EP0015581B1 - Transportvorrichtung mit einer Vielzahl von aufeinanderfolgenden Beförderungselementen - Google Patents
Transportvorrichtung mit einer Vielzahl von aufeinanderfolgenden Beförderungselementen Download PDFInfo
- Publication number
- EP0015581B1 EP0015581B1 EP19800101222 EP80101222A EP0015581B1 EP 0015581 B1 EP0015581 B1 EP 0015581B1 EP 19800101222 EP19800101222 EP 19800101222 EP 80101222 A EP80101222 A EP 80101222A EP 0015581 B1 EP0015581 B1 EP 0015581B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- components
- transportation device
- distance
- closed
- controlling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B21/00—Kinds or types of escalators or moving walkways
- B66B21/10—Moving walkways
- B66B21/12—Moving walkways of variable speed type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B9/00—Tramway or funicular systems with rigid track and cable traction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K1/00—Transferring passengers, articles, or freight to and from moving trains; Slipping or coupling vehicles from or to moving trains
Definitions
- the present invention relates to a transportation device as defined in the preamble of any one of claims 1,4 and 13, respectively.
- transportation devices of the above mentioned type having a variable speed bandconveyor are known in the prior art.
- One such device uses components which are longer than they are wide. These components slide along each other, while the relative direction of motion progressively changes from a direction perpendicular to the long side of the components to a direction parallel to it, and thereafter, the speed of the components varies proportionally to the ratio of their length and width.
- Another example of a rotating-type conveying device is illustrated in U.S. Patent 3,485,182.
- its components are driven by a single threaded rod with variable pitch.
- Bandconveyors are also known which operate at constant speeds and go into or out of cars moving at the same speed. Usually, those cars are attached to a cable moving at constant speed, and the distance between them is fixed. These prior art devices do not utilize controllable means for coupling the components and/or cars to achieve variable speed and variable distance operation while maintaining the components aligned, i.e. unrotated, with respect to the closed-loop path followed by the components.
- the object of the present invention is to improve the known transportation devices comprising a plurality of successive load carrying components in a manner that accurate and stable acceleration and deceleration of the individual components without the risk of skidding is achieved.
- a transportation device in which a continuous succession of components and/or cars travel in a closed loop and are linked to each other by devices which control and vary the distance between them.
- the components are permanently moving, but before each loading/unloading station the distance between them is progressively reduced to a minimum by the devices linking them together. After each station, the distance between the components is progressively increased by the same linking devices up to a maximum distance.
- the action of increasing or reducing the distance between the components will automatically increase or reduce the speed of the components proportionally to the distance between them including their length. Therefore, the speed of the components is at a minimum at the station.
- the loading/unloading platform at the station consists of a bandconveyor moving at a speed which is synchronized with the minimum speed of the car components.
- the linking devices may include arrangements of cables and winches, nuts and threaded rods, articulated rods or electronic distance measurement and servomechanisms as set forth hereinafter.
- An endless train of cars can be started and kept in motion by motors at each station. These motors may also drive the bandconveyors and keep their speed synchronized with the speed of the cars at the stations.
- the power can be transmitted to the cars, e.g., by toothed wheels which engage racks which are fixed to each car. Small motors can be added to each car or some cars to compensate for drag due to the friction and reduce stresses on the linking devices.
- a stretchable bandconveyor may be made of components having linking means permitting the speed of the components to be progressively increased and decreased as described in relation to the train of cars.
- the successive components are made to slide above or into each other to maintain a solid surface suitable for transport of passengers.
- Such a stretchable bandconveyor can be used separately or in combination with the train of cars.
- Figure 1A shows a lateral view of a succession of cars 1 moving from the right to the left.
- Linking devices 2 e.g. cables winded around winches, interconnected the cars to one another.
- the cables are first completely unwound and the distance between the cars and the speed of the cars is a maximum. Between points A and B, the cables are progressively wound and the distance between the cars and therefore their speed is reduced.
- Figure 1 B shows the variation of the speed of the cars as a function of their location.
- Figure 2 shows a horizontal view of two trains of cars 1 going in opposite directions between two bandconveyors 4 which enable people to go into or come out of the cars at a station 6.
- the cars are linked to each other by linking devices 2 such as cables winded around winches (not shown).
- the cars have sliding doors 8 which are automatically opened and closed at the beginning and the end of the bandconveyors.
- the bandconveyors are endless belts equipped with hand rails 5 and devices 3 which prevent jamming between the station platform and bandconveyor.
- Safety rails 7 prevent people from putting their hands between cars entering into the station when the distance between them is being reduced to a minimum.
- the two rows of cars are separated by a wall 9 to prevent the mixing of the two opposite air flows in order to reduce air drag.
- Figure 3 shows a section of the station wherein bandconveyors 4 are positioned on both sides of cars 1.
- the cars having sliding doors 8, windows 10 and wheels 12 rolling on rails 14.
- Each car 1 has secured thereto a rack 16 driven by a toothed wheel 18 on the same shaft 20 as other wheels 22 which are used in driving bandconveyor 4.
- Shaft 20 is driven by a motor 24 which controls and synchronizes the speed of the cars 1 and bandconveyor 4 within the station 6.
- Dotted lines 26 illustrate the section of a tunnel between stations, while dotted line 28 shows the section of the roof of the station.
- Figure 4 is an elevational view of two cars 1 inside a tunnel which is divided in two parts by a wall 30.
- the right car is seen from the rear side showing a motor 34 driving wheels 36 located under a bench 38.
- Motor 34 is used mainly to compensate for drag due to friction on the cars, since the energy of deceleration is automatically transmitted with very little loss by the winches and cables to accelerate the cars at the preceding station.
- a toothed rack 40 similar to rack 16 in Figure 3, is used to synchronize the speed of car 1 with the speed of the bandconveyor at the station.
- Reinforcements 42 and rails 44 support and guide the cars.
- a platform 46 can be used as a walkway for maintenance or for emergency use.
- the left car is seen from its front end showing a winch 50 with a part of a cable 52 linking the car to the next one.
- Two sets of toothed wheels 54 and 56 linked by a chain 58 are shown.
- Set 54 is on the same shaft as the winch 50, and set 56 is on the same shaft as two other toothed wheels 60 which are driven by a fixed rack 62 placed between the rails before a station.
- a third shaft supports a toothed wheel 64 driving the second shaft and two other toothed wheels 66 driven by fixed racks (not shown) and placed between the rails after each station.
- the appropriate combination of the toothed wheels enables the winch to wind and unwind cable 52 at different speeds. If the fixed racks have in addition a variable path, it is possible to wind and unwind the winch at any desired speed, while using or reproducing a part of the kinetic energy of the car, regardless of the speed of the car. This can provide a relatively constant deceleration or acceleration.
- the winch can be winded and unwinded by a motor placed on each car and started and stopped, for instance, by a reed switch carried by the car and activated by a magnet positioned by the desired trade position.
- Space 70 is provided which can be used to house devices for automatically opening and shutting the sliding doors 8.
- Figures 5A and 5B are other partial view of the same car of Figure 4.
- Figure 5A is a view of the bottom
- Figure 5B is a partial view of a section of the car taken along line BB' of Figures 4 and 5A.
- Figure 5 shows a grooved pulley 72 to guide the cable 52 on the winch 50 and two small toothed wheels 74 guiding the chain 58 on the different toothed wheels 54 and 56.
- Small wheels 74 are set in rods 76 of which one end 78 is articulated with the car, and the other end 80 is free to move and is guided by rails not shown on the figure in order to automatically set the appropriate transmission ratio between the fixed rack 62 and the winch 50.
- the free ends 80 of the rods 76 are linked to the car with a spring 82 which keeps the chains under tension.
- the chain, rods and toothed wheels are, in fact, the various parts of a simple automatic gear-box for automatically coupling the fixed rack 62 with the mobile winch 50.
- Many other existing devices can be used for the same purpose.
- the fixed end 84 of the cable 52 is linked to the next car by springs 86 in order to keep it constantly under tension. These springs also smooth the shock at the beginning and the end of the deceleration or acceleration and during gear changes.
- the purpose of the different size wheels in the automatic gear box is to wind the winch at a relatively constant speed in order to have a relatively constant acceleration and deceleration.
- the shaft of wheel 60 may be free to move in the direction parallel to the movement of the car and be maintained in a forward biased position by means of springs 90 as shown in Figure 5C.
- a short rack 62a may be provided in front of rack 62 and biased therefrom by means of a spring 92. Both springs 90 and 92 then help to dissipate the impact shock of wheel 60 with rack 62 or 62a.
- Yet another alternative is to replace the toothed wheel 60 by a rubber wheel and the rack 62 by a concrete beam to permit a frictional drive means.
- Figure 6A is a partial view of the bottom of a bandconveyor made of a succession of alternating components 100 and 102.
- Figure 6B is a cross-sectional view of the bandconveyor taken along line BB' of Figure 6A.
- Each component 102 slides into the component 100 on its left and is linked to the component 100 on its right by an articulation 103 in order to enable the bandconveyor to be bent.
- Each element 102 is also linked to its left element 100 by a threaded rod 104 of which one end is attached to the component 102, and the other end slides inside a nut 105 linked to the component 100.
- the nut 105 is screwed onto or off of the threaded rod 104 by means of gear wheels 106 and 107 driven by a fixed rack 108.
- the turning of the nut 105 on the threaded rod 104 decreases or increases the distance between the consecutive components 100 and 102 and makes the corresponding components 102 slide into or out of the component 100.
- the bandconveyor is made of an endless succession of such components 100 and 102 and the speed of these components varies along their course proportionally to the distance between them.
- Fixed racks 108 are positioned in appropriate places along the path of the bandconveyor to achieve the desired speed of the components and corresponding distance therebetween.
- Figure 7 is a sectional view of Figure 6B along line AA' thereof.
- a hand rail 109 is made of telescoping elements which are fixed on the corresponding components 100 and 102.
- Car 1 such as described in Figure 3 is also illustrated along with a device for synchronizing the speed of the car with the speed of the bandconveyor.
- This synchronizing device comprises racks 111 placed under and fixed to the cars and bandconveyor components and gear wheels 112 and 113 located in the stations.
- Racks 111 are similar to racks 16 of Figure 3 and 40 of Figure 4.
- the bandconveyor can be made of more than two alternating components, one sliding into the other, if it is desired to increase the distance between the consecutive components and therefore their speed by a factor larger than two.
- the bandconveyor can be made of components sliding above each other.
- the cars 1 may also be provided with a device for automatically opening the car doors when the cars arrive at the station.
- a device for automatically opening the car doors when the cars arrive at the station.
- a device is illustrated in Figures 8A and 8B.
- doors 310 are shown in their closed position, whereas in Figure 8B, the doors 310 are open.
- Cars 311 and 312 are illustrated together with levers 301, 302, 303 and 304 and . springs 307, 308 and 309.
- lever 301 is pushed in thereby moving lever 302 around an axis 305.
- lever 303 causes lever 303 to move lever 304 around its axis 306.
- levers 302 and 304 are linked to springs 308 and 309 to stretch springs 308 for opening the doors (Figure 8B), and to stretch springs 309 to close the doors (Figure 8A).
- Spring 307 biases lever 301 in the extended position ( Figure 8A) when the cars are apart.
- Lever 313 may be utilized to lock the doors, and thereby prevent their opening, until the cars are sufficiently close together to insure speed synchronization with the bandconveyor. Any number of mechanisms may be employed for this purpose such as a single lever and lifter arrangement.
- Figure 9 is a schematic diagram of means for controlling the distance and speed of cars 401 without mechanically interconnecting the cars.
- the system comprises a motor 402 contained within each car 401 for powering same.
- a servomechanism 404 is also provided which is connected to sense the speed of rotation of the car wheels 403 and compare same with a reference signal from reference source 405 and to provide an output control signal p to motor 402.
- Reference source 405 provides a reference signal V when the cars are far apart and away from the station. At a specified point before a station, reference source 405 provides a signal V,, which gradually reduces to a value V, representative of the minimum speed of cars 401 within the station.
- the output signal p to motor 402 enables the motor to drive the cars to match the desired speed V x .
- Elements 406 and 407 are utilized for measuring the distance between the cars 401.
- Element 406 may be a sonar or radar transceiver which emits signals which are reflected by mirror 407 and received on the transceiver.
- a laser beam may be utilized wherein a measure of the beam divergence angle A is proportional to the distance between cars as shown by elements 408 and 409 in Figure 9.
- the output of element 406 is proportional to the instantaneous value of the distance between adjacent cars.
- This signal is fed to servomechanism 410 to be compared with a signal L x from distance reference source 411.
- the signal L x is representative of the theoretical value of the distance between cars.
- Lx varies from a maximum of L o (cars far apart away from station) to a minimum of L 1 (cars close-together-inside station).
- An error signal, E, from servomechanism 410 serves as an addition correction signal for servomechanism 404.
- Reference sources 405 and 411 may be activated to change the reference signal from V o to V and L o to L x respectively by a mechanical or electrical tripping device positioned adjacent the car path.
- the electrical tripping device may, for example, be a reed switch carried by the cars and activated by a magnet positioned adjacent the desired track position.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Framework For Endless Conveyors (AREA)
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1977679A | 1979-03-12 | 1979-03-12 | |
US19776 | 1979-03-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0015581A2 EP0015581A2 (de) | 1980-09-17 |
EP0015581A3 EP0015581A3 (en) | 1980-10-01 |
EP0015581B1 true EP0015581B1 (de) | 1984-03-21 |
Family
ID=21794976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19800101222 Expired EP0015581B1 (de) | 1979-03-12 | 1980-03-11 | Transportvorrichtung mit einer Vielzahl von aufeinanderfolgenden Beförderungselementen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0015581B1 (de) |
JP (1) | JPS55164553A (de) |
DE (1) | DE3067086D1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2453064A1 (fr) * | 1979-04-04 | 1980-10-31 | Huon De Kermadec Jean | Procede d'exploitation automatique pour les systemes de transport de passagers semi-continus a vehicules passifs et moyens particuliers pour sa mise en oeuvre |
US4509429A (en) * | 1980-03-06 | 1985-04-09 | Broqueville Axel De | Transportation system utilizing a stretchable train of cars and stretchable bandconveyors |
FR2583363B1 (fr) * | 1985-06-14 | 1988-09-30 | Pomagalski Sa | Installation de transport a cable aerien a espacement reduit des cabines en station |
DE4014700C2 (de) * | 1990-05-08 | 1993-12-23 | Bosch Gmbh Robert | Transportvorrichtung mit einem Werkstückträger |
EP0931753A1 (de) * | 1998-01-23 | 1999-07-28 | Nkk Corporation | Personenbeförderungsband mit variabler Geschwindigkeit und Handlauf dafür |
US6138816A (en) * | 1998-06-19 | 2000-10-31 | Nkk Corporation | Variable-speed passenger conveyer and handrail device thereof |
WO2004063594A1 (es) * | 2003-01-15 | 2004-07-29 | Garcia Perez Jose Ramon | Eslabón de longitud variable, rígido o flexible |
AT505345A1 (de) * | 2007-05-22 | 2008-12-15 | Lechner Alexander Dr | Transportanlage für mittlere distanzen |
FR2959730B1 (fr) * | 2010-05-10 | 2014-01-31 | Coroller Yves Le | Dispositif a bande sans fin a vitesse variable |
AT515895B1 (de) * | 2014-06-02 | 2016-08-15 | Innova Patent Gmbh | Seilbahnanlage zur Beförderung von Personen |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH397999A (de) * | 1961-11-10 | 1965-08-31 | Inventio Ag | Fördereinrichtung für Personen und Sachen |
CH468292A (fr) * | 1966-07-06 | 1969-02-15 | Battelle Development Corp | Dispositif transporteur |
CH474394A (fr) * | 1967-05-10 | 1969-06-30 | Battelle Development Corp | Système de transport continu sans fin pour voyageurs |
US3734433A (en) * | 1967-10-19 | 1973-05-22 | R Metzner | Automatically controlled transportation system |
ES415246A1 (es) * | 1972-06-30 | 1976-07-16 | Patin | Dispositivo para el arrastre a velocidad variable de ele- mentos moviles. |
US3881423A (en) * | 1972-11-17 | 1975-05-06 | Goodyear Tire & Rubber | Variable speed vehicle |
FR2272873A1 (en) * | 1974-05-30 | 1975-12-26 | Poma 2000 Sa | Passenger transport rail installation - has guard rails on doors of vehicles bridging vehicle gaps at stations |
US4053044A (en) * | 1974-06-14 | 1977-10-11 | Pierre Patin | System for continuous entrainment at variable speed |
FR2345329A1 (fr) * | 1976-03-22 | 1977-10-21 | Savec | Convoyeur en boucle a vehicules relies elastiquement |
-
1980
- 1980-03-11 DE DE8080101222T patent/DE3067086D1/de not_active Expired
- 1980-03-11 EP EP19800101222 patent/EP0015581B1/de not_active Expired
- 1980-03-12 JP JP3147580A patent/JPS55164553A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0015581A2 (de) | 1980-09-17 |
JPS55164553A (en) | 1980-12-22 |
EP0015581A3 (en) | 1980-10-01 |
DE3067086D1 (en) | 1984-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4509429A (en) | Transportation system utilizing a stretchable train of cars and stretchable bandconveyors | |
EP0015581B1 (de) | Transportvorrichtung mit einer Vielzahl von aufeinanderfolgenden Beförderungselementen | |
US4669389A (en) | Aerial ropeway transport installation with several sections | |
US3881423A (en) | Variable speed vehicle | |
JPH02193759A (ja) | ケーブル搬送装置 | |
US5105745A (en) | Rhythm device of a detachable transport apparatus | |
GB2074511A (en) | A retractable cover for a goods vehicle | |
CA2512743A1 (en) | Amusement ride assembly and method | |
US2817447A (en) | Shunting arrangements for moving vehicles or the like | |
US4370931A (en) | Transportation system utilizing a stretchable train of cars and stretchable bandconveyors | |
GB2264292A (en) | Stacker crane. | |
US3799060A (en) | High speed passenger conveyor | |
US3533358A (en) | Device for compensating automatically for variations in the tension on and length of cables in appliances for transferring loads between two moving objects by cables | |
US4842121A (en) | Coupling for a continuous transport system | |
US2529908A (en) | Cargo hoist | |
EP0534947B1 (de) | Fördersystem zum fördern von gegenständen im raum | |
KR20190123958A (ko) | 케이블 견인 도르래를 갖는 물류이송 케이블 로봇 시스템 및 이를 이용한 물류 관리 방법 | |
US3334725A (en) | Retractable wall apparatus and drive mechanism therefor | |
US4280593A (en) | Diagonal elevator | |
CA2315907C (en) | Accelerator and decelerator sliding block, in particular for transport system vehicles, and conveyor associable to said sliding block | |
SU1044579A1 (ru) | Устройство дл транспортировани пассажиров с одного уровн на другой | |
US3119348A (en) | Variable speed conveyor system | |
SU1484785A1 (ru) | Натяжное устройство ленточного конвейера (5 7) | |
SU1146273A1 (ru) | Подъемник | |
US4397242A (en) | Cable driven shuttle system having guideways of different lengths and method for its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
17P | Request for examination filed |
Effective date: 19810331 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE DE FR GB |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3067086 Country of ref document: DE Date of ref document: 19840426 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: DE BROQUEVILLE AXEL Effective date: 19870331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19871130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19880101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890331 |