EP0015813A1 - Procédé de boruration de pièces en métal ou cermet et pièces borurées en surface - Google Patents

Procédé de boruration de pièces en métal ou cermet et pièces borurées en surface Download PDF

Info

Publication number
EP0015813A1
EP0015813A1 EP80400252A EP80400252A EP0015813A1 EP 0015813 A1 EP0015813 A1 EP 0015813A1 EP 80400252 A EP80400252 A EP 80400252A EP 80400252 A EP80400252 A EP 80400252A EP 0015813 A1 EP0015813 A1 EP 0015813A1
Authority
EP
European Patent Office
Prior art keywords
agent
parts
enclosure
gaseous
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP80400252A
Other languages
German (de)
English (en)
Inventor
François Henri Joannes Thevenot
Patrice Marie Victor Goeuriot
Julian Haworth Driver
Jean-Paul Raymond Lebrun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOUVELLE des Ets PARTIOT - SOFRATER Ste
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Original Assignee
NOUVELLE des Ets PARTIOT - SOFRATER Ste
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOUVELLE des Ets PARTIOT - SOFRATER Ste, Association pour la Recherche et le Developpement des Methodes et Processus Industriels filed Critical NOUVELLE des Ets PARTIOT - SOFRATER Ste
Publication of EP0015813A1 publication Critical patent/EP0015813A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • C23C8/70Boronising of ferrous surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the subject of the invention is a process for treating parts of material from the group consisting of alloys of metals of the iron family (Fe, Ni, Co) and by cermets, in which the parts are brought to an operating temperature of of the order of 850 to 1150 ° C. in the presence of a solid boronizing agent and the boronization is activated by simultaneously subjecting the parts to the action of contact of the current of a gaseous fluorinated agent under operating conditions of pressure and temperature defined.
  • the subject of the invention is also a device for implementing the method and parts boronated on the surface.
  • the parts borided by this known process keep traces of powder stuck due to the appearance of a molten phase, so that they must be subjected to an additional treatment to remove the powder. more or less sintered, more or less adherent on their surface.
  • the activating agent which is consumed, being in the treatment bed, it must be regenerated, for example by quarters, with a new powder after each treatment operation.
  • the object of the invention is to propose a new very economical process and a new device making it possible to avoid the abovementioned drawbacks, in particular by obtaining a single-phase layer as regards carbon steels, and by obtaining clean parts without powder adhesion in all cases.
  • the gaseous fluorinated agent containing trifluorinated boroxole is produced by making pass the starting gas through a pulverulent mass of mineral oxides free of cationic impurities, such as simple or complex oxides of silicon, aluminum and magnesium, for example a silica sand, brought to a temperature at least equal to 450 ° C.
  • the agent introduced into the mass brought to at least 450 ° C. is boron trifluoride
  • the effluent will contain trifluorinated boroxole according to the reaction, in which MO is the simple or complex oxide.
  • the fluorinated agent is diluted in a neutral carrier gas.
  • the boriding agent can be, not only B 4 C l but any boron carbide B n C, in which n is between 4 and 10. It is also according to an advantageous characteristic of the invention that it will be possible to choose to enrich or deplete in B 10 the boron of the solid boronizing agent and / or of the gaseous fluorinating agent of activation or starting gas. In this way, it will be possible to obtain parts with more or less high effective cross section for neutron shutdown by enriching with B 10 with high effective cross section or with B 11 very transparent to neutrons.
  • the solid boronizing agent and the parts to be boronized are subjected to the contact action of the stream of gaseous fluorinated agent outside mutual contact.
  • This embodiment is decisive for enabling the production of clean parts free of more or less sintered powder. This embodiment therefore operates in the gas phase, as will be explained below, hence saving and ease of implementation.
  • the solid boriding agent present with the parts to be borided is interposed in the stream of the gaseous fluorinated agent upstream from the parts to be borided.
  • This embodiment will allow the parts to be borided to be placed directly in a treatment enclosure in order to expose them to the gaseous phase alone. treatment.
  • the solid boronizing agent and the parts to be boronized are out of mutual contact, it is however possible that the solid boronizing agent is arranged in the form of pulverulent solid material constituting treatment bed for the parts to be boronized, as it is known per se.
  • the invention also relates to the parts of carbon steels having undergone a boriding treatment on the surface to a thickness of about 20 to 200 ⁇ m covered with a single-phase layer of Fe 2 B crystals of acicular formation.
  • An installation according to the invention comprises a reactor 1 made of refractory steel.
  • a reactor 1 made of refractory steel.
  • the bottom enclosure 3 is intended to contain the parts to be boronized 6.
  • L the upper enclosure 2 is intended to contain a pulverulent mass of mineral oxides 7.
  • the reactor 1 is in an oven 8, the temperature of which is regulated, in a manner known per se, by means of a thermocouple 9.
  • a pipe 10, controlled by a valve 11 is inserted into the upper wall of the reactor 1, so as to open into the enclosure 2.
  • the enclosure 3 and the reactor 1 are closed, at the bottom, by porous parcels, respectively 12 and 13, the porous wall 13 being closed, on its other face, by a pipe 14 for discharging gaseous effluents.
  • the valve 11 is connected, for the supply of gas, to two gaseous sources, respectively a source 15 of compressed boron trifluoride and a source 16 of diluent inert gas, such as argon or nitrogen. These two sources 15 and 16 are connected to the valve 11 through two flow meters 17 and 18 discharging on a pipe com mune 19.
  • the pipe 14 arrives on a valve 20 connected to a pressure gauge 21 and to a washer assembly 22 by a pipe 23.
  • a distribution valve 25 between a pipe d discharge 26 and a recycling pipe 27, which brings part of the gas effluent to valve 11, which is then a mixing valve.
  • the lower enclosure 3 In the embodiment of FIG. 1, provision has been made for the lower enclosure 3 to contain the boriding agent 5 in the form of a bed coating the parts, as is known per se. But according to the embodiment of Figure 2, the lower enclosure 3 does not contain any powdery or granular bed. In this case, the parts 6 and the solid boronizing agent are separated from each other, the agent is arranged in the form of sintered elements 30 suspended in the lower enclosure 3.
  • the preferred embodiment is that of Figures 3 and 4 which differs from the previous one, by the presence of a retaining grid 31 disposed in the upper part of the lower enclosure 3 for an interposed bed solid borating agent 33 in powder form with a particle size of 1 to 2 ⁇ m on the path of the gaseous activating agent supplied through the powdery mass of mineral oxides 7.
  • the embodiment of FIG. 3 is suitable for small parts which can be coated with powdered silicon carbide 34, as an inert agent.
  • FIG. 4 we simply omitted to place the bed of silicon carbide to deposit the part or parts 6 directly in the enclosure 3.
  • a boronizing agent of known type consisting of a powder of B 4 C at a particle size of 1 to 100 ⁇ m mixed with a powder of silicon carbide of 100 has been placed in enclosure 3. ⁇ m in mass proportion from 2/98 to 100/0.
  • enclosure 2 we put a pure silica sand washed with acids 90% of which passes through a 2 mm sieve.
  • the enclosure is scanned with a neutral gas, nitrogen or argon, at the same time as the temperature is raised.
  • the BF 3 gas possibly diluted, is sent when the temperature reaches approximately 500 to 950 ° C. The latter is chosen as the boronization temperature.
  • the duration of the passage of the activating gas varies from half to the entire time this stay of the parts at 950 ° C., said residence time having been approximately 5 hours. Simultaneously, the temperature of the silica bed 7 was brought to about 850 ° C.
  • FIG. 1 the installation of FIG. 1 was modified as shown in FIGS. 2, 3 and 4.
  • Example 3 In the embodiment of FIG. 2, a piece of carbon steel 6 was placed in the presence, but without contact, of hot sintered pieces 30 made of ⁇ boron, B 4 C and B 10 C. We sent BF 3 through the sand bed 7 of enclosure 2 for 18 h while maintaining the temperature of enclosure 3 at 1000 ° C. FIG. 7 shows a micrographic section of the steel thus borided.
  • Example 4 In the embodiment of FIG. 3, two parts, one made of carbon steel, the other of chromium-nickel 18/10, were placed in the SiC bed of enclosure 3. BF 3 was surrounded by the sand bed 7 of enclosure 2 for 2.5 h while maintaining the temperature of enclosure 3 at 1020 ° C.
  • FIG. 8 shows a micrographic section of the carbon steel thus boronized and in FIG. 9 a section of the chrome-nickel steel thus boronized.
  • FIG. 10 shows a micrographic section of the external surface of the workpiece and in FIG. 11 a micrographic section of the surface of the notch with a saw.
  • FIG. 7 shows the appearance of the borated layer obtained in the case of the reactor of Example 3.
  • the progression of the dendrites is not perpendicular to the surface but has been disturbed by the presence of a phase which appears as perlite after cooling.
  • the boronization speed therefore has an important influence on the progression of the boronized layer in the matrix and the growth direction [001] is not absolute.
  • this part is boronised (FIGS. 10 and 11), not only on the two external faces (90 to 120 ⁇ m), but also on the internal faces defined by the saw cuts.
  • a micrograph of these internal faces shows a borated layer of variable thickness and of discontinuous acicular character which is explained by the only intervention of a gas phase.
  • the invention has made it possible to develop an original process making it possible to boron all steels up to tool steels with total reliability.
  • the previous processes led to poor quality parts on mild steels (formation of two layers FeB + Fe 2 B), the flexibility of the process of the invention combined with the use of an activation moderator (Si0 2 ) allows, including in industrial conditions, to produce parts of consistent and satisfactory quality.
  • Mechanical tests have shown that the behavior of the layers obtained on tool steel was of very good quality.
  • boronization of stainless steel to chromium-nickel 18.10 remains of weak effect.
  • durations, percentages and particle sizes given in the previous description are not limiting. They can be varied as a function of the desired greater or lesser speed of formation and thickness of the layer. Some of these factors have only a slight influence, such as, for example, the particle size of B 4 C and of SiC.
  • boron carbides other than B 4 C such as borides B n C, in which n is between 4 and 10.
  • the main phase detected by X-ray diffraction is CoB; the mixed boride W 2 CoB 2 also seems to be present, on the other hand W 2 B 5 is absent.
  • W-Co mixed borides
  • FIG 12 there is shown a particularly simple embodiment of a reactor for implementing the method of the invention.
  • the lower part of the reactor constitutes the enclosure 3 closed by a watertight cover 40 with seal 41 cooled with water.
  • the enclosure 2 is produced in the form of a container which can be fitted into the reactor before fitting the cover 40.
  • the bottom of the enclosure 2 comprises the grid 4 for retaining the sand and letting the activation gas pass and a grid 31 for retain boron carbide, preferably powdery.
  • a pipe 10 fixed to the enclosure 2 crosses the cover to bring BF 3 through the sand of the enclosure2.
  • the cover is crossed by a central chimney 14 which also crosses, in a sealed manner, the enclosure 2 to end near the bottom of the reactor under a grid 12 for retaining the parts to be borided.
  • the temperature probe 9 can be placed in the chimney 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

L'invention concerne un procédé et un dispositif de boruration de pièces en métal ou cermet et des pièces boturées en surface. On dispose les pièces dans une enceinte 3 entre 850 et 1150°C et on les soumet, en présence de carbure de bore, à un courant gazeux de boroxole trifluoré (BOF)3. Le carbure de bore est avantageusement pulvérulent et hors de contact des pièces à borurer.

Description

  • L'invention a pour objet un procédé de traitement de pièces en matériau du groupe constitué par les alliages de métaux de la famille du fer (Fe, Ni, Co) et par les cermets, dans lequel on porte les pièces à une température opératoire de l'ordre de 850 à 1150°C en présence d'un agent borurant solide et on active la boruration en soumettant simultanément les pièces à l'action de contact du courant d'un agent fluoré gazeux dans des conditions opératoires de pression et de température définies. L'invention a également pour objet un dispositif pour la mise en oeuvre du procédé et des pièces borurées en surface.
  • On connaît par le brevet français N° 2 018 609 et son équivalent U.S. 3 673 005, un procédé du type rappelé ci-dessus pour la boruration des aciers, dans lequel l'activateur est un fluoroborate mélangé à l'agent borurant en présence de borax et éventuellement additionné d'un agent diluant constitué par de l'alumine. Toute la réaction se passe en phase solide et permet d'obtenir un revêtement dans lequel on observe deux phases, l'une de FeB, l'autre de Fe2B. Mais les structures cristallines différentes de ces deux phases créent'des tensions nuisibles à la bonne tenue au refroidissement, d'autant plus que la phase FeB est plus fragile, d'où risques d'écaillage du revêtement. On observe, d'autre part, que les pièces borurées par ce procédé connu gardent des traces de poudre collée du fait de l'apparition d'une phase fondue, si bien qu'il faut leur faire subir un traitement supplémentaire pour éliminer la poudre plus ou moins frittée, plus ou moins adhérente sur leur surface. En outre l'agent activateur, qui est consommé, se trouvant dans le lit de traitement, il faut régénérer celui-ci, par exemple par quarts, avec une poudre neuve après chaque opération de traitement.
  • On sait, par ailleurs, que le même procédé est applicable avec les mêmes avantages et inconvénients aux cermets, notamment au carbure de tungstène ou de titane pris dans une matrice de cobalt. On se reportera, par exemple à l'article G.L. ZHUNKOVSKII et al. Boronizing of cobalt and some cobalt base alloys. Soviet powder metal- lurgy - 11, (1972) p. 888-90, et à l'article O. KNOTEK et al. Surface layers on cobalt base alloys by boron diffusion. Thin solid films, 45 (1977) p. 331-9.
  • Le but de l'invention est de proposer un nouveau procédé très économique et un nouveau dispositif permettant d'éviter les inconvénients précités, notamment par obtention d'une couche monophasée en ce qui concerne les aciers au carbone, et par obtention de pièces propres sans adhésion de poudre dans tous les cas.
  • Ces buts sont atteints, selon l'invention, par un procédé du type décrit au début, grâce au fait que l'agent fluoré gazeux contient du boroxole trifluoré (BOF)3. Cet agent d'activation présente de nombreux avantages qui apparaîtront plus loin.
  • Selon l'invention, il est avantageux d'utiliser comme gaz de départ le trifluorure de bore BF3 ou un mélange gazeux contenant BF3 et, selon un mode de réalisation préféré, on produit l'agent fluoré gazeux contenant du boroxole trifluoré en faisant passer le gaz de départ à travers une masse pulvérulente d'oxydes minéraux exempts d'impuretés cationiques, tels qu'oxydes simples ou complexes de silicium, d'aluminium et de magnésium, par exemple un sable de silice, portée à une température au moins égale à 450°C.
  • De cette façon, il n'y a plus d'inconvénients dus à la consommation interne de l'agent d'activation, puisque celui-ci est amené de l'extérieur. De cette façon, également, et selon la vitesse de passage de l'agent fluoré d'activation à travers la masse pulvérulente d'oxydes, on observe une modération de l'action de l'agent gazeux effluent de ladite masse. Si, comme ce sera le plus économique selon l'invention, l'agent introduit dans la masse portée à au moins 450°C est le trifluorure de bore, l'effluent contiendra du boroxole trifluoré selon la réaction,
    Figure imgb0001
    dans laquelle MO est l'oxyde simple ou complexe.
  • Dans tous les cas, c'est une grande simplification selon l'invention de séparer l'agent borurant fort peu consommé, un agent modérateur également fort peu consommé et l'agent activateur.
  • Il est avantageux d'amener à débit réglable, et de préférence à une pression voisine de la pression atmosphérique, l'agent fluoré d'activation au contact des pièces à borurer.
  • Selon un mode de réalisation, l'agent fluoré est dilué dans un gaz vecteur neutre.
  • Selon un mode de réalisation, l'agent borurant peut être, non seulement B4Cl mais tout carbure de bore BnC, dans lequel n est compris entre 4 et 10. C'est également selon une caractéristique avantageuse de l'invention qu'on pourra choisir d'enrichir ou appauvrir en B10 le bore de l'agent borurant solide et/ou de l'agent fluoré gazeux d'activation ou gaz de départ. De cette façon on pourra obtenir des pièces à plus ou moins forte section efficace réglée d'arrêt des neutrons en enrichissant en B10 à forte section efficace ou en B11 très transparent aux neutrons.
  • Selon un mode de réalisation préféré de l'invention, l'agent borurant solide et les pièces à borurer sont soumis à l'action de contact du courant d'agent fluoré gazeux hors de contact mutuel. Ce mode de réalisation est déterminant pour permettre l'obtention de pièces propres exemptes de poudre plus ou moins frittée. Ce mode de réalisation opère donc en phase gazeuse, comme il sera exposé plus loin, d'où économie et facilité de mise en oeuvre.
  • A cet effet, il est avantageux que l'agent borurant solide présent avec les pièces à borurer soit interposé dans le courant de l'agent fluoré gazeux en amont des pièces à borurer. Ce mode de réalisation permettra de disposer directement dans une enceinte de traitement les pièces à borurer pour les y exposer à la seule phase gazeuse de traitement. Mais, pour les très petites pièces, on pourra les disposer cependant dans un lit constitué par une masse inerte granuleuse ou pulvérulente, telle que le carbure de silicium.
  • Bien que, selon le mode de réalisation préféré, l'agent borurant solide et les pièces à borurer soient hors de contact mutuel, il est cependant possible que l'agent borurant solide soit disposé sous forme de matière solide pulvérulente constituant lit de traitement pour les pièces à borurer, comme il est connu en soi.
  • Il est avantageux de recycler, au moins partiellement, l'agent fluoré gazeux d'activation.
  • Un dispositif particulièrement approprié pour la mise en oeuvre de l'invention comporte :
    • - une première enceinte de traitement de boruration,
    • - des moyens de chauffage de ladite première enceinte à une température de l'ordre de 850 à 1150°C,
    • - une seconde enceinte pour une masse pulvérulente ou granuleuse d'oxydes minéraux,
    • - des moyens de chauffage de ladite seconde enceinte à au moins 450°C environ,
    • - des moyens d'amenée d'un gaz fluoré dans ladite seconde enceinte,
    • - un passage de transfert de l'effluent gazeux fluoré de la seconde enceinte à la première enceinte,
    • - des moyens d'évacuation de l'effluent gazeux fluoré de ladite première enceinte.
  • L'invention concerne également les pièces d'aciers au carbone ayant subi en surface un traitement de boruration sur une épaisseur d'environ 20 à 200 pm recouvertes d'une couche monophasée de cristaux de Fe2B de formation aciculaire.
  • D'autres caractéristiques et avantages ressortiront de la description, qui sera donnée ci-après, uniquement à titre d'exemples, de modes de réalisation de l'invention. On se reportera à cet effet aux dessins et micrographies annexés, dans lesquels :
    • - La figure 1 est un schéma d'ensemble d'une installation selon l'invention pour la mise en oeuvre du procédé selon l'invention,
    • - les figures 2, 3 et 4 sont des coupes partielles à plus grande échelle, de la partie du réacteur de la figure 1 contenant les deux enceintes décrites plus loin,
    • - les figures 5 à 11 sont des coupes micrographiques d'aciers borurés par le procédé de l'invention,
    • - la figure 12 est une vue en coupe, à plus grande échelle, d'une variante pour le réacteur compris dans le schéma de la figure 1.
  • Une installation selon l'invention comprend un réacteur 1 en acier réfractaire. Dans ce réacteur sont disposés, du haut vers le bas, deux enceintes 2 et 3 simplement séparées par une grille de retenue 4 disposée au fond de l'enceinte 2. L'enceinte inférieure 3 est destinée à contenir les pièces à borurer 6. L'enceinte supérieure 2 est destinée à contenir une masse pulvérulente d'oxydes minéraux 7. Le réacteur 1 est dans un four 8 dont la température est régulée, de façon connue en soi, grâce à un thermocouple 9.
  • Une canalisation 10, commandée par une vanne 11 est piquée dans la paroi supérieure du réacteur 1, de façon à déboucher dans l'enceinte 2. L'enceinte 3 et le réacteur 1 sont fermés, en bas, par des parcis poreuses, respectivement 12 et 13, la paroi poreuse 13 étant fermée, sur son autre face, par une canalisation 14 d'évacuation des effluents gazeux.
  • La vanne 11 est raccordée, pour l'alimentation en gaz, à deux sources gazeuses, respectivement une source 15 de trifluorure de bore comprimé et une source 16 de gaz inerte diluant, tel qu'argon ou azote. Ces deux sources 15 et 16 sont raccordées à la vanne 11 à travers deux débimètres 17 et 18 débitant sur une canalisation commune 19.
  • De son côté la canalisation 14 arrive sur une vanne 20 raccordée à un manomètre 21 et à un ensemble laveur 22 par une canalisation 23. A la sortie de la canalisation 24, il est possible d'ajouter une vanne de répartition 25 entre une canalisation d'évacuation 26 et une canalisation de recyclage 27, qui ramène une partie de l'effluent gaz à la vanne 11, qui est alors une vanne mélangeuse.
  • Dans le mode de réalisation de la figure 1, on a prévu que l'enceinte inférieure 3 devrait contenir l'agent borurant 5 sous forme de lit enrobant les pièces, comme il est connu en soi. Mais selon le mode de réalisation de la figure 2, l'enceinte inférieure 3 ne contient aucun lit pulvérulent ou granuleux. Dans ce cas les pièces 6 et l'agent borurant solide sont séparés l'un de l'autre, l'agent est disposé sous forme d'éléments frittés 30 suspendus dans l'enceinte inférieure 3.
  • Mais, selon l'invention, le mode de réalisation préféré est celui des figures 3 et 4 qui diffère de la précédente, par la présence d'une grille de retenue 31 disposée dans la partie supérieure de l'enceinte inférieure 3 pour un lit interposé d'agent borurant solide 33 pulvérulent à la granulométrie de 1 à 2 µm sur le trajet de l'agent gazeux d'activation amené à travers la masse pulvérulente d'oxydes minéraux 7. Le mode de réalisation de la figure 3 convient pour les petites pièces qu'on peut enrober de carbure de silicium pulvérulent 34, comme agent inerte. A la figure 4, on a tout simplement omis de placer le lit de carbure de silicium pour déposer la ou les pièces 6 directement dans l'enceinte 3.
  • Dans l'installation de la figure 1 on a disposé, dans l'enceinte 3, un agent borurant de type connu consistant en une poudre de B4C à une granulométrie de 1 à 100 µm mélangée avec une poudre de carbure de silicium de 100 µm en proportion massique de 2/98 à 100/0. Dans l'enceinte 2 on a mis un sable de silice pure lavé aux acides dont 90% passent au tamis de 2 mm. Après avoir mis des pièces à traiter dans le lit de l'enceinte 3, on balaye l'enceinte avec un gaz neutre, azote ou argon, en même temps qu'on élève la température. Puis on envoie le gaz BF3, éventuellement dilué, lorsque la température atteint 500 à 950°C environ. Cette dernière est choisie comme température de boruration. La durée du passage du gaz activateur varie de la moitié à la totalité du temps ce séjour des pièces à 950°C, ledit temps de séjour ayant été d'environ 5 heures. Simultanément, la température du lit 7 de silice était portée à environ 850°C.
  • Exemples 1 et 2 Il a été essayé avec une proportion massique B4C/SiC de 20/80 deux aciers au carbone à 0,1% et 0,35% respectivement désignés, XC 10 et XC 35, selon désignation AFNOR. Après refroidissement, les pièces ont été examinées en laboratoire.
  • On a pu constater (voir les coupes micrographiques aux figures 5 et 6) que, dans les deux cas, les pièces étaient recouvertes d'une couche A monophasée de 170 µm de cristaux de Fe2B orientés avec formation de dents pénétrant bien dans le métal C en y constituant une formation aciculaire. Une couche B de 10 µm seulement de cristaux de FeB/Fe2B non orientés recouvrait la couche de Fe2B et n'était donc pas de nature à y provoquer des tensions nuisibles, puisque, comme dans les procédés connus, cette couche peut être éliminée par simple sablage au jet, ou même conservée telle quelle comme s'éliminant à l'usage si on peut accepter des pièces à aspect mat.
  • On a obtenu ainsi des couches utiles de 170 µm, pratiquement monophasées, alors qu'avec le procédé connu, toutes choses égales par ailleurs, on a obtenu des couches de 200 µm mais biphasées avec deux couches de phases différentes fortement orientées de FeB et Fe2B dans une proportion 1/2 à 1/3.
  • On a ensuite procédé, selon le mode de réalisation préféré de l'invention en modifiant l'installation de la figure 1 comme représenté aux figures 2, 3 et 4.
  • Exemple 3 Dans le mode de réalisation de la figure 2, on a disposé une pièce en acier au carbone 6 en présence, mais hors contact, de pièces frittées à chaud 30 en bore β, B4C et B10C. On a envoyé BF3 à travers le lit de sable 7 de l'enceinte 2 pendant 18 h en maintenant la température de l'enceinte 3 à 1000°C. On a représenté à la figure 7 une coupe micrographique de l'acier ainsi boruré.
  • Exemple 4 Dans le mode de réalisation de la figure 3, on a disposé dans le lit 34 de SiC de l'enceinte 3 deux pièces, l'une en acier au carbone, l'autre au chrome-nickel 18/10. On a envcyé BF3 à travers le lit de sable 7 de l'enceinte 2 pendant 2,5h en maintenant la température de l'enceinte 3 à 1020°C. On a représenté à la figure 8 une coupe micrographique de l'acier au carbone ainsi boruré et à la figure 9 une coupe de l'acier au chrome-nickel ainsi boruré.
  • Exemples 5 et 6 Dans le mode de réalisation de la figure 4, or a traité une pièce 6 en acier au carbone ayant reçu deux traits de scie de 0,5 mm sur sa tranche. On a envoyé BF3 à travers le lit de sable 7 de l'enceinte 2 pendant 2 h à 1000°C. On a représenté à la figure 10 une coupe micrographique de la surface extérieure de la pièce et à la figure 11 une coupe micrographique de la surface de l'entaille à la scie.
  • Chacune de ces opérations a conduit à la boruration des pièces en aciers présentes dans le réac- teur. L'épaisseur de la couche compacte (Fe2B seul) est assez faible dans le cas du procédé de l'exemple 3, 15 à 20 µm environ. L'étude métallographique des pièces ainsi traitées renseigne sur la morphologie de ces couches. Pour le cas du procédé de l'exemple 4 elles sont identiques à celles déjà observées aux exemples 1 et 2. La couche n'est pas plate à proprement dire (figure 9), on note l'arrêt de la boruration à certains joints de grains lorsque ceux-ci sont parallèles à la surface ou offrent un angle allant jusqu'à 120° environ avec celle-ci. La figure 7 montre l'aspect de la couche borurée obtenue dans le cas du réacteur de l'exemple 3. La progression des dendrites ne se fait pas perpendiculairement à la surface mais a été perturbée par la présence d'une phase qui apparaît comme de la perlite après refroidissement. La vitesse de boruration a donc une influence importante sur la progression de la couche borurée dans la matrice et la direction de croissance [001] n'est pas absolue.
  • En ce qui concerne la pièce ayant reçu des traits de scie, on constate que cette pièce est borurée (figures 10 et 11), non seulement sur les deux faces externes (90 à 120 µm), mais aussi sur les faces internes définies par les traits de scie. Une micrographie de ces faces internes montre une couche borurée d'épaisseur variable et de caractère aciculaire discontinu qui s'explique par la seule intervention d'une phase gazeuse.
  • On tire de ces essais, la conclusion que la boruration en phase gazeuse étant parfaitement satisfaisante, il devient possible industriellement dans le r6acteur de séparer l'enceinte du générateur des agents gazeux borés (BF3 + Si02, B4C), des pièces métalliques à borurer qui peuvent être commodément disposées dans un lit de SiC ou bien le cas échéant, laissées nues.
  • On voit que l'invention a permis de mettre au point un procédé original permettant de borurer tous les aciers jusqu'aux aciers à outil avec une fiabilité totale. Les procédés antérieurs conduisaient à des pièces de qualité médiocre sur les aciers doux (formation de deux couches FeB + Fe2B), la souplesse du procédé de l'invention alliée à l'utilisation d'un modérateur d'activation (Si02) permet, y compris dans les conditions industrielles, de réaliser des pièces de qualité suivie et satisfaisante. Des essais mécaniques ont montré que la tenue des couches obtenues sur acier d'outillage était de très benne facture. Comme avec les procédés connus, la boruration de l'acier inoxydable au chrome-nickel 18.10 reste de faible effet.
  • En outre, d'un point de vue purement industriel, les avantages du procédé sont considérables : simplicité, souplesse, économie de main-d'oeuvre (non collage de la poudre aux pièces) et fiabilité totale d'après de nombreux essais effectués en vraie grandeur. Le prix de revient de l'opération est divisé par trois environ quant aux matières consommables et les manipulations sont réduites au minimum.
  • Les conditions opératoires précédentes sont les conditions préférées, mais il a été possible d'obtenir des résultats valables avec Al2O3 et MgO, étant noté toutefois que ces deux oxydes conduisent à une assez forte activité de l'effluent utilisé comme agent gazeux activateur, qui contient alors de l'anhydride borique B203. Le rôle modérateur de Si02 est finalement le plus favorable, ce qui le fait préférer.
  • Les durées, pourcentages et granulométries donnés dans la précédente description ne sont pas limitatifs. On pourra les faire varier en fonction de la vitesse désirée plus ou moins grande de formation et d'épaisseur de la couche. Certains de ces facteurs n'ont qu'une faible influence, comme, par exemple, la granulométrie de B4C et de SiC.
  • Le demandeur a pu constater également de bons résultats avec d'autres carbures de bore que B4C, tels que les borures BnC, dans lesquels n est compris entre 4 et 10.
  • On ne sortira pas du cadre de l'invention en alimentant en gaz activateur plusieurs enceintes de boruration 3 à partir d'une seule enceinte 2.
  • En ce qui concerne l'application de l'invention aux cermets, des essais ont été faits sur des outils au carbure de tungstène contenant des proportions variables de cobalt (ou nickel, ou fer) avec l'installation de la fig. 1. Avec un débit de BF3 de 1 à 5 1/h et en réglant la température de traitement entre 800 et 1100°C on obtient des pièces borurées.
  • A 950°C la phase principale détectée par diffraction des rayons X est CoB; le borure mixte W2CoB2 semble également présent, par contre W2B5 est absent. Selon la température, divers borures mixtes (W-Co) peuvent se former.
  • Des essais d'usinage par chariotage de différents matériaux (carbone non graphité, inox Nickel --chrome 18-10, acier rapide, céramiques, ...) ont été effectués. On a observé que l'outil boruré montre une résistance à l'usure très supérieure à celle de l'outil non traité et que l'essai sur l'acier rapide montre que les outils borurés ou non se détériorent assez rapidement; toutefois, la coupe obtenue avec l'outil boruré est franche (les plaquettes non borurées ne permettent pas la coupe).
  • A la figure 12, on a représenté un mode de réalisation particulièrement simple d'un réacteur pour la mise en oeuvre du procédé de l'invention. La partie inférieure du réacteur constitue l'enceinte 3 fermée par un couvercle 40 étanche à joint 41 refroidi à l'eau. L'enceinte 2 est réalisée sous forme d'un récipient emboîtable dans le réacteur avant pose du couvercle 40. Le fond de l'enceinte 2 comprend la grille 4 pour retenir le sable et laisser passer le gaz d'activation et une grille 31 pour retenir le carbure de bore, de préférence pulvérulent. Une conduite 10 fixée à l'enceinte 2 traverse le couvercle pour amener BF3 à travers le sable de l'enceinte2.Le couvercle est traversé par une cheminée centrale 14 qui traverse également, de façon étanche, l'enceinte 2 pour aboutir près du fond du réacteur sous une grille 12 de retenue des pièces à borurer. La sonde thermométrique 9 peut être disposée dans la cheminée 14.

Claims (18)

1) Procédé de traitement par boruration de pièces en matériau du groupe constitué par les alliages de métaux de la famille du fer (Fe, Ni, Co) et par les cermets, dans lequel on porte les pièces à une température opératoire de l'ordre de 850 à 1150°C en présence d'un agent borurant solide et on active la boruration en soumettant simultanément les pièces à l'action de contact du courant d'un agent fluoré gazeux dans des conditions opératoires de pression et de température définies, caractérisé en ce que l'agent fluoré gazeux contient du boroxole rifluoré (BOF)3.
2) Procédé selon la revendication 1, dans lequel on utilise comme gaz de départ BF3 ou un mélange gazeux contenant BF3, caractérisé en ce qu'on produit l'agent fluoré gazeux contenant du boroxole trifluoré en faisant passer le gaz dé départ à travers une masse pulvérulente d'oxydes minéraux exempts d'impuretés cationiques, tels qu'oxyde simples ou complexes de silicium, d'aluminium et de magnésium, portée à une température au moins égale à 450°C.
3) Procédé selon la revendication 2, caractérisé en ce que la masse pulvérulente d'oxydes minéraux est constituée par un sable de silice.
4) Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'agent fluoré gazeux d'activation est amené au contact des pièces à débit réglable.
5) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'agent fluoré gazeux d'activation est amené au contact des pièces à une pression voisine de la pression atmosphérique.
6) Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'agent fluoré gazeux d'activation et/ou le gaz de départ sont dilués dans un gaz vecteur neutre.
7) Procédé selon la revendication 2, caractérisé en ce que la masse pulvérulente d'oxydes minéraux est à une granulométrie sensiblement homogène comprise entre 0,1 et 2 mm environ.
8) Procédé selon la revendication 1, caractérisé en ce que l'agent borurant solide est un carbure de bore BnC, dans lequel n est compris entre 4 et 10.
9) Procédé selon la revendication 1, caractérisé en ce que le bore de l'agent borurant solide et/ou de l'agent fluoré gazeux d'activation ou gaz de départ est enrichi ou appauvri en B10.
10) Procédé selon la revendication 1, caractérisé en ce que l'agent borurant solide et les pièces à borurer sont soumis à l'action de contact du courant d'agent fluoré gazeux hors de contact mutuel.
11) Procédé selon la revendication 1, caractérisé en ce que l'agent borurant solide présent avec les pièces à borurer est interposé dans le courant de l'agent fluoré gazeux en amont des pièces à borurer.
12) Procédé selon la revendication 1, caractérisé en ce que les pièces à borurer sont disposées dans un lit constitué par une masse inerte granuleuse ou pulvérulente, telle que le carbure de silicium, pour y maintenir les pièces à borurer, comme il est connu en soi.
13) Procédé selon la revendication 1, caractérisé en ce que l'agent borurant solide est disposé sous forme de matière solide pulvérulente constituant lit de traitement pour les pièces à borurer, comme il est connu en soi.
14) Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'on recycle, au moins partiellement, l'agent fluoré gazeux d'activation.
15) Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 2 à 14 comportant une première enceinte de traitement de boruration et des moyens de chauffage de cette enceinte à une température de l'ordre de 850 à 1150°C, caractérisé en ce qu'il comporte :
- une seconde enceinte pour une masse pulvérulente ou granuleuse d'oxydes minéraux,
- des moyens de chauffage de ladite seconde enceinte à au moins 450°C environ,
- des moyens d'amenée d'un gaz fluoré dans ladite seconde enceinte,
- un passage de transfert de l'effluent gazeux fluoré de la seconde enceinte à la première enceinte,
- des moyens d'évacuation de l'effluent gazeux fluoré de ladite première enceinte.
16) Dispositif selon la revendication 15, caractérisé en ce qu'il comporte, dans la zone limitrophe aux deux dites enceintes, un moyen de retenue, perméable aux gaz, pour un lit interposé d'agent borurant solide fritté ou pulvérulent.
17) Dispositif selon l'une quelconque des revendications 15 et 16, caractérisé en ce que le moyen d'évacuation de l'effluent gazeux de ladite première enceinte est une cheminée traversant les deux dites enceintes superposées.
18) Pièces d'aciers au carbone ayant subi en surface un traitement de boruration sur une épaisseur d'environ 20 à 200 µm caractérisées en ce qu'elles sont recouvertes d'une couche monophasée de cristaux de Fe2B de formation aciculaire.
EP80400252A 1979-02-27 1980-02-22 Procédé de boruration de pièces en métal ou cermet et pièces borurées en surface Ceased EP0015813A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7904991 1979-02-27
FR7904991A FR2450286A1 (fr) 1979-02-27 1979-02-27 Procede et dispositif de boruration de pieces en metal

Publications (1)

Publication Number Publication Date
EP0015813A1 true EP0015813A1 (fr) 1980-09-17

Family

ID=9222494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400252A Ceased EP0015813A1 (fr) 1979-02-27 1980-02-22 Procédé de boruration de pièces en métal ou cermet et pièces borurées en surface

Country Status (4)

Country Link
US (3) US4289545A (fr)
EP (1) EP0015813A1 (fr)
ES (1) ES489003A0 (fr)
FR (1) FR2450286A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110960A4 (fr) * 1982-05-24 1986-02-20 Eugene V Clark Ameliorations a des structures de joints mecaniques.
WO1985000837A1 (fr) * 1983-08-15 1985-02-28 Clark Eugene V Composants de turbine de duree prolongee et procede
US4775602A (en) * 1987-07-06 1988-10-04 General Electric Company Metallic coating of improved life
US5242741A (en) * 1989-09-08 1993-09-07 Taiho Kogyo Co., Ltd. Boronized sliding material and method for producing the same
US5595601A (en) * 1990-09-14 1997-01-21 Valmet Corporation Coating bar for a bar coater
US5264247A (en) * 1990-09-14 1993-11-23 Valmet Paper Machinery Inc. Process for the manufacture of a coating bar for a bar coater
SE506949C2 (sv) * 1996-07-19 1998-03-09 Sandvik Ab Hårdmetallverktyg med borerad ytzon och användning av detta för kallbearbetningsoperationer
US6478887B1 (en) * 1998-12-16 2002-11-12 Smith International, Inc. Boronized wear-resistant materials and methods thereof
CA2502575A1 (fr) * 2002-11-15 2004-06-03 University Of Utah Research Foundation Revetements au borure de titane integres appliques sur des surfaces en titane et procedes associes
US20060074491A1 (en) * 2004-09-30 2006-04-06 Depuy Products, Inc. Boronized medical implants and process for producing the same
US7459105B2 (en) * 2005-05-10 2008-12-02 University Of Utah Research Foundation Nanostructured titanium monoboride monolithic material and associated methods
US20070078521A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Aluminum oxide coated implants and components
US7955569B2 (en) * 2007-03-14 2011-06-07 Hubert Patrovsky Metal halide reactor for CVD and method
US20110159210A1 (en) * 2007-03-14 2011-06-30 Hubert Patrovsky Metal halide reactor deposition method
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
US8894770B2 (en) 2012-03-14 2014-11-25 Andritz Iggesund Tools Inc. Process and apparatus to treat metal surfaces
CN106637267A (zh) * 2015-10-28 2017-05-10 通用电气公司 用于从金属基材去除氧化物的方法和装置
US11192792B2 (en) 2017-03-14 2021-12-07 Bwt Llc Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
US10870912B2 (en) 2017-03-14 2020-12-22 Bwt Llc Method for using boronizing reaction gases as a protective atmosphere during boronizing, and reaction gas neutralizing treatment
KR102344996B1 (ko) * 2017-08-18 2021-12-30 삼성전자주식회사 전구체 공급 유닛, 기판 처리 장치 및 그를 이용한 반도체 소자의 제조방법
US11066308B2 (en) * 2019-02-05 2021-07-20 United Technologies Corporation Preparation of metal diboride and boron-doped powders

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR585507A (fr) * 1924-09-08 1925-03-03 Procédé et appareil permettant d'effectuer le dépôt d'un métal sur un autre par voie de réaction chimique sèche, et produits nouveaux en résultant
FR1040863A (fr) * 1950-07-20 1953-10-19 Procédé d'ennoblissement et d'amélioration des surfaces métalliques, y compris du fer et de l'acier, au moyen d'un traitement de diffusion
US2844492A (en) * 1953-02-26 1958-07-22 Siemens Plania Werke Ag Fuer K Method of producing heat resisting metallic materials and formed bodies
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
FR1213586A (fr) * 1957-09-09 1960-04-01 Berghaus Elektrophysik Anst Procédé pour l'exécution de processus métallurgiques ou autres sous l'influence d'une décharge électrique en milieu gazeux
FR1221455A (fr) * 1958-04-01 1960-06-02 Metallic Surfaces Res Lab Ltd Perfectionnements aux procédés de diffusion des métaux
FR2099641A1 (fr) * 1970-07-28 1972-03-17 Bopp Anton
US3673005A (en) * 1969-09-18 1972-06-27 Kempten Elektroschmelz Gmbh Process for borating metals,especially steel
US3936327A (en) * 1972-09-07 1976-02-03 Elektroschmelzwerk Kempten Gmbh Boriding composition
DD119273A1 (fr) * 1975-05-22 1976-04-12
GB1436945A (en) * 1973-01-08 1976-05-26 Borax Cons Ltd Boriding compositions
FR2404681A1 (fr) * 1977-09-28 1979-04-27 Sandvik Ab Piece en metal dur

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612442A (en) * 1949-05-19 1952-09-30 Sintercast Corp America Coated composite refractory body
US2816048A (en) * 1949-08-05 1957-12-10 Onera (Off Nat Aerospatiale) Process of forming superficial alloys of chromium on metal bodies
US2801187A (en) * 1950-12-13 1957-07-30 Onera (Off Nat Aerospatiale) Methods for obtaining superficial diffusion alloys, in particular chromium alloys
US2874070A (en) * 1951-05-16 1959-02-17 Onera (Off Nat Aerospatiale) Method for the formation of diffusion superficial alloys, in particular chromium alloys
FR1221445A (fr) * 1958-03-31 1960-06-01 Perkin Elmer Corp Diviseur de tension, particulièrement destiné aux mesures
US3622402A (en) * 1969-02-04 1971-11-23 Avco Corp Erosion-corrosion resistant coating
JPS4939171Y2 (fr) * 1971-03-16 1974-10-28
DE2126379C3 (de) * 1971-05-27 1979-09-06 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zum Borieren von Metallen, insbesondere von Stahl
US4188242A (en) * 1975-10-16 1980-02-12 Hughes Tool Company Combination carburizing and boronizing methods
SU581168A1 (ru) * 1976-04-21 1977-11-25 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Способ химико-термической обработки стальных изделий
SU722965A1 (ru) * 1978-04-10 1980-03-25 Уфимский авиационный институт им. Орджоникидзе Способ термической обработки быстрорежущих сталей

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR585507A (fr) * 1924-09-08 1925-03-03 Procédé et appareil permettant d'effectuer le dépôt d'un métal sur un autre par voie de réaction chimique sèche, et produits nouveaux en résultant
FR1040863A (fr) * 1950-07-20 1953-10-19 Procédé d'ennoblissement et d'amélioration des surfaces métalliques, y compris du fer et de l'acier, au moyen d'un traitement de diffusion
US2844492A (en) * 1953-02-26 1958-07-22 Siemens Plania Werke Ag Fuer K Method of producing heat resisting metallic materials and formed bodies
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
FR1213586A (fr) * 1957-09-09 1960-04-01 Berghaus Elektrophysik Anst Procédé pour l'exécution de processus métallurgiques ou autres sous l'influence d'une décharge électrique en milieu gazeux
FR1221455A (fr) * 1958-04-01 1960-06-02 Metallic Surfaces Res Lab Ltd Perfectionnements aux procédés de diffusion des métaux
US3673005A (en) * 1969-09-18 1972-06-27 Kempten Elektroschmelz Gmbh Process for borating metals,especially steel
FR2099641A1 (fr) * 1970-07-28 1972-03-17 Bopp Anton
US3936327A (en) * 1972-09-07 1976-02-03 Elektroschmelzwerk Kempten Gmbh Boriding composition
GB1436945A (en) * 1973-01-08 1976-05-26 Borax Cons Ltd Boriding compositions
DD119273A1 (fr) * 1975-05-22 1976-04-12
FR2404681A1 (fr) * 1977-09-28 1979-04-27 Sandvik Ab Piece en metal dur

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 89. No. 26, Decembre 1978, ref 218580y Columbus Ohio, US T. KATAGIRI et al.: "Application of iron-iron boride (Fe2B) eutectic reaction to surface hardening" page 196 & Kinzoku Hyomen Gijutsu 1978. 29(5) 256-60 * Resume * *
THIN SOLID FILMS, Vol. 45, 1977, S.C. SINGHAL: "A hard diffusion boride coating for ferrous materials", pages 321-329. *

Also Published As

Publication number Publication date
FR2450286A1 (fr) 1980-09-26
FR2450286B1 (fr) 1982-09-03
ES8200929A1 (es) 1981-11-16
ES489003A0 (es) 1981-11-16
US4404045A (en) 1983-09-13
US4289545A (en) 1981-09-15
US4348980A (en) 1982-09-14

Similar Documents

Publication Publication Date Title
EP0015813A1 (fr) Procédé de boruration de pièces en métal ou cermet et pièces borurées en surface
Chakraborty et al. Development of silicide coating over molybdenum based refractory alloy and its characterization
Mallika et al. Diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD
LU86916A1 (fr) Carbone résistant à l'oxidation et procédé pour sa fabrication.
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
CA2202026C (fr) Methode de fabrication de corps composites revetus de diamant
KR20020018586A (ko) 표면 피복된 질화 붕소 소결 콤팩트 공구
JP3048833B2 (ja) 金属または金属合金からなる装飾用物品およびその製造方法
CA2270571C (fr) Article composite a revetement adhesif diamente par dcpv et son mode de fabrication
Sidorenko et al. Self-assembling WC interfacial layer on diamond grains via gas-phase transport mechanism during sintering of metal matrix composite
JPH01152254A (ja) だんだんに変化した多相のオキシ浸炭材料系及びオキシ浸炭浸窒材料系
US20050064097A1 (en) Method of forming a diamond coating on an iron-based substrate and use of such an iron-based substrate for hosting a CVD diamond coating
US20060242911A1 (en) Boron coated abrasives
Yu et al. Preparing SiC/diamond coatings via chemical vapor deposition of SiC on diamond-coated graphite and their frictional properties
Damm et al. Synthesis of vanadium interface for HFCVD diamond deposition on steel surface
Fu et al. Analysis of the Boronizing Process of High-vanadium Alloy Steel
Lee et al. Synthesis of functionally graded metal-ceramic microstructures by chemical vapor deposition
EP0112206B1 (fr) Procédé de revêtement en carbures de surfaces métalliques
JP2539922B2 (ja) ダイヤモンド被覆超硬合金
Harshavardhan et al. Raman investigations of diamond films prepared by combustion flames
Sato et al. Diamond deposition on titanium and iron substrates pretreated in N2–C2H2 plasma
JPH0671503A (ja) ダイヤモンド切削工具およびその製造方法
Curicuta et al. Furnace and laser methods of bonding metals to ceramics: interface investigation
Narutaki et al. Wear Characteristics and Cultlng Performance of Diamond Coated Ceramic Tools
Filipovskii et al. Method for removing silicide coatings in a medium of low-melting metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19801004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19840812

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOEURIOT, PATRICE MARIE VICTOR

Inventor name: THEVENOT, FRANCOIS HENRI JOANNES

Inventor name: DRIVER, JULIAN HAWORTH

Inventor name: LEBRUN, JEAN-PAUL RAYMOND