EP0004911A1 - Annunciator of danger - Google Patents
Annunciator of danger Download PDFInfo
- Publication number
- EP0004911A1 EP0004911A1 EP79101030A EP79101030A EP0004911A1 EP 0004911 A1 EP0004911 A1 EP 0004911A1 EP 79101030 A EP79101030 A EP 79101030A EP 79101030 A EP79101030 A EP 79101030A EP 0004911 A1 EP0004911 A1 EP 0004911A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- memory
- detector
- individual
- detectors
- evaluation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000011664 signaling Effects 0.000 claims abstract description 11
- 238000011156 evaluation Methods 0.000 claims description 27
- 230000035945 sensitivity Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 101100028092 Drosophila melanogaster Or22a gene Proteins 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B26/00—Alarm systems in which substations are interrogated in succession by a central station
- G08B26/006—Alarm systems in which substations are interrogated in succession by a central station with substations connected to an individual line, e.g. star configuration
Definitions
- the invention relates to a hazard alarm system with a plurality of detectors connected to a central unit via signal lines, the measured values of the individual detectors being able to be queried in the central unit via test devices and evaluated using an evaluation device to form alarm or fault signals.
- Such alarm systems are known, for example as public fire alarm systems or as private secondary alarm systems.
- these systems are modular; usually several lines can be connected to the interface modules in the control center, and several fire alarms can be connected to each line.
- chain synchronization it is also possible to transmit the measured values of the individual detectors in an analog manner on a common line (DE-OS 26 41 489).
- DE-OS 26 41 489) a common line
- the detector information was forwarded via special patching lines, which had to be interrupted if necessary.
- it was also customary to simulate non-existing system parts, i.e. to simulate a functional interface using a special terminating element. Interventions of this type are carried out by hand in the system with a screwdriver or soldering iron. This activity takes up a lot of working time and is always fraught with the risk of cables being mixed up and incorrectly connected.
- the object of the invention is to provide a hazard alarm system of the type mentioned in the introduction in which such routings are not required in the wiring.
- the system should ensure constant monitoring of the detector configuration, it should allow the identification of detectors that are connected to a common line and it should enable evaluation of different types of detectors within the same lines as well as any changes in the detector configuration in a simple manner.
- the central unit is provided with a memory in which the occupancy and various data characteristic of the detector are stored for each detector that can be connected in the system, and a line interrogation device is provided with which the individual signal lines can be queried cyclically and with which the detector measured values arriving from the individual lines can be fed to the evaluation device, that a memory interrogation device is also provided with which the memory locations for all detectors connected to the line in question can be interrogated at each step of the line interrogation device, the memory content for the formation of setpoints, the evaluation device is supplied with comparative devices in which the measured values arriving from the individual signal lines can be compared with the setpoints formed from the stored data and can be processed to form fault or alarm signals.
- the memory provided in the control center according to the invention thus contains data on the number of connected signal lines and on the number of detectors per line; these memory locations can either be written to via an input element, for example a keyboard, or automatically by a microcomputer.
- a query at the start of commissioning the system first checks, for example, how many detectors are connected per line or whether a line is connected at all. It is also determined whether the individual detectors are in the idle, alarm or fault state. Furthermore, independent of the actual location on the reporting line, individual detectors can be combined into groups that are, for example, of the same detector type, belong together spatially or should be processed according to the same evaluation criteria.
- All information that represents the current status of the detector configuration and is stored in the system can be output via a dialog station and compared with the desired status. As soon as the actual status for part of the system or for the entire system has been saved and recognized as error-free, the system can be put into operation using a corresponding switch. The actual state is thereby defined as the target state, and all deviations from this are now recognized as a fault.
- a microprocessor is expediently used, which is linked to a corresponding memory as well as an input device and an output device.
- the control center Z essentially contains an evaluation device AW, which is connected to a memory SP.
- the evaluation device controls a line interrogation device in the form of a multiplexer LX (represented as a rotary selector), which cyclically polls the individual detection lines, represented by lines L1 to Lm.
- the intermediate signal adaptation SIA converts the measured values arriving on the lines into processable signals.
- the evaluation device AW controls a memory interrogation device SX, which is also designed as a multiplexer (shown as a rotary selector). This memory interrogation device can process as many steps as detectors can be connected to the system. If a number of n detectors is provided for a detection line, the memory interrogation device SX switches by n steps for each step of the line interrogation device LX, ie a total of m x n steps for m lines.
- the wiring of the individual detection lines can be done approximately as described in DE-AS 25 33 382 or DE-OS 26 41 489.
- the detectors connected in series on lines L1 to Lm are each connected to the line with a time delay corresponding to the measured value of the detector concerned.
- the resulting step-like current characterizes the detector addresses by the number of stages and the measured values by the length of the stages.
- these current stages are converted into pulses, which are then fed to the evaluation device AW via the line interrogation device LX.
- the information is collected by the evaluation unit AW when the system is started up fed to the memory SP, simultaneously with other data given by an input device IN.
- the storage status can be checked via an LED display.
- the data contained in the memory SP for each detector are fed to the evaluation device AW via an output multiple AUS, used there to form setpoints and compared with the queried actual values of the individual detectors, as will be described in detail later. If this comparison leads to the formation of an alarm signal a, this is used for the alarm display via the multiplex output MXA.
- This output multiple runs synchronously with the line interrogation device LX and controls a display device which has a light-emitting diode AD1 ... ADm for each detection line. The display is stabilized via flip-flops, not shown. If necessary, the output multiplexer MXA could also run synchronously with the memory interrogation device SX. In this case, a display could be controlled for each individual detector. Similar to an alarm signal, a fault signal s formed in the evaluation device is output via a multiplex output MXS and used to control LEDs SD according to the lines queried.
- Fig.2 The structure and function of the memory SP are shown in more detail in Fig.2.
- This memory then consists of a matrix of bistable memory cells, the number of which depends on the one hand on the number of connected detectors and on the other hand on the number of information per detector. If 8 bits per detector are to be stored and m detection lines with h detectors each are to be connected to the system, the memory must therefore have 8 xnxm cells.
- each detector has a vertical column Spll ... Spnm, while eight different criteria can be saved in the eight rows Z1 ... Z8 for each detector. The occupancy of the detector positions is saved in the first line Z1. If the relevant detector is switched on, a one is saved; if the detector position is not connected, a zero appears in the memory for the relevant detector position.
- Information about the detector type can be saved in further lines. This is useful because, depending on the physical measuring principle of a detector, different setpoints are required for the evaluation. For example, all smoke detectors are marked with a one in row Z2, all heat detectors in row Z3, all flame detectors in row Z4, etc. Different sensitivities for the detectors could be stored in further rows, for example. In addition, various delays can be specified, etc.
- the memory input takes place in such a way that when the system is started up, the AND gates AN1 and AN2 are initially blocked via the flip-flop FF, so that alarm and fault messages are suppressed.
- the evaluation device AW When querying the individual signaling lines, the evaluation device AW generates a signal at its output mv when the detector location just tested is really occupied.
- a logical one is written into line Z1 of the memory for the relevant detector via the AND gate AN3.
- Sensitivity and delay can also be stored by closing the corresponding switch TZ with the alarm signal a via the AND gate AN4.
- the system configuration can be checked using the output multiple OFF.
- step-by-step control of the individual columns Sp11 etc. all memory locations of each individual detector can be checked via the LEDs LED1 ... LED8. If the configuration is found to be correct, the system can be put into operation by closing the operating button BT.
- Signal 1 thus appears at the output of the flip-flop FF, the AND gates AN1 and AN2 for the alarm and fault forwarding are enabled and the outputs OUT of the memory are also enabled via the AND gates AN11 to AN18 to the evaluation device.
- this evaluation circuit is entered into lines Z1 to Z8 of the memory for the respective triggered detector. These signals are fed to a setpoint generator SWA for alarm and a setpoint generator SWS for malfunction. The corresponding setpoints swa or sws are formed in these setpoint transmitters, depending on the stored criteria.
- the setpoint generators are constructed in the simplest way as counters which, depending on the type of detector displayed and the sensitivity selected for this detector, count up to a more or less large value and then supply this value to the comparators VGA and VGS.
- the evaluation device AW receives the queried from the signal adaptation SIA Measured values of the individual detectors.
- these measured values appear as impulses on the line.
- the number of pulses corresponds to the detector address, while the changing pulse distance is a measure of the measured value.
- These measured values m are fed to the measuring time counter MZ, which is designed as a time counter. It counts with a constant clock, so that depending on the pulse interval, a smaller or larger counter value is fed to the comparator for alarm VGA or the comparator for fault VGS.
- the measuring time counter MZ is stopped briefly, its counter reading is transmitted to the comparators VGA and VGS, and then the measuring time counter MZ is reset.
- a step-up pulse is given to the multiplexer control MST, ie the memory interrogation device SX is advanced by one step. If one assumes in a simplified manner that this interrogation device is a rotary selector, the multiplexer control MST contains the rotary selector drive, which receives a step-up pulse with each reset of the measuring time counter MZ.
- the line interrogation device must be switched to the next line.
- the end character EZ is specified in the form of a maximum time which is pending at the comparator VGM. If no further measured value pulse appears up to this predetermined maximum time, the comparator VGM forms a step signal w with the signal of the measuring time counter MZ, with which the line interrogation device LX is advanced one step. As long as the maximum time value of the end character EZ is not reached, the signal mv is present at the output of the comparator VGM, which indicates an existing detector.
- FIG. 4 shows the circuit diagram for an alarm system according to the invention when using a microprocessor MP, the function of the system is essentially the same as that described with reference to FIGS. 1 to 2.
- the microprocessor which has data lines and command lines for the individual system parts.
- the signal adaptation SIA is structured as previously described. From it the respective line number and the measured values are given to the microprocessor.
- the memory SP is also constructed as in FIG. 2, with rows and columns for the individual detectors.
- An address bus AB and a data bus DB connect the microprocessor MP to the memory SP.
- an input field EF is connected to the microprocessor, with which, as in FIG. 2, detector criteria for the individual lines of the memory SP can be entered.
- An output or display field for example in the form of a data display station DS, is used to control the system.
- the system therefore performs all functions as in the circuit described in FIGS. 1 to 3.
- the microprocessor by using the microprocessor, the required logical processes and control functions are fulfilled with a minimum of components; the individual components, such as microprocessor MP, memory SP, etc., are known per se.
- the use of the microprocessor MP makes operating the system and outputting stored data via the data display station much easier and more convenient than with the conventional design.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Fire Alarms (AREA)
Abstract
Gefahrenmeldeanlage, beispielsweise Brandmeldeanlage, mit einer Mehrzahl von Detektoren (M11 ... Mmn), welche über Meldeleitungen (L1 ... Lm) an eine Zentrale (Z) angeschaltet sind. In der Zentrale (Z) ist ein Speicher (SP) vorgesehen, in welchem für jeden anschaltbaren Detektor charakteristische Daten gespeichert sind. Von den einzelnen Detektoren (M11 ... Mmn) werden zyklisch Meßwerte (m) abgefragt, außerdem werden aus den gespeicherten Daten für jeden Detektor gleichzeitig Sollwerte (swa, sws) gebildet und mit den Meßwerten verglichen; aus dem Vergleich werden gegebenenfalls Störungs- bzw. Alarmsignale abgeleitet.Hazard detection system, for example fire alarm system, with a plurality of detectors (M11 ... Mmn), which are connected to a control center (Z) via signaling lines (L1 ... Lm). A memory (SP) is provided in the control center (Z), in which characteristic data are stored for each detector that can be connected. Measured values (m) are queried cyclically from the individual detectors (M11 ... Mmn). In addition, setpoints (swa, sws) are simultaneously formed from the stored data for each detector and compared with the measured values; If necessary, fault or alarm signals are derived from the comparison.
Description
Die Erfindung bezieht sich auf eine Gefahrenmeldeanlage mit einer Mehrzahl von über Meldeleitungen an eine Zentrale angeschalteten Meldern, wobei die Meßwerte der einzelnen Melder in der Zentrale über Prüfeinrichtungen abfragbar und über eine Auswerteeinrichtung zur Bildung von Alarm- bzw. Störungssignalen auswertbar sind.The invention relates to a hazard alarm system with a plurality of detectors connected to a central unit via signal lines, the measured values of the individual detectors being able to be queried in the central unit via test devices and evaluated using an evaluation device to form alarm or fault signals.
Derartige Meldeanlagen sind bekannt, beispielsweise als öffentliche Feuermeldeanlagen oder als private Nebenmeldeanlagen. Im allgemeinen sind diese Anlagen modular aufgebaut; dabei sind an die Anschaltbaugruppen in der Zentrale meist mehrere Leitungen anschließbar,und an jede Leitung können mehrere Feuermelder angeschaltet werden. Durch eine sogenannte Kettensynchronisation ist es dabei auch möglich, die Meßwerte der einzelnen Melder auf einer gemeinsamen Leitung analog zu übertragen (DE-OS 26 41 489). In solchen Anlagen ergibt sich die Notwendigkeit, die von den tatsächlich angeschalteten Meldern erhaltenen Informationen richtig weiter zu verarbeiten und dafür zu sorgen, daß nicht- beschaltete Anlagenteile keine Störung hervorrufen und daß jede Veränderung der Anlagenkonfiguration erkannt wird.Such alarm systems are known, for example as public fire alarm systems or as private secondary alarm systems. In general, these systems are modular; usually several lines can be connected to the interface modules in the control center, and several fire alarms can be connected to each line. Through a so-called chain synchronization, it is also possible to transmit the measured values of the individual detectors in an analog manner on a common line (DE-OS 26 41 489). In such systems, there is a need for the information received from the detectors actually switched on to be correct to process further and to ensure that non-connected system parts do not cause any malfunctions and that every change in the system configuration is recognized.
Bei herkömmlichen Anlagen erfolgte die Weiterleitung der Melderinformationen über spezielle Rangierleitungen, welche im Bedarfsfalle unterbrochen werden mußten. Daneben war es auch üblich, nicht vorhandene Anlagenteile zu simulieren, also durch ein spezielles Abschlußglied eine funktionstüchtige Schnittstelle vorzutäuschen. Eingriffe dieser Art werden von Hand in der Anlage mit Schraubenzieher oder Lötkolben vorgenommen. Diese Tätigkeit nimmt viel Arbeitszeit in Anspruch und ist immer mit der Gefahr behaftet, daß Leitungen verwechselt und falsch verbunden werden.In conventional systems, the detector information was forwarded via special patching lines, which had to be interrupted if necessary. In addition, it was also customary to simulate non-existing system parts, i.e. to simulate a functional interface using a special terminating element. Interventions of this type are carried out by hand in the system with a screwdriver or soldering iron. This activity takes up a lot of working time and is always fraught with the risk of cables being mixed up and incorrectly connected.
Aufgabe der Erfindung ist es, eine Gefahrenmeldeanlage der eingangs erwähnten Art zu schaffen, in welcher derartige Rangierungen in der Verdrahtung nicht erforderlich sind. Die Anlage soll eine ständige Überwachung der Melderkonfiguration gewährleisten, sie soll eine Identifizierung von Meldern gestatten, die an eine gemeinsame Leitung angeschlossen sind und sie soll eine Auswertung unterschiedlicher Melderarten innerhalb derselben Linien scwie beliebige Veränderungen in der Melderkonfiguration in einfacher Weise ermöglichen.The object of the invention is to provide a hazard alarm system of the type mentioned in the introduction in which such routings are not required in the wiring. The system should ensure constant monitoring of the detector configuration, it should allow the identification of detectors that are connected to a common line and it should enable evaluation of different types of detectors within the same lines as well as any changes in the detector configuration in a simple manner.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß i= der Zentrale ein Speicher vorgesehen ist, in welchem für jeden in der Anlage anschaltbaren Melder die Belegung sowie verschiedene für den Melder charakteristische Daten gespeichert sind, daß eine Linienabfrageeinrichtung vorgesehen ist, mit welcher die einzelnen Meldeleitungen zyklisch abfragbar sind und mit der die von den einzelnen Leitungen ankommenden Meldermeßwerte der Auswerteeinrichtung zuführbar sind, daß ferner eine Speicher-AbfrageEinrichtung vorgesehen ist, mit welcher bei jedem Schritt der Linienabfrageeinrichtung die Speicherplätze für alle an die betreffende Leitung angeschalteten Melder abfragbar sind, wobei der Speicherinhalt zur Bildung von Sollwerten der Auswerteeinrichtung zugeführt wird, daß schließlich in der Auswerteeinrichtung Vergleichseinrichtungen vorgesehen sind, in denen die von den einzelnen Meldeleitungen ankommenden Meßwerte mit den aus den gespeicherten Daten gebildeten Sollwerten vergleichbar und zur Bildung von Störungs- bzw. Alarmsignalen verarbeitbar sind.According to the invention, this object is achieved in that the central unit is provided with a memory in which the occupancy and various data characteristic of the detector are stored for each detector that can be connected in the system, and a line interrogation device is provided with which the individual signal lines can be queried cyclically and with which the detector measured values arriving from the individual lines can be fed to the evaluation device, that a memory interrogation device is also provided with which the memory locations for all detectors connected to the line in question can be interrogated at each step of the line interrogation device, the memory content for the formation of setpoints, the evaluation device is supplied with comparative devices in which the measured values arriving from the individual signal lines can be compared with the setpoints formed from the stored data and can be processed to form fault or alarm signals.
Der erfindungsgemäß vorgesehene Speicher in der Zentrale enthält also Daten über die Anzahl der beschalteten Meldeleitungen sowie über die Anzahl der Melder pro Leitung; diese Speicherplätze können entweder über ein Eingabeelement, beispielsweise eine Tastatur, beschrieben werden, oder aber automatisch durch einen Mikrocomputer. Durch eine Abfrage zu Beginn der Inbetriebnahme der Anlage wird beispielsweise zunächst geprüft, wie viele Melder pro Linie beschaltet sind bzw. ob eine Linie überhaupt beschaltet ist. Dabei wird auch festgestellt, ob sich die einzelnen Melder im Ruhe-, Alarm- oder Störungszustand befinden. Ferner können einzelne Melder unabhängig von der tatsächlichen Lage an der Meldeleitung, zu Gruppen zusammengefaßt werden, die z.B. von der gleichen Melderart sind, räumlich zusammengehören oder aber nach gleichen Auswertekriterien bearbeitet werden sollen. Man kann beispielsweise gezielt alle gleichartigen Melder, etwa Rauchmelder, der Anlage zum Ansprechen bringen und durch Einen Befehl in den Speicher für alle angesprochenen Melder das gemeinsame Kriterium, also "Rauchmelder", einspeichern. Bei der Speicherabfrage wird dann dieses Melderkriterium wieder ausgegeben und entsprechend bei der Sollwertbildung berücksichtigt.The memory provided in the control center according to the invention thus contains data on the number of connected signal lines and on the number of detectors per line; these memory locations can either be written to via an input element, for example a keyboard, or automatically by a microcomputer. A query at the start of commissioning the system first checks, for example, how many detectors are connected per line or whether a line is connected at all. It is also determined whether the individual detectors are in the idle, alarm or fault state. Furthermore, independent of the actual location on the reporting line, individual detectors can be combined into groups that are, for example, of the same detector type, belong together spatially or should be processed according to the same evaluation criteria. You can, for example, selectively activate all similar detectors, such as smoke detectors, in the system and by means of a command in the memory for everyone addressed Store the common criterion, ie "smoke detector". When the memory is queried, this detector criterion is then output again and taken into account accordingly when forming the setpoint.
Alle Informationen, die den Istzustand der Melderkonfiguration darstellen und in der Anlage gespeichert sind, können über eine Dialogstation ausgegeben und mit dem gewünschten Sollzustand verglichen werden. Sobald der Istzustand für einen Teil der Anlage oder für die gesamte Anlage eingespeichert und als fehlerfrei erkannt wurde, kann über einen entsprechenden Schalter die Anlage in Betrieb genommen werden. Der Istzustand wird dadurch als Sollzustand definiert, und alle Abweichungen davon werden von nun an als Störung erkannt.All information that represents the current status of the detector configuration and is stored in the system can be output via a dialog station and compared with the desired status. As soon as the actual status for part of the system or for the entire system has been saved and recognized as error-free, the system can be put into operation using a corresponding switch. The actual state is thereby defined as the target state, and all deviations from this are now recognized as a fault.
Für die Steuerung der Linienabfrageeinrichtung, der Speicherabfrageeinrichtung und der Auswerteeinrichtung wird zweckmäßigerweise ein Mikroprozessor verwendet, der mit einem entsprechenden Speicher sowie einer Eingabeeinrichtung und einer Ausgabeeinrichtung verknüpft ist.For the control of the line interrogation device, the memory interrogation device and the evaluation device, a microprocessor is expediently used, which is linked to a corresponding memory as well as an input device and an output device.
Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung näher erläutert.The invention is explained in more detail below using exemplary embodiments with reference to the drawing.
Es zeigt
- Fig. 1 ein. Blockschaltbild für eine erfindungsgemäße Gefahrenmeldeanlage,
- Fig. 2 den Aufbau des Speichers und seine Verknüpfung mit der Auswerteeinrichtung gem. Fig.1,
- Fig. 3 den Aufbau der Auswerteeinrichtung gem. Fig.2,
- Fig. 4 den Aufbau einer erfindungsgemäßen. Meldeanlage bei Verwendung eines Mikroprozessors.
- Fig. 1 a. Block diagram for an alarm system according to the invention,
- Fig. 2 shows the structure of the memory and its link to the evaluation device according to. Fig.1,
- 3 shows the structure of the evaluation device according to FIG. Fig. 2,
- Fig. 4 shows the structure of an inventive. Signaling system when using a microprocessor.
Den allgemeinen Aufbau einer erfindungsgemäßen Gefahrenmeldeanlage zeigt Fig.1. Dabei enthält die Zentrale Z im wesentlichen eine Auswerteeinrichtung AW, die mit einem Speicher SP verbunden ist. Die Auswerteeinrichtung steuert eine Linienabfrageeinrichtung in Form eines Multiplexers LX (dargestellt als Drehwähler), der zyklisch die einzelnen Meldelinien, dargestellt durch die Leitungen L1 bis Lm, abfragt, Die zwischengeschaltete Signalanpassung SIA formt die auf den Leitungen ankommenden Meßwerte in verarbeitbare Signale um. Außerdem steuert die Auswerteeinrichtung AW eine Speicherabfrageeinrichtung SX, die ebenfalls als Multiplexer (dargestellt als Drehwähler) ausgeführt ist. Diese Speicherabfrageeinrichtung kann soviele Schritte verarbeiten wie Melder an die Anlage anschaltbar sind. Ist für eine Meldelinie eine Anzahl von n Meldern vorgesehen, so schaltet die Speicherabfrageeinrichtung SX bei jedem Schritt der Linienabfrageeinrichtung LX um n Schritte weiter, bei m Linien also insgesamt m x n Schritte.The general structure of an alarm system according to the invention is shown in FIG. 1. The control center Z essentially contains an evaluation device AW, which is connected to a memory SP. The evaluation device controls a line interrogation device in the form of a multiplexer LX (represented as a rotary selector), which cyclically polls the individual detection lines, represented by lines L1 to Lm. The intermediate signal adaptation SIA converts the measured values arriving on the lines into processable signals. In addition, the evaluation device AW controls a memory interrogation device SX, which is also designed as a multiplexer (shown as a rotary selector). This memory interrogation device can process as many steps as detectors can be connected to the system. If a number of n detectors is provided for a detection line, the memory interrogation device SX switches by n steps for each step of the line interrogation device LX, ie a total of m x n steps for m lines.
Die Beschaltung der einzelnen Meldelinien kann etwa so erfolgen, wie dies in der DE-AS 25 33 382 bzw. der DE-OS 26 41 489 beschrieben ist. Dabei werden die in Serie hintereinander geschalteten Melder auf den Leitungen L1 bis Lm jeweils mit einer dem Meßwert des betreffenden Melders entsprechenden Zeitverzögerung an die Leitung angeschaltet. Der entstehende treppenförmige Strom kennzeichnet dabei jeweils durch die Stufenzahl die Melderadressen und durch die Stufenlänge die Meßwerte. In der Signalanschaltung SIA werden diese Stromstufen in Impulse umgewandelt, welche dann über die Linienabfrageeinrichtung LX der Auswerteeinrichtung AW zugeführt werden. Die Informationen werden bei Inbetriebnahme der Anlage von der Auswerteeinrichtung AW dem Speicher SP zugeführt, gleichzeit mit anderen, durch eine Eingabeeinrichtung EIN gegebenen Daten. Der Speicherzustand kann über eine Leuchtdiodenanzeige LED kontrolliert werden.The wiring of the individual detection lines can be done approximately as described in DE-AS 25 33 382 or DE-OS 26 41 489. The detectors connected in series on lines L1 to Lm are each connected to the line with a time delay corresponding to the measured value of the detector concerned. The resulting step-like current characterizes the detector addresses by the number of stages and the measured values by the length of the stages. In the signal connection SIA, these current stages are converted into pulses, which are then fed to the evaluation device AW via the line interrogation device LX. The information is collected by the evaluation unit AW when the system is started up fed to the memory SP, simultaneously with other data given by an input device IN. The storage status can be checked via an LED display.
Bei Betrieb der Anlage werden die für jeden Melder im Speicher SP enthaltenen Daten über ein Ausgabevielfach AUS der Auswerteeinrichtung AW zugeführt, dort zur Bildung von Sollwerten verwendet und mit den abgefragten Istwerten der einzelnen Melder verglichen, wie später im einzelnen beschrieben wird. Führt dieser Vergleich zur Bildung eines Alarmsignals a, so wird dieses über die Multiplexausgabe MXA zur Alarmanzeige verwendet. Dieses Ausgabevielfach läuft synchron mit der Linienabfrageeinrichtung LX und steuert eine Anzeigeeinrichtung an, welche für jede Meldelinie eine Leuchtdiode AD1 ... ADm besitzt. Die Anzeige wird über nicht dargestellte Flip-Flops stabilisiert. Bei Bedarf könnte der Ausgabemultiplexer MXA auch synchron mit der Speicherabfrageeinrichtung SX laufen. In diesem Fall könnte für jeden einzelnen Melder eine Anzeige gesteuert werden. Ähnlich wie ein Alarmsignal wird auch ein in der Auswerteeinrichtung gebildetes Störungssignal s über eine Multiplexausgabe MXS ausgegeben und zur Steuerung von Leuchtdicden SD entsprechend den abgefragten Linien verwendet.When the system is in operation, the data contained in the memory SP for each detector are fed to the evaluation device AW via an output multiple AUS, used there to form setpoints and compared with the queried actual values of the individual detectors, as will be described in detail later. If this comparison leads to the formation of an alarm signal a, this is used for the alarm display via the multiplex output MXA. This output multiple runs synchronously with the line interrogation device LX and controls a display device which has a light-emitting diode AD1 ... ADm for each detection line. The display is stabilized via flip-flops, not shown. If necessary, the output multiplexer MXA could also run synchronously with the memory interrogation device SX. In this case, a display could be controlled for each individual detector. Similar to an alarm signal, a fault signal s formed in the evaluation device is output via a multiplex output MXS and used to control LEDs SD according to the lines queried.
Aufbau und Funktion des Speichers SP sind in Fig.2 genauer dargestellt. Danach besteht dieser Speicher aus einer Matrix von bistabilen Speicherzellen, deren Zahl einerseits von der Zahl der angeschalteten Melder und andererseits von der Zahl der Informationen pro Melder abhängt. Wenn pro Melder 8 bit gespeichert werden sollen und an die Anlage m Meldelinien mit jeweils h Meldern angeschaltet werden sollen, so muß der Speicher also 8 x n x m Zellen besitzen. In der dargestellten Matrix besitzt jeder Melder eine senkrechte Spalte Spll ... Spnm, während in den acht Zeilen Z1 ... Z8 für jeden Melder acht unterschiedliche Kriterien gespeichert werden können. In der ersten Zeile Z1 wird jeweils die Belegung der Melderplätze gespeichert. Ist der betreffende Melder angeschaltet, so wird eine Eins gespeichert; ist der Melderplatz nicht beschaltet, so erscheint im Speicher für den betreffenden Melderplatz eine Null.The structure and function of the memory SP are shown in more detail in Fig.2. This memory then consists of a matrix of bistable memory cells, the number of which depends on the one hand on the number of connected detectors and on the other hand on the number of information per detector. If 8 bits per detector are to be stored and m detection lines with h detectors each are to be connected to the system, the memory must therefore have 8 xnxm cells. In the matrix shown each detector has a vertical column Spll ... Spnm, while eight different criteria can be saved in the eight rows Z1 ... Z8 for each detector. The occupancy of the detector positions is saved in the first line Z1. If the relevant detector is switched on, a one is saved; if the detector position is not connected, a zero appears in the memory for the relevant detector position.
In weiteren Zeilen können Angaben über die Melderart gespeichert werden. Dies ist deshalb zweckmäßig, weil je nach dem physikalischen Meßprinzip eines Melders unterschiedliche Sollwerte für die Auswertung erforderlich sind. So werden beispielsweise in der Zeile Z2 alle Rauchmelder mit einer Eins gekennzeichnet, in der Zeile Z3 alle Wärmemelder, in der Zeile Z4 alle Flammenmelder usw. In weiteren Zeilen könnten beispielsweise unterschiedliche Empfindlichkeiten für die Melder gespeichert werden. Außerdem können verschiedene Verzögerungen vorgegeben werden usw. Die Speichereingabe geht in der Weise vor sich, daß bei Inbetriebnahme der Anlage zunächst über das Flip-Flop FF die UND-Glieder AN1 und AN2 gesperrt werden, so daß Alarm- und Störungsmeldungen unterdrückt werden. Bei der Abfrage der einzelnen Meldeleitungen erzeugt die Auswerteeinrichtung AW an ihrem Ausgang mv ein Signal, wenn der gerade geprüfte Melderplatz wirklich belegt ist. Über das UND-Glied AN3 wird in der Zeile Z1 des Speichers für den betreffenden Melder eine logische Eins eingeschrieben. Zur Speicherung der Melderart kann man beispielsweise den jeweiligen Schalter TZ2, TZ3 usw. schließen und dann die jeweils zugehörigen Melder zum Ansprechen bringen .Wird beispielsweise der Schalter TZ2 geschlossen, so läßt man alle Rauchmelder der gesamten Anlage ansprechen, und im Speicher SP wird für jeden Rauchmelder in Zeile 2 eine logische Eins eingeschrieben. Entsprechend wird mit den übrigen Zeilen verfahren.Information about the detector type can be saved in further lines. This is useful because, depending on the physical measuring principle of a detector, different setpoints are required for the evaluation. For example, all smoke detectors are marked with a one in row Z2, all heat detectors in row Z3, all flame detectors in row Z4, etc. Different sensitivities for the detectors could be stored in further rows, for example. In addition, various delays can be specified, etc. The memory input takes place in such a way that when the system is started up, the AND gates AN1 and AN2 are initially blocked via the flip-flop FF, so that alarm and fault messages are suppressed. When querying the individual signaling lines, the evaluation device AW generates a signal at its output mv when the detector location just tested is really occupied. A logical one is written into line Z1 of the memory for the relevant detector via the AND gate AN3. To save the type of detector, you can, for example, close the respective switch TZ2, TZ3 etc. and then activate the respective associated detector. If switch TZ2 is closed, for example, you can activate all smoke detectors of the entire system and the memory for everyone Smoke detector inscribed a logical one in line 2. The same procedure is followed for the other lines.
Auch Empfindlichkeit und Verzögerung kann man durch Schließen des entsprechenden Schalters TZ mit dem Alarmsignal a über das UND-Glied AN4 einspeichern. Nach dem Einschreiben des Speichers SP kann die Anlagenkonfiguration über das Ausgabevielfach AUS kontrolliert werden. Durch schrittweises Ansteuern der einzelnen Spalten Sp11 usw. können alle Speicherplätze jedes einzelnen Melders über die Leuchtdioden LED1 ... LED8 überprüft werden. Wird die Konfiguration für richtig befunden, so kann die Anlage in Betrieb genommen werden, wozu die Betriebstaste BT geschlossen wird. Am Ausgang des Flip-Flops FF erscheint damit das Signal 1, die UND-Glieder AN1 und AN2 für die Alarm- und Störungsweitergabe werden freigegeben und die Ausgänge AUS des Speichers werden über die UND-Glieder AN11 bis AN18 zur Auswerteeinrichtung hin ebenfalls freigegeben.Sensitivity and delay can also be stored by closing the corresponding switch TZ with the alarm signal a via the AND gate AN4. After the memory SP has been written in, the system configuration can be checked using the output multiple OFF. By step-by-step control of the individual columns Sp11 etc., all memory locations of each individual detector can be checked via the LEDs LED1 ... LED8. If the configuration is found to be correct, the system can be put into operation by closing the operating button BT.
Der Aufbau und die Funktion der Auswerteeinrichtung sind in Fig.3 dargestellt. Dieser Auswerteschaltung werden, wie aus Fig.2 ersichtlich, die Zeilen Z1 bis Z8 des Speichers für den jeweils angesteuerten Melder eingegeben. Diese Signale werden einem Sollwertgeber SWA für Alarm und einem Sollwertgeber SWS für Störung zugeführt. In diesen Sollwertgebern werden jeweils abhängig von den gespeicherten Kriterien die entsprechenden Sollwerte swa bzw. sws gebildet. Die Sollwertgeber sind in einfachster Weise als Zähler aufgebaut, die je nach der angezeigten Melderart und nach der für diesen Melder gewählten Empfindlichkeit bis zu einem mehr oder weniger großen Wert zählen und diesen Wert dann den Vergleichern VGA und VGS zuführen. Gleichzeitig erhält die Auswerteeinrichtung AW aus der Signalanpassung SIA die abgefragten Meßwerte der einzelnen Melder. Wie erwähnt, erscheinen diese Meßwerte als Impulse auf der Leitung. Die Zahl der Impulse entspricht der Melderadresse, während der wechselnde Impulsabstand ein Maß für den Meßwert ist. Diese Meßwerte m werden dem Meßzeitzähler MZ zugeführt, der als Zeitzähler ausgebildet ist. Er zählt mit konstantem Takt, so daß je nach dem Impulsabstand ein kleinerer oder größerer Zählerwert dem Vergleicher für Alarm VGA bzw. dem Vergleicher für Störung VGS zugeführt wird. Beim Erscheinen eines neuen Meßwertimpulses wird der Meßzeitzähler MZ kurz angehalten, sein Zählerstand wird den Vergleichern VGA und VGS übermittelt, und dann wird der Meßzeitzähler MZ zurückgestellt. Gleichzeitig mit der Rückstellung des Meßzeitzählers MZ wird ein Fortschaltimpuls an die Multiplexersteuerung MST gegeben, d.h. die Speicherabfrageeinrichtung SX wird um einen Schritt weitergeschaltet. Nimmt man vereinfacht an, daß diese Abfrageeinrichtung ein Drehwähler ist, so beinhaltet die Multiplexersteuerung MST den Drehwählerantrieb, der mit jeder Rückstellung des Meßzeitzählers MZ einen Fortschaltimpuls erhält.The structure and function of the evaluation device are shown in Fig.3. As can be seen from FIG. 2, this evaluation circuit is entered into lines Z1 to Z8 of the memory for the respective triggered detector. These signals are fed to a setpoint generator SWA for alarm and a setpoint generator SWS for malfunction. The corresponding setpoints swa or sws are formed in these setpoint transmitters, depending on the stored criteria. The setpoint generators are constructed in the simplest way as counters which, depending on the type of detector displayed and the sensitivity selected for this detector, count up to a more or less large value and then supply this value to the comparators VGA and VGS. At the same time, the evaluation device AW receives the queried from the signal adaptation SIA Measured values of the individual detectors. As mentioned, these measured values appear as impulses on the line. The number of pulses corresponds to the detector address, while the changing pulse distance is a measure of the measured value. These measured values m are fed to the measuring time counter MZ, which is designed as a time counter. It counts with a constant clock, so that depending on the pulse interval, a smaller or larger counter value is fed to the comparator for alarm VGA or the comparator for fault VGS. When a new measured value pulse appears, the measuring time counter MZ is stopped briefly, its counter reading is transmitted to the comparators VGA and VGS, and then the measuring time counter MZ is reset. Simultaneously with the resetting of the measuring time counter MZ, a step-up pulse is given to the multiplexer control MST, ie the memory interrogation device SX is advanced by one step. If one assumes in a simplified manner that this interrogation device is a rotary selector, the multiplexer control MST contains the rotary selector drive, which receives a step-up pulse with each reset of the measuring time counter MZ.
Ist eine Melderleitung vollständig abgefragt, so muß die Linienabfrageeinrichtung auf die nächste Leitung weitergeschaltet werden. Zu diesem Zweck ist das Endezeichen EZ in Form einer Maximalzeit vorgegeben, welche an dem Vergleicher VGM ansteht. Erscheint also bis zu dieser vorgegebenen Maximalzeit kein weiterer Meßwertimpuls, so bildet der Vergleicher VGM mit dem Signal des Meßzeitzählers MZ ein Fortschaltsignal w, mit dem die Linienabfrageeinrichtung LX einen Schritt weitergeschaltet wird. Solange der Maximalzeitwert des Endezeichens EZ nicht erreicht wird, steht am Ausgang des Vergleichers VGM das Signal mv an, welches einen vorhandenen Melder anzeigt.If a detector line is queried completely, the line interrogation device must be switched to the next line. For this purpose, the end character EZ is specified in the form of a maximum time which is pending at the comparator VGM. If no further measured value pulse appears up to this predetermined maximum time, the comparator VGM forms a step signal w with the signal of the measuring time counter MZ, with which the line interrogation device LX is advanced one step. As long as the maximum time value of the end character EZ is not reached, the signal mv is present at the output of the comparator VGM, which indicates an existing detector.
Die Fig.4 zeigt das Schaltbild für eine erfindungsgemäße Gefahrenmeldeanlage beim Einsatz eines Mikroprozessors MP, die Funktion der Anlage ist im wesentlichen genauso, wie sie anhand der Fig.1 bis 2 beschrieben wurde. Lediglich die Ausführung wird hier durch den Mikroprozessor gesteuert, der zu den einzelnen Anlagenteilen jeweils Datenleitungen und Befehlsleitungen besitzt. Die Signalanpassung SIA ist wie vordem beschrieben aufgebaut. Von ihr werden die jeweilige Leitungsnummer und die Meßwerte an den Mikroprozessor gegeben. Der Speicher SP ist ebenfalls wie in Fig.2 aufgebaut, mit Zeilen und Spalten für die einzelnen Melder. Ein Adressbus AB und ein Datenbus DB verbinden den Mikroprozessor MP mit dem Speicher SP. Weiterhin ist an den Mikroprozessor ein Eingabefeld EF angeschlossen, mit welchem wie bei Fig.2 Melderkriterien für die einzelnen Zeilen des Speichers SP eingegeben werden können. Ein Ausgabe- bzw. Anzeigefeld, etwa in Form einer Datensichtstation DS, dient zur Eontrolle der Anlage. Bei diesem Aufbau gemäß Fig.4 führt die Anlage also alle Funktionen wie bei der in den Fig.1 bis 3 beschriebenen Schaltung aus. Allerdings werden durch den Einsatz des Mikroprozessors die geforderten logischen Abläufe und Steuerfunktionen mit einem Minimum an Bauteilen erfüllt; die einzelnen Bauelemente, wie Mikroprozessor MP, Speicher SP usw. sind für sich ohne-hin bekannt. Außerdem wird durch die Verwendung von Mikroprozessors MP die Bedienung der Anlage sowie die Ausgabe von Speicherdaten über die Datensichtstation wesentlich einfacher und komfortabler als beim herkömmlichen Aufbau.4 shows the circuit diagram for an alarm system according to the invention when using a microprocessor MP, the function of the system is essentially the same as that described with reference to FIGS. 1 to 2. Only the execution is controlled here by the microprocessor, which has data lines and command lines for the individual system parts. The signal adaptation SIA is structured as previously described. From it the respective line number and the measured values are given to the microprocessor. The memory SP is also constructed as in FIG. 2, with rows and columns for the individual detectors. An address bus AB and a data bus DB connect the microprocessor MP to the memory SP. Furthermore, an input field EF is connected to the microprocessor, with which, as in FIG. 2, detector criteria for the individual lines of the memory SP can be entered. An output or display field, for example in the form of a data display station DS, is used to control the system. With this construction according to FIG. 4, the system therefore performs all functions as in the circuit described in FIGS. 1 to 3. However, by using the microprocessor, the required logical processes and control functions are fulfilled with a minimum of components; the individual components, such as microprocessor MP, memory SP, etc., are known per se. In addition, the use of the microprocessor MP makes operating the system and outputting stored data via the data display station much easier and more convenient than with the conventional design.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2817089A DE2817089B2 (en) | 1978-04-19 | 1978-04-19 | Alarm system |
DE2817089 | 1978-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0004911A1 true EP0004911A1 (en) | 1979-10-31 |
Family
ID=6037465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79101030A Withdrawn EP0004911A1 (en) | 1978-04-19 | 1979-04-04 | Annunciator of danger |
Country Status (5)
Country | Link |
---|---|
US (1) | US4222041A (en) |
EP (1) | EP0004911A1 (en) |
JP (1) | JPS54142095A (en) |
AT (1) | AT373407B (en) |
DE (1) | DE2817089B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0066200A1 (en) * | 1981-05-26 | 1982-12-08 | Siemens Aktiengesellschaft | Method and device for revision in a hazard, particularly a fire alarm system |
EP0067339A2 (en) * | 1981-06-12 | 1982-12-22 | Siemens Aktiengesellschaft | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems |
EP0070449A1 (en) * | 1981-07-10 | 1983-01-26 | Siemens Aktiengesellschaft | Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation |
EP0091143A2 (en) * | 1982-04-07 | 1983-10-12 | Motorola Israel Limited | Signal processing unit |
EP0098760A2 (en) * | 1982-06-09 | 1984-01-18 | Roger Amar | Monitor setting method and monitoring arrangement for a site to be protected |
EP0101182A2 (en) * | 1982-07-16 | 1984-02-22 | Kabushiki Kaisha Toshiba | Piping system surveillance apparatus |
FR2535090A1 (en) * | 1982-10-22 | 1984-04-27 | Nittan Co Ltd | PHOTOELECTRIC DETECTOR TERMINAL OF SMOKE |
EP0121048A1 (en) * | 1983-03-04 | 1984-10-10 | Cerberus Ag | Circuit arrangement for the interference level control of detectors, arranged in a danger detection device |
GB2193590A (en) * | 1986-07-17 | 1988-02-10 | Nittan Co Ltd | Environmental abnormality alarm apparatus |
WO1991020065A2 (en) * | 1990-06-19 | 1991-12-26 | Dylec Ltd. | Status-reporting device |
EP0521180A1 (en) * | 1991-07-02 | 1993-01-07 | Siemens Aktiengesellschaft | Danger signalling devices connected in a loop |
AT397731B (en) * | 1984-06-29 | 1994-06-27 | Hochiki Co | FIRE ALARM SYSTEM |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3037693C2 (en) * | 1980-10-06 | 1986-03-13 | Friedrich Merk-Telefonbau GmbH, 8000 München | Hazard alarm center with several star-shaped alarm lines |
US4394655A (en) * | 1981-03-13 | 1983-07-19 | Baker Industries, Inc. | Bidirectional, interactive fire detection system |
FR2509495B1 (en) * | 1981-07-10 | 1985-08-09 | Icb France Ind Composants Bati | MONITORING AND ALARM METHOD AND THE DEVICE FOR IMPLEMENTING THE METHOD |
DE3128811A1 (en) * | 1981-07-21 | 1983-02-10 | Esser Sicherheitstechnik GmbH & Co KG, 4040 Neuss | Multiplexed alarm signalling system |
DE3225106C2 (en) * | 1982-07-05 | 1985-04-11 | Siemens AG, 1000 Berlin und 8000 München | Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system |
JPS5977594A (en) * | 1982-10-27 | 1984-05-04 | ニツタン株式会社 | Fire alarm system |
US4543567A (en) * | 1983-04-14 | 1985-09-24 | Tokyo Shibaura Denki Kabushiki Kaisha | Method for controlling output of alarm information |
JPS59201193A (en) * | 1983-04-30 | 1984-11-14 | 松下電工株式会社 | Fire alarm system |
US4549168A (en) * | 1983-10-06 | 1985-10-22 | Ryszard Sieradzki | Remote station monitoring system |
US4622538A (en) * | 1984-07-18 | 1986-11-11 | Otis Elevator Company | Remote monitoring system state machine and method |
DE3622800A1 (en) * | 1985-07-26 | 1987-01-29 | Mitec Moderne Ind Gmbh | Measuring arrangement with a multiplicity of measuring units |
WO1987003988A1 (en) * | 1985-12-24 | 1987-07-02 | Monitronix Limited | Electronic sequential fault finding system |
JPS62269293A (en) * | 1986-05-19 | 1987-11-21 | 石井 弘允 | Fire alarm |
US4710750A (en) * | 1986-08-05 | 1987-12-01 | C & K Systems, Inc. | Fault detecting intrusion detection device |
US4933668A (en) * | 1986-09-29 | 1990-06-12 | Shepherd Intelligence Systems, Inc. | Aircraft security system |
US5063371A (en) * | 1986-09-29 | 1991-11-05 | Oyer Michael W | Aircraft security system |
US4916432A (en) * | 1987-10-21 | 1990-04-10 | Pittway Corporation | Smoke and fire detection system communication |
CA2113026A1 (en) * | 1993-01-28 | 1994-07-29 | Paul Michael Hoseit | Methods and apparatus for intrusion detection having improved immunity to false alarms |
DE19651172C2 (en) * | 1996-12-10 | 2003-08-28 | Dag Auerbach | monitoring system |
GB2370118B (en) | 1999-05-07 | 2003-10-22 | Honeywell Inc | Glass-break detector and method of alarm discrimination |
US7680283B2 (en) * | 2005-02-07 | 2010-03-16 | Honeywell International Inc. | Method and system for detecting a predetermined sound event such as the sound of breaking glass |
CN102698398A (en) * | 2012-05-18 | 2012-10-03 | 苏州万图明电子软件有限公司 | Intelligent extinguishment control system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2262823A1 (en) * | 1972-12-22 | 1974-10-10 | Controlmatic Ges F Ind Automat | ALARM AND MESSAGE SYSTEM |
DE2341087A1 (en) * | 1973-08-14 | 1975-02-27 | Siemens Ag | Automatic fire detector system - with number of detectors connected to central control with identification of each detector |
DE2641489A1 (en) * | 1976-09-15 | 1978-03-16 | Siemens Ag | PROCEDURE FOR TRANSFERRING DIFFERENT ANALOGUE MEASURED VALUES TO A CONTROL UNIT OF SEVERAL FIRE DETECTORS LOCATING IN A CHAIN ON A SIGNAL LINE |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1284470C2 (en) * | 1967-01-25 | 1978-08-31 | Standard Elektrik Lorenz Ag, 7000 Stuttgart-Zuffenhausen | SCANNING DEVICE FOR CENTRALLY CONTROLLED REMOTE COMMUNICATION, IN PARTICULAR TELEPHONE SWITCHING SYSTEMS |
DE1964699B2 (en) * | 1969-12-23 | 1972-04-13 | Siemens AG, 1000 Berlin u. 8000 München | ARRANGEMENT FOR EVALUATING PERIODICALLY REQUESTED REPORTING STATES |
IT980651B (en) * | 1973-03-21 | 1974-10-10 | Cselt Centro Studi Lab Telecom | CENTRALIZED ELECTRONIC SWITCHING SYSTEM FOR TELEPHONE AND DATA SIGNALS AT HIGH SPEED |
SE391250B (en) * | 1974-11-26 | 1977-02-07 | Saab Scania Ab | SECURITY SYSTEM, INCLUDING A CENTRAL UNIT, SOMŸVIA A COMMUNICATION CHANNEL IS CONNECTED WITH SEVERAL LOCAL TERMINAL UNITS |
GB1556062A (en) * | 1975-08-28 | 1979-11-21 | Sumitomo Chemical Co | Centralised monitoring system for gas leakage |
US4067008A (en) * | 1975-12-29 | 1978-01-03 | Denver Fire Reporter & Protective Co., Inc. | Multiplex interrogation system using pulses |
-
1978
- 1978-04-19 DE DE2817089A patent/DE2817089B2/en not_active Ceased
-
1979
- 1979-04-04 EP EP79101030A patent/EP0004911A1/en not_active Withdrawn
- 1979-04-12 US US06/029,392 patent/US4222041A/en not_active Expired - Lifetime
- 1979-04-17 AT AT0283679A patent/AT373407B/en not_active IP Right Cessation
- 1979-04-19 JP JP4847979A patent/JPS54142095A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2262823A1 (en) * | 1972-12-22 | 1974-10-10 | Controlmatic Ges F Ind Automat | ALARM AND MESSAGE SYSTEM |
DE2341087A1 (en) * | 1973-08-14 | 1975-02-27 | Siemens Ag | Automatic fire detector system - with number of detectors connected to central control with identification of each detector |
DE2641489A1 (en) * | 1976-09-15 | 1978-03-16 | Siemens Ag | PROCEDURE FOR TRANSFERRING DIFFERENT ANALOGUE MEASURED VALUES TO A CONTROL UNIT OF SEVERAL FIRE DETECTORS LOCATING IN A CHAIN ON A SIGNAL LINE |
Non-Patent Citations (2)
Title |
---|
CONTROL AND INSTRUMENTATION, Band 10, Nr. 1, Januar 1978, London "Alarms with TDC 2000" Seiten 28, 29, 31. * Seite 28 * * |
FUNKSCHAU, Heft 26, 1976, Munchen H. KLUTH, "Wachsame Elektronik" Seiten 1153 bis 1156. * Seite 1155, mittlere Spalte * * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0066200A1 (en) * | 1981-05-26 | 1982-12-08 | Siemens Aktiengesellschaft | Method and device for revision in a hazard, particularly a fire alarm system |
EP0067339A2 (en) * | 1981-06-12 | 1982-12-22 | Siemens Aktiengesellschaft | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems |
EP0067339A3 (en) * | 1981-06-12 | 1983-09-28 | Siemens Aktiengesellschaft | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems |
EP0070449A1 (en) * | 1981-07-10 | 1983-01-26 | Siemens Aktiengesellschaft | Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation |
EP0091143A2 (en) * | 1982-04-07 | 1983-10-12 | Motorola Israel Limited | Signal processing unit |
EP0091143A3 (en) * | 1982-04-07 | 1984-03-28 | Motorola Israel Limited | Signal processing unit |
EP0098760A2 (en) * | 1982-06-09 | 1984-01-18 | Roger Amar | Monitor setting method and monitoring arrangement for a site to be protected |
EP0098760A3 (en) * | 1982-06-09 | 1987-05-27 | Roger Amar | Monitor setting method and monitoring arrangement for a site to be protected |
EP0101182A3 (en) * | 1982-07-16 | 1987-01-07 | Kabushiki Kaisha Toshiba | Piping system surveillance apparatus |
EP0101182A2 (en) * | 1982-07-16 | 1984-02-22 | Kabushiki Kaisha Toshiba | Piping system surveillance apparatus |
FR2535090A1 (en) * | 1982-10-22 | 1984-04-27 | Nittan Co Ltd | PHOTOELECTRIC DETECTOR TERMINAL OF SMOKE |
US4598271A (en) * | 1983-03-04 | 1986-07-01 | Cerberus Ag | Circuit arrangement for monitoring noise levels of detectors arranged in an alarm installation |
EP0121048A1 (en) * | 1983-03-04 | 1984-10-10 | Cerberus Ag | Circuit arrangement for the interference level control of detectors, arranged in a danger detection device |
AT397731B (en) * | 1984-06-29 | 1994-06-27 | Hochiki Co | FIRE ALARM SYSTEM |
GB2193590A (en) * | 1986-07-17 | 1988-02-10 | Nittan Co Ltd | Environmental abnormality alarm apparatus |
GB2193590B (en) * | 1986-07-17 | 1990-07-18 | Nittan Co Ltd | Environmental abnormality alarm apparatus |
WO1991020065A2 (en) * | 1990-06-19 | 1991-12-26 | Dylec Ltd. | Status-reporting device |
WO1991020065A3 (en) * | 1990-06-19 | 1992-03-05 | Dylec Ltd | Status-reporting device |
US5463375A (en) * | 1990-06-19 | 1995-10-31 | Dylec Ltd. | Status-reporting device for reporting a predetermined temperature state, temperature sensor suitable for such a status-reporting device, and process for the production of such a temperature sensor |
EP0521180A1 (en) * | 1991-07-02 | 1993-01-07 | Siemens Aktiengesellschaft | Danger signalling devices connected in a loop |
Also Published As
Publication number | Publication date |
---|---|
DE2817089A1 (en) | 1979-10-25 |
ATA283679A (en) | 1983-05-15 |
US4222041A (en) | 1980-09-09 |
JPS6239476B2 (en) | 1987-08-24 |
DE2817089B2 (en) | 1980-12-18 |
JPS54142095A (en) | 1979-11-05 |
AT373407B (en) | 1984-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0004911A1 (en) | Annunciator of danger | |
DE3236812C2 (en) | Telecontrol system | |
DE2658313C2 (en) | Programmable logic controller | |
EP0067339A2 (en) | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems | |
DE19960422C1 (en) | Faulty detector detection method for centralized alarm system e.g. fire alarm system, uses current-modulated data supplied by interrogated detectors to central evaluation point with controlled switch opening for fault location | |
CH664637A5 (en) | METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM. | |
EP0004909B1 (en) | Annunciator of danger | |
DE4216242C2 (en) | Identification of sensors / actuators in bus systems | |
DE69305383T2 (en) | Sensor connection system | |
EP2413554B1 (en) | Device for manipulating interface signals | |
EP0658831B1 (en) | Computer aided design method for a programmable automation system | |
EP0267528A2 (en) | Digital data transmission system with adressable repeaters having fault localization devices | |
CH660927A5 (en) | MONITORING SYSTEM. | |
EP3557598A1 (en) | Safety switch | |
EP0295593B1 (en) | Individual identification | |
DE10296915T5 (en) | Security Network System | |
EP0809361B1 (en) | Electronic switching device and circuit arrangement for monitoring a technical installation | |
DE3614692C2 (en) | ||
DE2817053C2 (en) | Alarm system | |
DE19533787A1 (en) | Method of indicating operating state and/or information about steps for starting up or restarting a technical system which performs a stepwise process | |
EP0098554A1 (en) | Method and device for automatically demanding signal measure values and signal identification in an alarm installation | |
EP0212106B1 (en) | Measured value transmission method | |
EP0450119B1 (en) | Device for connecting additional elements to an existing alarm line | |
DE3225032C2 (en) | Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system | |
DE2903383C2 (en) | Separate test device for addressable circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH FR GB IT NL SE |
|
17P | Request for examination filed | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19820428 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MOSER, OTTO WALTER, DIPL.-ING. Inventor name: TOMKEWITSCH, ROMUALD VON, DIPL.-ING. |