EP0004065B1 - Apparatus for focussing and analyzing a charged particle beam - Google Patents

Apparatus for focussing and analyzing a charged particle beam Download PDF

Info

Publication number
EP0004065B1
EP0004065B1 EP19790100669 EP79100669A EP0004065B1 EP 0004065 B1 EP0004065 B1 EP 0004065B1 EP 19790100669 EP19790100669 EP 19790100669 EP 79100669 A EP79100669 A EP 79100669A EP 0004065 B1 EP0004065 B1 EP 0004065B1
Authority
EP
European Patent Office
Prior art keywords
potential
lens
diaphragm
fact
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19790100669
Other languages
German (de)
French (fr)
Other versions
EP0004065A2 (en
EP0004065A3 (en
Inventor
Friedrich Prof.Dr. Rüdenauer
Wolfgang Dr. Steiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oesterreichisches Forschungszentrum Seibersdorf GmbH
Original Assignee
Oesterreichisches Forschungszentrum Seibersdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oesterreichisches Forschungszentrum Seibersdorf GmbH filed Critical Oesterreichisches Forschungszentrum Seibersdorf GmbH
Publication of EP0004065A2 publication Critical patent/EP0004065A2/en
Publication of EP0004065A3 publication Critical patent/EP0004065A3/en
Application granted granted Critical
Publication of EP0004065B1 publication Critical patent/EP0004065B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Definitions

  • the invention relates to a device for focusing and analyzing a charged corpuscular beam, in particular a secondary ion beam, the electrical potentials of the electron or ion-optical components being controlled as a function of the desired mean energy and the energy bandwidth of the corpuscular beam to be selected.
  • An ion energy spectrometer has already become known - FR-A-2 317 650 - in which the ion beam passes through an electrostatic focusing lens, an entrance aperture, a sector field lens with cylindrical sector electrodes, an exit aperture and a correction lens and is then fed to a detector.
  • a similar ion energy spectrometer is described by Wieseman et al. (Journal of Applied Physics Vo. 48/7 July 1977), in which, however, no correction lens is arranged between the outlet aperture and the detector.
  • the invention has set itself the goal of a device for focusing and analyzing a charged corpuscular beam, in which, after the device has been adjusted, the average energy E o or this energy bandwidth AE of the particles to be analyzed is set by setting only two potentials which components with greater manufacturing tolerances than those permitted by the prior art are used and in which a simpler construction compared to the prior art with a shorter construction length is achieved by focusing at deflection angles which are smaller than in the prior art.
  • the device according to the invention for focusing and analyzing a charged corpuscular beam in particular a secondary ion beam, one or two electrostatic focusing lenses, an entrance aperture, an electrostatic sector field lens, an exit aperture, a correction lens and a detector being arranged in the direction of the beam path, are characterized in that In the beam path of the charged corpuscular beam to be analyzed, an electrostatic projection lens with at least two, preferably three, electrically polarizable diaphragms with openings lying on one axis are arranged between the sector field lens and the exit diaphragm.
  • a sector field lens with a projection lens with the small deflection angle in the sector field lens achieves the same good analysis results as can be achieved with sector field lenses without projection lenses only with a large deflection angle. In this way, the construction length is reduced and the geometric shape is improved, so that the disadvantages of the devices corresponding to the prior art using sector field lenses with a large deflection angle are avoided.
  • a stigmatically focussing sector field lens can be used as the sector field lens, which is formed from negative or positively polarizable concentric sector electrodes, consisting of cylinder jacket sections, and from the space between which laterally covering two correction plates.
  • the arrangement of such a lens makes it particularly easy to correct geometric manufacturing inaccuracies of the system by adapting the potential of the correction plates, and at the same time the cylinder shape of the electrodes enables particularly simple manufacture of the device according to the invention.
  • both the inlet and outlet diaphragms are arranged interchangeably, a particularly high degree of adaptation to the various experimental requirements can be achieved, since particles with a larger range of the initial speed and with different energy bandwidths can be fed to the analysis, with the maximum particle flow transmission can be achieved.
  • the disturbances of the particle paths when entering and exiting the sector lens are kept to a minimum . If the first lens seen in the direction of the beam path in a projection lens with two diaphragms and the middle aperture in a projection lens with three diaphragms has a larger opening (e.g.
  • the transmission of this lens is higher than with an opening of the same size or smaller, with three diaphragms no longer having an influence on the mode of operation of the projection lens by the sector field lens.
  • the sample to be examined can be kept particularly easily at earth potential, with no loss of energy bandwidth in the charged particles to be detected and the focusing and positioning of the primary beam emerging from the primary beam source on the sample is particularly simple and also the simultaneous detection of positive and negative particles of the secondary particles emitted by the sample, e.g. is possible in two identical arrangements according to the invention.
  • the principle of the voltage supply for the operation of the device according to the invention is that the selection of the corpuscular beam to be masked by the device for the analysis with particles of energy Eö Z E is made by setting only two variable potentials A and B of the voltage supply.
  • All of the electrode potentials required for the operation of the device are derived from these two potentials A and B by means of operational amplifiers assigned, possibly summing, the device-specific potential adaptations which can be calculated approximately from the geometry of the electron- or ion-optical components by means of potentiometers so that the registered particle flow becomes a maximum in each case.
  • This potential adjustment is independent of the particle energy, so that after the adjustment has taken place, the desired energy E o and the desired energy bandwidth ⁇ E of the corpuscular beam to be masked out for the analysis are selected by the potential A without further adjustment.
  • the potential values correspond to those potentials that are required to accelerate an electron to the desired energy E. or AE.
  • the potential required for adjusting the potential of the detector or, in the case of a quadrupole mass spectrometer, the potential required for adjusting the potential of the quadrupole mass spectrometer axis is derived from the potential A and a third potential C by means of a summing operational amplifier, the device-specific potential adjustment being carried out in such a way that that the mass resolution of the quadrupole is an optimum.
  • This adaptation also takes place independently of the particle energy.
  • FIG. 1 shows, for example, a schematic representation of an ion microsensor and FIG. 2 shows, for example, a block diagram for the voltage supply to the device and the detector.
  • the ion microanalyser shown in Fig. 1 has an ion emitting unit 1 which is made from an ion source, e.g. a duoplasmatron, an objective lens and deflection plates for deflecting the ion beam can be constructed on the surface of the sample 2 to be examined.
  • an ion source e.g. a duoplasmatron
  • an objective lens and deflection plates for deflecting the ion beam can be constructed on the surface of the sample 2 to be examined.
  • the direction of the primary ion beam and secondary ion beam is shown by arrows a and b, the exact course being shown by a dash-dotted line.
  • a sector lens 6 is arranged, which has 2 concentric cylindrical electrodes 7 and 8 and two correction plates 9 and 10. The distance between the sector electrodes with a cylindrical curvature is greater than the diameter of the circular opening of the first diaphragm 12 of the projection lens 11 seen in the direction of the beam path b.
  • the projection lens 11 has three diaphragms 12, 13 and 14 which exit from the sector lens 6 Ion beam focused on the interchangeable exit aperture 15. All other ions are blocked by the exit aperture.
  • a correction lens 16 is arranged between the exchangeable exit aperture 15 and the detector 17.
  • the detector is a quadrupole mass spectrometer and analyzes the ions emerging from the exit aperture 15 and the correction lens 16 according to their atomic weight.
  • an electron multiplier can be used as a detector, e.g. for generating material contrasts in scanning electron microscope images is common.
  • the sector field lens 6 selects a sharp range of secondary ions with an energy between E o - ⁇ E 2 and E o + ⁇ E 2, an initial energy between 0 eV and 30 eV and an energy bandwidth between 1 eV and 50 eV usually being selected. If the device is to be made particularly compact, the secondary ion beam emerges from the sector lens in a divergent manner. A convergent beam is then formed in the projection lens 11 from this divergent beam such that ions in the energy range mentioned above can pass through the opening into the exit aperture 15 and reach the detector 17. Ions of all other energies are retained by the exit aperture 15.
  • the schematic block diagram shown in FIG. 2 shows the control of the various potentials for lenses and diaphragms.
  • A, B and C are variable voltage sources that can be reversed and in which E o , AE and the adaptation to the quadrupole can be set.
  • the Power is supplied to the focusing lenses 3 and 4 via the amplifier units V 1 and V 2 , the amplifiers being able to be set via the potentiometers P 1 and P 2 so that the potentials of the focusing lenses 3 and 4 can be set in accordance with equations 1 and 2.
  • the constants k l and k 2 are chosen such that the maximum current of the secondary ions from sample 2 reaches the detector. Once these constants have been determined, they remain valid for all values of E o .
  • the sector field lens has a triple supply of voltage, the voltage depending on E o and ⁇ E.
  • the amplifier units V 3 and V 5 each supply the cylindrically curved sector electrodes, the amplifiers and the potentiometers P 3 and P 5 being set such that the potentials for the sector field electrodes are as follows: where k 3 and k 5 are empirical constants that must be selected so that a maximum of the corresponding ions reach the detector at the selected energy and energy bandwidth.
  • the potential of the correction plates 9 and 10 of the sector field lens is controlled via the amplifier unit V 4 and the potentiometer P 4 so that it lies between U 3 and U 5 .
  • the potential is chosen exactly so that in particular the ion beam is focused in the direction perpendicular to the plane of the drawing.
  • the potential of the central diaphragm 13 of the projection lens 11 is regulated via the amplifier unit V 6 and the potentiometer P 6 in such a way that a potential U 6 according to equation 5 is maintained.
  • k 6 is an empirically determined constant that must be selected so that the projection lens focuses the ion beam emerging from the sector lens onto the exit aperture.
  • the power supply to the inlet and outlet diaphragm is carried out by the amplifier unit V 7 and the potentiometer P 7 .
  • the regulation takes place in such a way that a potential U 7 is maintained, U 7 having to lie between U 3 and U 5 .
  • the correction lens is also supplied with voltage via an amplifier unit, specifically V 8 and potentiometer P e , a potential U 8 being maintained according to the following equation.
  • V 8 is an empirical constant that must be chosen so that the most favorable solid angle for the ion beam is achieved for a given detector. This solid angle differs from detector to detector and must also be determined empirically.
  • the quadrupole is supplied with voltage via the amplifier unit V 9 and the potentiometer P 9 in such a way that the quadrupole axis receives the following voltage.
  • kg represents an empirical constant of the quadrupole, which must be chosen such that a maximum mass resolution of the quadrupole is given for a desired energy E o and energy bandwidth ⁇ E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die Erfindung bezieht sich auf eine Einrichtung zur Fokussierung und zur Analyse eines geladenen Korpuskularstrahls, insbesondere eines Sekundärionenstrahls, wobei die elektrischen Potentiale der elektronen- bzw. ionenoptischen Komponenten in Abhängigkeit von der erwünschten mittleren Energie und der Energiebandbreite des zu selektierenden Korpuskularstrahls gesteuert werden.The invention relates to a device for focusing and analyzing a charged corpuscular beam, in particular a secondary ion beam, the electrical potentials of the electron or ion-optical components being controlled as a function of the desired mean energy and the energy bandwidth of the corpuscular beam to be selected.

Es ist bereits ein lonenenergiespektrometer bekannt geworden - FR-A-2 317 650 -, bei dem der lonenstrahl eine elektrostatische Fokussierungslinse, eine Eintrittsblende, eine Sektorfeldlinse mit zylindrischen Sektorelektroden, eine Austrittsblende und eine Korrekturlinse durchläuft und darauf einem Detektor zugeführt wird. Ein ähnliches lonenenergiespektrometer ist von Wieseman et al. (Journal of Applied Physics Vo. 48/7 Juli 1977) bekannt, in welchem jedoch keine Korrekturlinse zwischen Austrittsblende und Detektor angeordnet ist.An ion energy spectrometer has already become known - FR-A-2 317 650 - in which the ion beam passes through an electrostatic focusing lens, an entrance aperture, a sector field lens with cylindrical sector electrodes, an exit aperture and a correction lens and is then fed to a detector. A similar ion energy spectrometer is described by Wieseman et al. (Journal of Applied Physics Vo. 48/7 July 1977), in which, however, no correction lens is arranged between the outlet aperture and the detector.

Im prinzipiellen Aufbau gleiche, jedoch als Elektronenenergiespektrometer ausgebildete Anlagen werden von D. Andrick et al. (Zeitschrift für Physik, Vol. 214, 1968 und M. Eyb und H. Hofman (Journal of Physics Vol. 8, No. 7 1975) beschrieben, in denen jedoch an Stelle einer Sektorfeldlinse zur Erreichung eines besseren Energieauflösungsvermögens zwei Sektorfeldlinsen hintereinander angeordnet sind.The basic structure of the same systems, but designed as an electron energy spectrometer, is described by D. Andrick et al. (Zeitschrift für Physik, Vol. 214, 1968 and M. Eyb and H. Hofman (Journal of Physics Vol. 8, No. 7 1975), in which, instead of a sector field lens, two sector field lenses are arranged one behind the other to achieve better energy resolution .

Weiters sind ähnliche Anlagen mit Sektorfeldlinsen mit kugelförmigen Sektorelektroden bekannt.Similar systems with sector field lenses with spherical sector electrodes are also known.

Derartige Anordnungen bedingen jedoch einen relativ grossen Platzaufwand, da die erforderliche Fokussierungswirkung der in dieser Anordnung verwendeten Sektorfeldlinsen nur bei grossem Ablenkwinkel (z.B. 90°) erzielt wird.Such arrangements, however, require a relatively large amount of space, since the required focusing effect of the sector field lenses used in this arrangement is only achieved with a large deflection angle (e.g. 90 °).

Durch den erforderlichen grossen Ablenkwinkel und die relativ grosse Baulänge resultieren in der Praxis mehrfache Nachteile, wie:

  • - erschwerter Einbau in bereits bestehende Anlagen bzw. erhöhter konstruktiver Aufwand auch bei Neukonstruktionen,
  • - grössere Anforderungen an die UH-Vakuumanlage in Hinblick auf Pumpensaugleistung, Verbindungsflanschgrössen, etc.,
  • - Verschlechterung der Bedingungen für die Erzielung bzw. Aufrechterhaltung des UH-Vakuums aufgrund der Vergrösserung der inneren Oberfläche des Rezipienten,
  • - Erschwerung des oft erforderlichen Ausbaues der Anlage mit Zusätzen, wie optische Beobachtungseinrichtungen, lonenstrahlätzvorrichtung, beweglicher Probentisch, Probenmanipulationseinrichtungen, Heizvorrichtung für Proben, u.s.w.
In practice, the large deflection angle required and the relatively large overall length result in several disadvantages, such as:
  • - difficult installation in existing systems or increased design effort even with new designs,
  • - Greater demands on the UH vacuum system with regard to pump suction power, connecting flange sizes, etc.,
  • - deterioration of the conditions for achieving or maintaining the UH vacuum due to the enlargement of the inner surface of the recipient,
  • - Difficulty of the often required expansion of the system with additives such as optical observation devices, ion beam etching device, movable sample table, sample manipulation devices, heating device for samples, etc

Es sind Einrichtungen bekannt geworden, bei welchen über zwei Einstellgrössen, die der erwünschten mittleren Energie der Elektronen und deren Energiebandbreite entsprechen, eine Steuerung der Potentiale sowohl der elektrostatischen Linsen als auch der Ein- und Austrittsblende erfolgt, so dass in den Detektor lediglich Elektronen mit bestimmter mittlerer Energie und Energiebandbreite eintreten. Der Nachteil bei diesem Verfahren ist, dass die energiemässige Selektierung über eine kugelkalottenförmige Sektorfeldlinse erfolgt, die besonders hohe Ansprüche an die Fertigungsgenauigkeit stellt. Wird diese nicht eingehalten, so kann die für die gewünschte hohe Energieauflösung des Analysators erforderliche Fokussierung durch Potentialveränderungen alleine nicht erreicht werden, sondern es müssen auch Nachjustierungen der gesamten Anordnung durchgeführt werden.Devices have become known in which the potentials of both the electrostatic lenses and the inlet and outlet diaphragm are controlled by means of two setting variables which correspond to the desired mean energy of the electrons and their energy bandwidth, so that only electrons with a specific one are introduced into the detector medium energy and energy bandwidth. The disadvantage of this method is that the energy-based selection takes place via a spherical-spherical sector field lens, which places particularly high demands on the manufacturing accuracy. If this is not adhered to, the focusing required for the desired high energy resolution of the analyzer cannot be achieved by changes in potential alone, but readjustments of the entire arrangement must also be carried out.

Bei Verwendung von Sektorfeldlinsen mit zylindrischen Sektorelektroden, welche mechanisch mit grosser Genauigkeit gefestigt werden können, werden zu ihrer genauen Funktion zusätzlich zwei seitlich angebrachte Korrekturplatten benötigt, die ebenfalls, so wie die zylindrischen Elektroden polarisiert werden müssen, so dass eine weitere Spannungsversorgung erforderlich ist. Weitere Spannungsversorgungen werden auch dann erforderlich, wenn zur Erhöhung der Empfindlichkeit der Anlage eine Korrekturlinse vor dem Detektor angeordnet ist und die Detektorachse auf ein geeignetes Potential gebracht wird.When using sector field lenses with cylindrical sector electrodes, which can be mechanically fixed with great accuracy, two side-mounted correction plates are required for their precise function, which, like the cylindrical electrodes, must also be polarized, so that a further voltage supply is required. Additional power supplies are also required if a correction lens is arranged in front of the detector to increase the sensitivity of the system and if the detector axis is brought to a suitable potential.

Die Erfindung hat sich eine Einrichtung zur Fokussierung und zur Analyse eines geladenen Korpuskularstrahls zum Ziel gesetzt, bei welcher nach erfolgtem Einjustieren der Einrichtung das Einstellen der mittleren Energie Eo bzw. dieser Energiebandbreite AE der zu analysierenden Teilchen durch Einstellen von nur zwei Potentialen erfolgt, bei welcher Bauteile mit grösseren Fertigungstoleranzen als nach dem Stand der Technik zulässig Verwendung finden und bei welcher eine gegenüber dem Stand der Technik einfachere Konstruktion mit kürzerer Konstruktionslänge durch Fokussierung bei gegenüber dem Stand der Technik kleineren Ablenkwinkeln erzielt wird.The invention has set itself the goal of a device for focusing and analyzing a charged corpuscular beam, in which, after the device has been adjusted, the average energy E o or this energy bandwidth AE of the particles to be analyzed is set by setting only two potentials which components with greater manufacturing tolerances than those permitted by the prior art are used and in which a simpler construction compared to the prior art with a shorter construction length is achieved by focusing at deflection angles which are smaller than in the prior art.

Die erfindungsgemässe Einrichtung zur Fokussierung und zur Analyse eines geladenen Korpuskularstrahls, insbesondere eines Sekundärionenstrahls, wobei in Richtung des Strahlengangs eine, oder zwei elektrostatische Fokussierungslinsen eine Eintrittsblende, eine elektrostatische Sektorfeldlinse, eine Austrittsblende, eine Korrekturlinse und ein Detektor angeordnet sind, ist dadurch gekennzeichnet, dass im Strahlengang des zu analysierenden geladenen Korpuskularstrahls zwischen der Sektorfeldlinse und der Austrittsblende eine elektrostatische Projektionslinse mit zumindest zwei, vorzugsweise drei elektrisch polarisierbaren Blenden mit auf einer Achse liegenden Öffnungen angeordnet sind.The device according to the invention for focusing and analyzing a charged corpuscular beam, in particular a secondary ion beam, one or two electrostatic focusing lenses, an entrance aperture, an electrostatic sector field lens, an exit aperture, a correction lens and a detector being arranged in the direction of the beam path, are characterized in that In the beam path of the charged corpuscular beam to be analyzed, an electrostatic projection lens with at least two, preferably three, electrically polarizable diaphragms with openings lying on one axis are arranged between the sector field lens and the exit diaphragm.

Durch diese erfindungsgemässe Kombination einer Sektorfeldlinse mit einer Projektionslinse werden bei kleinem Ablenkwinkel in der Sektorfeldlinse gleich gute Analysenergebnisse erzielt, wie sie mit Sektorfeldlinsen ohne Projektionslinsen nur bei grossem Ablenkwinkel erzielt werden. Hiedurch wird die Konstruktionslänge verringert und die geometrische Form verbessert, so dass die Nachteile der dem Stand der Technik entsprechenden Geräte mit Verwendung von Sektorfeldlinsen mit grossem Ablenkwinkel vermieden werden.Through this combination according to the invention A sector field lens with a projection lens with the small deflection angle in the sector field lens achieves the same good analysis results as can be achieved with sector field lenses without projection lenses only with a large deflection angle. In this way, the construction length is reduced and the geometric shape is improved, so that the disadvantages of the devices corresponding to the prior art using sector field lenses with a large deflection angle are avoided.

Zur weiteren Ausbildung der Erfindung kann als Sektorfeldlinse eine stigmatisch fokussierende Sektorfeldlinse verwendet werden, die aus negativ bzw. positiv polarisierbaren konzentrischen Sektorelektroden, bestehend aus Zylindermantelabschnitten, und aus deren Zwischenraum seitlich abdeckenden zwei Korrekturplatten gebildet ist. Durch die Anordnung einer derartigen Linse können geometrische Fertigungs-Ungenauigkeiten des Systems durch Anpassung des Potentials der Korrekturplatten besonders leicht korrigiert werden, wobei gleichzeitig durch die Zylinderform der Elektroden eine besonders einfache Herstellung der erfindungsgemässen Einrichtung ermöglicht wird.To further develop the invention, a stigmatically focussing sector field lens can be used as the sector field lens, which is formed from negative or positively polarizable concentric sector electrodes, consisting of cylinder jacket sections, and from the space between which laterally covering two correction plates. The arrangement of such a lens makes it particularly easy to correct geometric manufacturing inaccuracies of the system by adapting the potential of the correction plates, and at the same time the cylinder shape of the electrodes enables particularly simple manufacture of the device according to the invention.

Sind sowohl die Eintritts- als auch die Austrittsblende auswechselbar angeordnet, so ist eine besonders hohe Anpassungsmöglichkeit an die verschiedenen experimentellen Erfordernisse erreichbar, da Teilchen mit einem grösseren Bereich der Anfangsgeschwindigkeit und mit verschiedener Energiebandbreite der Analyse zugeführt werden können, wobei in den jeweils festgelegten Bereich die maximale Teilchenstromtransmission erreicht werden kann.If both the inlet and outlet diaphragms are arranged interchangeably, a particularly high degree of adaptation to the various experimental requirements can be achieved, since particles with a larger range of the initial speed and with different energy bandwidths can be fed to the analysis, with the maximum particle flow transmission can be achieved.

Ist der Abstand der Sektorelektroden mit zylindrischer Krümmung voneinander grösser als der Durchmesser der kreisförmigen Öffnung bzw. als die Spaltbreite der in Richtung des Strahlengangs gesehenen ersten Blende der Projektionslinse, so sind die Störungen der Teilchenbahnen beim Ein- und Austritt aus der Sektorlinse auf ein Minimum gehalten. Weist bei einer Projektionslinse mit zwei Blenden die erste in Richtung des Strahlengangs gesehene und bei einer Projektionslinse mit drei Blenden die mittlere eine grössere Öffnung (z.B. kreis- oder spaltförmig) auf als die von ihr elektrisch isolierten benachbarten Blenden, so ist die Transmission dieser Linse höher als bei gleichgrossen oder kleinerer Öffnung, wobei bei drei Blenden eine Beeinflussung der Wirkungsweise der Projektionslinse durch die Sektorfeldlinse nicht mehr gegeben ist.If the distance of the sector electrodes with a cylindrical curvature from one another is greater than the diameter of the circular opening or the gap width of the first aperture of the projection lens viewed in the direction of the beam path, the disturbances of the particle paths when entering and exiting the sector lens are kept to a minimum . If the first lens seen in the direction of the beam path in a projection lens with two diaphragms and the middle aperture in a projection lens with three diaphragms has a larger opening (e.g. circular or slit-shaped) than the neighboring diaphragms electrically insulated from it, the transmission of this lens is higher than with an opening of the same size or smaller, with three diaphragms no longer having an influence on the mode of operation of the projection lens by the sector field lens.

Wird als Detektor ein Quadrupolmassenspektrometer eingesetzt, so kann die zu untersuchende Probe besonders leicht auf Erdpotential gehalten werden, wobei keine Einbusse an Energiebandbreite bei den nachzuweisenden geladenen Teilchen resultiert und die Fokussierung und Positionierung des aus der Primärstrahlquelle austretenden Primärstrahls auf die Probe besonders einfach ist und auch der simultane Nachweis von positiven und negativen Teilchen der von der Probe ausgesandten Sekundärteilchen, z.B. in zwei gleichen erfindungsgemässen Anordnungen möglich wird.If a quadrupole mass spectrometer is used as the detector, the sample to be examined can be kept particularly easily at earth potential, with no loss of energy bandwidth in the charged particles to be detected and the focusing and positioning of the primary beam emerging from the primary beam source on the sample is particularly simple and also the simultaneous detection of positive and negative particles of the secondary particles emitted by the sample, e.g. is possible in two identical arrangements according to the invention.

Das Prinzip der Spannungsversorgung für den Betrieb der erfindungsgemässen Einrichtung besteht darin, dass die Auswahl des jeweils durch die Einrichtung für die Analyse auszublendenden Korpuskularstrahls mit Teilchen der Energie Eö ZE durch die Einstellung von nur zwei variablen Potentialen A und B der Spannungsversorgung erfolgt.The principle of the voltage supply for the operation of the device according to the invention is that the selection of the corpuscular beam to be masked by the device for the analysis with particles of energy Eö Z E is made by setting only two variable potentials A and B of the voltage supply.

Sämtliche für den Betrieb der Einrichtung erforderliche Elektrodenpotentiale werden aus diesen beiden Potentialen A und B mittels den Elektroden zugeordneter, gegebenenfalls summierender Operationsverstärker abgeleitet, wobei die gerätespezifischen, nährungsweise aus der Geometrie der elektronen- bzw. ionenoptischen Komponenten berechenbaren Potentialanpassungen durch Potentiometer so erfolgt, dass der registrierte Teilchenstrom jeweils ein Maximum wird. Diese Potentialanpassung ist von der Teilchenenergie unabhängig, so dass nach erfolgter Anpassung ohne weiteres Nachjustieren durch das Potential A die jeweils gewünschte Energie Eo, und durch das Potential B die gewünschte Energiebandbreite ΔE des für die Analyse auszublendenden Korpuskularstrahles ausgewählt wird. Die Potentialwerte entsprechen hiebei jenen Potentialen, die erforderlich sind, um ein Elektron auf die gewünschte Energie E. bzw. AE zu beschleunigen. In gleicher Weise wird das für die Anpassung des Potentials des Detektors bzw. im Falle eines Quadrupolmassenspektrometers das für die Anpassung des Potentials der Quadrupolmassenspektrometerachse notwendige Potential aus dem Potential A und einem dritten Potential C mittels eines summierenden Operationsverstärkers abgeleitet, wobei die gerätespezifische Potentialanpassung so erfolgt, dass die Massenauflösung des Quadrupols ein Optimum beträgt. Auch diese Anpassung erfolgt unabhängig von der Teilchenenergie.All of the electrode potentials required for the operation of the device are derived from these two potentials A and B by means of operational amplifiers assigned, possibly summing, the device-specific potential adaptations which can be calculated approximately from the geometry of the electron- or ion-optical components by means of potentiometers so that the registered particle flow becomes a maximum in each case. This potential adjustment is independent of the particle energy, so that after the adjustment has taken place, the desired energy E o and the desired energy bandwidth ΔE of the corpuscular beam to be masked out for the analysis are selected by the potential A without further adjustment. The potential values correspond to those potentials that are required to accelerate an electron to the desired energy E. or AE. In the same way, the potential required for adjusting the potential of the detector or, in the case of a quadrupole mass spectrometer, the potential required for adjusting the potential of the quadrupole mass spectrometer axis is derived from the potential A and a third potential C by means of a summing operational amplifier, the device-specific potential adjustment being carried out in such a way that that the mass resolution of the quadrupole is an optimum. This adaptation also takes place independently of the particle energy.

Im einzelnen werden die Elektrodenpotentiale aus dem Potential A, bzw. aus dem Potential B mittels Operationsverstärker und der Rückkoppelungspotentiometer nach folgenden Bedingungen eingestellt, wobei durch Justieren des jeweiligen Potentiometers die von der Teilchenenergie und Energiebandbreite unabhängigen Gerätekonstanten k; so eingeteilt wird, dass der zur Analyse ausgewählte Teilchenstrom ein Maximum wird:

  • - Die Potentiale der gegebenenfalls zwei Fokussierungslinsen (3, 4) werden so eingestellt, dass gilt:
    Figure imgb0001
  • - Die Potentiale der Elektroden der Sektorfeldlinse (6) werden so eingestellt, dass für die Potentiale der beiden Sektorelektroden (7, 8) gilt:
    Figure imgb0002
    und dass für das gemeinsame Potential der beiden Korrekturplatten (9, 10) gilt:
    Figure imgb0003
  • - Das Potential der grösseren Blende (13) der Projektionslinse (11) so eingestellt, dass gilt:
    Figure imgb0004
    und das gemeinsame Potential der gegebenenfalls zwei anderen Blenden (12, 14) der Projektionslinse wird so eingestellt, dass gilt:
    Figure imgb0005
    Die Eintrittsblende (5) und die Austrittsblende (15) befinden sich auf dem gleichen Potential (U7).
  • - Wird eine Korrekturlinse verwendet, so wird deren Potential so eingestellt, dass gilt:
    Figure imgb0006
  • - Wird ein Quadrupolmassenspektrometer als Detektor verwendet, wird das Potential der Achse des Quadrupolmassenspektrometers so eingestellt, dass gilt:
    Figure imgb0007
In detail, the electrode potentials from the potential A or from the potential B are set by means of an operational amplifier and the feedback potentiometer according to the following conditions, the device constants k ; independent of the particle energy and energy bandwidth being adjusted by adjusting the respective potentiometer . is divided so that the particle flow selected for analysis becomes a maximum:
  • - The potentials of the optionally two focusing lenses (3, 4) are set so that the following applies:
    Figure imgb0001
  • - The potentials of the electrodes of the sector field lens (6) are set so that the following applies to the potentials of the two sector electrodes (7, 8):
    Figure imgb0002
    and that for the common potential of the two correction plates (9, 10):
    Figure imgb0003
  • - The potential of the larger aperture (13) of the projection lens (11) is set such that:
    Figure imgb0004
    and the common potential of the optionally two other diaphragms (12, 14) of the projection lens is set such that:
    Figure imgb0005
    The inlet panel (5) and the outlet panel (15) are at the same potential (U7).
  • - If a correction lens is used, its potential is set so that the following applies:
    Figure imgb0006
  • - If a quadrupole mass spectrometer is used as a detector, the potential of the axis of the quadrupole mass spectrometer is set such that:
    Figure imgb0007

Sämtliche Konstanten in obigen Bedingungen sind aus der Geometrie der Komponenten nährungsweise berechenbar, werden jedoch bedingt durch Fertigungstoleranzen und Berechnungsungenauigkeiten nur nährungsweise eingestellt und anschliessend mittels der Potentiometer P1 bis Pg so einjustiert, dass für jede der Konstanten der selektierte Korpuskularstrahl bzw. das Masseauflösungsvermögen des Quadrupols ein Maximum wird. Die Konstanten sind nur geräteabhängig, nicht jedoch Teilchenenergie-abhängig.All constants in the above conditions can be calculated approximately from the geometry of the components, however, due to manufacturing tolerances and calculation inaccuracies, they are only set approximately and then adjusted using potentiometers P 1 to Pg so that for each of the constants the selected corpuscular beam or the mass resolving power of the quadrupole becomes a maximum. The constants are device dependent, not particle energy dependent.

Im folgenden wird die Erfindung anhand des nichteinzuschränkenden Beispiels eines lonenmikroanalysators näher erläutert.The invention is explained in more detail below on the basis of the non-restrictive example of an ion microanalyser.

In Fig. 1 ist beispielsweise eine schematische Darstellung einer lonenmikrosonde und in Fig. 2 beispielsweise ein Blockschaltbild für die Spannungsversorgung der Einrichtung und des Detektors gezeigt.1 shows, for example, a schematic representation of an ion microsensor and FIG. 2 shows, for example, a block diagram for the voltage supply to the device and the detector.

Der in Fig. 1 dargestellte lonenmikroanalysator weist eine ionenemittierende Einheit 1 auf, die aus einer lonenquelle, z.B. einem Duoplasmatron, einer Objektivlinse und Ablenkplatten zur Ablenkung des lonenstrahls auf der Oberfläche der zu untersuchenden Probe 2 aufgebaut sein kann.The ion microanalyser shown in Fig. 1 has an ion emitting unit 1 which is made from an ion source, e.g. a duoplasmatron, an objective lens and deflection plates for deflecting the ion beam can be constructed on the surface of the sample 2 to be examined.

Die Richtung des Primärionenstrahls und Sekundärionenstrahls ist durch die Pfeile a und b gezeigt, wobei der genaue Verlauf durch eine strichpunktierte Linie dargestellt ist. Die von der auf Erdpotential befindlichen Probe 2 emittierten Ionen gelangen zu den elektrostatischen Fokussierungslinsen 3 und 4, die als zylindrische Rohre aufgebaut sind; diese fokussieren bevorzugt alle jene lonen, die eine bestimmte Energie Eo aufweisen, auf die Öffnung der austauschbaren Eintrittsblende 5. Nach dieser ist eine Sektorlinse 6 angeordnet, die 2 konzentrische zylindrische Elektroden 7 und 8 und zwei Korrekturplatten 9 und 10 aufweist. Der Abstand der Sektorelektroden mit zylindrischer Krümmung voneinander ist grösser als der Durchmesser der kreisförmigen Öffnung der in Richtung des Strahlengangs b gesehenen ersten Blende 12 der Projektionslinse 11. Die Projektionslinse 11 weist drei Blenden 12, 13 und 14 auf, die den aus der Sektorlinse 6 austretenden lonenstrahl auf die austauschbare Austrittsblende 15 fokussiert. Alle anderen Ionen werden durch die Austrittsblende abgeblendet. Eine Korrekturlinse 16 ist zwischen der austauschbaren Austrittsblende 15 und dem Detektor 17 angeordnet. Der Detektor ist ein Quadrupolmassenspektrometer und analysiert die aus der Austrittsblende 15 und der Korrekturlinse 16 austretenden Ionen entsprechend ihrem Atomgewicht.The direction of the primary ion beam and secondary ion beam is shown by arrows a and b, the exact course being shown by a dash-dotted line. The ions emitted by the sample 2, which is at earth potential, reach the electrostatic focusing lenses 3 and 4, which are constructed as cylindrical tubes; these preferably focus all those ions that have a certain energy E o onto the opening of the exchangeable entrance aperture 5. After this, a sector lens 6 is arranged, which has 2 concentric cylindrical electrodes 7 and 8 and two correction plates 9 and 10. The distance between the sector electrodes with a cylindrical curvature is greater than the diameter of the circular opening of the first diaphragm 12 of the projection lens 11 seen in the direction of the beam path b. The projection lens 11 has three diaphragms 12, 13 and 14 which exit from the sector lens 6 Ion beam focused on the interchangeable exit aperture 15. All other ions are blocked by the exit aperture. A correction lens 16 is arranged between the exchangeable exit aperture 15 and the detector 17. The detector is a quadrupole mass spectrometer and analyzes the ions emerging from the exit aperture 15 and the correction lens 16 according to their atomic weight.

Bei einer anderen Anordnung könnte z.B. als Detektor ein Elektronenvervielfacher verwendet werden, wie es z.B. zur Erzeugung von Materialkontrasten in rasterelektronenmikroskopischen Bildern üblich ist.In another arrangement e.g. an electron multiplier can be used as a detector, e.g. for generating material contrasts in scanning electron microscope images is common.

Die Sektorfeldlinse 6 wählt einen scharfen Bereich von Sekundärionen mit einer Energie zwischen Eo- ΔE 2 und Eo+ ΔE 2 aus, wobei üblicherweise eine Anfangsenergie zwischen 0 eV und 30 eV und eine Energiebandbreite zwischen 1 eV und 50 eV gewählt wird. Soll die Einrichtung besonders kompakt ausgestaltet werden, so tritt der Sekundärionenstrahl aus der Sektorlinse divergierend aus. In der Projektionslinse 11 wird sodann aus diesem divergenten Strahlbündel ein konvergentes Strahlenbündel so gebildet, dass Ionen im oben angeführten Energiebereich durch die Öffnung in die Austrittsblende 15 treten können und zum Detektor 17 gelangen. Ionen aller anderen Energien werden von der Austrittsblende 15 zurückgehalten.The sector field lens 6 selects a sharp range of secondary ions with an energy between E o - ΔE 2 and E o + ΔE 2, an initial energy between 0 eV and 30 eV and an energy bandwidth between 1 eV and 50 eV usually being selected. If the device is to be made particularly compact, the secondary ion beam emerges from the sector lens in a divergent manner. A convergent beam is then formed in the projection lens 11 from this divergent beam such that ions in the energy range mentioned above can pass through the opening into the exit aperture 15 and reach the detector 17. Ions of all other energies are retained by the exit aperture 15.

Für ein Quadrupol ist es für eine maximale Massentrennung erforderlich, dass die eintretenden Ionen innerhalb eines bestimmten Raumwinkelbereiches liegen und dass diese Ionen dasselbe mit einer optimalen, im allgemeinen von Eo verschiedenen Energie durchlaufen. Die letztgenannte Energie wird dadurch eingestellt, dass die Quadrupolachse auf ein Potential Ug = A+k9 x B gelegt wird. Der für das Quadrupol erwünschte Raumwinkelbereich der eintretenden Ionen stimmt im allgemeinen mit dem Raumwinkelbereich der aus der Austrittsblende 15 austretenden Ionen nicht überein. Die erforderliche Raumwinkelkorrektur wird durch ein Potential, das proportional Eo ist, erreicht.For a quadrupole, for maximum mass separation it is necessary that the incoming ions lie within a certain solid angle range and that these ions pass through the same with an optimal energy, which is generally different from E o . The latter energy is set by placing the quadrupole axis at a potential Ug = A + k 9 x B. The solid angle range of the incoming ions desired for the quadrupole generally does not match the solid angle range of the ions exiting from the exit aperture 15. The required solid angle correction is achieved by a potential that is proportional to E o .

Das in Fig. 2 dargestellte schematische Blockschaltbild zeigt die Steuerung der verschiedenen Potentiale für Linsen und Blenden. A, B und C sind variable Spannungsquellen, die umpolbar sind und in welchen Eo, AE sowie die Anpassung an das Quadrupol eingestellt werden können. Die Spannungsversorgung der Fokussierungslinsen 3 und 4 erfolgt über die Verstärkereinheiten V1 und V2, wobei über die Potentiometer P1 und P2 die Verstärker so eingestellt werden können, dass die Potentiale der Fokussierungslinsen 3 und 4 gemäss der Gleichungen 1 und 2 einstellbar sind.

Figure imgb0008
Figure imgb0009
The schematic block diagram shown in FIG. 2 shows the control of the various potentials for lenses and diaphragms. A, B and C are variable voltage sources that can be reversed and in which E o , AE and the adaptation to the quadrupole can be set. The Power is supplied to the focusing lenses 3 and 4 via the amplifier units V 1 and V 2 , the amplifiers being able to be set via the potentiometers P 1 and P 2 so that the potentials of the focusing lenses 3 and 4 can be set in accordance with equations 1 and 2.
Figure imgb0008
Figure imgb0009

Die Konstanten kl und k2 werden so gewählt, dass der maximale Strom der Sekundärionen von der Probe 2 in den Detektor gelangt. Sind diese Konstanten einmal bestimmt, so behalten sie für sämtliche Werte von Eo ihre Gültigkeit.The constants k l and k 2 are chosen such that the maximum current of the secondary ions from sample 2 reaches the detector. Once these constants have been determined, they remain valid for all values of E o .

Die Sektorfeldlinse weist eine dreifache Versorgung mit Spannung auf, wobei die Spannung jeweils von Eo und ΔE abhängig ist. Die Verstärkereinheiten V3 und V5 versorgen jeweils die zylindrisch gekrümmten Sektorelektroden, wobei die Verstärker und die Potentiometer P3 und P5 so eingestellt werden, dass die Potentiale für die Sektorfeldelektroden wie folgt betragen:

Figure imgb0010
Figure imgb0011
wobei k3 und k5 empirische Konstanten sind, die so gewählt werden müssen, dass bei gewählter Energie und Energiebandbreite ein Maximum der entsprechenden Ionen in den Detektor gelangen.The sector field lens has a triple supply of voltage, the voltage depending on E o and ΔE. The amplifier units V 3 and V 5 each supply the cylindrically curved sector electrodes, the amplifiers and the potentiometers P 3 and P 5 being set such that the potentials for the sector field electrodes are as follows:
Figure imgb0010
Figure imgb0011
where k 3 and k 5 are empirical constants that must be selected so that a maximum of the corresponding ions reach the detector at the selected energy and energy bandwidth.

Das Potential der Korrekturplatten 9 und 10 der Sektorfeldlinse wird über die Verstärkereinheit V4 und das Potentiometer P4 so gesteuert, dass es zwischen U3 und U5 liegt. Das Potential wird genau so gewählt, dass insbesondere eine Bündelung des lonenstrahls in der zur Zeichnungsebene senkrechten Richtung erreicht wird.The potential of the correction plates 9 and 10 of the sector field lens is controlled via the amplifier unit V 4 and the potentiometer P 4 so that it lies between U 3 and U 5 . The potential is chosen exactly so that in particular the ion beam is focused in the direction perpendicular to the plane of the drawing.

Das Potential der mittleren Blende 13 der Projektionslinse 11 wird über die Verstärkereinheit V6 und das Potentiometer P6 so geregelt, dass ein Potential U6 gemäss Gleichung 5 eingehalten wird.

Figure imgb0012
wobei k6 eine empirisch zu bestimmende Konstante ist, die so gewählt werden muss, dass die Projektionslinse den aus der Sektorlinse austretenden lonenstrahl auf die Austrittsblende fokussiert.The potential of the central diaphragm 13 of the projection lens 11 is regulated via the amplifier unit V 6 and the potentiometer P 6 in such a way that a potential U 6 according to equation 5 is maintained.
Figure imgb0012
where k 6 is an empirically determined constant that must be selected so that the projection lens focuses the ion beam emerging from the sector lens onto the exit aperture.

Durch die Verstärkereinheit V7 und das Potentiometer P7 wird die Spannungsversorgung der Eintritts- und Austrittsblende durchgeführt. Die Regelung erfolgt so, dass ein Potential U7 eingehalten wird, wobei U7 zwischen U3 und U5 zu liegen hat.The power supply to the inlet and outlet diaphragm is carried out by the amplifier unit V 7 and the potentiometer P 7 . The regulation takes place in such a way that a potential U 7 is maintained, U 7 having to lie between U 3 and U 5 .

Die Spannungsversorgung der Korrekturlinse erfolgt ebenfalls über eine Verstärkereinheit, und zwar V8 und Potentiometer Pe, wobei ein Potential U8 gemäss nachfolgender Gleichung eingehalten wird.

Figure imgb0013
wobei k8 eine empirische Konstante ist, die so gewählt werden muss, dass für einen gegebenen Detektor der entsprechend günstigste Raumwinkel für den Ionenstrahl erreicht wird. Dieser Raumwinkel ist von Detektor zu Detektor unterschiedlich und muss ebenfalls empirisch bestimmt werden.The correction lens is also supplied with voltage via an amplifier unit, specifically V 8 and potentiometer P e , a potential U 8 being maintained according to the following equation.
Figure imgb0013
where k 8 is an empirical constant that must be chosen so that the most favorable solid angle for the ion beam is achieved for a given detector. This solid angle differs from detector to detector and must also be determined empirically.

Die Spannungsversorgung des Quadrupols erfolgt über die Verstärkereinheit V9 und das Potentiometer P9 so, dass die Quadrupolachse folgende Spannung erhält.

Figure imgb0014
wobei kg eine empirische Konstante des Quadrupols darstellt, die so gewählt werden muss, dass für eine gewünschte Energie Eo und Energiebandbreite ΔE eine maximale Massenauflösung des Quadrupols gegeben ist.The quadrupole is supplied with voltage via the amplifier unit V 9 and the potentiometer P 9 in such a way that the quadrupole axis receives the following voltage.
Figure imgb0014
where kg represents an empirical constant of the quadrupole, which must be chosen such that a maximum mass resolution of the quadrupole is given for a desired energy E o and energy bandwidth ΔE.

Die angeführten Konstanten sind, wenn einmal bestimmt, für alle Werte von Eo und ΔE gültig.The constants listed, once determined, are valid for all values of E o and ΔE.

Claims (9)

1. A device for focussing and analyzing charged corpuscular beams, in particular secondary ion beams, with at least one or - if required - two electrostatic focussing lenses, an entrance diaphragm, an electrostatic sector field lens, an exit diaphragm, a correcting lens and a detector arranged in the direction of the beam, characterized by the fact that an electrostatic projecting lens (11) with at least two (13, 14), but preferably three electrically polarizable diaphragms (12, 13, 14) with their apertures on one axis is arranged in the path of the charged corpuscular beam to be analyzed between the sector field lens (6) and the exit diaphragm (15).
2. A device as claimed in Claim 1, characterized by the fact that the sector field lens (6) used is a stigmatically focussing sector field lens consisting of negatively and positively polarizable, concentric sector electrodes in the form of cylinder jacket sections (7, 8) and of correcting plates (9, 10) covering the space between the electrodes.
3. A device as claimed in Claim 1 or 2, characterized by the fact that both the entrance (5) and the exit diaphragm (15) are exchangeable.
4. A device as claimed in Claim 2 or 3, characterized by the fact that the distance between the sector electrodes (7, 8) is larger than the diameter of the circular aperture or the slot width of the first diaphragm (12) of the projecting lens (11), seen in the direction of the beam.
5. A device as claimed in Claims 1-4, characterized by the fact that the first diaphragm, seen in the direction of the beam, in case of a projecting lens (11) with two diaphragms and the central diaphragm in case of a projection lens with three diaphragms has a larger aperture than the neighbouring diaphragm(s) (12, 14), which are isolated from it by electric means.
6. A device as claimed in any of Claims 1-5, characterized by the fact that the detector (17) is a quadrupole spectrometer.
7. A device as claimed in Claims 1-5, characterized by the fact that operational amplifiers (V1, V2) are allocated one each to each focussing lens (3,4), with inputs located at a first variable potential A and output potentials U1, U2 adjustable by means of potentiometers (P1, P2) according to the relation Ui = ki x A, that summing operations amplifiers (V3, V4, V5, V6, V7) are allocated one each to each sector electrode (7, 8) the two correcting plates (9, 10), the diaphragm (13) of the projecting lens with the larger aperture, and the other diaphragms (12, 14) of the projecting lens together with the entrance diaphragm (5) and the exit diaphragm (15), with the first variable potential A at their first inputs and a second variable potential B at their second inputs and with output potentials U3, U4, U5, U6, U7 adjustable by means of potentiometers (P3, P4, P5, P6, P7) according to the relation Uj = A + kj x B, arranged in such a way that after the potentials U1-U7 for the corresponding equipment components have been optimized by means of potentiometers (P1-P7) as to allow a maximum flow of particles to enter the detector, the mean energy Eo of particles entering the detector or their energy band width AE only can be adjusted through variation of potentials A or B.
8. A device as claimed in Claim 7, characterized by the fact that an operational amplifier (V8), whose imput is located at the first potential A and whose output potential U8 can be adjusted by means of a potentiometer (P8) according to the relation U8 = k8 × A, is allocated to the correcting lens (16), arranged in such a way that after the potential U8 has been optimized by means of the corresponding potentiometer (P8) as to ensure optimum adjustment of the solid angle of the particle beam leaving the correcting lens to the detector, the mean energy Eo or the energy band width ΔE only can be adjusted through variation of potentials A or B.
9. A device as claimed in Claim 6 and any of Claims 7 or 8, characterized by the fact that a summing operational amplifier (V9) with the first input located at the first potential A and the second input at the third variable potential C, whose output potential U9 can be adjusted by means of a potentiometer (P9) according to the relation U9 = A+k9 × C, is allocated to the axis of the quadrupole mass spectrometer, arranged in such a way that after the potential U9 has been optimized for the detector to reach its maximum resolving power, the mean energy Eo of the particles entering the mass spectrometer or their energy band width ΔE only can be adjusted through variation of potentials A or B.
EP19790100669 1978-03-07 1979-03-06 Apparatus for focussing and analyzing a charged particle beam Expired EP0004065B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1621/78 1978-03-07
AT162178A AT376044B (en) 1978-03-07 1978-03-07 DEVICE FOR FOCUSING AND ANALYZING A CHARGED BODY RAY

Publications (3)

Publication Number Publication Date
EP0004065A2 EP0004065A2 (en) 1979-09-19
EP0004065A3 EP0004065A3 (en) 1979-10-03
EP0004065B1 true EP0004065B1 (en) 1983-02-23

Family

ID=3517373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790100669 Expired EP0004065B1 (en) 1978-03-07 1979-03-06 Apparatus for focussing and analyzing a charged particle beam

Country Status (3)

Country Link
EP (1) EP0004065B1 (en)
AT (1) AT376044B (en)
DE (1) DE2964883D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982945B (en) * 2019-05-24 2023-04-28 北京纳米能源与系统研究所 Method for acquiring time resolution dark field image based on ultra-fast transmission electron microscope system and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679896A (en) * 1969-12-23 1972-07-25 Ibm Electrostatic prism
US4058724A (en) * 1975-06-27 1977-11-15 Minnesota Mining And Manufacturing Company Ion Scattering spectrometer with two analyzers preferably in tandem

Also Published As

Publication number Publication date
EP0004065A2 (en) 1979-09-19
ATA162178A (en) 1984-02-15
AT376044B (en) 1984-10-10
EP0004065A3 (en) 1979-10-03
DE2964883D1 (en) 1983-03-31

Similar Documents

Publication Publication Date Title
EP1277221B1 (en) Electron/ion gun for electron or ion beams with high monochromasy or high current density
DE112011102323B4 (en) Ion detection arrangement
DE102015207484B4 (en) High-voltage supply unit and circuit arrangement for generating a high voltage for a particle beam device and particle beam device
DE102018202728B4 (en) Method for operating a particle beam device, computer program product and particle beam device for carrying out the method
DE3913965A1 (en) DIRECTLY IMAGING SECOND EDITION MASS SPECTROMETER WITH RUNTIME MASS SPECTROMETRIC MODE
DE69118492T2 (en) Mass spectrometer with electrostatic energy filter
EP0166328A2 (en) Method of and device for imaging an object or the diffraction diagram of an object through electron energy filtering with a transmission electron microscope
DE2512468C2 (en) "Electron microscope with a Wien filter as an energy analyzer"
DE112015001235B4 (en) DEVICE AND METHOD FOR ELECTRON BEAM IMAGING USING A MONOCHROMATOR WITH DOUBLE WIEN FILTER AND MONOCHROMATOR
DE2538123A1 (en) ARRANGEMENT FOR MASS SPECTROMETRIC DETECTION OF IONS
EP0373550A2 (en) Time-of-flight mass spectrometer with a high resolution and transmission
DE2709282A1 (en) MASS SPECTROMETER DEVICE
DE3231036C2 (en)
DE69610287T2 (en) CARPUSCULAR OPTICAL DEVICE WITH A FIXED PANEL FOR THE MONOCHROMATOR FILTER
DE2137510C3 (en) Electron-optical arrangement with an energy selection arrangement
DE10122957A1 (en) Deflection system for particle beam equipment passes charged particles with defined energy level through corrector with retained direction irrespective of defined deflection angle.
DE2608958A1 (en) DEVICE FOR GENERATING RAYS FROM CHARGED PARTICLES
EP0004065B1 (en) Apparatus for focussing and analyzing a charged particle beam
DE3430984A1 (en) METHOD AND DEVICE FOR REGISTERING PARTICLES OR QUANTS WITH THE AID OF A DETECTOR
DE112018007212B4 (en) Charged carrier beam device
EP2224464A1 (en) Corpuscular optical image-forming system
EP0086431A2 (en) Particle beam-generating system and method of using it
DE2054579A1 (en) mass spectrometry
DE1673257A1 (en) Two-wire ion source, especially for mass spectrometers
DE2659385C3 (en) Ion microprobe analyzer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OESTERREICHISCHES FORSCHUNGSZENTRUM SEIBERSDORF GE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2964883

Country of ref document: DE

Date of ref document: 19830331

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860208

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861128

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT