EP0015792A1 - Procédé d'alimentation d'un moteur deux temps et moteurs deux temps du type à piston d'équilibrage et à injection du mélange carburé - Google Patents

Procédé d'alimentation d'un moteur deux temps et moteurs deux temps du type à piston d'équilibrage et à injection du mélange carburé Download PDF

Info

Publication number
EP0015792A1
EP0015792A1 EP80400189A EP80400189A EP0015792A1 EP 0015792 A1 EP0015792 A1 EP 0015792A1 EP 80400189 A EP80400189 A EP 80400189A EP 80400189 A EP80400189 A EP 80400189A EP 0015792 A1 EP0015792 A1 EP 0015792A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
engine
piston
counter
fuel mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80400189A
Other languages
German (de)
English (en)
Inventor
Jean Pierre Soubis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpifrance Financement SA
Original Assignee
Agence National de Valorisation de la Recherche ANVAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7903569A external-priority patent/FR2449198A1/fr
Priority claimed from FR7916507A external-priority patent/FR2459877A2/fr
Application filed by Agence National de Valorisation de la Recherche ANVAR filed Critical Agence National de Valorisation de la Recherche ANVAR
Publication of EP0015792A1 publication Critical patent/EP0015792A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • F02B25/22Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18 by forming air cushion between charge and combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/18Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with crankshaft being arranged between working and pumping cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the present invention essentially relates to improvements in the operating cycle of a two-stroke engine, more particularly applicable to engines of the balancing piston type.
  • the invention also relates to two-stroke engines of the balancing piston type comprising a system for filling combustion air and injecting the new fuel mixture, making it possible to considerably reduce pollution and at the same time increase the efficiency of engine operation.
  • the present invention provides a radical solution to the problem of pollution by unburned hydrocarbons lost to the exhaust at the time of admission into the cylinders when the intake and exhaust ports are open simultaneously.
  • the solution proposed according to the invention also makes it possible to considerably increase the operating efficiency of the engine and this without any loss of power, by allowing lightning ups to all regimes.
  • non-carburetted air is advantageously added by the intake ports into the cylinder of a two-stroke engine of the balancing piston type.
  • lubricating oil we use the balancing piston of the engine to suck and compress, in the counter-cylinder in which it moves, a rich fuel mixture and inject it into the engine cylinder under the necessary pressure and preferably in the vicinity of the spark plug, substantially at the moment when the exhaust port is closed, and the backpressure setting up in the cylinder at the time of ignition is used to shut off the return of the fuel mixture to the device injection.
  • the expression "substantially after” means that the injection of the fuel mixture may possibly start a little before the closing of the exhaust port is carried out, provided that this time interval is not sufficient to allow a fraction of the fuel mixture to pass through the engine cylinders from where it is injected until it reaches the exhaust port.
  • TDC top dead center
  • the balancing piston type two-stroke engine moving in a counter-cylinder which cooperates in the suction and transfer of the fuel mixture into the engine cylinder equipped with the improvements of the invention is characterized in that it includes two separate circuits, the first suction of the main quantity of combustion air inside the casing and "below" the piston. balancing to achieve compression in the casing then transfer to the cylinder engine of this compressed air, the second of suction of a rich carburetted mixture of air and fuel in the counter-cylinder of the balancing piston "above” this piston and delivery and injection into the cylinder engine of this rich fuel mixture, through a non-return valve capable of allowing injection and closing when a determined pressure threshold is exceeded in the engine cylinder.
  • a channel is formed in the balancing piston, a channel of which one end crosses the face upper of said piston and the other end of which crosses the skirt of the piston below the bottom of the piston, and by providing a light in the wall of the counter-cylinder, which light communicates with the outlet of said channel formed in the skirt of the piston when said piston is raised in said counter-cylinder beyond a certain position,
  • raising of the piston in the cylinder, it is meant that the piston moves towards its top dead center.
  • the perfection tions of the invention have been applied to a two-stroke engine of the balancing piston type essentially comprising a cylinder 1 capped with a cylinder head 2 in which the engine piston 3 moves above which we see the spark plug 4.
  • a two-stroke engine of the balancing piston type essentially comprising a cylinder 1 capped with a cylinder head 2 in which the engine piston 3 moves above which we see the spark plug 4.
  • the casing 5 in which the crankshaft 6 rotates, on which the connecting rods 7, 8 are articulated, one driven by the driving piston 3, the other driving a balancing piston 9.
  • the bearings of rotation of the crankshaft 6 have been shown.
  • the balancing piston 9 moves in a counter-cylinder 12.
  • a rich fuel mixture is created which is prepared for example from a carburetor 20.
  • the rich fuel mixture for example air and gasoline, is sucked after the carburetor by a conduit 21 which opens into the bottom of the counter-cylinder 12 above the upper face 9s of the balancing piston 9.
  • the balancing piston 9 moves from top dead center towards the bottom dead center, it pushes under its underside 9i in the crankcase of the engine towards the transfer channels 14, 15, the air previously sucked in through the intake port 18, and simultaneously, it sucks inside the counter-cylinder 12 above the upper face 9s of the piston 9 the fuel-rich mixture supplied by the conduit 21.
  • a nozzle 22 is screwed into a threaded hole 23 in the bottom 12a. On this end piece, is connected by a screwed ring 24 the end 21a of the conduit 21.
  • a shoulder 25 formed in the end piece 22 also makes it possible to house inside the end piece a return spring 26 for a non-return valve 27.
  • FIG 4 we can see more clearly how the connection of the conduit 30 can be made with the bottom of the counter-cylinder 12.
  • an orifice 31 has been tapped in the bottom 12a.
  • a bolt 32 is screwed in which a blind hole 33 is formed which opens into the counter-cylinder 12 and communicates with a perpendicular bore 34.
  • a ring 35 is inserted, sandwiched between two sealing washers 36, 37, this ring comprising an internal groove 38 which communicates with the pipe 30.
  • the junction of the pipe 30 in the cylinder head can be done by a system similar to that described in FIG. 4 comprising a hollow bolt 40, a ring 41 with a groove 42 communicating with the pipe 30 and two sealing washers 43, 44.
  • a non-return valve comprising a valve 47, its seat 48 which can be added in the cylinder head 2 and a spring of recall 49 normally recalling the valve 47 in the closed position.
  • the spring 49 is thus calibrated so that the valve 47 is actuated automatically upon opening when the pressure of the fuel mixture compressed by the piston 9 in the counter-cylinder 12 and in the pipe 30 in communication with this cylinder exceeds a certain pressure threshold .
  • This threshold which can be determined by the choice of the spring 49, is calculated so that it corresponds substantially to the pressure prevailing above the piston 3 in the engine cylinder 1 when the exhaust ports are closed.
  • the compression ratio in the engine cylinder is still low and very much lower than the compression ratio of the fuel mixture in the bottom of the counter-cylinder 12 and the communication pipe 30 of small section.
  • the engine comprises a separate circuit for supplying combustion air which is brought in a relatively conventional manner to the engine cylinder by suction in the casing then delivery by the transfer channels in the engine cylinder.
  • the fuel is brought in by another circuit in the form of a rich fuel mixture and it is injected under pressure into the engine cylinder at the most desirable time when the exhaust lights are already closed. This avoids any risk of loss of fresh fuel mixture directly from the intake to the exhaust.
  • the arrangement recommended according to the invention improves the combustion conditions making it possible simultaneously to increase the power of the engine and to further reduce pollution.
  • adjustment devices (not shown), controlled from the accelerator lever, will be provided and will act in synchronism on the main combustion air inlet flow 16 and on the fuel mixture intake flow. passing through the carburetor 20, to ensure the proper functioning of the engine at all speeds.
  • FIGS. 6 to 8 A preferred embodiment of the invention will now be described with reference to FIGS. 6 to 8:
  • a channel 51 has been formed which may be constituted by a small attached tubing and one end of which crosses the bottom 9a of the piston 9 in order to come out at 52 on the upper face 9s of the piston 9, and of which the other end passes through the skirt 9b of the piston 9 to come to open at 53 inside the counter-cylinder 12.
  • the position of the piston 9 when it is in top dead center in the counter-cylinder 12 is illustrated in solid lines in FIG. 7.
  • the position occupied by the upper face is illustrated in broken lines at 55. 9s of the piston 9 when the piston 9 is at mid-stroke in the counter-cylinder 12, and the line occupied by this same face 9s has been illustrated in phantom 9s when the piston is "lowered" to the point dead low.
  • the channel 51 communicates the volume 57 between the face 9s of the piston 9 and the bottom 12a of the counter-cylinder 12 with the lumen 54 when the piston 9 is "raised” in the counter-cylinder 12 beyond its mid-stroke position in which its bottom reaches position 55.
  • a passage 58 advantageously constituted by a tube connects the lumen 54 to the conduit 21 for admitting the rich fuel mixture into the volume 57.
  • the pipe 30 which allows the injection of the rich compressed fuel mixture into the volume 57 "above" the upper surface 9s of the piston 9 opens into the engine cylinder 3, substantially at level of the spark plug 4 and in its vicinity by the calibrated non-return valve 47 after having passed through two bores or boreholes, 59 formed in the cylinder head 2, and 60 formed in the cylinder 1 of the engine, the junction with the pipe 30 being able to do at 61 at the exhaust opening 50.
  • these holes 59, 60 usually exist in two-stroke engines where they are used to achieve decompression to obtain an action of Engine brake.
  • these holes 59, 60 are no longer useful because the engine brake action is obtained at the volume 57 worked by the counter-piston 9, so that these passages 59, 60 may pre-exist ter will be advantageously used.
  • the main combustion air is sucked in through the inlet port 18, worked in the casing 13 between the piston 3 and the counter-piston 9 and then transferred through the ports transfer such as 14 in the engine cylinder 1 at appropriate intake times.
  • the fuel is brought in the form of a rich fuel mixture which is sucked into the volume 57 when the counter-piston 9 "descends" in the counter-cylinder 12 then is discharged under pressure when the piston 9 "goes up” in the counter-cylinder 12 by the pipe 30 inside the engine cylinder 1.
  • valve 47 was calibrated at a set pressure PT1 chosen sufficient to prevent any injection into the cylinder 1 until the exhaust port of the engine cylinder was not closed. This is still the case here, and we will refer to Figure 8 to better explain the rest of the operation.
  • the angle of rotation of the motor shaft has been shown on the abscissa and the letters PMB have identified the angle of rotation corresponding to the position of the piston 3 and also of the piston 9 when they are in bottom dead center (these two pistons moving simultaneously in opposition); the angular position of the engine was also identified by the letters TDC when the two pistons 3 and 9 are in top dead center.
  • the half-stroke position of the two pistons corresponds to the intermediate angle marked 90 ° (a quarter turn).
  • the letters F E indicate the angular position for which the closing of the exhaust lights is carried out, that is to say in the example indicated substantially 45 ° after the bottom dead center.
  • the curve C1 is the pressure rise curve in the volume 60 of the working chamber between the cylinders 1 and the piston 3. This pressure is substantially zero between the bottom dead center PMB and until closure is achieved from the exhaust to point FE, since at this time, volume 60 is vented. As soon as the exhaust is closed, the pressure rises due to the compression produced in the chamber 60 by the ascent of the piston '3 . In the vicinity of TDC top dead center, the pressure will rise rapidly when ignition is carried out.
  • Curve C2 illustrates the pressure variation of the fuel mixture worked in the volume 57 between the piston 9 and the counter-cylinder 12.
  • the pressure rise of the rich fuel mixture takes place from the bottom dead center once performed the closure of the valve 27. It is noted that in the absence of the forecast of. passage 58 previously described, this pressure increase will occur regularly, parallel to the curve C1, the pressure in the volume 57 remaining greater until the ignition at the pressure prevailing in the working chamber 60.
  • the valve 47 is tared so that it does not open that after a set pressure PT1 is reached, thus prohibiting any injection before the angular position FE.
  • the injection is carried out, the valve 47 opening, and the pressure in the volume 57 being greater than the pressure prevailing in the volume 60.
  • the injection continued until top dead center following the curve dotted C'2.
  • the injection is stopped as soon as the channel 51 connects the volume 57 with the lumen 54 connected by the passage 58 with the conduit 21 substantially at atmospheric pressure.
  • the pressure drops suddenly for this angular position chosen in the illustrated embodiment equal to 90 °.
  • the injection stops and the non-return valve 47 closes under the effect of the overpressure prevailing in the working chamber 60 relative to the pressure prevailing in the pipe 30. In this way, it is interrupted, well before the 'ignition and well before top dead center the injection of the rich fuel mixture.
  • the pipe 30 ending in the holes 60, 59 formed directly in the cylinder 1 and in the cylinder head 2 which are brought to the high operating temperature of the engine the rich fuel mixture is vaporized before being injected , which makes it possible to produce a gaseous carburation very favorable to combustion and to operating efficiency.
  • valve 27, intended to prevent the discharge of the rich fuel mixture in the conduit 21 can be constituted by a double valve (not shown) which closes as long as the pressure in the counter-cylinder does not exceed a certain threshold, for example PT2 as illustrated, and which opens when said pressure exceeds this threshold.
  • a certain threshold for example PT2 as illustrated
  • valve 47 In all cases, the closure of the valve 47 is ensured at the latest upon ignition during the sudden increase in pressure in the cylinder 1, for example marked PT3 in FIG. 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Moteur deux temps comprendant deux circuits distincts, le premier d'aspiration d'air en (18) dans le carter (5) du moteur, le second d'aspiration par un conduit (21) d'un mélange riche carburé d'air et de combustible dans le contre-cylindre (12) du piston d'équilibrage au «dessus» de ce piston et de refoulement et d'injection par un tuyau (12) de ce mélange dans le cylindre moteur (1).

Description

  • La présente invention a essentiellement pour objet des perfectionnements au cycle de fonctionnement d'un moteur deux temps, plus particulièrement applicables aux moteurs du type à piston d'équilibrage. L'invention concerne également des moteurs deux temps de type à piston d'équilibrage comprenant un système de remplissage d'air de combustion et d'injection du mélange carburé, nouveau, permettant de réduire considérablement la pollution et d'augmenter parallèlement le rendement de fonctionnement du moteur.
  • Dans une demande de brevet antérieure déposée le 14. mars 1978 en France sous le n° 78 07324 le même inventeur a déjà décrit un moteur deux temps comportant certaines modifications permettant par une réaspiration judicieuse des queues des gaz d'échappement dans le moteur de réduire très sensiblement la pollution tout en permettant d'augmenter le rendement. Malgré tout, cette solution a des limites et n'est essentiellement applicable qu'à des moteurs, du reste tout à fait courants, surdimensionnés et qui sont à l'origine "bridés".
  • La présente invention apporte par contre une solution radicale au problème de la pollution par les hydrocarbures non brûlés perdus à l'échappement au moment de l'admission dans les cylindres lorsque les lumières d'admission et d'échappement sont ouvertes simultanément. La solution proposée selon l'invention permet également d'accroître considérablement le rendement de fonctionnement du moteur et cela sans aucune perte de puissance, en permettant des reprises foudroyantes à tous les régimes.
  • Pour atteindre ces objets, conformément à l'invention, on aspire par les lumières d'admission dans le cylindre d'un moteur deux temps du type à piston d'équilibrage, de l'air non carburé avantageusement additionné d'un peu d'huile de graissage, on utilise le piston d'équilibrage du moteur pour aspirer et comprimer, dans le contre-cylindre dans lequel il se déplace, un mélange riche carburé et l'injecter dans le cylindre moteur sous la pression nécessaire et de préférence au voisinage de la bougie, sensiblement à l'instant où la fermeture de la lumière d'échappement est réalisée, et on utilise la contre-pression s'instaurant dans le cylindre au moment de l'allumage pour obturer le retour du mélange carburé vers le dispositif d'injection.
  • Il apparaît immédiatement que de cette façon on supprimé radicalement toute possibilité de perte par les lumières d'échappement, au moment du remplissage du cylindre, d'une quelconque fraction du mélange carburé lequel n'est injecté qu'au moment opportun sensiblement après que la fermeture de la lumière d'échappement a été réalisée. En pratique, l'expression "sensiblement après" signifie que l'injection du mélange carburé pourra débuter éventuellement un peu avant que la fermeture de la lumière d'échappement ne soit réalisée, pourvu que cet intervalle de temps ne soit pas suffisant pour permettre à une fraction du mélange carburé de transiter dans les cylindres moteurs de l'endroit où elle est injectée jusqu'à atteindre la lumière d'échappement.
  • Selon une mise en oeuvre préférée de l'invention, on prend en outre le soin supplémentaire d'arrêter l'injection du mélange riche carburé envoyé sous pression dans le cylindre moteur, bien avant l'allumage et bien avant que le piston n'ait atteint le point mort haut (PMH).
  • Lorsqu'on procède ainsi, on améliore considérablement la qualité de la combustion car on obtient pour un même mélange carburé injecté une beaucoup plus grande turbulence au niveau du mélange riche carburé injecté en un temps plus court, une meilleure pulvérisation et plus exactement vaporisation de ce mélange au sein du courant d'air principal de combustion admis dans le cylindre. En outre, on obtient un meilleur brassage de tout le mélange.
  • Le moteur deux temps de type à piston d'équilibrage se déplaçant dans un contre-cylindre qui coopère à l'aspiration et au transfert du mélange carburé dans le cylindre moteur équipé des perfectionnements de l'invention se caractérise quant à lui en ce qu'il comprend deux circuits distincts, le premier d'aspiration de la quantité principale d'air de combustion à l'intérieur du carter et en "dessous" du piston.d'équilibrage pour réaliser la compression dans le carter puis le transfert dans le cylindre moteur de cet air comprimé, le second d'aspiration d'un mélange riche carburé d'air et de combustible dans le contre-cylindre du piston d'équilibrage au "dessus" de ce piston et de refoulement et d'injection dans le cylindre moteur de ce mélange riche carburé, à travers un clapet anti-retour susceptible de permettre l'injection et se refermant lorsqu'un seujL de pression déterminé est dépassé dans le cylindre moteur.
  • Selon un mode de réalisation préféré de l'invention, en vue d'obtenir l'arrêt de l'injection du mélange riche carburé avant l'allumage, on forme un canal dans le piston d'équilibrage, canal dont une extrémité traverse la face supérieure dudit piston et dont l'autre extrémité traverse la jupe du piston au-dessous du fond du piston, et en prévoyant une lumière dans la paroi du contre-cylindre, laquelle lumière communique avec le débouché dudit canal formé dans la jupe du piston lorsque ledit piston est remonté dans ledit contre-cylindre au-delà d'une certaine position, Par "remontée" du piston dans le cylindre, on entend que le piston se déplace vers son point mort haut. De cette façon, il apparaît qu'on obtient après dépassement de la pression de tarage de la soupape anti retour décrite ci-dessus, l'injection dans le cylindre moteur du mélange riche carburé, mais seulement jusqu'au moment où le canal et la lumière ci-dessus mentionnés communiquent, ce qui fait chuter la pression d'injection et arrête de ce fait cette injection. Pour éviter une perte du mélange riche carburé, on peut avantageusement prévoir un passage de communication entre la lumière et le conduit d'amenée du mélange riche carburé qui y est donc ainsi renvoyé.
  • L'invention apparaîtra plus clairement à l'aide de la description détaillée qui va suivre faite en référence aux dessins annexés montrant à titre d'exemple un mode de mise en oeuvre. Dans ces dessins :
    • - la figure 1 est une vue en coupe montrant l'ensemble d'un moteur de type deux temps à piston d'équilibrage équipé des perfectionnements de l'invention ;
    • - la figure 2 est une vue du même moteur, en partie en élévation et en. partie én coupe avec arrachements, faite sensiblement suivant la flèche II de la figure 1,
    • - la figure 3 est une vue en coupe à plus grande échelle du détail entouré III à la figure 1 ;
    • - la figure 4 montre en vue éclatée et à plus grande échelle le détail entouré IV de la figure 1 relatif à la jonction du tuyau d'injection d'air carburé avec le contre-cylindre ;
    • - la figure 5 montre en coupe à plus grande échelle le détail entouré V dans la figure 1 ;
    • - la figure 6 est une vue, en partie en élévation et en partie en coupe avec arrachements d'un moteur de type deux temps à piston d'équilibrage, vue très semblable à celle de la figure 2.
    • - la figure 7 montre à plus grande échelle, en coupe la partie de la figure 6 au niveau de la flèche VII de cette figure.
    • - la figure 8 est un diagramme de pression facilitant la compréhension du fonctionnement.
  • Selon le mode de réalisation illustré, les perfectionnements de l'invention ont été appliqués à un moteur deux temps de type à piston d'équilibrage comprenant essentiellement un cylindre 1 coiffé d'une culasse 2 dans lequel se déplace le piston moteur 3 au-dessus duquel on aperçoit la bougie 4. En dessous du cylindre 1, se trouve le carter 5 dans lequel tourne le vilebrequin 6 sur lequel sont articulées les bielles 7, 8, l'une entraînée par le piston moteur 3, l'autre entraînant un piston d'équilibrage 9. En 10, 11, ont été montrés les paliers de rotation du vilebrequin 6.
  • Le piston d'équilibrage 9 se déplace dans un contre-cylindre 12.
  • Lorsque le moteur tourne les deux pistons 3 et 9 se déplaçant dans leurs cylindres respectifs 1, 12 font augmenter et diminuer alternativement le volume intérieur 13 du carter. C'est du reste cette variation alternative du volume 13 qui est mise à profit dans ce moteur pour assurer au moment où le volume augmente l'aspiration du mélange frais, et assurer ensuite lorsque.les pistons se rapprochent vt que le volume diminue, le transfert du mélange frais aspiré, par les canaux de transfert 14, 15, au moment convenable, au-dessus du piston 3 dans le cylindre de travail 1.
  • Tout ce qui vient d'être décrit est classique dans la technique.
  • Conformément à l'invention, et comme il apparaît plus clairement à la figure 2 ce n'est pas un mélange carburé qui est aspiré dans le carter 5 du moteur lorsque le volume 13 d'aspiration augmente, mais de l'air comme indiqué par les flèches 16, 17 qui est admis par une tubulure 18 communiquant avec la bouche d'aspiration normale 19 du moteur. Avantageusement, on injecte cependant dans cet air, et par tout moyen classique connu, tel qu'une pompe, l'huile de graissage nécessaire au bon fonctionnement du moteur. Lors du fonctionnement du moteur, c'est donc de l'air pur, additionné d'un peu d'huile de graissage, qui est aspiré puis comprimé dans le carter et transféré dans le cylindre moteur pour y être comprimé ensuite avantW tallumage.
  • Conformément à l'invention, on crée d'autre part un mélange carburé riche qui est préparé par exemple à partir d'un carburateur 20. Le mélange carburé riche, par exemple d'air et d'essence, est aspiré après le carburateur par un conduit 21 qui débouche dans le fond du contre-cylindre 12 au-dessus de la face supérieure 9s du piston d'équilibrage 9. On comprend que lorsque le moteur tourne et que le piston d'équilibrage 9 se déplace du point mort haut vers le point mort bas, il repousse sous sa face inférieure 9i dans le carter du moteur vers les canaux de transfert 14, 15, l'air précédemment aspiré par l'orifice d'admission 18, et simultanément, il aspire à l'intérieur du contre-cylindre 12 au-dessus de la face supérieure 9s du piston 9 le mélange riche carburé amené par le conduit 21.
  • A la figure 5, on aperçoit plus clairement une manière dont peut être réalisée la jonction du conduit 21 avec le fond 12a du cylindre 12.
  • Selon l'exemple de réalisation illustré, un embout 22 est vissé dans un trou taraudé 23 dans le fond 12a. Sur cet embout, vient se raccorder par une bague vissée 24 l'extrémité 21a du conduit 21.
  • Un épaulement 25 formé dans l'embout 22 permet en outre de loger à l'intérieur de l'embout un ressort 26 de rappel pour un clapet anti-retour 27.
  • La construction décrite permet évidemment l'aspiration du mélange carburé dans le conduit 21 comme indiqué par la flèche 28 (figure 2) et les flèches 29 (figure 5) à travers le clapet 27 qui s'ouvre par compression du ressort 26 lorsque le piston 9 se déplace du point mort haut vers le point mort bas.
  • Lorsque le mélange carburé a été aspiré dans le cylindre 12 et que le piston 9 se déplace du point mort bas vers le point mort haut, il comprime devant lui le mélange carburé, le clapet 27 se fermant sous l'action conjuguée du ressort de rappel 26 et de la pression s'élevant dans le contre-cylindre 12.
  • Le mélange carburé sinsi comprimé est chassé parle tuyau 30 de faible section interne qui relie le fond 12a du contre-cylindre 12 à la partie supérieure du cylindre moteur (figure 1).
  • A la figure 4, on aperçoit plus clairement comment peut être constituée la liaison du conduit 30 avec le fond du contre-cylindre 12. Selon l'exemple illustré, un orifice 31 a été taraudé dans le fond 12a. Dans cet orifice 31, se visse un boulon 32 dans lequel est formé un trou 33 borgne débouchant dans le contre-cylindre 12 et communiquant avec un perçage perpendiculaire 34. Sur le boulon 32, est enfilée une bague 35 enserrée entre deux rondelles d'étanchéité 36, 37, cette bague comprenant une gorge interne 38 qui communique avec le tuyau 30.
  • A la figure 3, on aperçoit plus précisément la jonction à l'extrémité du tuyau 30 avec le cylindre moteur, plus précisément avec la culasse 2.
  • La jonction du conduit 30 dans la culasse peut se faire par un système analogue à celui décrit à la figure 4 comprenant un boulon creux 40, une bague 41 avec une gorge 42 communiquant avec le tuyau 30 et deux rondelles d'étanchéité 43, 44.
  • Dans le prolongement de l'orifice 45 taraudé dans la culasse 2 pour recevoir le boulon 40 est monté dans un logement cylindrique 46 un clapet anti-retour comprenant une soupape 47, son siège 48 qui peut être rapporté dans la culasse 2 et un ressort de rappel 49 rappelant normalement la soupape 47 en position de fermeture.
  • Le ressort 49 est ainsi taré que la soupape 47 est actionnée automatiquement à l'ouverture lorsque la pression du mélange carburé comprimé par le piston 9 dans le contre-cylindre 12 et dans le tuyau 30 en communication avec ce cylindre dépasse un certain seuil de pression. Ce seuil qui peut être déterminé par le choix du ressort 49 est calculé de façon qu'il corresponde sensiblement à la pression qui règne au-dessus du piston 3 dans le cylindre moteur 1 lorsque les lumières d'échappement sont fermées. A ce moment, il faut noter que le taux de compression dans le cylindre moteur est encore faible et très nettement inférieur au taux de compression du mélange carburé dans le fond du contre-cylindre 12 et du tuyau 30 de communication de faible section. Ainsi peut être obtenue l'injection automatique d'un mélange carburé riche dans le cylindre 2 du moteur deux temps après fermeture des lumières d'échappement. Ainsi est également évité tout risque de perte de fractions du mélange carburé directement par l'échappement 50, seule une petite quantité d'air comburant préalablement aspirée dans le carter puis refoulée dans le cylindre, moteur par les canaux de transfert pouvant s'échapper par l'échappement et contribuant seulement à un meilleure balayage du cylindre.
  • Lorsque l'allumage se produira au moyen de la bougie 4 en fin de compression, lorsque le piston 3 sera au voisinage du point mort haut, il se produira dans le cylindre 2 une brusque montée de la.pression qui assurera la fermeture automatique de la soupape 47 empêchant tout refouelement de gaz vers le tuyau 30.
  • On notera que l'injection pneumatique réalisée d'un mélange carburé riche au voisinage de la bougie améliorera les conditions de la combustion en accroissant notamment la turbulence du mélange. Ceci permettra d'obtenir d'excellentes reprises,-c'est-à-dire une puissance accrue du moteur à tous les régimes.
  • Le fonctionnement du moteur se déduit clairement de la description qui précède.
  • En fait, le moteur comprend un circuit distinct d'a-limention en air de combustion qui est amené de façon relativement classique au cylindre moteur par aspiration dans le carter puis refoulement par les canaux de transfert dans le cylindre moteur. Le carburant est amené par un autre circuit sous forme de mélange carburé riche et il est injecté sous pression dans le cylindre moteur au moment le plus désirable lorsque les lumières d'échappement sont déjà fermées. Ainsi, est évité tout risque de perte de mélange carburé frais directement de l'admission vers l'échappement. D'autre part, la disposition préconisée selon l'invention améliore les conditions de la combustion permettant simultanément d'accroître la puissance du moteur et de réduire encore la pollution.
  • De cette façon, il est possible selon l'invention d'associer aux qualités de légèreté, de simplicité et de puissance spécifique du moteur deux temps les qualités de sobriété et de non-pollution du moteur quatre temps.
  • Avantageusement, des dispositifs de réglage (non représentés), commandés à partir de la manette d'accélérateur, seront prévus et agiront en synchronisme sur le débit d'entrée d'air principal de combustion 16 et sur le débit d'admission de mélange carburé traversant le carburateur 20, pour assurer le bon fonctionnement du moteur à tous les régimes.
  • On décrira maintenant en faisant référence aux figures 6 à 8 un mode de réalisation préféré de l'invention:
  • On fera tout d'abord référence aux figures 6 et 7 dans lesquelles les mêmes références numériques ont été reprises pour indiquer les mêmes éléments des figures précédentes.
  • On décrira donc maintenant seulement les éléments modifiés.
  • La modification essentielle qui a été apportée se trouve au niveau du contre cylindre 12 et du piston d'équilibrage 9.
  • Dans le piston d'équilibrage 9, on a formé un canal 51 qui peut être constitué par une petite tubulure rapportée et dont une extrémité traverse le fond 9a du piston 9 pour venir déboucher en 52 sur la face supérieure 9s du piston 9, et dont l'autre extrémité traverse la jupe 9b du piston 9 pour venir déboucher en 53 à l'intérieur du contre-cylindre 12.
  • D'autre part, dans la paroi 12b du contre-cylindre 12 est formée une lumière 54 en regard du débouché 53 du canal 51 lorsque le piston 9 est suffisamment "remonté" vers le point mort haut dans le contre-cylindre 12.
  • De façon plus précise, on a illustré en trait plein sur la figure 7 la position du piston 9 lorsqu'il est au point mort haut dans le contre-cylindre 12. On a illustré en traits interrompus en 55 la position occupée par la face supérieure 9s du piston 9 lorsque le piston 9 est à mi-course dans le contre-cylindre 12, et l'on a illustré en traits mixtes en 56 la position occupée par cette même face 9s lorsque le piston est "descendu"jusqu'au point mort bas.
  • Dans la disposition de construction choisie, on constate immédiatement que le canal 51 fait communiquer le volume 57 compris entre la face 9s du piston 9 et le fond 12a du contre-cylindre 12 avec la lumière 54 lorsque le piston 9 est "remonté" dans le contre-cylindre 12 au-delà de sa position de mi-course dans laquelle son fond atteint la position 55.
  • D'autre part, un passage 58 avantageusement constitué par une tubulure relie la lumière 54 au conduit 21 d'admission du mélange riche carburé dans le volume 57.
  • Selon un autre perfectionnement, de ce mode de réalisation, le tuyau 30 qui permet l'injection du mélange riche carburé comprimé dans le volume 57 "au-dessus" de la surface supérieure 9s du piston 9 débouche dans le cylindre moteur 3, sensiblement au niveau de la bougie 4 et en son voisinage par la soupape tarée anti-retour 47 après avoir traversé deux perçages ou forages, 59 formé dans la culasse 2, et 60 formé dans le cylindre 1 du moteur, la jonction avec le tuyau 30 pouvant se faire en 61 au niveau de l'ouverture d'échappement 50. Il est du reste à noter que ces perçages 59, 60 existent d'habitude dans les moteurs deux temps où ils sont utilisés pour réaliser une décompression permettant d'obtenir une action de frein moteur. En fait, dans le moteur modifié conforme à l'invention, ces perçages 59, 60 n'ont plus d'utilité car l'action de frein moteur est obtenue au niveau du volume 57 travaillé par le contre-piston 9, de sorte que ces passages 59, 60 pouvant pré-exister seront avantageusement utilisés.
  • Le fonctionnement du moteur qui vient d'être décrit va être maintenant expliqué.
  • De façon identique au mode de réalisation des figures 1 à 5, l'air principal de combustion est aspiré par l'orifice d'admission 18, travaillé dans le carter 13 entre le piston 3 et le contre-piston 9 puis transféré par les orifices de transfert tels que 14 dans le cylindre moteur 1 en des temps appropriés d'admission.
  • De même que décrit plus haut, le carburant est amené sous forme d'un mélange riche carburé qui est aspiré dans le volume 57 lorsque le contre-piston 9 "descend" dans le contre-cylindre 12 puis est refoulé sous pression lorsque le piston 9 "remonte" dans le contre-cylindre 12 par le tuyau 30 à l'intérieur du cylindre moteur 1.
  • On a expliqué plus haut que le clapet 47 était taré à une pression de tarage PT1 choisie suffisante pour interdire toute injection dans le cylindre 1 tant que la lumière d'échappement du cylindre moteur n'était pas fermée. Tel est toujours le cas ici, et l'on se reportera à la figure 8 permettant de mieux expliciter la suite du fonctionnement.
  • Dans cette figure, on a représenté en abscisses l'angle de rotation de l'arbre moteur et l'on a repéré par les lettres PMB l'angle de rotation correspondant à la position du piston 3 et aussi bien du piston 9 lorsqu'ils sont au point mort bas (ces deux pistons se déplaçant simultanément en opposition) ; on a repéré de même par les lettres PMH la position angulaire du moteur lorsque les deux pistons 3 et 9 sont au point mort haut. La position de mi-course des deux pistons correspond à l'angle intermédiaire repéré 90° (un quart de tour). Les lettres F E indiquent la position angulaire pour laquelle se réalise la fermeture des lumières d'échappement, c'est-à-dire dans l'exemple indiqué sensiblement 45° après le point mort bas.
  • En ordonnées, sur cette même figure, on a représenté, en échelle logarithmique les pressions régnant dans les volumes des cylindres.
  • La courbe C1 est la courbe de montée en pression dans le volume 60 de la chambre de travail comprise entre les cylindres 1 et le piston 3. Cette pression est sensiblement nulle entre le point mort bas PMB et jusqu'à ce que se réalise la fermeture de l'échappement au point FE, puisqu'à ce moment, le volume 60 est mis à l'air libre. Dès que la fermeture de l'échappement est réalisée, la pression s'élève du fait de la compression réalisée dans la chambre 60 par la remontée du piston'3. Au voisinage du point mort haut PMH, la pression s'élèvera rapidement lorsque l'allumage sera réalisé.
  • A la figure 3, on n'a représenté que l'amorce de cette élévation de pression car cette partie de la courbe n'a pas d'intérêt pour l'explication de l'invention.
  • La courbe C2 illustre quant à elle la variation de pression du mélange carburé travaillé dans le volume 57 entre le piston 9 et le contre-cylindre 12. La montée en pression du mélange carburé riche se fait dès le point mort bas une fois qu'est réalisée la fermeture du clapet 27. On remarque qu'en l'absence de la prévision du. passage 58 précédemment décrit, cette montée en pression se fera régulièrement, parallèlement à la courbe C1, la pression dans le volume 57 restant supérieure jusqu'à l'alluminage à la pression régnant dans la chambre de travail 60.
  • Comme il a été expliqué plus haut, pour éviter l'injection de mélange carburé riche dans la chambre 60 tant que n'est pas réalisée la fermeture de-l'échappement, on tare la soupape 47 de façon qu'elle ne s'ouvre qu'après que soit atteinte une pression de tarage PT1, interdisant donc toute injection avant la position angulaire FE. Après le point A ainsi choisi de la courbe C2, se ré alise l'injection, la soupape 47 s'ouvrant, et la pression dans le volume 57 étant supérieure à la pression régnant dans le volume 60. Dans le mode de réalisation des figures 1 à 5, l'injection se continuait jusqu'au point mort haut en suivant-la courbe en pointillés C'2. Selon la variante préférée des figures 6 et 7, l'injection est arrêtée dès que le canal 51 met en liaison le volume 57 avec la lumière 54 mise en relation par le passage 58 avec le conduit 21 sensiblement à la pression atmosphérique. La pression chute brusquement pour cette position angulaire choisie dans le mode de réalisation illustré égale à 90°. L'injection s'arrête et la soupape 47 anti-retour se referme sous l'effet de la surpression régnant dans la chambre de travail 60 par rapport à la pression régnant dans le tuyau 30. De cette façon, on interrompt, bien avant l'allumage et bien avant le point mort haut l'injection du mélange riche carburé.
  • Etant donné que par rapport à la réalisation des figures 1 à 5, il faudra dans un temps plus court injecter plus de carburant dans le moteur, on sera amené pour la réalisation décrite aux figures 6 et 7, à augmenter la vitesse d'injection, ce qui augmente la turbulence et est favorable à une bonne combustion.
  • D'autre part, le tuyau 30 se terminant par les perçages 60, 59 formés directement dans le cylindre 1 et dans la culasse 2 qui sont portés à la température élevée de fonctionnement du moteur, le mélange riche carburé est vaporisé avant d'être injecté, ce qui permet de réaliser une carburation gazeuse très favorable à la combustion et au rendement de fonctionnement. En particulier, on sera assuré de ne trouver aucune goutelette de carburant dans le mélange injecté, la présence de telles gouttelettes étant l'une des causes d'une mauvaise carburation.
  • Bien entendu, de nombreuses variantes peuvent être apportées au mode de réalisation décrit. Ainsi, par exemple, le moment où l'injection est arrêtée par mise en communication de la chambre 57 avec le conduit 21 peut être modifié, l'injection pouvant être continuée plus longtemps ou arrêtée plus tôt selon le type de moteur et selon la position angulaire correspondant à la fermeture de l'échappement
  • Egalement, l'arrêt de la montée en pression dans la chambre peut être obtenu différemment que par les moyens illustrés à la figure 7. Ainsi par exemple, le clapet 27, destiné à empêcher le refoulement du mélange riche carburé dans le conduit 21 peut être constitué par un double clapet (non représenté) qui se ferme tant que la pression dans le contre-cylindre ne dépasse pas un certain seuil, par exemple PT2 comme illustré, et qui s'ouvre lorsque ladite pression dépasse ce seuil. Dans de telles conditions, on obtiendrait une courbe de montée en pression dans le volume 57 identique à la courbe C2 jusqu'au point d'ordonnée PT2 correspondant à ce second seuil de pression choisi plus élevé que PT1 et où la courbe deviendrait la courbe C3, l'injection s'arrêtant dans la chambre 60 au point X où la pression dans cette chambre.égale cette pression de seuil PT2, et débutant au point Acomme précédemment.
  • Dans tous les cas, la fermeture de la soupape 47 est assurée au plus tard dès l'allumage lors de la brusque montée en pression dans le cylindre 1 par exemple repérée PT3 à la figure 8 .
  • L'invention comprend donc tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont réalisées suivant son esprit et mises en oeuvre dans le cadre des revendications qui suivent.

Claims (12)

  1. '1. Perfectionnements au cycle de fonctionnenent d'un moteur deux temps du type à piston d'équilibrage, caractérisés en ce qu'on aspire dans le cylindre 1 du moteur par les lumières d'admission 19 de l'air non carburé avantageusement additionné d'un peu d'huile de graissage, en ce qu'on utilise le piston d'équilibrage 9 du moteur pour aspirer et comprimer, dans le contre-cylindre 12 dans lequel il se déplace, un mélange riche carburé et l'injecter dans le cylindre moteur sous la pression nécessaire et de préférence au voisinage de la bougie 4 sensiblement à l'instant où la fermeture de la lumière d'échappement 50 est réalisée, et en ce qu'on utilie la contre-pression s'instaurant dans le cylindre 1 au moment de l'allumage pour obturer le retour du mélange carburé vers le dispositif d'injection.
  2. 2. Perfectionnements au cycle de fonctionnement d'un moteur deux temps selon la revendication 1, caractérisé en ce qu'on arrête l'injection du mélange riche carburé envoyé sous pression dans le cylindre moteur 1 bien avant l'allumage et bien avant le point mort haut.
  3. 3. Perfectionnements selon la revendication l ou 2, caractérisés-en-ce qu'on renvoie dans le circuit d'aspiration du mélange riche carburé vers ledit contre-cylindre le mélange comprimé dans ce contre cylindre au moins vers la fin de la compression de ce mélange.
  4. '4. Moteur deux temps de type à piston d'équilibrage se déplaçant dans un contre-cylindre qui coopère à l'aspiration et au transfert du mélange carburé dans le cylindre moteur, caractérisé en ce qu'il comprend deux circuits distincts, le premier 16, 19 d'aspiration de la quantité principale d'air de combustion à l'intérieur du carter 13 et en "dessous" du piston d'équilibrage 9 pour réaliser la compression dans le carter puis le transfert dans le cylindre moteur 1 de cet air comprimé, le second 21, 30 d'aspiration d'un mélange riche carburé d'air et de combustible dans le contre-cylindre 12 du piston d'équilibrage au "dessus" de ce piston 9 et de refoulement et d'injection dans le cylindre moteur 1 de ce mélange riche carburé à travers un clapet anti-retour 47 susceptible de permettre l'injection et se refermant lorsqu'un seuil de pression déterminé est dépassé dans le cylindre moteur.
  5. 5. Moteur deux temps selon la revendication 4, caractérisé en ce qu'un canal 51 est formé dans le piston d'équilibrage 9 dont une extrémité 52 traverse la face supérieure dudit piston et dont l'autre extrémité 53 traverse la jupe 9b du piston au-dessous du fond 9i du piston, et une lumière 54 est prévue dans la paroi 12b du contre-cylindre 12 qui communique avec le débouché 53 dudit canal 51 formé dans la jupe du piston lorsque ledit piston est remonté dans ledit contre-cylindre au-delà d'une certaine position.
  6. 6. Moteur selon la revendication 5, caractérisé en ce qu'un passage 58 est formé qui fait communiquer ladite lumière 54 avec le conduit 21 d'amenée du mélange riche carburé dans le volume du contre-cylindre 12 au-dessus de la face supérieure 9s du piston.
  7. -7. Moteur selon la revendication 5 ou 6, caractérisé en ce que ledit canal 51 communique avec ladite lumière 54 lorsque le piston 9 a dépassé sensiblement la position de mi-course dans ledit contre-cylindre 12.
  8. 8. Moteur selon l'une des revendications 5 à 7, caractérisé en ce que le tuyau 30 par lequel ledit mélange riche carburé est injecté dans le cylindre moteur 1 débouche au voisinage de la bougie 4 par un perçage, forage ou analogue, 59, 60 formé dans la culasse 2 et avantageusement dans le cylindre moteur 1.
  9. 9. Moteur deux temps selon la revendication 4, caractérisé en ce que ledit clapet 27 formé dans le contre-cylindre 12 pour empêcher le refoulement du mélange carburé dans son conduit d'aspiration 21 est un double clapet qui se ferme tant que la pression dans le contre-cylindre ne dépasse pas un certain seuil PT2 et qui s'ouvre lorsque ladite pression dépasse ce seuil.
  10. 10. Moteur selon les revendications 4 ou 9, caractérisé en ce qu'une pipe d'admission d'air 18 avantageusement additionné d'un peu d'huile de graissage communique directement avec l'ouverture d'admission normale 19 du moteur deux temps à piston d'équilibrage dont la structure n'a pas subi de modifications sensibles, un conduit d'aspiration 21 du mélange carburé relie le dispositif de préparation de ce mélange 20, carburateur ou autre, au fond du contre-cylindre 12 au "dessus" du piston d'équilibrage 9 et un clapet 27 est prévu sensiblement au niveau où ledit conduit débouche dans le contre-cylindre pour empêcher le refoulement du mélange carburé dans le conduit lors d'une partie au moins du temps de compression de ce mélange, lorsque ledit piston d'équilibrage se déplace vers son point mort haut.
  11. 11. Moteur selon la revendication 10, caractérisé en ce qu'un tuyau de faible section 30 relie le fond du contre-cylindre 12 au cylindre 1 du moteur et un clapet 47 est prévu sensiblement au niveau où ledit tuyau débouche dans ledit cylindre moteur, s'ouvrant vers le cylindre, en autorisant l'injection du mélange dans le cylindre lorsqu'un certain seuil de compression PT1 de ce mélange est dépassé.
  12. 12. Moteur selon la revendication 11, caractérisé en ce que ledit clapet 47 prévu sensiblement au niveau où ledit tuyau 30 débouche dans ledit cylindre moteur 1 se referme en empêchant le refoulement des gaz du cylindre vers ledit tuyau, lorsqu'un second seuil de pression PT3, supérieur, au premier seuil PT1 précité de compression est dépassé dans le cylindre 1 après que l'allumage ait été réalisé.
EP80400189A 1979-02-13 1980-02-06 Procédé d'alimentation d'un moteur deux temps et moteurs deux temps du type à piston d'équilibrage et à injection du mélange carburé Withdrawn EP0015792A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR7903569A FR2449198A1 (fr) 1979-02-13 1979-02-13 Perfectionnements au cycle de fonctionnement d'un moteur deux temps, et moteurs deux temps de type a piston d'equilibrage et a injection du melange carbure
FR7903569 1979-02-13
FR7916507 1979-06-27
FR7916507A FR2459877A2 (fr) 1979-06-27 1979-06-27 Perfectionnements au cycle de fonctionnement d'un moteur deux temps et moteurs deux temps de type a piston d'equilibrage et a injection du melange carbure

Publications (1)

Publication Number Publication Date
EP0015792A1 true EP0015792A1 (fr) 1980-09-17

Family

ID=26221013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400189A Withdrawn EP0015792A1 (fr) 1979-02-13 1980-02-06 Procédé d'alimentation d'un moteur deux temps et moteurs deux temps du type à piston d'équilibrage et à injection du mélange carburé

Country Status (2)

Country Link
EP (1) EP0015792A1 (fr)
BR (1) BR8000852A (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694339A1 (fr) * 1992-07-31 1994-02-04 Bosch Gmbh Robert Société dite : ROBERT BOSCH GMBH.
EP0651142A2 (fr) * 1993-10-01 1995-05-03 PIAGGIO VEICOLI EUROPEI S.p.A. Dispositif de préparation de mélange pour moteurs à double alimentation
FR2745849A1 (fr) * 1996-03-08 1997-09-12 Honda Motor Co Ltd Moteur a combustion interne a deux temps, a allumage par etincelles et a precompression dans la chambre de vilebrequin

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB105649A (en) * 1916-05-15 1917-04-26 Edmund Voss Improvements in Two-stroke Cycle Internal Combustion Engines.
GB202395A (en) * 1922-05-16 1923-08-16 Archibald Douglas Powell Improvements relating to internal combustion engines
CH119799A (de) * 1926-01-23 1927-04-16 Gazda Anton Zweitaktverbrennungskraftmaschine.
US1698757A (en) * 1924-04-03 1929-01-15 Kjellberg Carl Fredrik Gunnar Internal-combustion motor
FR908916A (fr) * 1944-08-01 1946-04-23 Perfectionnements aux moteurs à explosion à deux temps
US2406491A (en) * 1939-05-02 1946-08-27 Waern Bror Algor De Internal-combustion engine
FR983131A (fr) * 1949-01-28 1951-06-19 Perfectionnement aux moteurs à deux temps
DE848722C (de) * 1949-03-01 1952-09-08 Gertrud Schnuerle Gemischverdichtende, fremdgezuendete Zweitakt-Brennkraftmaschine
FR1063514A (fr) * 1952-09-22 1954-05-04 Perfectionnements apportés aux mécanismes du type bielle-manivelle
FR1068054A (fr) * 1951-09-24 1954-06-22 Moteur à carburateur
FR2311931A1 (fr) * 1975-05-23 1976-12-17 Motobecane Ateliers Perfectionnements aux cyclomoteurs a moteur monocylindrique avec piston d'equilibrage
FR2401316A1 (fr) * 1977-08-22 1979-03-23 Motobecane Ateliers Moteur a deux temps a combustion interne
FR2420034A1 (fr) * 1978-03-14 1979-10-12 Soubis Jean Pierre Perfectionnements a des moteurs deux temps ameliorant la combustion et permettant une reduction de la pollution

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB105649A (en) * 1916-05-15 1917-04-26 Edmund Voss Improvements in Two-stroke Cycle Internal Combustion Engines.
GB202395A (en) * 1922-05-16 1923-08-16 Archibald Douglas Powell Improvements relating to internal combustion engines
US1698757A (en) * 1924-04-03 1929-01-15 Kjellberg Carl Fredrik Gunnar Internal-combustion motor
CH119799A (de) * 1926-01-23 1927-04-16 Gazda Anton Zweitaktverbrennungskraftmaschine.
US2406491A (en) * 1939-05-02 1946-08-27 Waern Bror Algor De Internal-combustion engine
FR908916A (fr) * 1944-08-01 1946-04-23 Perfectionnements aux moteurs à explosion à deux temps
FR983131A (fr) * 1949-01-28 1951-06-19 Perfectionnement aux moteurs à deux temps
DE848722C (de) * 1949-03-01 1952-09-08 Gertrud Schnuerle Gemischverdichtende, fremdgezuendete Zweitakt-Brennkraftmaschine
FR1068054A (fr) * 1951-09-24 1954-06-22 Moteur à carburateur
FR1063514A (fr) * 1952-09-22 1954-05-04 Perfectionnements apportés aux mécanismes du type bielle-manivelle
FR2311931A1 (fr) * 1975-05-23 1976-12-17 Motobecane Ateliers Perfectionnements aux cyclomoteurs a moteur monocylindrique avec piston d'equilibrage
FR2401316A1 (fr) * 1977-08-22 1979-03-23 Motobecane Ateliers Moteur a deux temps a combustion interne
FR2420034A1 (fr) * 1978-03-14 1979-10-12 Soubis Jean Pierre Perfectionnements a des moteurs deux temps ameliorant la combustion et permettant une reduction de la pollution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694339A1 (fr) * 1992-07-31 1994-02-04 Bosch Gmbh Robert Société dite : ROBERT BOSCH GMBH.
EP0651142A2 (fr) * 1993-10-01 1995-05-03 PIAGGIO VEICOLI EUROPEI S.p.A. Dispositif de préparation de mélange pour moteurs à double alimentation
EP0651142A3 (fr) * 1993-10-01 1995-09-20 Piaggio Veicoli Europ Dispositif de préparation de mélange pour moteurs à double alimentation.
US5537979A (en) * 1993-10-01 1996-07-23 Piaggio Veicoli Europei S.P.A. Mixture preparation device for double-feed engines
FR2745849A1 (fr) * 1996-03-08 1997-09-12 Honda Motor Co Ltd Moteur a combustion interne a deux temps, a allumage par etincelles et a precompression dans la chambre de vilebrequin
CN1080371C (zh) * 1996-03-08 2002-03-06 本田技研工业株式会社 曲柄室预压缩型火花点火式二冲程内燃机

Also Published As

Publication number Publication date
BR8000852A (pt) 1980-10-29

Similar Documents

Publication Publication Date Title
FR2500063A1 (fr) Moteur thermique a quatre temps susceptible de surpuissance temporaire
FR2575523A1 (fr) Dispositif et procede d'injection de carburant assiste par air ou gaz comprime dans un moteur
EP0296969B1 (fr) Dispositif d'introduction sous pression de mélange carburé dans le cylindre d'un moteur
EP0235481A1 (fr) Dispositif d'introduction de gaz sous pression dans une chambre de combustion d'un moteur alternatif à combustion interne
FR2530730A1 (fr) Moteur a allumage par compression et a turbocompresseur, pouvant fonctionner avec un faible taux de compression
WO1979000757A1 (fr) Perfectionnements a des moteurs deux temps ameliorant la combustion et permettant une reduction de la pollution
FR2508103A1 (fr) Procede et dispositif pour alimenter sequentiellement en carburant un moteur a combustion interne
EP0346188B1 (fr) Dispositif et méthode d'introduction sous pression de mélange carburé dans le cylindre d'un moteur
WO1996011333A1 (fr) Moteur deux temps a injection pneumatique de melange carbure
EP0691472B1 (fr) Moteur à combustion interne ayant un réservoir de stockage de pression d'utilisation spécifique
EP0015792A1 (fr) Procédé d'alimentation d'un moteur deux temps et moteurs deux temps du type à piston d'équilibrage et à injection du mélange carburé
EP0704017B1 (fr) Dispositif d'alimentation en melange air-carburant d'un moteur a explosion a deux temps
FR2737253A1 (fr) Moteur a combustion interne a deux temps
EP0358655B1 (fr) Procede et dispositif d'amenagement d'un moteur a deux temps a post-remplissage
FR2504599A1 (fr) Unite de pompes a combustible pour moteurs a allumage par compression
FR2459877A2 (fr) Perfectionnements au cycle de fonctionnement d'un moteur deux temps et moteurs deux temps de type a piston d'equilibrage et a injection du melange carbure
FR2487003A1 (fr) Moteur a combustion interne a piston rotatif ayant plusieurs lumieres d'admission
FR2501288A1 (fr) Perfectionnements a l'alimentation des moteurs deux temps
FR2585079A1 (fr) Procede d'injection de carburant pour moteurs a combustion interne permettant l'injection de quantites dosees dans la chambre de combustion
WO1986000374A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps
FR2583108A2 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne, a cycle court, et moteur a combustion interne a fonctionnement ameliore a cycle court et a structure simplifiee
BE555683A (fr)
FR2609498A1 (fr) Chambre de combustion d'un moteur alternatif 2 temps et moteur faisant application
FR2810077A1 (fr) Perfectionnements aux moteurs a deux temps
FR2568312A1 (fr) Dispositif de suralimentation pour moteur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19801229

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19820927

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANVAR AGENCE NATIONALE DE VALORISATION DE LA RECHE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOUBIS, JEAN PIERRE