EP0007994B1 - Magnetic core made of a soft magnetic amorphous alloy - Google Patents

Magnetic core made of a soft magnetic amorphous alloy Download PDF

Info

Publication number
EP0007994B1
EP0007994B1 EP79102173A EP79102173A EP0007994B1 EP 0007994 B1 EP0007994 B1 EP 0007994B1 EP 79102173 A EP79102173 A EP 79102173A EP 79102173 A EP79102173 A EP 79102173A EP 0007994 B1 EP0007994 B1 EP 0007994B1
Authority
EP
European Patent Office
Prior art keywords
core
magnetic
amorphous
crystalline
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102173A
Other languages
German (de)
French (fr)
Other versions
EP0007994A1 (en
Inventor
Richard Dr. Phys. Boll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0007994A1 publication Critical patent/EP0007994A1/en
Application granted granted Critical
Publication of EP0007994B1 publication Critical patent/EP0007994B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49034Treating to affect magnetic properties

Definitions

  • the invention relates to a magnetic core made of a soft magnetic amorphous alloy.
  • Electromagnetic components with cores made of soft magnetic amorphous alloys are already known (DE-A-2546676 and 2 553 003).
  • amorphous metal alloys can be produced by cooling an appropriate melt so rapidly that solidification occurs without crystallization.
  • the alloys can be obtained in the form of thin strips, the thickness of which can be, for example, a few hundredths of a mm and the width of which can be from a few mm to several cm.
  • the amorphous alloys can be distinguished from the crystalline alloys by means of X-ray diffraction measurements. In contrast to crystalline materials, which show characteristic sharp diffraction lines, the intensity in the X-ray diffraction pattern with amorphous metal alloys changes only slowly with the diffraction angle, similarly as is the case with liquids or ordinary glass.
  • the amorphous alloys can be completely amorphous or comprise a two-phase mixture of the amorphous and the crystalline state.
  • an amorphous metal alloy is understood to mean an alloy which is at least 50%, preferably at least 80%, amorphous.
  • the so-called crystallization temperature For every amorphous metal alloy there is a characteristic temperature, the so-called crystallization temperature. If the amorphous alloy is heated to or above this temperature, it changes to the crystalline state in which it remains even after cooling. In the case of heat treatments below the crystallization temperature, however, the amorphous state is retained.
  • the previously known soft magnetic amorphous metal alloys have the composition MyX i -y, where M is at least one of the metals iron, cobalt and nickel, and X is at least one of the so-called glass-forming elements boron, carbon, silicon and phosphorus and y is between about 0.60 and 0.95.
  • the amorphous alloys can also contain other metals, in particular titanium, zircon, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, palladium, platinum, copper, silver or gold, while in addition to the Glass-forming elements X or, where appropriate, the elements aluminum, gallium, indium, germanium, tin, arsenic, antimony, bismuth or beryllium may be present instead of these.
  • the amorphous soft magnetic alloys are particularly suitable for the production of magnetic cores, since, as already mentioned, they can be produced directly in the form of thin strips without, as with the crystalline soft magnetic metal alloys customary in the art, a large number of rolling steps with numerous Intermediate annealing is required.
  • Cores with a sheared hysteresis loop are often used for various applications, for example for chokes.
  • shear is known to be achieved by providing an air gap at least at one point along the core, which extends over the entire core cross section at this point.
  • Such air gaps often have to be ground in in a relatively complex manner or the core has to be completely cut to produce the air gaps, as is the case, for example, with cutting tape cores, so that additional parts for holding the core together, for example tensioning straps, are required.
  • DE-A-1 514 333 From DE-A-1 514 333 a method for obtaining gap-like interruptions in magnetic materials is also known.
  • the known method consists in particular in changing the structure of the magnetic material at the desired point by irradiation with high-energy radiation in such a way that there is no ferro- or ferri-. has more magnetic properties. There is no indication of amorphous magnetic alloys in DE-A-1 514 333.
  • the object of the invention is to achieve a shear of the hysteresis loop in a simple manner with a magnetic core made of a soft magnetic amorphous alloy.
  • amorphous alloy is converted into the crystalline state by local heating at least at one point along the core at least over part of the core cross section at this point.
  • the amorphous soft magnetic alloys have a relatively high permeability in the amorphous state, the permeability is considerably reduced by the transition to the crystalline state through local overheating above the crystallization temperature. This results in a crystalline zone which extends at least over part of the core cross section at the heated point and acts in a manner similar to an air gap.
  • a completely amorphous soft magnetic alloy can preferably be used as the starting material.
  • Magnetic core can be provided one or more crystalline zones distributed over the core, the width of which may also vary over the core cross section.
  • the magnetic cores according to the application can be produced, for example, by winding an amorphous band into a core or by laminating sheets punched out of amorphous band into a core. Local heating above the crystallization temperature to produce the crystalline zone can then take place, for example, by means of an induction loop placed around the core at the appropriate point.
  • the magnetic cores can be heat-treated in a manner known per se, for example at a temperature below the crystallization temperature in the presence of a magnetic field which magnetizes the magnetic core approximately to saturation.
  • the magnetic field can be a transverse magnetic field or a longitudinal magnetic field.
  • the core can also be layered, for example, from sheets that have been previously at least one point has been converted into the crystalline state over all or part of its cross section.
  • the heating can take place, for example, by resistance heating between two metal cutting edges serving as contacts or also by laser beams.
  • Figures 1 to 4 each show a top view schematically different embodiments of a magnetic core according to the invention.
  • this permeability in the crystalline zone is reduced to approximately 500.
  • a 5 mm wide crystalline zone 2 therefore corresponds to an apparent air gap with a length of 0.01 mm. Since the average iron path length of the core is 78.5 mm for the dimensions mentioned above, the permeability of the sheared circle is approximately 7630.
  • FIG. 2 shows a further core, which can, for example, be stacked up from sheet metal or wound from tape in the form of a ring band core.
  • amorphous material 11 crystalline zones 12, which extend over the entire core cross section, are generated at four locations on the core circumference by local heating.
  • FIG. 3 shows a correspondingly constructed magnetic core, in which crystalline zones 22 are generated in the amorphous material 21 at two locations, the boundary surfaces of which are curved.
  • Such crystalline zones the width of which varies over the core cross section, can be used, for example, to achieve nonlinear characteristic curves.
  • FIG. 4 shows a magnetic core in which crystalline zones 32 are produced in the amorphous alloy 31 at two locations, each of which extends over only part of the core cross section.
  • the shear can be varied within wide limits by different selection of the crystalline zones. For example, flat hysteresis loops, perminvar-like loops, strongly sheared linear loops or non-linear characteristics can be achieved.
  • the cores can be glued in the usual way, used in protective troughs or cast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

Die Erfindung betrifft einen Magnetkern aus einer weichmagnetischen amorphen Legierung.The invention relates to a magnetic core made of a soft magnetic amorphous alloy.

Elektromagnetische Bauelemente mit Kernen aus weichmagnetischen amorphen Legierungen sind bereits bekannt (DE-A-2546676 und 2 553 003).Electromagnetic components with cores made of soft magnetic amorphous alloys are already known (DE-A-2546676 and 2 553 003).

Amorphe Metallegierungen lassen sich bekanntlich dadurch herstellen, daß man eine entsprechende Schmelze so rasch abkühlt, daß ein Erstarren ohne Kristallisation eintritt. Die Legierungen können dabei gleich bei ihrer Entstehung in Form dünner Bänder gewonnen werden, deren Dicke beispielsweise einige hundertstel mm und deren Breite einige mm bis mehrere cm betragen kann.As is known, amorphous metal alloys can be produced by cooling an appropriate melt so rapidly that solidification occurs without crystallization. The alloys can be obtained in the form of thin strips, the thickness of which can be, for example, a few hundredths of a mm and the width of which can be from a few mm to several cm.

Von den kristallinen Legierungen lassen sich die amorphen Legierungen durch Röntgenbeugungsmessungen unterscheiden. Im Gegensatz zu kristallinen Materialien, die charakteristische scharfe Beugungslinien zeigen, verändert sich bei amorphen Metallegierungen die Intensität im Röntgenbeugungsbild nur langsam mit dem Beugungswinkel, ähnlich wie dies auch bei Flüssigkeiten oder gewöhnlichem Glas der Fall ist.The amorphous alloys can be distinguished from the crystalline alloys by means of X-ray diffraction measurements. In contrast to crystalline materials, which show characteristic sharp diffraction lines, the intensity in the X-ray diffraction pattern with amorphous metal alloys changes only slowly with the diffraction angle, similarly as is the case with liquids or ordinary glass.

Je nach den Herstellungsbedingungen können die amorphen Legierungen vollständig amorph -sein oder ein zweiphasiges Gemisch des amorphen und des kristallinen Zustandes umfassen. Im allgemeinen versteht man unter einer amorphen Metallegierung eine Legierung, die zu wenigstens 50%, vorzugsweise zu wenigstens 80%, amorph ist.Depending on the production conditions, the amorphous alloys can be completely amorphous or comprise a two-phase mixture of the amorphous and the crystalline state. In general, an amorphous metal alloy is understood to mean an alloy which is at least 50%, preferably at least 80%, amorphous.

Für jede amorphe Metallegierung gibt es eine charakteristische Temperatur, die sogenannte Kristallisationstemperatur. Erhitzt man die amorphe Legierung auf oder über diese Temperatur, so geht sie in den kristallinen Zustand über, in dem sie auch nach Abkühlung verbleibt. Bei Wärmebehandlungen unterhalb der Kristallisationstemperatur bleibt dagegen der amorphe Zustand erhalten.For every amorphous metal alloy there is a characteristic temperature, the so-called crystallization temperature. If the amorphous alloy is heated to or above this temperature, it changes to the crystalline state in which it remains even after cooling. In the case of heat treatments below the crystallization temperature, however, the amorphous state is retained.

Die bislang bekannten weichmagnetischen amorphen Metallegierungen haben die Zusammensetzung MyXi-y, wobei M wenigstens eines der Metalle Eisen, Kobalt und Nickel, und X wenigstens eines der sogenannten glasbildenden Elemente Bor, Kohlenstoff, Silizium und Phosphor bedeutet und y zwischen etwa 0,60 und 0,95 liegt. Zusätzlich zu den Metallen M können die amorphen Legierungen auch noch weitere Metalle, insbesondere Titan, Zirkon, Hafnium, Vanadin, Niob, Tantal, Chrom, Molybdän, Wolfram, Mangan, Palladium, Platin, Kupfer, Silber oder Gold enthalten, während zusätzlich zu den glasbildenden Elementen X oder gegebenenfalls auch an Stelle von diesen die Elemente Aluminium, Gallium, Indium, Germanium, Zinn, Arsen, Antimon, Wismut oder Beryllium vorhanden sein können.The previously known soft magnetic amorphous metal alloys have the composition MyX i -y, where M is at least one of the metals iron, cobalt and nickel, and X is at least one of the so-called glass-forming elements boron, carbon, silicon and phosphorus and y is between about 0.60 and 0.95. In addition to the metals M, the amorphous alloys can also contain other metals, in particular titanium, zircon, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, palladium, platinum, copper, silver or gold, while in addition to the Glass-forming elements X or, where appropriate, the elements aluminum, gallium, indium, germanium, tin, arsenic, antimony, bismuth or beryllium may be present instead of these.

Für die Herstellung von Magnetkernen sind die amorphen weichmagnetischen Legierungen besonders geeignet, da sie sich, wie bereits erwähnt, unmittelbar in Form dünner Bänder herstellen lassen, ohne daß, wie bei den bisher in der Technik üblichen kristallinen weichmagnetischen Metallegierungen, eine Vielzahl von Walzschritten mit zahlreichen Zwischenglühungen erforderlich ist.The amorphous soft magnetic alloys are particularly suitable for the production of magnetic cores, since, as already mentioned, they can be produced directly in the form of thin strips without, as with the crystalline soft magnetic metal alloys customary in the art, a large number of rolling steps with numerous Intermediate annealing is required.

Für verschiedene Anwendungszwecke, beispielsweise für Drosseln, werden häufig Kerne mit gescherter Hystereseschleife verwendet. Bei Kernen aus üblichen kristallinen weichmagnetischen Legierungen erreicht man eine Scherung bekanntlich dadurch, daß man an wenigstens einer Stelle entlang des Kernes einen Luftspalt vorsieht, der sich über den gesamten Kernquerschnitt an dieser Stelle erstreckt.Cores with a sheared hysteresis loop are often used for various applications, for example for chokes. In the case of cores made of conventional crystalline soft magnetic alloys, shear is known to be achieved by providing an air gap at least at one point along the core, which extends over the entire core cross section at this point.

Solche Luftspalte müssen oft in verhältnismäßig aufwendiger Weise eingeschliffen werden oder der Kern muß zur Erzeugung der Luftspalte völlig zerschnitten werden, wie dies beispielsweise bei Schnittbandkernen der Fall ist, so daß zusätzliche Teile zum Zusammenhalten des Kernes, beispielsweise Spannbänder, erforderlich werden.Such air gaps often have to be ground in in a relatively complex manner or the core has to be completely cut to produce the air gaps, as is the case, for example, with cutting tape cores, so that additional parts for holding the core together, for example tensioning straps, are required.

Aus der DE-A-1 514 333 ist ferner ein Verfahren zur Gewinnung von spaltähnlichen Unterbrechungen in magnetischen Werkstoffen bekannt. Das bekannte Verfahren besteht insbesondere darin, das Gefüge des magnetischen Werkstoffs an der gewünschten Stelle durch Bestrahlen mit energiereicher Strahlung derart zu verändern, daß es keine ferro- oder ferri- . magnetischen Eigenschaften mehr aufweist. Ein Hinweis auf amorphe Magnetlegierungen findet -sich in der DE-A-1 514 333 nicht.From DE-A-1 514 333 a method for obtaining gap-like interruptions in magnetic materials is also known. The known method consists in particular in changing the structure of the magnetic material at the desired point by irradiation with high-energy radiation in such a way that there is no ferro- or ferri-. has more magnetic properties. There is no indication of amorphous magnetic alloys in DE-A-1 514 333.

Aufgabe der Erfindung ist es, bei einem Magnetkern aus einer weichmagnetischen amorphen Legierung in einfacher Weise eine Scherung der Hystereseschleife zu erreichen.The object of the invention is to achieve a shear of the hysteresis loop in a simple manner with a magnetic core made of a soft magnetic amorphous alloy.

Dies wird erfindungsgemäß dadurch erreicht, daß die amorphe Legierung wenigstens an einer Stelle entlang des Kernes wenigstens über einen Teil des Kernquerschnitts an dieser Stelle durch lokale Erwärmung in den kristallinen Zustand übergeführt ist.This is achieved according to the invention in that the amorphous alloy is converted into the crystalline state by local heating at least at one point along the core at least over part of the core cross section at this point.

Während nämlich die amorphen weichmagnetischen Legierungen im amorphen Zustand eine verhältnismäßig hohe Permeabilität haben, wird durch den Übergang in den kristallinen Zustand durch lokale Überhitzung über die Kristallisationstemperatur die Permeabilität erheblich vermindert. Es entsteht somit dabei eine sich an der erhitzten Stelle wenigstens über einen Teil des Kernquerschnitts erstreckende kristalline Zone, die ähnlich wie ein Luftspalt wirkt.While the amorphous soft magnetic alloys have a relatively high permeability in the amorphous state, the permeability is considerably reduced by the transition to the crystalline state through local overheating above the crystallization temperature. This results in a crystalline zone which extends at least over part of the core cross section at the heated point and acts in a manner similar to an air gap.

Um einen möglichst großen Permeabilitätsunterschied zwischen der kristallinen Zone und den restlichen Teilen des Magnetkerns zu erreichen, kann vorzugsweise als Ausgangsmaterial eine vollständig amorphe weichmagnetische Legierung verwendet werden.In order to achieve the largest possible difference in permeability between the crystalline zone and the remaining parts of the magnetic core, a completely amorphous soft magnetic alloy can preferably be used as the starting material.

Je nach der vorgesehenen Anwendung des Magnetkerns können eine oder mehrere über den Kern verteilte kristalline Zonen vorgesehen sein, deren Breite über den Kernquerschnitt gegebenenfalls auch variieren kann.Depending on the intended application of the Magnetic core can be provided one or more crystalline zones distributed over the core, the width of which may also vary over the core cross section.

Besonders wirksam in Art eines Luftspaltes ist es, wenn man die amorphe Legierung wenigstens an einer Stelle des Magnetkerns über den gesamten Kernquerschnitt an dieser Stelle in den kristallinen Zustand überführt.It is particularly effective in the manner of an air gap if the amorphous alloy is converted into the crystalline state at least at one point in the magnetic core over the entire core cross section at this point.

Man kann die anmeldungsgemäßen Magnetkerne beispielsweise dadurch herstellen, daß man ein amorphes Band zu einem Kern wickelt oder aus amorphem Band ausgestanzte Bleche zu einem Kern schichtet. Die lokale Erwärmung über die Kristallisationstemperatur zur Erzeugung der kristallinen Zone kann dann beispielsweise mittels einer an der entsprechenden Stelle um den Kern herumgelegten Induktionsschleife erfolgen. Vor der Erzeugung der kristallinen Zone können die Magnetkerne in an sich bekannter Weise beispielsweise bei einer Temperatur unterhalb der Kristallisationstemperatur in Gegenwart eines Magnetfeldes wärmebehandelt werden, das den Magnetkern annähernd bis zur Sättigung magnetisiert. Das Magnetfeld kann ein magnetisches Querfeld oder ein magnetisches Längsfeld sein.The magnetic cores according to the application can be produced, for example, by winding an amorphous band into a core or by laminating sheets punched out of amorphous band into a core. Local heating above the crystallization temperature to produce the crystalline zone can then take place, for example, by means of an induction loop placed around the core at the appropriate point. Before the crystalline zone is created, the magnetic cores can be heat-treated in a manner known per se, for example at a temperature below the crystallization temperature in the presence of a magnetic field which magnetizes the magnetic core approximately to saturation. The magnetic field can be a transverse magnetic field or a longitudinal magnetic field.

Insbesondere bei größeren Dimensionen, wenn sich der Kern nur schwer über den gesamten Querschnitt erhitzen läßt, oder in Fällen, wo man nur einen bestimmten Teil des Querschnitts in den kristallinen Zustand überführen will, kann der Kern beispielsweise auch aus Blechen geschichtet werden, die vorher an wenigstens einer Stelle über ihren gesamten Querschnitt oder einen Teil desselben in den kristallinen Zustand übergeführt wurden. Hierbei kann die Erwärmung beispielsweise durch Widerstandserhitzung zwischen zwei als Kontakte dienenden Metallschneiden oder auch durch Laserstrahlen erfolgen.Especially with larger dimensions, if the core is difficult to heat over the entire cross-section, or in cases where only a certain part of the cross-section is to be converted into the crystalline state, the core can also be layered, for example, from sheets that have been previously at least one point has been converted into the crystalline state over all or part of its cross section. The heating can take place, for example, by resistance heating between two metal cutting edges serving as contacts or also by laser beams.

An Hand einiger Figuren soll die Erfindung noch näher erläutert werden.The invention will be explained in more detail with the aid of a few figures.

Figuren 1 bis 4 zeigen jeweils in Draufsicht schematisch verschiedene Ausführungsformen eines erfindungsgemäßen Magnetkerns.Figures 1 to 4 each show a top view schematically different embodiments of a magnetic core according to the invention.

Der in Figur 1 dargestellte Magnetkern ist beispielsweise aus einer Anzahl aufeinandergestapelter Scheiben 1 aus einer weichmagnetischen amorphen Legierung aufgebaut, in denen durch induktive Erhitzung jeweils eine Zone 2 in den kristallinen Zustand übergeführt wurde. Verwendet man beispielsweise Scheiben mit einem Innendurchmesser von 20 mm und einem Außendurchmesser von 30 mm aus einer weichmagnetischen amorphen Legierung der Zusammensetzung Fe0,40Ni0,40P0,14B0,06 und schichtet diese zu einem 10 mm hohen Kern auf, so kann man nach entsprechender Anlaßbehandlung im Magnetfeld im amorphen Material eine Permeabilität p.=250 000 (gemessen als Gleichfeldpermeabilität bei 4 mA/cm) erreichen. Beim Übergang in den kristallinen Zustand durch lokale Erhitzung auf eine Temperatur oberhalb der Kristallisationstemperatur von etwa 400° C wird diese Permeabilität in der kristallinen Zone auf etwa 500 herabgesetzt. Eine 5 mm breite kristalline Zone 2 entspricht demnach einem scheinbaren Luftspalt mit einer Länge von 0,01 mm. Da die mittlere Eisenweglänge des Kernes bei den obenerwähnten Abmessungen 78,5 mm beträgt, ergibt sich eine Permeabilität des gescherten Kreises von etwa 7630.The magnetic core shown in FIG. 1 is constructed, for example, from a number of disks 1 stacked one on top of the other from a soft magnetic amorphous alloy, in each of which a zone 2 has been converted to the crystalline state by inductive heating. If, for example, disks with an inner diameter of 20 mm and an outer diameter of 30 mm made of a soft magnetic amorphous alloy of the composition Fe 0.40 Ni 0.40 P 0.14 B 0.06 are used and these are layered to form a 10 mm high core, after appropriate tempering treatment in the magnetic field in the amorphous material, a permeability p. = 250,000 (measured as constant field permeability at 4 mA / cm) can be achieved. Upon transition to the crystalline state by local heating to a temperature above the crystallization temperature of approximately 400 ° C., this permeability in the crystalline zone is reduced to approximately 500. A 5 mm wide crystalline zone 2 therefore corresponds to an apparent air gap with a length of 0.01 mm. Since the average iron path length of the core is 78.5 mm for the dimensions mentioned above, the permeability of the sheared circle is approximately 7630.

Figur 2 zeigt einen weiteren Kern, der beispielsweise aus Blechen aufgeschichtet oder in Form eines Ringbandkernes aus Band gewikkelt sein kann. Im amorphen Material 11 sind an vier Stellen des Kernumfangs durch lokale Erwärmung kristalline Zonen 12 erzeugt, die sich über den gesamten Kernquerschnitt erstrecken.FIG. 2 shows a further core, which can, for example, be stacked up from sheet metal or wound from tape in the form of a ring band core. In the amorphous material 11, crystalline zones 12, which extend over the entire core cross section, are generated at four locations on the core circumference by local heating.

Figur 3 zeigt einen entsprechend aufgebauten Magnetkern, bei dem im amorphen Material 21 an zwei Stellen kristalline Zonen 22 erzeugt sind, deren Begrenzungsflächen gekrümmt sind. Durch derartige kristalline Zonen, deren Breite über den Kernquerschnitt variiert, können beispielsweise nichtlineare Kennlinien erzielt werden.FIG. 3 shows a correspondingly constructed magnetic core, in which crystalline zones 22 are generated in the amorphous material 21 at two locations, the boundary surfaces of which are curved. Such crystalline zones, the width of which varies over the core cross section, can be used, for example, to achieve nonlinear characteristic curves.

Figur 4 zeigt einen Magnetkern, bei dem in der amorphen Legierung 31 an zwei Stellen kristalline Zonen 32 erzeugt sind, die sich jeweils nur über einen Teil des Kernquerschnitts erstrecken.FIG. 4 shows a magnetic core in which crystalline zones 32 are produced in the amorphous alloy 31 at two locations, each of which extends over only part of the core cross section.

Wie die Ausführungsbeispiele zeigen, kann man durch unterschiedliche Wahl der kristallinen Zonen die Scherung in weiten Grenzen variieren. Dabei lassen sich beispielsweise flache Hystereseschleifen, perminvarähnliche Schleifen, stark gescherte lineare Schleifen oder auch nichtlineare Kennlinien erzielen.As the exemplary embodiments show, the shear can be varied within wide limits by different selection of the crystalline zones. For example, flat hysteresis loops, perminvar-like loops, strongly sheared linear loops or non-linear characteristics can be achieved.

Sieht man entlang des Kernumfangs mehrere kristalline Zonen vor, so läßt sich - ähnlich wie bei einem Pulverkern - eine gleichmäßige -Scherung bei geringer magnetischer Ausstreuung erreichen.If several crystalline zones are provided along the circumference of the core, then - similar to a powder core - a uniform shear can be achieved with little magnetic scatter.

Die Kerne können in üblicher Weise verklebt, in Schutztröge eingesetzt oder vergossen werden.The cores can be glued in the usual way, used in protective troughs or cast.

Claims (3)

1. A magnet core consisting of a soft-magnetic amorphous alloy, characterised in that the amorphous alloy (1) is converted by local heating into the crystalline state at at least one point (2) along the core over at least a part of the cross-section of the core at this point.
2. A magnet core as claimed in Claim 1, characterised in that the amorphous alloy (1) is converted into the crystalline state at at least one point (2) along the core over the entire cross-section of the core at this point.
3. A magnet core as claimed in Claim 2, characterised in that the width of the crystalline zone (22) varies over the cross-section of the core.
EP79102173A 1978-07-26 1979-06-29 Magnetic core made of a soft magnetic amorphous alloy Expired EP0007994B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2832731 1978-07-26
DE19782832731 DE2832731A1 (en) 1978-07-26 1978-07-26 MAGNETIC CORE MADE OF A SOFT MAGNETIC AMORPHOUS ALLOY

Publications (2)

Publication Number Publication Date
EP0007994A1 EP0007994A1 (en) 1980-02-20
EP0007994B1 true EP0007994B1 (en) 1981-11-25

Family

ID=6045392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102173A Expired EP0007994B1 (en) 1978-07-26 1979-06-29 Magnetic core made of a soft magnetic amorphous alloy

Country Status (5)

Country Link
US (1) US4265684A (en)
EP (1) EP0007994B1 (en)
JP (1) JPS5519899A (en)
CA (1) CA1118326A (en)
DE (2) DE2832731A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626412A (en) * 1979-08-13 1981-03-14 Tdk Corp Anisotropic adjusting method of magnetic metal thin band
US4347086A (en) * 1980-04-07 1982-08-31 General Motors Corporation Selective magnetization of rare-earth transition metal alloys
JPS56157010A (en) * 1980-05-09 1981-12-04 Matsushita Electric Ind Co Ltd Magnetic circuit
US4889568A (en) * 1980-09-26 1989-12-26 Allied-Signal Inc. Amorphous alloys for electromagnetic devices cross reference to related applications
JPS5797606A (en) * 1980-12-10 1982-06-17 Kawasaki Steel Corp Manufacture of amorphous alloy thin belt having extremely low iron loss
JPS57169209A (en) * 1981-04-10 1982-10-18 Nippon Steel Corp Iron core for reactor and manufacture thereof
JPS57177507A (en) * 1981-04-24 1982-11-01 Hitachi Metals Ltd Heat treatment of amorphous material
JPS57193005A (en) * 1981-05-23 1982-11-27 Tdk Corp Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same
JPS57197810A (en) * 1981-05-29 1982-12-04 Matsushita Electric Ind Co Ltd Amorphous magnetic core
JPS5856307A (en) * 1981-09-29 1983-04-04 Fujitsu Ltd Core for transformer and manufacture thereof
CA1205725A (en) * 1982-09-06 1986-06-10 Emiko Higashinakagawa Corrosion-resistant and wear-resistant amorphous alloy and a method for preparing the same
US4554029A (en) * 1982-11-08 1985-11-19 Armco Inc. Local heat treatment of electrical steel
GB2138215B (en) * 1983-04-13 1987-05-20 Hitachi Metals Ltd Amorphous wound coil
JPS59218714A (en) * 1983-05-26 1984-12-10 Fuji Electric Co Ltd Electromagnetic apparatus for high frequency power circuit
KR890003043B1 (en) * 1983-07-16 1989-08-19 알프스덴기 가부시기 가이샤 Magnetic head
JPS6074412A (en) 1983-09-28 1985-04-26 Toshiba Corp Multi-output common choke coil
JP2548769B2 (en) * 1988-03-23 1996-10-30 アルプス電気株式会社 Heat resistant amorphous alloy
US5038242A (en) * 1988-05-13 1991-08-06 Citizen Watch Co., Ltd. Magnetic head containing a barrier layer
JPH03242983A (en) * 1990-02-06 1991-10-29 Internatl Business Mach Corp <Ibm> Manufacture of magnetic structure
US5560760A (en) * 1994-10-12 1996-10-01 The United States Of America As Represented By The United States Department Of Energy Method for optical and mechanically coupling optical fibers
DE19848827A1 (en) * 1998-10-22 2000-05-04 Vacuumschmelze Gmbh Device for damping interference voltages
US7040323B1 (en) * 2002-08-08 2006-05-09 Tini Alloy Company Thin film intrauterine device
DE10302646B4 (en) 2003-01-23 2010-05-20 Vacuumschmelze Gmbh & Co. Kg Antenna core and method of manufacturing an antenna core
US7586828B1 (en) 2003-10-23 2009-09-08 Tini Alloy Company Magnetic data storage system
US7632361B2 (en) * 2004-05-06 2009-12-15 Tini Alloy Company Single crystal shape memory alloy devices and methods
US20060118210A1 (en) * 2004-10-04 2006-06-08 Johnson A D Portable energy storage devices and methods
US7763342B2 (en) * 2005-03-31 2010-07-27 Tini Alloy Company Tear-resistant thin film methods of fabrication
US7540899B1 (en) * 2005-05-25 2009-06-02 Tini Alloy Company Shape memory alloy thin film, method of fabrication, and articles of manufacture
US20070246233A1 (en) * 2006-04-04 2007-10-25 Johnson A D Thermal actuator for fire protection sprinkler head
US20080075557A1 (en) * 2006-09-22 2008-03-27 Johnson A David Constant load bolt
US20080213062A1 (en) * 2006-09-22 2008-09-04 Tini Alloy Company Constant load fastener
WO2008133738A2 (en) 2006-12-01 2008-11-06 Tini Alloy Company Method of alloying reactive components
US8684101B2 (en) * 2007-01-25 2014-04-01 Tini Alloy Company Frangible shape memory alloy fire sprinkler valve actuator
US8584767B2 (en) * 2007-01-25 2013-11-19 Tini Alloy Company Sprinkler valve with active actuation
WO2009018289A2 (en) 2007-07-30 2009-02-05 Tini Alloy Company Method and devices for preventing restenosis in cardiovascular stents
US8556969B2 (en) 2007-11-30 2013-10-15 Ormco Corporation Biocompatible copper-based single-crystal shape memory alloys
US7842143B2 (en) * 2007-12-03 2010-11-30 Tini Alloy Company Hyperelastic shape setting devices and fabrication methods
US8382917B2 (en) * 2007-12-03 2013-02-26 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
US10371550B2 (en) * 2016-10-24 2019-08-06 Ademco Inc. Compact magnetic field generator for magmeter
DE102016223195A1 (en) * 2016-11-23 2018-05-24 Robert Bosch Gmbh Transformer device, transformer and method of manufacturing a transformer device
JP6919517B2 (en) * 2017-11-20 2021-08-18 トヨタ自動車株式会社 Manufacturing method of magnetic parts using amorphous or nanocrystalline soft magnetic material
JP7047798B2 (en) * 2019-03-05 2022-04-05 トヨタ自動車株式会社 Manufacturing method of alloy strip pieces
JP7196692B2 (en) * 2019-03-05 2022-12-27 トヨタ自動車株式会社 Method for manufacturing alloy strip
JP7255452B2 (en) * 2019-10-30 2023-04-11 トヨタ自動車株式会社 Alloy thin strip and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL277285A (en) * 1961-04-17
DE1514333A1 (en) * 1965-01-19 1969-06-19 Rust Dr Hans Heinrich Process for obtaining gap-like interruptions in magnetic materials
FR2236944A1 (en) * 1973-07-10 1975-02-07 Tsnii Chernoj Metallurg Monolithic metal parts with magnetic and non magnetic zones - zone heat treatment of alloy steel to avoid joining magnetic and non magnetic materials
NL182182C (en) * 1974-11-29 1988-01-18 Allied Chem DEVICE WITH AMORPHIC METAL ALLOY.
JPS5194211A (en) * 1975-02-15 1976-08-18
US4152144A (en) * 1976-12-29 1979-05-01 Allied Chemical Corporation Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
US4150981A (en) * 1977-08-15 1979-04-24 Allied Chemical Corporation Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction

Also Published As

Publication number Publication date
DE2832731A1 (en) 1980-02-07
JPS5519899A (en) 1980-02-12
EP0007994A1 (en) 1980-02-20
DE2961439D1 (en) 1982-01-28
US4265684A (en) 1981-05-05
CA1118326A (en) 1982-02-16

Similar Documents

Publication Publication Date Title
EP0007994B1 (en) Magnetic core made of a soft magnetic amorphous alloy
EP0021101B1 (en) Amorphous soft magnetic alloy
DE2605615C2 (en) Material for the core of a magnetic head
EP0005836B1 (en) Inductive constructional component and process for manufacturing it
DE68920324T2 (en) Thin soft magnetic strip made of an alloy.
DE69210017T2 (en) METHOD FOR PRODUCING SOFT MAGNETIC ALLOYS ON FE-Ni BASIS WITH NANOCRISTALLINE STRUCTURE
DE3442009C2 (en)
DE2856795A1 (en) METHOD OF MANUFACTURING A THIN RIBBON FROM MAGNETIC MATERIAL AND TAPE MANUFACTURED BY THIS PROCESS
DE2806052A1 (en) THERMALLY STABLE AMORPHIC MAGNETIC ALLOY
DE69117870T2 (en) High speed steel made by sintering powder and process for producing it
DE3035433C2 (en) Use of a vitreous alloy
EP2697399B1 (en) Alloy, magnet core and process for producing a strip made of an alloy
DE10134056A1 (en) Process for producing nanocrystalline magnetic cores and device for carrying out the process
EP0309786A1 (en) Nickel-based solder for high temperature soldered joint
DE68921856T2 (en) Soft magnetic Fe-based alloy.
DE69013227T2 (en) Magnetic core.
DE3021536C2 (en) Amorphous material
DE69029287T2 (en) Non-magnetic stainless steel
DE3001761C2 (en) Use of a cobalt-free high-speed steel for cutting tools
EP0008001A1 (en) Resilient shielding element, particularly for magnetic tape cassettes
EP0794539B1 (en) Toroidal inductance for radio interference suppression of phase-controllable semiconductor circuits
DE1444495C (en)
DE3406807C2 (en)
DE2709626C3 (en) Process for reducing the magnetic reversal losses in thin strips made of soft magnetic amorphous metal alloys
DE69031338T2 (en) MAGNETIC CORE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2961439

Country of ref document: DE

Date of ref document: 19820128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840702

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79102173.6

Effective date: 19900412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT