) * 1957-12-30 1962-02-20 Union Carbide Corp Production of amines
US3128311A (en) * 1961-12-11 1964-04-07 Jefferson Chem Co Inc Preparation of primary amines
US3278598A (en) * 1963-07-18 1966-10-11 Atlas Chem Ind Ammonolysis process
US3347926A (en) * 1964-04-15 1967-10-17 Atlas Chem Ind Ammonolysis process for producing aliphatic amines
US3366687A (en) * 1964-06-11 1968-01-30 Gulf Research Development Co Process for preparing primary and secondary amines
US3390184A (en) * 1965-06-01 1968-06-25 Jefferson Chem Co Inc Production of primary amines by ammonolysis
SE345122B (de) * 1966-12-30 1972-05-15 Mo Och Domsjoe Ab
BE757164A (fr) * 1969-10-08 1971-04-07 Basf Ag Preparation d'amines a partir d'alcools
BE757840A (fr) * 1969-10-23 1971-04-22 Basf Ag Procede de preparation d'amines a partir d'alcools
JPS5110205B1 (de) * 1971-07-22 1976-04-02
JPS5735175B2 (de) * 1973-07-24 1982-07-27
US4078003A (en) * 1973-11-23 1978-03-07 Ruhrchemie Aktiengesellschaft Method for the preparation of 1,3-diamino-2,2-dimethyl propane
JPS5132601A (en) * 1974-09-13 1976-03-19 Pioneer Electronic Corp Cantilever for pickup cartridge
US4036883A (en) * 1974-11-27 1977-07-19 Basf Aktiengesellschaft Manufacture of isomer-free 3-methylbutylamine
GB1553285A (en) * 1976-05-12 1979-09-26 Shell Int Research Preparation of amines

Also Published As

Publication number Publication date
BR8004432A (pt) 1981-01-27
DE3062020D1 (en) 1983-03-24
CA1160645A (en) 1984-01-17
JPS5643249A (en) 1981-04-21
DK307480A (da) 1981-01-18
US4495369A (en) 1985-01-22
EP0022532A1 (de) 1981-01-21
DE2928742A1 (de) 1981-02-05
IL60581A0 (en) 1980-09-16

Similar Documents

Publication Publication Date Title
EP0022532B1 (de) Verfahren zur Herstellung von Neopentylamin
EP0227904B1 (de) Verfahren zur Herstellung von Trialkylaminen
EP1107941B1 (de) Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
EP0070512B1 (de) Verfahren zur Herstellung von tert. Aminen
EP0440829A1 (de) Verfahren zur Herstellung von N-substituierten cyclischen Aminen
EP0257443B1 (de) Verfahren zur Herstellung von Trialkylaminen
EP0927157B1 (de) Verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
EP0424738B1 (de) Verfahren zur Herstellung von Aminen
EP1098869A1 (de) Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
DE3634247C1 (de) Verfahren zur Herstellung von Aminen
EP0300323B1 (de) Verfahren zur Herstellung von aliphatischen N,N-dialkylsubstituierten Aminoalkoholen
EP0111861B1 (de) Verfahren zur Herstellung von Aminen
DE3017542A1 (de) Verfahren zur herstellung von 2-trifluormethylanilin
EP0827949B1 (de) Verfahren zur heterogen katalysierten Herstellung von n-alkyl-substituierten Aminoalkinen
EP0009621B1 (de) Verfahren zur Herstellung von Triäthylamin
DE2625196C2 (de) Verfahren zur Herstellung von tertiären Aminen
EP0433811B1 (de) Verfahren zur Herstellung von N-alkylierten aromatischen Aminen
DE4230554A1 (de) Verfahren zur Herstellung von tertiären Aminen
EP0009146B1 (de) Verfahren zur Herstellung von Di- und Triäthylamin
DE19754571A1 (de) Verfahren zur Herstellung von variablen Gemischen aus Cyclohexylamin und Dicyclohexylamin
EP0007041B1 (de) Verfahren zur Herstellung von Anthron
DE3216384A1 (de) Verfahren zur herstellung von neopentylamin
DE1155136B (de) Verfahren zur Herstellung von N, N'-Dialkyl-aryldiaminen
DE2456006C3 (de) Verfahren zur Herstellung von isomerenfreiem 3-Methylbutylamin
DE3336498A1 (de) Verfahren zur herstellung von partiell hydrierten derivaten von 2-nitro-1,1,1-trifluoralkanen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19800707

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3062020

Country of ref document: DE

Date of ref document: 19830324

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RUHRCHEMIE AKTIENGESELLSCHAFT

Effective date: 19831115

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 19831111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840702

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840703

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840905

Year of fee payment: 5

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
27W Patent revoked

Effective date: 19890126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19890731

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO