EP0012322A1 - Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material - Google Patents

Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material Download PDF

Info

Publication number
EP0012322A1
EP0012322A1 EP79104862A EP79104862A EP0012322A1 EP 0012322 A1 EP0012322 A1 EP 0012322A1 EP 79104862 A EP79104862 A EP 79104862A EP 79104862 A EP79104862 A EP 79104862A EP 0012322 A1 EP0012322 A1 EP 0012322A1
Authority
EP
European Patent Office
Prior art keywords
outer sleeve
metallic
base body
shaped body
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79104862A
Other languages
German (de)
French (fr)
Other versions
EP0012322B1 (en
Inventor
Adolf Weber
Siegfried Rhau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adolf Weber Te Neunkirchen Bondsrepubliek Duitsla
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Priority to AT79104862T priority Critical patent/ATE532T1/en
Publication of EP0012322A1 publication Critical patent/EP0012322A1/en
Application granted granted Critical
Publication of EP0012322B1 publication Critical patent/EP0012322B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles

Definitions

  • the invention relates to a process for the production of metallic moldings with discrete particles embedded in metallic bedding compound.
  • a method for producing shaped bodies with discrete particles embedded in metallic bedding compound is known.
  • the particles are attached to a metallic support and coated with a bedding compound made of a metal powder.
  • the carrier is isostatically pressed with the particle and the coating and then sintered.
  • Bullet splinters produced by this process show a good splintering effect.
  • the production of this splinter casing is economically complex, since after the sintering there are often bumps of several millimeters in the outer casing which have to be eliminated by a machining process.
  • the raw outer diameter of the splinter casing must be chosen to be relatively large in order to be able to remedy such defects. The amount of material removed from the fragment shell is therefore relatively high.
  • the splintering effect cannot be reduced in every case, since during the pressing process the bedding compound reaches the spaces between the particles to different depths.
  • a splinter body for splinter projectiles is known from DE-PS 21 29 196.
  • Spherical fragments are filled between two tubular bodies arranged one inside the other.
  • the inner tube body is pressed into the cavities between the splitters by high-pressure forming.
  • the tubular body is pre-fragmented and plated together with the splitters to form a split shell.
  • the high pressure Umiormung can shock, z. B. by explosion forming or electromagnetically or by pressing using a calibration bolt.
  • Such a reshaping has the disadvantage that, due to the degree of deformation moving within a too wide range, the splintering effect cannot be reproduced to the extent necessary that very high specific surface pressures occur due to the reshaping force not uniformly distributed over the splinter shell, which the balls are made of, for example, hardened Steel, such as ball bearing steel, break and that the deformation stresses the material of the inner shell beyond the yield strengths and there is an unforeseeable reduction in strength. This reduction also affects the splintering effect.
  • the invention has for its object to provide a molded body for fragments that can be produced economically and has a reproducible splintering effect.
  • the solution to this problem is characterized in the claims.
  • the invention advantageously achieves that the deformation of the outer shell causes stresses in the outer shell which, together with the compressive stress of the balls, significantly increase the fragment energy for the particles and the outer shell fragments show that the inner shell can be very thin, so that when detonating the stored explosives, as little deformation work is required for the inner shell and as much energy as possible is passed on to the particles through the fragmented inner shell. Due to the shaping force applied from the outside, the inner shell is deformed via the outer shell and the particles in the form of spheres. This causes work hardening in the area of the spherical caps deformed by the balls.
  • the particles are molded into the base body in the radial direction and therefore result in zones of greater hardness and therefore greater strength in their area, between which narrow zones of low strength lie.
  • the zones of low strength determine fragmentation. Fragmentation therefore requires less energy than an inner shell of uniformly high strength, that the empty volume between the base body and the outer shell and the particles is minimized and thus a lot of mass, specifically mass of high density, is available as an energy carrier, that the deformation gives shaped bodies of high dimensional accuracy and excellent concentricity, ie the machining rate is very low and the static and dynamic imbalances that are decisive for a high probability of impact are negligibly small, that the discrete particles are reproducibly pressed against one another and deform in a defined manner in the elastic range or in the elastic range and in the plastic range.
  • the particles essential for the fragmentation of the outer shell thus transfer the detonation energy fully in the area where they are molded into the outer shell, since there is a zonal increase in strength in the same way as in the inner shell, that the material of the outer and inner shell, depending on the caliber of the shaped body, surrounds the particles up to 70% of the particle surface and thereby the particles are subjected to a relatively low specific surface pressure during the detonation and are not destroyed, that all parts of the molded body are cold formed, therefore many materials, as well as composite materials, are suitable for processing, that the hard deformation of the discrete particles is not subject to changes due to the cold deformation, since there is no thermal stress and that, despite the cold forming of the discrete particles of hardened STAEL, heavy metal or depleted uranium a spacer grid is surprisingly not necessarily required, because by up to 7 0% strength embedding of the balls through the material of the inner and outer shells breakage of the particles does not occur in the case of plastic deformation. In contrast,
  • the spacing grid is absolutely necessary for balls made of hard metal, since hard metal is not deformable.
  • the spacing grid guarantees the desired embedding of the balls in the material of the parts surrounding them, without the hard metal balls being destroyed.
  • 1 denotes a device for circular kneading
  • 2 shaped bodies 3 base bodies, 4 rotating clamping heads, 5 mandrel holders, 6 spacers, 7 mandrels, 8 kneading jaws
  • 1o outer sleeve made of steel C 45 11 inner sleeve made of steel C 45, 12 hardened balls made of ball bearing steel 1ooCr6, 13, 14 pressure zone, 15 screwing, 18 shoulders, 19 kneading surface, 2o finished diameter, 21 diameter, 22 spacing grid, 22 'webs, 23 spacing, 24 inner surface, 25 output pitch circle, 27 finished pitch circle.
  • the inner sleeve 11 is clamped into the clamping head 4 of the device 1 for circular kneading which is only indicated.
  • this has a recess 15 delimited by shoulders 18.
  • the balls 12, the outer sleeve 10 and the inner sleeve 11 are supported radially by the fixed or rotating mandrel 7.
  • the kneading jaws 8 have a concave kneading surface 19 with a radius which corresponds approximately to the finished diameter 2o (FIG. 5) of the outer sleeve 1o. In addition, funnel-shaped surfaces 19 'are provided. In the axial direction of the molded body 2, the kneading jaws 8 are significantly shorter than the recess 15 extending in the axial direction.
  • the diameters 21 of the base body 3 and inner sleeve 11 correspond to the finished diameter 2 0 . 21 'is the raw diameter.
  • the base body 3 according to FIG. 1 is present, it is fastened in the clamping head 4.
  • a device-side mandrel or a forehead holder (not shown) engage on the base body 3.
  • the known kneading process takes place.
  • knock the kneading jaws 8 simultaneously on the rotatingly driven molded body 2 according to FIGS. 1 or 2.
  • the distance 6 becomes zero by pressing the inner surface 24 of the outer sleeve 10 onto the balls 12.
  • the balls in the said sleeves 1 0, 11 and sleeve 1o and base body 3 forms an increasingly till to Figure 5, the final state is reached.
  • the distance 23 becomes zero since the initial pitch circle 25 becomes the smaller finished circle 27 during forging.
  • the balls 12 are pressed together - there is a compressive stress under the balls - and the material of the webs 22 'is pushed to the side.
  • Inner sleeve 11 has zones 13 of higher strength and zones 14 of lower strength corresponding to the shaping of the balls 12.
  • the outer sleeve 1 0 contains tensile stresses which are caused by deformation of the balls 12 in the elastic or elastic and plastic range.
  • the balls 12 are pressed during kneading and save part of the deformation work (compressive stress). After kneading, the balls 12 give part of the deformation work to the outer sleeve 10 and to a small extent to their base (inner sleeve 11 or base body 3). This deformation work absorbed by the parts mentioned generates correspondingly large tensile stresses in them.
  • the tensile stresses in the outer sleeve 10 are greater than in the inner sleeve 11.
  • the molded body 2 may need to be slightly turned over and the base body 3 still to be machined in order to obtain a sleeve according to FIG. 2 corresponding to the inner sleeve 11. This is followed by machining operations in order to be able to provide the molded body 2 with the projectile parts provided for it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

A process for producing a formed member, and a formed member which includes spherical fragments embedded in a metallic matrix is effected through cold annular or round forming. The spheres are arranged in the interspace between a basic support member, which may be a thin-walled inner casing, and an outer casing. Working of the outer casing causes the material of the support member and the outer casing to be pressed into the spaces between the spheres, densifies the support member and the outer casing, and prestresses the outer casing and spheres, thus allowing the inner casing to be extremely thin-walled. The prestressing of the spheres and outer casing, together with the inner casing imparts a high degree of energy to the casing fragments and to the spheres, affords economies in manufacture and a substantial increase in fragmenting energy at detonation of the formed member.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung metallischer Formkörper mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen.The invention relates to a process for the production of metallic moldings with discrete particles embedded in metallic bedding compound.

Nach der DE-PS 24 60 o13 ist ein Verfahren zum Herstellen von Formkörpern mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen bekannt. Die Teilchen sind an einem metallischen Träger befestigt und mit einer Bettungsmasse aus einem Metallpulver umhüllt. Der Träger wird mit dem Teilchen und der Umhüllung isostatisch verpreßt und anschließend gesintert. Nach diesem Verfahren hergestellte Splitterkörper für Geschosse zeigen eine gute Splitterwirkung. Die Herstellung dieser Splitterhülle ist jedoch wirtschaftlich aufwendig, da nach dem Sintern in der Außenhülle häufig Unebenheiten von mehreren Millimetern vorhanden sind, die durch ein zerspanendes Bearbeitungsverfahren beseitigt werden müssen. Um die vorgesehene Kalibergröße einhalten zu können, muß daher der Roh-Außendurchmesser der Splitterhülle relativ groß gewählt werden, um derartige Mängel beseitigen zu können. Der Zerspanungsanteil an der Splitterhülle ist daher relativ hoch. Daneben ist die Splitterwirkung nicht in jedem Fall reporduzierbar, da beim Preßvorgang die Bettungsmasse unterschiedlich tief in die Zwischenräume zwischen den Teilchen gelangt.According to DE-PS 24 6 0 o13, a method for producing shaped bodies with discrete particles embedded in metallic bedding compound is known. The particles are attached to a metallic support and coated with a bedding compound made of a metal powder. The carrier is isostatically pressed with the particle and the coating and then sintered. Bullet splinters produced by this process show a good splintering effect. However, the production of this splinter casing is economically complex, since after the sintering there are often bumps of several millimeters in the outer casing which have to be eliminated by a machining process. In order to be able to maintain the intended caliber size, the raw outer diameter of the splinter casing must be chosen to be relatively large in order to be able to remedy such defects. The amount of material removed from the fragment shell is therefore relatively high. In addition, the splintering effect cannot be reduced in every case, since during the pressing process the bedding compound reaches the spaces between the particles to different depths.

Nachteilig ist auch, daß der Sintervorgang die metallurgischen Eigenschaften der verwendeten Werkstoffe wie Härte, Zähigkeit beeinträchtigen kann. Außerdem begrenzt der genannte thermische Prozeß die Anzahl der für diskrete Teilchen in Frage kommenden Werkstoffe.Another disadvantage is that the sintering process can impair the metallurgical properties of the materials used, such as hardness and toughness. In addition, the thermal process mentioned limits the number of discrete parts materials in question.

Weiterhin ist durch die DE-PS 21 29 196 ein Splitterkörper für Splittergeschosse bekannt. Zwischen zwei ineinander angeordneten Rohrkörpern sind kugelförmige Splitter eingefüllt. Durch Hochdruckumformung des Innenrohrkörpers wird dieser in die Hohlräume zwischen den Splittern eingepreßt. Dabei werden die Rohrkörper vorfragmentiert und mit den Splittern zu einer Splitterhülle zusammenplattiert. Die Hochdruckumiormung kann schockartig, z. B. durch Explosionsumformung oder elektromagnetisch oder aber durch Pressen mittels eines Kalibrierbolzens erfolgen.Furthermore, a splinter body for splinter projectiles is known from DE-PS 21 29 196. Spherical fragments are filled between two tubular bodies arranged one inside the other. The inner tube body is pressed into the cavities between the splitters by high-pressure forming. The tubular body is pre-fragmented and plated together with the splitters to form a split shell. The high pressure Umiormung can shock, z. B. by explosion forming or electromagnetically or by pressing using a calibration bolt.

Eine derartige Umformung hat den Nachteil, daß wegen des sich innerhalb einer zu großen Bandbreite bewegenden Verformungsgrades die Splitterwirkung nicht im erforderlichen Ausmaß reproduzierbar ist, daß durch die auf die Splitterhülle nicht gleichmäßig zu verteilende Umformkraft sehr hohe spezifische Flächendrücke auftreten, die die Kugeln aus beispielsweise gehärtetem Stahl, wie Kugellagerstahl, zerbrechen und daß die Umformung das Material der Innenhülle über die Streckgrenzen hinaus beansprucht und dadurch eine nicht vorhersehbare Minderung der Festigkeit vorliegt. Diese Minderung beeinflußt auch die Splitterwirkung.Such a reshaping has the disadvantage that, due to the degree of deformation moving within a too wide range, the splintering effect cannot be reproduced to the extent necessary that very high specific surface pressures occur due to the reshaping force not uniformly distributed over the splinter shell, which the balls are made of, for example, hardened Steel, such as ball bearing steel, break and that the deformation stresses the material of the inner shell beyond the yield strengths and there is an unforeseeable reduction in strength. This reduction also affects the splintering effect.

Der Erfindung liegt die Aufgabe zugrunde, einen Formkörper für Splittergeschosse zu schaffen, der wirtschaftlich herstellbar ist und eine reproduzierbare Splitterwirkung besitzt. Die Lösung dieser Aufgabe ist in den Ansprüchen gekennzeichnet.The invention has for its object to provide a molded body for fragments that can be produced economically and has a reproducible splintering effect. The solution to this problem is characterized in the claims.

Durch die Erfindung wird vorteilhaft erreicht, daß durch die Verformung der Außenhülle in der Außenhülle Spannungen auftreten, die zusammen mit der Druckspannung der Kugeln eine wesentliche Steigerung der Splitterenergie bei den Teilchen und den Außenhüllensplittern ergeben, daß die Innenhülle sehr dünn sein kann, so daß bei der Detonation des eingelagerten Sprengstoffes möglichst wenig Verformungsarbeit für die Innenhülle erforderlich ist und möglichst eine hohe Energie durch die fragmentierte Innenhülle an die Teilchen weitergegeben wird. Durch die von außen aufgebrachte Umformkraft wird über die Außenhülle und die in Form von Kugeln vorliegenden Teilchen eine Verformung der Innenhülle bewirkt. Diese bewirkt eine Kaltverfestigung im Bereich der durch die Kugeln verformten Kalotten. Die Teilchen werden dabei in radialer Richtung in den Grundkörper eingeformt und ergeben daher in deren Bereich Zonen höherer Härte und dadurch höhere Festigkeit, zwischen denen schmale Zonen niedriger Festigkeit liegen. Die Zonen niedriger Festigkeit bestimmen die Fragmentierung. Für die Fragmentierung ist daher weniger Energie erforderlich als bei einer Innenhülle gleichmäßig hoher Festigkeit,
daß das Leervolumen zwischen dem Grundkörper und der Außenhülle und den Teilchen minimiert ist und somit viel Masse und zwar speziell Masse hoher Dichte als Energieträger zur Verfügung steht,
daß durch die Verformung Formkörper hoher Maßgenauigkeit und ausgezeichnetem Rundlauf vorliegen, d.h. der Zerspanungsanteil ist sehr gering und die für eine hohe Treffwahrscheinlichkeit mit maßgebenden statischen und dynamischen Unwuchten sind vernachlässigbar klein,
daß die diskreten Teilchen reproduzierbar aneinander gepreßt sind und sich definiert im elastischen Bereich oder im elastischen Bereich und im plastischen Bereich verformen. Damit übertragen die für die Fragmentierung der Außenhülle wesentlichen Teilchen die Detonationsenergie voll im Bereich ihrer Einformung in die Außenhülle, da in gleicher Weise eine zonale Festigkeitssteigerung wie in der Innenhülle vorliegt,
daß das Material der Außen- und Innenhülle je nach Kaliber des Formkörpers die Teilchen bis zu 7o % der Teilchenoberfläche umschließt und dadurch bei der Detonation die Teilchen mit relativ geringem spezifischen Flächendruck beaufschlagt und nicht zerstört werden,
daß sämtliche Teile des Formkörpers kalt verformt werden, daher viele Werkstoffe, wie auch Verbundwerkstoffe, zur Verarbeitung geeignet sind,
daß durch die Kaltverformung die Härte der diskreten Teilchen keinen Änderungen ausgesetzt ist, denn es liegt keine thermische Belastung vor
und daß trotz der Kaltverformung für die diskreten Teilchen aus gehärtetem Stäl, Schwermetall oder abgereichertem Uran überraschenderweise ein Abstandsraster nicht unbedingt erforderlich ist, weil durch die bis zu 70 %-ige Einbettung der Kugeln durch das Material der Innen- und Außenhülle ein Zerbrechen der Teilchen bei plastischer Verformung nicht auftritt.. Bei Teilchen aus Hartmetall ist dagegen ein Abstandsraster nötig, da es plastisch nicht verformbar ist.
The invention advantageously achieves that the deformation of the outer shell causes stresses in the outer shell which, together with the compressive stress of the balls, significantly increase the fragment energy for the particles and the outer shell fragments show that the inner shell can be very thin, so that when detonating the stored explosives, as little deformation work is required for the inner shell and as much energy as possible is passed on to the particles through the fragmented inner shell. Due to the shaping force applied from the outside, the inner shell is deformed via the outer shell and the particles in the form of spheres. This causes work hardening in the area of the spherical caps deformed by the balls. The particles are molded into the base body in the radial direction and therefore result in zones of greater hardness and therefore greater strength in their area, between which narrow zones of low strength lie. The zones of low strength determine fragmentation. Fragmentation therefore requires less energy than an inner shell of uniformly high strength,
that the empty volume between the base body and the outer shell and the particles is minimized and thus a lot of mass, specifically mass of high density, is available as an energy carrier,
that the deformation gives shaped bodies of high dimensional accuracy and excellent concentricity, ie the machining rate is very low and the static and dynamic imbalances that are decisive for a high probability of impact are negligibly small,
that the discrete particles are reproducibly pressed against one another and deform in a defined manner in the elastic range or in the elastic range and in the plastic range. The particles essential for the fragmentation of the outer shell thus transfer the detonation energy fully in the area where they are molded into the outer shell, since there is a zonal increase in strength in the same way as in the inner shell,
that the material of the outer and inner shell, depending on the caliber of the shaped body, surrounds the particles up to 70% of the particle surface and thereby the particles are subjected to a relatively low specific surface pressure during the detonation and are not destroyed,
that all parts of the molded body are cold formed, therefore many materials, as well as composite materials, are suitable for processing,
that the hard deformation of the discrete particles is not subject to changes due to the cold deformation, since there is no thermal stress
and that, despite the cold forming of the discrete particles of hardened STAEL, heavy metal or depleted uranium a spacer grid is surprisingly not necessarily required, because by up to 7 0% strength embedding of the balls through the material of the inner and outer shells breakage of the particles does not occur in the case of plastic deformation. In contrast, a spacing grid is necessary for particles made of hard metal, since it is not plastically deformable.

Der Abstandsraster ist unbedingt für Kugeln aus Hartmetall nötig, da Hartmetall nicht verformbar ist. Hierbei garantiert der Abstandsraster die gewünschte Einbettung der Kugeln in den Werkstoff der sie umgebenden Teile, ohne daß die Hartmetallkugeln zerstört werden.The spacing grid is absolutely necessary for balls made of hard metal, since hard metal is not deformable. Here, the spacing grid guarantees the desired embedding of the balls in the material of the parts surrounding them, without the hard metal balls being destroyed.

Für die in gewissen Grenzen verformbaren Kugeln aus Schwermetall, gehärtetem Stahl oder abgereichertem Uran ist mit dem Abstandsraster eine noch bessere Einbettung als ohne den Abstandsraster möglich. Die Kugeln werden erst nach einem gewissen Einbettungsgrad aneinandergepreßt. Dadurch ist es möglich, nach dem gegenseitigen Berühren der Kugeln den Formkörper zusätzlich noch zu verformen, um einen noch höheren Einbettungsgrad zu erhalten.For the spheres made of heavy metal, hardened steel or depleted uranium that can be deformed within certain limits, an even better embedding is possible with the spacer grid than without the spacer grid. The balls are only pressed together after a certain degree of embedding. This makes it possible to additionally deform the shaped body after the balls have touched one another in order to obtain an even higher degree of embedding.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt. Es zeigen in vereinfachter Darstellung

  • Figur 1 einen Formkörper im Ausgangszustand mit einem Grundkörper
  • Figur 2 einen Teil einer Vorrichtung zum Rundkneten mit einem Formkörper und einer Innenhülse
  • Figur 3 einen Querschnitt III-III nach Figur 2 in prinzipieller Darstellung
  • Figur 4 einen vergrößert herausgezeichneten Ausschnitt IV nach Figur 2 ohne Schmiedebacken bzw. ohne Dorn
  • Figur 5 den Ausschnitt IV nach Figur 3 im Fertigzustand.
Embodiments of the invention are shown in the drawing. They show in a simplified representation
  • 1 shows a shaped body in the initial state with a base body
  • Figure 2 shows a part of a device for circular kneading with a molded body and an inner sleeve
  • Figure 3 shows a cross section III-III of Figure 2 in principle
  • FIG. 4 shows an enlarged section IV according to FIG. 2 without forged jaws or without a mandrel
  • Figure 5 shows the section IV of Figure 3 in the finished state.

In den Figuren sind bezeichnet mit 1 Vorrichtung zum Rundkneten, 2 Formkörper, 3 Grundkörper, 4 rotierender Spannkopf, 5 Dornhalter, 6 Abstand, 7 Dorn, 8 Knetbacken, 1o Außenhülse aus Stahl C 45, 11 Innenhülse aus Stahl C 45, 12 gehärtete Kugeln aus Kugellagerstahl 1ooCr6, 13, 14 Druckzone, 15 Eindrehung, 18 Absätze, 19 Knetfläche, 2o Fertigdurchmesser, 21 Durchmesser, 22 Abstandsraster, 22' Stege, 23 Abstand, 24 Innenoberfläche, 25 Ausgangsteilkreis, 27 Fertigteilkreis.In the figures, 1 denotes a device for circular kneading, 2 shaped bodies, 3 base bodies, 4 rotating clamping heads, 5 mandrel holders, 6 spacers, 7 mandrels, 8 kneading jaws, 1o outer sleeve made of steel C 45, 11 inner sleeve made of steel C 45, 12 hardened balls made of ball bearing steel 1ooCr6, 13, 14 pressure zone, 15 screwing, 18 shoulders, 19 kneading surface, 2o finished diameter, 21 diameter, 22 spacing grid, 22 'webs, 23 spacing, 24 inner surface, 25 output pitch circle, 27 finished pitch circle.

In den Spannkopf 4 der nur angedeuteten Vorrichtung 1 zum Rundkneten ist die Innenhülse 11 eingespannt. Diese besitzt für die Kugeln 12 eine durch Absätze 18 begrenzte Eindrehung 15. Die Kugeln 12, die Außenhülse 1o und die Innehülse 11 sind durch den feststehenden oder mitlaufenden Dorn 7 radial abgestützt.The inner sleeve 11 is clamped into the clamping head 4 of the device 1 for circular kneading which is only indicated. For the balls 12, this has a recess 15 delimited by shoulders 18. The balls 12, the outer sleeve 10 and the inner sleeve 11 are supported radially by the fixed or rotating mandrel 7.

Die Knetbacken 8 weisen eine konkave Knetfläche 19 mit einem Radius auf, der in etwa dem Fertigdurchmesser 2o (Figur 5) der Außenhülse 1o entspricht. Daneben sind trichterförmige Flächen 19' vorgesehen. In axialer Richtung des Formkörpers 2 sind die Knetbacken 8 wesentlich kürzer als die sich in Achsrichtung erstreckende Eindrehung 15.The kneading jaws 8 have a concave kneading surface 19 with a radius which corresponds approximately to the finished diameter 2o (FIG. 5) of the outer sleeve 1o. In addition, funnel-shaped surfaces 19 'are provided. In the axial direction of the molded body 2, the kneading jaws 8 are significantly shorter than the recess 15 extending in the axial direction.

Die Durchmesser 21 von Grundkörper 3 und Innenhülse 11 entsprechen dem Fertigdurchmesser 20. 21' ist der Roh-Durchmesser.The diameters 21 of the base body 3 and inner sleeve 11 correspond to the finished diameter 2 0 . 21 'is the raw diameter.

Liegt anstelle der Innenhülse 11 nach Figur 2 der Grundkörper 3 nach Figur 1 vor, so ist dieser in dem Spannkopf 4 befestigt. Gegenüberliegend greifen an dem Grundkörper 3 ein vorrichtungsseitiger Dorn oder ein Stirnhalter (nicht gezeichnet) an.If, instead of the inner sleeve 11 according to FIG. 2, the base body 3 according to FIG. 1 is present, it is fastened in the clamping head 4. On the opposite side, a device-side mandrel or a forehead holder (not shown) engage on the base body 3.

Nachdem die Außenhülse 1o über die in einem Abstandsraster 22 mit kompressiblen Stegen 22' mit dem Abstand 23 liegenden Kugel übergeschoben und in der Vorrichtung 1 montiert ist, erfolgt der bekannte Knetvorgang. Hierbei schlagen: die Knetbacken 8 gleichzeitig auf den rotierend angetriebenen Formkörper 2 nach den Figuren 1 oder 2. Zuerst wird der Abstand 6 zu Null, indem die Innenoberfläche 24 der Außenhülse 1o an die Kugeln 12 angepreßt wird. Dann formen sich die Kugeln in die genannten Hülsen 10, 11 bzw. Hülse 1o und Grundkörper 3 in zunehmendem Maße ein, bis nach Figur 5 der Endzustand erreicht ist. Der Abstand 23 wird zu Null, da der Ausgangsteilkreis 25 beim Schmieden zum kleineren Fertigteilkreis 27 wird. Die Kugeln 12 werden aneinandergepreßt - es entsteht unter den Kugeln eine Druckspannung - und das Material der Stege 22' wird seitlich abgedrängt.After the outer sleeve 10 has been pushed over the ball lying in a spacing grid 22 with compressible webs 22 'at a distance 23 and mounted in the device 1, the known kneading process takes place. Here knock: the kneading jaws 8 simultaneously on the rotatingly driven molded body 2 according to FIGS. 1 or 2. First, the distance 6 becomes zero by pressing the inner surface 24 of the outer sleeve 10 onto the balls 12. Then, the balls in the said sleeves 1 0, 11 and sleeve 1o and base body 3 forms an increasingly till to Figure 5, the final state is reached. The distance 23 becomes zero since the initial pitch circle 25 becomes the smaller finished circle 27 during forging. The balls 12 are pressed together - there is a compressive stress under the balls - and the material of the webs 22 'is pushed to the side.

Der Grundkörper 3 bzw. die durch den Dorn 7 abgestützte. Innenhülse 11 besitzt entsprechend der Einformung der Kugeln 12 Zonen 13 höherer Festigkeit und Zonen 14 niedriger Festigkeit. Ebenso die Außenhülse 10. Zusätzlich enthält die Außenhülse 1o Zugspannungen, die hervorgerufen sind durch Verformung der Kugeln 12 im elastischen oder elastischen und plastischen Bereich. Die Kugeln 12 werden beim Kneten gedrückt und speichern einen Teil der Verformungsarbeit (Druckspannung). Nach dem Kneten geben die Kugeln 12 einen Teil der Verformungsarbeit an die Außenhülse 1o und zum geringen Teil an ihre Unterlage (Innenhülse 11 bzw. Grundkörper 3).ab. Diese von den genannten Teilen aufgenommene Verformungsarbeit erzeugt in diesen entsprechend große Zugspannungen. Die Zugspannungen sind in der Außenhülse 1o größer als in der Innenhülse 11.The base body 3 or the one supported by the mandrel 7. Inner sleeve 11 has zones 13 of higher strength and zones 14 of lower strength corresponding to the shaping of the balls 12. Likewise, the outer sleeve 1 0 . In addition, the outer sleeve 1o contains tensile stresses which are caused by deformation of the balls 12 in the elastic or elastic and plastic range. The balls 12 are pressed during kneading and save part of the deformation work (compressive stress). After kneading, the balls 12 give part of the deformation work to the outer sleeve 10 and to a small extent to their base (inner sleeve 11 or base body 3). This deformation work absorbed by the parts mentioned generates correspondingly large tensile stresses in them. The tensile stresses in the outer sleeve 10 are greater than in the inner sleeve 11.

Nach dem Kneten ist der Formkörper 2 gegebenenfalls noch geringfügig zu überdrehen und der Grundkörper 3 noch zu bearbeiten, um eine der Innenhülse 11 entsprechende Hülse nach Figur 2 zu erhalten. Daran schließen sich Bearbeitungsvorgänge an, um den Formkörper 2 mit den dazu vorgesehenen Geschoßteilen versehen zu können.After kneading, the molded body 2 may need to be slightly turned over and the base body 3 still to be machined in order to obtain a sleeve according to FIG. 2 corresponding to the inner sleeve 11. This is followed by machining operations in order to be able to provide the molded body 2 with the projectile parts provided for it.

Claims (8)

1. Verfahren zur Herstellung metallischer Formkörper mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen, dadurch gekennzeichnet, daß die zwischen einem metallischen Grundkörper (3) und einer metallischen Außenhülse (10) liegenden Teilchen (12) durch kaltes Rundkneten der Außenhülse
sowohl in den Grundkörper als auch in die Außenhülse eingebettet werden,
indem die Knetbacken (8) gleichzeitig, jedoch nach und nach die gesamte Länge der Außenhülse (10) entsprechend der in Achsrichtung des Formkörpers (2) gesehene Länge der Teilchenanordnung bei Rotation des Formkörpers (2) beaufschlagen.
1. A process for the production of metallic moldings with discrete particles embedded in metallic bedding compound, characterized in that the particles (12) lying between a metallic base body (3) and a metallic outer sleeve (1 0 ) by cold kneading of the outer sleeve
are embedded both in the base body and in the outer sleeve,
by applying the kneading jaws (8) simultaneously, but gradually over the entire length of the outer sleeve (1 0 ) according to the length of the particle arrangement seen in the axial direction of the shaped body (2) when the shaped body (2) rotates.
2. Formkörper nach Anspruch 1, dadurch gekennzeichnet, daß der Grundkörper (3) aus Vollmaterial besteht.2. Shaped body according to claim 1, characterized in that the base body (3) consists of solid material. 3. Formkörper nach Anspruch 1, dadurch gekennzeichnet, daß der Grundkörper (3) als dünnwandige Innenhülse (11) ausgaildet ist und von innen durch einen entfernbaren Dorn (7) radial abgestützt ist.3. Shaped body according to claim 1, characterized in that the base body (3) is designed as a thin-walled inner sleeve (11) and is supported radially from the inside by a removable mandrel (7). 4. Formkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Teilchen als Kugeln (12) ausgebildet sind und aus Schwermetall, Hartmetall, gehärtetem Stahl oder abgereichertem Uran bestehen.4. Shaped body according to claim 1, characterized in that the particles are designed as balls (12) and consist of heavy metal, hard metal, hardened steel or depleted uranium. 5. Vorrichtung zum Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Außenhülse (10) aus einer kaltschmiedbaren Stahllegierung, wie St37 oder C45 besteht.5. The device for the method according to claim 1, characterized in that the outer sleeve (1 0 ) from a cold forgeable steel alloy, such as St37 or C45. 6. Vorrichtung zum Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Außenhülse (10) aus einem schmiedbaren Nichteisenmetall, wie Messing bzw. Aluminium besteht.6. The device for the method according to claim 1, characterized in that the outer sleeve (1 0 ) consists of a forgeable non-ferrous metal, such as brass or aluminum. 7. Vorrichtung zum Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Grundkörper (3) aus dem Stahl C45 besteht.7. The device for the method according to claim 1, characterized in that the base body (3) consists of the steel C45. 8. Formkörper nach den Ansprüchen 1 und 4, dadurch gekennzeichnet, daß die Kugeln (12) in einem Abstandsraster (22) mit kompressiblen Stegen (22) gehalten sind.8. Shaped body according to claims 1 and 4, characterized in that the balls (12) are held in a spacing grid (22) with compressible webs (22).
EP79104862A 1978-12-06 1979-12-04 Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material Expired EP0012322B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79104862T ATE532T1 (en) 1978-12-06 1979-12-04 PROCESS FOR THE MANUFACTURE OF METALLIC MOLDED OBJECTS, ESPECIALLY BUDGET, WITH DISCRETE PARTICLES EMBEDDED IN METALLIC BED MASS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2852658 1978-12-06
DE19782852658 DE2852658A1 (en) 1978-12-06 1978-12-06 METHOD FOR PRODUCING METALLIC MOLDED BODIES

Publications (2)

Publication Number Publication Date
EP0012322A1 true EP0012322A1 (en) 1980-06-25
EP0012322B1 EP0012322B1 (en) 1982-01-06

Family

ID=6056399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79104862A Expired EP0012322B1 (en) 1978-12-06 1979-12-04 Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material

Country Status (5)

Country Link
US (1) US4292829A (en)
EP (1) EP0012322B1 (en)
AT (1) ATE532T1 (en)
DE (1) DE2852658A1 (en)
IL (1) IL58858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443662A1 (en) * 1978-12-06 1980-07-04 Diehl Gmbh & Co METALLIC SHAPED BODIES COMPRISING DISCRETE PARTICLES DROWNED IN A METAL COATING MASS, THEIR MANUFACTURING METHOD AND DEVICE FOR IMPLEMENTING SAME
EP0108741A1 (en) * 1982-10-11 1984-05-16 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Method for the production of a fragmentation device
WO2017136905A1 (en) * 2016-02-08 2017-08-17 Petkov Stancho Petkov A fragmentation shot with ready destructive elements
US20230358519A1 (en) * 2020-02-28 2023-11-09 Bae Systems Bofors Ab Warhead

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236833B (en) * 1989-10-11 1994-03-16 Dynamit Nobel Ag Warhead with enhanced fragmentation effect
US5655396A (en) * 1995-09-25 1997-08-12 General Motors Corporation Roll peening device
DE19753188C2 (en) * 1997-11-21 2002-06-06 Diehl Stiftung & Co Splinter-forming shell for ammunition
EP3115739A1 (en) * 2015-07-09 2017-01-11 Textron Systems Corporation Warhead fragmenting structure of compacted fragments
JP6766177B2 (en) * 2016-01-15 2020-10-07 サーブ・ボフォース・ダイナミクス・スウィツァランド・リミテッド warhead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129196A1 (en) * 1971-06-12 1973-01-04 Diehl Fa METHOD OF MANUFACTURING SPLITTER CASES AND SPLITTER BULLETS AND BATTLE HEADS MANUFACTURED BY THIS PROCESS
US3834004A (en) * 1973-03-01 1974-09-10 Metal Innovations Inc Method of producing tool steel billets from water atomized metal powder
DE2557676A1 (en) * 1975-12-20 1977-06-30 Diehl Fa Projectile contg. fragments of depleted uranium alloy - giving high penetrating power esp. armour piercing and incendiary action

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652235A (en) * 1967-04-14 1972-03-28 Int Nickel Co Composite metal articles
US3982904A (en) * 1973-06-27 1976-09-28 Viking Metallurgical Corporation Metal rings made by the method of particle ring-rolling
US3976434A (en) * 1974-07-26 1976-08-24 Shwayder Warren M Saw and impact resistant member
DE2460013C3 (en) * 1974-12-19 1978-08-24 Sintermetallwerk Krebsoege Gmbh, 5608 Radevormwald Process for the production of metallic moldings
NL7701244A (en) * 1976-03-23 1977-09-27 Diehl Fa SPLINTER SHELL FOR GRANATE COMBAT HEAD AND THE LIKE.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129196A1 (en) * 1971-06-12 1973-01-04 Diehl Fa METHOD OF MANUFACTURING SPLITTER CASES AND SPLITTER BULLETS AND BATTLE HEADS MANUFACTURED BY THIS PROCESS
US3834004A (en) * 1973-03-01 1974-09-10 Metal Innovations Inc Method of producing tool steel billets from water atomized metal powder
DE2557676A1 (en) * 1975-12-20 1977-06-30 Diehl Fa Projectile contg. fragments of depleted uranium alloy - giving high penetrating power esp. armour piercing and incendiary action

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443662A1 (en) * 1978-12-06 1980-07-04 Diehl Gmbh & Co METALLIC SHAPED BODIES COMPRISING DISCRETE PARTICLES DROWNED IN A METAL COATING MASS, THEIR MANUFACTURING METHOD AND DEVICE FOR IMPLEMENTING SAME
EP0108741A1 (en) * 1982-10-11 1984-05-16 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Method for the production of a fragmentation device
WO2017136905A1 (en) * 2016-02-08 2017-08-17 Petkov Stancho Petkov A fragmentation shot with ready destructive elements
EA034385B1 (en) * 2016-02-08 2020-02-03 Станчо Петков Петков Fragmentation shot with ready destructive elements
US20230358519A1 (en) * 2020-02-28 2023-11-09 Bae Systems Bofors Ab Warhead

Also Published As

Publication number Publication date
IL58858A0 (en) 1980-03-31
EP0012322B1 (en) 1982-01-06
DE2852658A1 (en) 1980-06-12
US4292829A (en) 1981-10-06
ATE532T1 (en) 1982-01-15
IL58858A (en) 1982-01-31

Similar Documents

Publication Publication Date Title
CH618260A5 (en)
DE60119550T2 (en) INLAYS OF SINTERED TUNGSTEN FOR HOLLOW LOADS
EP0012323B1 (en) Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material
EP0808988B1 (en) Hollow piston with a radially welded cover
EP0012322B1 (en) Process for producing metallic objects, in particular projectiles, by incorporating discrete particles in a metallic matrix material
EP0429753B1 (en) Procedure and device for the manufacturing of large calibre ammunition
DE2852657C2 (en) Fragmentation body for fragmentation projectiles
DE2941480A1 (en) METHOD AND DEVICE FOR LOCAL EMBROIDERY OF METALS, ESPECIALLY THE FABRICS OF COMBUSTION CHARGES
DE2919268A1 (en) Shell or warhead fragmentation case - has divisions extending for predetermined depth and along predetermined lines from closed outer surface
EP2173507B1 (en) Method and device for producing a tubular solid body from a refractory tungsten-heavy metal alloy, particularly as a semi-finished product for the production of a penetrator for a kinetic energy projectile with fragmentation effect
EP0431666B1 (en) Fragmentation incendiary body, method for its manufacture as well as its use
EP0108741B1 (en) Method for the production of a fragmentation device
DE4109071C1 (en) Squash head ammunition
DE3822375C2 (en)
DE2322728A1 (en) SPLITTER CASE FOR BULLETS, BATTLE HEADS, THROWING AMMUNITION, etc.
EP0616189B1 (en) Manufacturing method for a projectile fragmentation casing
DE102012001445B3 (en) Explosive projectile, particularly artillery explosive projectile, has projectile axis, projectile casing, projectile cavity formed with projectile inner wall that has cylinder with cylinder longitudinal axis in section
DE102007002979A1 (en) Projectile-forming charge comprises a first explosive body, an arrangement consisting of an inert disk made from a porous material and a channel filled with explosive, a second explosive body and a metal insert
DE2634570A1 (en) High explosive fragmentation shell head - has separate balls around inner core held in place by envelope of sintered material
EP2682708A2 (en) Fragmentation body, in particular hand grenade body
CH672023A5 (en) Sub-calibre practice projectile held in sabot - has cheap pointed tip connected to high-grade metal base
DE102004017673A1 (en) Filling explosive shell with plastic bound explosive involves closing one end and filling shell from opposite end which is closed by cap pressing against pressure plate pressure with transfer charge between them
DE1951302A1 (en) Composite bearing balls of low weight
DE202013012562U1 (en) Camshaft adjustment device
CH405113A (en) Fragmentation bullet and method of making same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB IT NL SE

REF Corresponds to:

Ref document number: 532

Country of ref document: AT

Date of ref document: 19820115

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891130

Year of fee payment: 11

Ref country code: FR

Payment date: 19891130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891201

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19891227

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901204

Ref country code: AT

Effective date: 19901204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19901231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901231

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee
NLS Nl: assignments of ep-patents

Owner name: ADOLF WEBER TE NEUNKIRCHEN, BONDSREPUBLIEK DUITSLA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910830

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 79104862.2

Effective date: 19910910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT