EP0000672A1 - Générateur d'ondes métriques ou décimétriques constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons. - Google Patents

Générateur d'ondes métriques ou décimétriques constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons. Download PDF

Info

Publication number
EP0000672A1
EP0000672A1 EP78400028A EP78400028A EP0000672A1 EP 0000672 A1 EP0000672 A1 EP 0000672A1 EP 78400028 A EP78400028 A EP 78400028A EP 78400028 A EP78400028 A EP 78400028A EP 0000672 A1 EP0000672 A1 EP 0000672A1
Authority
EP
European Patent Office
Prior art keywords
resonant structure
resonant
electron beam
diameter
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78400028A
Other languages
German (de)
English (en)
Other versions
EP0000672B1 (fr
Inventor
René Le Gardeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0000672A1 publication Critical patent/EP0000672A1/fr
Application granted granted Critical
Publication of EP0000672B1 publication Critical patent/EP0000672B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof

Definitions

  • the subject of the present invention is a generator of metric or decimetric electromagnetic waves, constituted by a resonant structure coupled to a tubular beam of electrons in helical orbits.
  • This generator is based on an interaction between on the one hand a tubular electronic beam, to which a cyclotronic movement is printed using a static magnetic field, and on the other hand an electromagnetic field of azimuthal distribution established in a resonant structure. , at a frequency close to the cyclotron frequency of the electrons.
  • Such an interaction is already known per se, but only when the electron beam is coupled to the electromagnetic field of a resonant cylindrical or spherical cavity. It is described, for example, in an article by R. Le Gardeur published in the reports of the 5th International Congress on Tubes for Microwave, Paris, September 14-18, 1964, pages 522 to 526.
  • the resonant mode used in the interaction described in this article is of the TE 011 type (for electric transverse) in cylindrical geometry. It is identified by three indices m, n, p which characterize the distribution of the field respectively according to the polar angle ⁇ , the radius r, and the ordinate z counted along the axis.
  • the electric field which corresponds to it n ' has only a tangential component E ⁇ , the radial and axial components being zero and this tangential component is independent of ⁇ , it undergoes only an alternation along a radius and that an alternation along the axis .
  • This mode is called "azimuth" or in magnetic dipole.
  • the Bessel function is equivalent to so that the tangential component of the field is expressed by the approximate relation: which shows that for z fixed, the field believes as r in the vicinity of the axis.
  • these parameters satisfy the relationship: where D is the diameter of the cavity, L its length and ⁇ the wavelength.
  • Figure 1 shows the variation of D / X as a function of L / D taken as a variable. It appears that the diameter D is always of the order of several wavelengths and, in any case, greater than or 1.22 times the wavelength.
  • the cavity When the operating range of the electronic tube is in the range of centimeter waves, the cavity therefore has a diameter of the order of 5 to 10 cm, which does not pose any particular problem. But at 30 cm wavelength (i.e. 1000 MHz frequency), the diameter of the cavity is already at least 36 cm and at 3 m (150 MHz), the diameter takes a value of 360 cm which is prohibitive in most applications.
  • the length L naturally follows analogous variations. It therefore becomes excluded to use such cavities for the generation of decimetric or metric waves, so that the generators of the type described in the publication cited above are ill-suited to the production of metric or decimetric waves.
  • the object of the present invention is precisely a generator of this type, which does not have this drawback in that its dimensions are smaller than those of a generator which would use a cylindrical cavity for the same resonant frequency.
  • the structure further comprises a cylindrical outer shield.
  • each sector is preferably connected to the external shielding by supports of adjustable length.
  • the entire structure can be surrounded by a sealed envelope; but, in an advantageous variant, only the inner cylindrical part comprises such a sealed envelope. It must then have low dielectric losses at microwave frequencies.
  • Figure 1 already has. essentially been analyzed. It may be added, for comparison, that the overall diameter of a resonant structure according to the invention is of the order of the operating half-wavelength, so that, if a ratio is taken D / ⁇ of 1.22 for cylindrical cavities, '.e diameter reduction factor, when passing from cylindrical structures of the prior art to structures according to the invention, is of the order of 2.5 . This factor can be higher in certain cases for less energetic electron beams, as will be seen better later.
  • FIG. 2 The structure forming part of the generator of the invention is shown in FIG. 2. It comprises a plurality of circular cylindrical sectors 2 separated by capacitive openings 4. This structure is for example made of copper or brass.
  • the electric field lines 6 are represented in this figure for the fundamental azimuth mode. In the vicinity of the axis, the electric field is purely azimuth and includes only one component E ⁇ . In the capacitive openings, the field is normal to the walls. Between these extreme zones, the distribution is more complex. It can be calculated according to the classical method which consists in solving the Maxwell equations taking into account the angular periodicity of the structure. Such a calculation is outside the scope of this description, but we can refer to the classic works which deal with this kind of problem and in particular to the work already cited where the distribution of the field in the interaction space of a magnetron where the symmetry is of the same order.
  • the axial zone of the structure is of an inductive character and that the peripheral zone is of a capacitive character.
  • the structure radiates electromagnetic energy. If we want to completely suppress this radiation in order to obtain a maximum overvoltage, we can surround the structure with a shield 8, as illustrated in FIG. 3. In this case, the presence of this blin dage or these additional walls changes the resonant frequency of the structure.
  • FIG. 3 also illustrates a particular embodiment in which the sectors are held by supports 10 connected to the shielding and having a variable length.
  • these supports consist of a screw 12, accessible from the outside, which engages in a small column 14; but other systems may be suitable.
  • These supports 10 can be of conductive or insulating material.
  • the advantage of this arrangement is to allow the variation of the internal diameter of the resonant structure, and the modification of the width of the zone. capacitive, allowing the operator to adjust the resonant frequency of the structure.
  • the only way to vary the resonant frequency of a cylindrical cavity is practically to act on the position of a movable ceiling. But it is not possible to do so here, because the axis of the cavity must be left free to access. The possibility of varying the diameter of the resonant structure then takes on its full interest.
  • the structure of the invention constitutes the resonant circuit of an electronic tube, it is necessary that the space where the electrons and the field interact is maintained under high vacuum.
  • This space is the axial zone of the structure, where the field has a pure azimuthal distribution.
  • the structure comprises, in accordance with the representation of FIG. 4, a tube 16 made of impervious material having low dielectric losses at the frequencies of use. It may in particular be a tube made of ceramic material.
  • FIG. 5 schematically represents the essential elements of the VHF or UHF generator of the invention.
  • the generator of FIG. 5 comprises a resonant structure 20, crossed by a tubular beam of electrons 22, animated by a helical movement, an outer envelope 24 shielding, a coupling goat 26, oriented perpendicular to the high frequency magnetic field lines, and a coaxial line 28 connected to the members of use.
  • the dimensions of the resonant structure and, in particular, the internal diameter have largely determined by the diameter of the tubular electron beam.
  • the internal diameter of the structure must be, at a minimum, of the order of twice the diameter of the electron tube bundle.
  • the latter is a function of the acceleration potential of the electrons in the barrel which precedes the interaction zone. This potential is at most of the order of 40 kV, this yes gives the beam a diameter of the order of ⁇ / 8.
  • the diameter of the resonant structure is of the order of X / 4.
  • the assembly has an overall diameter of the order of ⁇ / 2. If we compare this value to that of cylindrical cavities, which is at least 1.22 ⁇ , we see that there is a ratio of at least 2.5 to the benefit of the structure of the invention, which is the result announced above.
  • the dimension ratio reaches 3.5. It can be further increased at low frequencies (VHF) when the shielding diameter is chosen to be less than twice the inside diameter of the structure.

Landscapes

  • Particle Accelerators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Microwave Tubes (AREA)

Abstract

Structure résonnante d'interaction (20) pour un générateur d'ondes métriques et décimétriques à faisceau tubulaire d'électrons en orbites hélicoïdales formée d'une pluralité de secteurs cylindriques circulaires (2), séparés par des ouvertures capacitives (4).

Description

  • La présenta invention a pour objet un générateur d'ondes électromagnétiques métriques ou décimétriques, constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons en orbites hélicoïdales.
  • Ce générateur est basé sur une interaction entre d'une part un faisceau électronique tubulaire, auquel est imprimé un mouvement cyclotronique à l'aide d'un champ magnétique statique, et d'autre part un champ électromagnétique de distribution azimutale établi dans une structure résonnante, à une fréquence proche de la fréquence cyclotronique des électrons. Une telle interaction est déjà connue en soi, mais seulement lorsque le faisceau d'électrons est couplé au champ électromagnétique d'une cavité résonnante cylindrique ou sphérique. Elle est décrite, par exemple, dans un article de R. Le Gardeur publié dans les comptes rendus du Sème Congrès International sur les Tubes pour Hyperfréquences, Paris, 14-18 septembre, 1964, pages 522 à 526.
  • Le mode résonnant utilisé dans l'interaction décrite dans cet article est du type TE011 (pour transverse électrique) en géométrie cylindrique. Il est identifié par trois indices m, n, p qui caractérisent la distribution du champ respectivement en fonction de l'angle polaire φ, du rayon r, et de l'ordonnée z comptée suivant l'axe.Le champ électrique qui lui correspond n'a qu'une composante tangentielle Eφ, les composantes radiales et axiales étant nulles et cette composante tangentielle est indépendante de φ, elle ne subit qu'une alternance le long d'un rayon et qu'une alternance le long de l'axe. Ce mode est dit "azimutal" ou encore en dipole magnétique.
  • Cette composante Eφ du champ électrique est donnée quantitativement par une expression que l'on trouvera dans tous les ouvrages spécialisés portant sur la théorie des volumes résonnant aux hyperfréquences, (et notamment dans l'ouvrage "Microwave Electronics" de J.C. SLATER) :
    Figure imgb0001
    expression dans laquelle :
    • φ, r et z sont les coordonnées cylindriques,
    • R est le rayon de la cavité et L sa longueur,
    • A est une constante,
    • J1 est la première fonction de Bessel et x'01 sa première racine,
    • w est la pulsation de résonance du mode.
  • Près de l'axe, où- r est faible devant R, la fonction de Bessel
    Figure imgb0002
    est équivalente à
    Figure imgb0003
    de sorte que la composante tangentielle du champ s'exprime par la relation approchée :
    Figure imgb0004
    qui montre que pour z fixé, le champ croit comme r au voisinage de l'axe.
  • La fréquence de résonance d'une cavité ou, ce qui revient au même, la longueur de l'onde associée, dépend naturellement des dimensions de la cavité. Pour le mode TE011, ces paramètres satisfont à la relation :
    Figure imgb0005
    où D est le diamètre de la cavité, L sa longueur et λ la longueur d'onde.
  • La figure 1 représente la variation de D/X en fonction de L/D pris comme variable. Il apparaît que le diamètre D est toujours de l'ordre de plusieurs longueurs d'onde et, de toute manière, supérieur à
    Figure imgb0006
    soit 1,22 fois la longueur d'onde.
  • Lorsque la plage de fonctionnement du tube électronique se situe dans le domaine des ondes centimétriques, la cavité présente donc un diamètre de l'ordre de 5 à 10 cm, ce qui ne pose pas de problème particulier. Mais à 30 cm de longueur d'onde (soit 1000 MHz de fréquence), le diamètre de la cavité est déjà d'au moins 36 cm et à 3 m (150 MHz), le diamètre prend une valeur de 360 cm qui est prohibitive dans la plupart des applications.
  • La longueur L suit naturellement des variations analogues. Il devient donc exclu d'employer de telles cavités pour la génération d'ondes décimêtriques ou métriques, de sorte que sles générateurs du type décrit dans la publication précédemment citée sont mal adaptés à la production d'ondes métriques ou décimétriques.
  • La présente invention a justement pour objet un générateur de ce type, qui ne présente pas cet inconvénient en ce sens que ses dimensions sont inférieures à cellesd'un générateur qui utiliserait une cavité cylindrique pour une même fréquence de résonance.
  • Ce résultat est obtenu, selon l'invention, en utilisant une structure qui comprend une pluralité de secteurs cylindriques circulaires, séparés par des ouvertures capacitives.
  • De préférence, pour éviter le rayonnement vers l'extérieur et améliorer la surtension, la structure comprend en outre un blindage extérieur cylindrique.
  • En plus de l'avantage exposé plus haut, relatif à la réduction des dimensions, l'invention offre celui de permettre un réglage de la fréquence de résonance de la structure par action sur le diamètre, ce qui n'était pas le cas dans l'art antérieur. Pour cela, chaque secteur est de préférence relié au blindage extérieur par des supports de longueur réglable.
  • Pour pouvoir maintenir un vide poussé dans l'espace d'interaction, l'ensemble de la structure peut être entouré d'une enveloppe étanche ; mais, dans une variante avantageuse, seule la partie cylindrique intérieure comprend une telle enveloppe étanche. Celle-ci doit alors présenter de faibles pertes diélectriques aux hyperfréquences.
  • De toute façon, les caractéristiques et avantages de l'invention apparaîtront mieux après la description qui suit, d'exemples de réalisation donnés à titre explicatif et nullement limitatif, en référence aux dessins annexés sur lesquels :
    • - la figure 1 représente la courbe illustrant les variations de dimensions d'une cavité cylindrique en fonction de la longueur d'onde de résonance ;
    • - la figure 2 représente une section droite de la structure résonnante utilisée dans le générateur de l'invention ;
    • - la figure 3 représente un mode particulier de réali- sation d'une structure à fréquence de résonance réglable ;
    • - la.figure 4 représente un mode particulier de réa- lisation d'une structure résonnante étanche ;
    • - la figure 5 représente schématiquement l'ensemble du générateur de l'invention.
  • La figure 1 a déjà. été analysée pour l'essentiel. Il peut être ajouté, à titre comparatif, que le diamètre hors tout d'une structure résonnante selon l'invention est de l'ordre de la demi-longueur d'onde de fonctionnement, de sorte que, si l'on prend un rapport D/λ de 1,22 pour les cavités cylindriques, '.e facteur de réduction de diamètre, lorsqu'on passe des structures cylindriques de l'art antérieur aux structures conformes à l'invention, est de l'ordre de 2,5. Ce facteur peut être plus élevé dans certains cas pour des faisceaux électroniques moins énergétiques, comme on le verra mieux par la suite.
  • La structure faisant partie du générateur de l'invention est représentée sur la figure 2. Elle comprend une pluralité de secteurs cylindriques circulaires 2 séparés par des ouvertures capacitives 4. Cette structure est par exemple en cuivre ou en laiton. Les lignes de champ électrique 6.sont représentées sur cette figure pour le mode azimutal fondamental. Au voisinage de l'axe, le champ électrique est purement azimutal et ne comprend qu'une composante Eφ. Dans les ouvertures capacitives, le champ est normal aux parois. Entre ces zones extrêmes, la distribution est plus complexe. Elle peut être calculée selon la méthode classique qui consiste à résoudre les équations de Maxwell en tenant compte de la périodicité angulaire de la structure. Un tel calcul sort du cadre de la présente description, mais on pourrs se reporter aux ouvrages classiques qui traitent ce genre de problème et notamment à l'ouvrage déjà cité où est étudiée la répartition du champ dans l'espace d'interaction d'un magnétron où la symétrie est du même ordre.
  • On peut dire ici, pour simplifier, que la zone axiale de la structure est de caractère inductif et que la zone périphérique est de caractère capacitif. L'adjonction de cette dernière, par rapport aux cavités purement cylindriques, entraîne une diminution de la fréquence de résonance à dimensions égales ; réciproquement, le diamètre intérieur de la structure de la figure 2 est inférieur au diamètre d'une cavité cylindrique de même fréquence de résonance pour le même mode.
  • Telle qu'elle est représentée sur la figure 2, la structure rayonne de l'énergie électromagnétique. Si l'on veut sup- primer totalement ce rayonnement afin d'obtenir une surtension maximale, on peut entourer la structure d'un blindage 8, comme 'illustré sur la figure 3. Dans ce cas, la présence de ce blindage ou de ces parois supplémentaires modifie la fréquence de résonance de la structure.
  • La figure 3 illustre en outre un mode de réalisation particulier dans lequel les secteurs sont tenus par des supports 10 reliés au blindage et présentant une longueur variable. Sur la figure et à titre explicatif, ces supports consistent en une vis 12, accessible de l'extérieur, qui s'engage dans une colonnette 14 ; mais d'autres systèmes pourraient convenir. Ces supports 10 peuvent être en matériau conducteur ou isolant.
  • L'intérêt de cette disposition est de permettre la variation du diamètre intérieur de la structure résonnante, et la modification de la largeur de la zone. capacitive, ce qui permet à l'opérateur de régler la fréquence de résonance de la structure. La seule manière de faire varier la fréquence de résonnan- ce d'une cavité cylindrique consiste pratiquement à agir sur la position d'un plafond mobile. Mais il n'est pas possible de procéder de la sorte ici, car l'axe de la cavité doit être laissé libre d'accès. La possibilité de faire varier le diamètre de la structure résonnante prend alors tout son intérêt.
  • Puisque la structure de l'invention constitue le circuit résonnant d'un tube électronique, il est nécessaire que l'espace où interagissent les électrons et le champ soit maintenu sous vide poussé. Cet espace est la zone axiale de la structure, là où le champ présente une distribution azimutale pure. A cette fin, la structure comprend, conformément à la représentation de la figure 4, un tube 16 en matériau étanche présentant de faibles pertes diélectriques aux fréquences d'utilisation. Il peut s'agir notamment d'un tube en matériau céramique.
  • Dans certains cas, si l'on veut encore abaisser la fréquence de résonance de la structure sans augmenter ses dimensions hors tout, il est possible d'adjoindre aux ouvertures des éléments capacitifs localisés, comme représenté sur la figure 4 où ces éléments portent la référence 18.
  • La figure 5 représente schématiquement les éléments essentiels du générateur d'ondes métriques ou décimétriques de l'invention.
  • Le générateur de la figure 5 comprend une structure résonnante 20, traversée par un faisceau tubulaire d'électrons 22, animés d'un mouvement hélicoidal, une enveloppe extérieure 24 de blindage, une bouc le de couplage 26, orientée perpendiculairement aux lignes de champ magnétique haute fréquence, et une ligne coaxiale 28 reliée aux organes d'utilisation.
  • Dans un générateur de ce genre, les dimensions de la structure résonnante et, en particulier, le diamètre intérieur, ont déterminées en grande partie par le diamètre du faisceau électronique tubulaire. En effet, pour permettre au faisceau des mouvement radiaux lors de son interaction avec le champ électromagnétique, le diamètre intérieur de la structure doit être, au minimum, de l'ordre de deux fois le diamètre du faisceau tubulaire électronique. Or, ce dernier est fonction du potentiel d'accélération des électrons dans le canon qui précède la zone d'interaction. Ce potentiel est au maximum de l'ordre de 40 kV, ce oui donne au faisceau un diamètre de l'ordre de λ/8. Dans ce cas, le diamètre de la structure résonnante est de l'ordre de X/4. Comme le blindage présente un diamètre de l'ordre du double de celui de la structure résonnante proprement dite, l'ensemble présente un diamètre hors tout de l'ordre de λ/2. Si l'on compare cette valeur à celle des cavités cylindriques, qui est au minimum de 1,22 λ, on constate qu'il existe un rapport d'au moins 2,5 au bénéfice de la structure de l'invention, ce qui est le résultat annoncé plus haut.
  • Lorsque le potentiel d'accélération tombe de 40 à 25 kV, le rapport des dimensions atteint 3,5. Il peut encore être augmenté aux fréquences basses (ondes métriques) lorsque le diamètre du blindage est choisi inférieur au double du diamètre intérieur de la structure.
  • Il résulte de ces considérations que l'encombrement d'un générateur du type décrit est réduit pour une même longueur d'onde d'émission, si l'on utilise la structure de l'invention ou, inversement, que la longueur d'onde d'émission peut être abaissée pour un même encombrement de la structure.

Claims (5)

1. Générateur d'ondes métriques ou décimétriques basé sur une interaction de type cyclotronique entre un faisceau tubulaire d'électrons et un champ azimutal établi dans une structure résonnante, caractérise en ce que ladite structure résonnante comprend une pluralité de secteurs cylindriques circulaires, séparés par des ouvertures capacitives.
2. Générateur selon la revendication 1, caractérisé en ce que la structure résonnante comprend en outre un blindage extérieur cylindrique.
3. Générateur selon la revendication 2, caractérisé en ce que chaque secteur de la structure résonnante est relié au blindage extérieur par des supports de longueur réglable.
4. Générateur selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un cylindre étanche en matériau diélectrique aux hyperfréquences est disposé à l'intérieur des secteurs de la structure résonnante.
5. Générateur selon l'une quelconque des revendications 2 à 4, caractérisé en ce que la structure résonnante comprend une boucle de couplage dont l'une des extrémités est reliée à la paroi du blindage.
EP78400028A 1977-06-27 1978-06-21 Générateur d'ondes métriques ou décimétriques constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons. Expired EP0000672B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7719619A FR2396407A1 (fr) 1977-06-27 1977-06-27 Generateur d'ondes metriques et decimetriques
FR7719619 1977-06-27

Publications (2)

Publication Number Publication Date
EP0000672A1 true EP0000672A1 (fr) 1979-02-07
EP0000672B1 EP0000672B1 (fr) 1981-09-09

Family

ID=9192613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78400028A Expired EP0000672B1 (fr) 1977-06-27 1978-06-21 Générateur d'ondes métriques ou décimétriques constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons.

Country Status (4)

Country Link
US (1) US4225806A (fr)
EP (1) EP0000672B1 (fr)
DE (1) DE2861052D1 (fr)
FR (1) FR2396407A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013242A1 (fr) * 1978-12-29 1980-07-09 Thomson-Csf Générateur d'ondes radioélectriques pour hyperfréquence
EP0372975A2 (fr) * 1988-12-09 1990-06-13 Varian Associates, Inc. Accouplements pour extraire la puissance RF d'une cavité d'un gyrotron directement dans un guide d'onde fondamentale

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362968A (en) * 1980-06-24 1982-12-07 The United States Of America As Represented By The Secretary Of The Navy Slow-wave wideband cyclotron amplifier
US4513223A (en) * 1982-06-21 1985-04-23 Varian Associates, Inc. Electron tube with transverse cyclotron interaction
US4550271A (en) * 1983-06-23 1985-10-29 The United States Of America As Represented By The Secretary Of The Navy Gyromagnetron amplifier
US4596967A (en) * 1983-12-29 1986-06-24 The United States Of America As Represented By The United States Department Of Energy High power microwave generator
US4679197A (en) * 1985-03-13 1987-07-07 Ga Technologies Inc. Gyro free electron laser
US5604402A (en) * 1995-01-31 1997-02-18 Litton Systems, Inc. Harmonic gyro traveling wave tube having a multipole field exciting circuit
DE102009005200B4 (de) * 2009-01-20 2016-02-25 Siemens Aktiengesellschaft Strahlrohr sowie Teilchenbeschleuniger mit einem Strahlrohr
CN102917529B (zh) * 2012-10-24 2016-01-13 中国科学院近代物理研究所 螺旋型多间隙高频谐振装置及聚束和加速方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR74742E (fr) * 1958-03-31 1961-01-16 Siemens Ag Tube à champ progressif avec guide d'ondes
DE1110326B (de) * 1954-02-10 1961-07-06 Deutsche Elektronik Gmbh Elektronenroehre zur Erzeugung oder Verstaerkung kurzer elektrischer Wellen
FR1476656A (fr) * 1966-01-26 1967-04-14 Thomson Varian Structure à retard à hyperfréquences
US3363138A (en) * 1964-11-04 1968-01-09 Sperry Rand Corp Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency
US3389347A (en) * 1966-09-08 1968-06-18 Army Usa Microwave noise generator
US3391349A (en) * 1965-06-18 1968-07-02 Forsvarets Forsknings Microwave oscillator having a delay line surrounding the interaction chamber
DE1278612B (de) * 1960-09-21 1968-09-26 Siemens Ag Rauscharme, mit Magnetfeld arbeitende parametrische Ablenkverstaerkerroehre

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420342A (en) * 1943-03-18 1947-05-13 Bell Telephone Labor Inc High frequency continuous amplifier
US3175163A (en) * 1959-10-01 1965-03-23 Hughes Aircraft Co Crossed field cyclotron wave parametric amplifier
US3158779A (en) * 1959-10-03 1964-11-24 Nippon Electric Co Traveling-wave electronic microwave interaction guide devices
NL280220A (fr) * 1961-06-27
US3457450A (en) * 1966-08-31 1969-07-22 Varian Associates High frequency electron discharge device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110326B (de) * 1954-02-10 1961-07-06 Deutsche Elektronik Gmbh Elektronenroehre zur Erzeugung oder Verstaerkung kurzer elektrischer Wellen
FR74742E (fr) * 1958-03-31 1961-01-16 Siemens Ag Tube à champ progressif avec guide d'ondes
DE1278612B (de) * 1960-09-21 1968-09-26 Siemens Ag Rauscharme, mit Magnetfeld arbeitende parametrische Ablenkverstaerkerroehre
US3363138A (en) * 1964-11-04 1968-01-09 Sperry Rand Corp Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency
US3391349A (en) * 1965-06-18 1968-07-02 Forsvarets Forsknings Microwave oscillator having a delay line surrounding the interaction chamber
FR1476656A (fr) * 1966-01-26 1967-04-14 Thomson Varian Structure à retard à hyperfréquences
US3389347A (en) * 1966-09-08 1968-06-18 Army Usa Microwave noise generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS EXPRESS, vol. 5, nr. 8, 1963, New York, A. Ia. IASHKIN: "Electromagnetic waves in waveguides with a cross-shaped cross section", pages 7 à 11 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013242A1 (fr) * 1978-12-29 1980-07-09 Thomson-Csf Générateur d'ondes radioélectriques pour hyperfréquence
EP0372975A2 (fr) * 1988-12-09 1990-06-13 Varian Associates, Inc. Accouplements pour extraire la puissance RF d'une cavité d'un gyrotron directement dans un guide d'onde fondamentale
EP0372975A3 (fr) * 1988-12-09 1991-04-24 Varian Associates, Inc. Accouplements pour extraire la puissance RF d'une cavité d'un gyrotron directement dans un guide d'onde fondamentale

Also Published As

Publication number Publication date
FR2396407B1 (fr) 1980-07-25
FR2396407A1 (fr) 1979-01-26
EP0000672B1 (fr) 1981-09-09
US4225806A (en) 1980-09-30
DE2861052D1 (en) 1981-11-26

Similar Documents

Publication Publication Date Title
EP0000672B1 (fr) Générateur d'ondes métriques ou décimétriques constitué par une structure résonnante couplée à un faisceau tubulaire d'électrons.
CH623182A5 (fr)
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
EP0114140A1 (fr) Filtre hyperfréquence accordable, à résonateurs diélectriques en mode TM010
EP0445017A1 (fr) Résonateur coaxial à capacité d'accord répartie
EP2873306B1 (fr) Applicateur micro-onde coaxial pour la production de plasma
EP1607761A1 (fr) Circuit d'alimention multifréquencielle et sonde et spectromètre RMN comportant un tel circuit
EP1432073B1 (fr) Antenne colinéaire du type coaxial alterné
EP0722651B1 (fr) Dispositif et procede pour former un plasma par application de micro-ondes
EP1711839A1 (fr) Cavite resonante de haute frequence pour la resonance magnetique nucleaire, utilisant des lignes de transmission radio-frequence.
EP0124395A1 (fr) Canon à électrons pour générateurs d'ondes radioélectriques pour hyperfréquences
FR2490004A1 (fr) Cavite resonnante de gyrotron ayant une valeur q amelioree
JP2014032144A (ja) グロー放電検出器およびテラヘルツ波検出装置
Tolner Spectral response of point‐contact Josephson junctions
EP0401066B1 (fr) Dispositif d'onduleur hélicoîdal à aimants permanents pour application aux lasers à électrons libres
FR2530075A1 (fr) Tube electronique avec interaction transversale du type cyclotron
Hanham et al. A ring slot excited dielectric rod antenna for terahertz imaging
Abubakirov et al. Relativistic backward wave oscillator using a selective mode converter
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
EP0711451A1 (fr) Dispositif d'attenuation d'ondes parasites pour tube electronique et tube electronique comportant ce dispositif
Ershov et al. Generation of microwave current pulses in the erosion plasma of a metallic target by two-frequency laser radiation
Chernyavsky et al. Numerical Investigations of Relativistic Backward Wave Oscillator
Pinder et al. Propagation of Electromagnetic Waves along an Annular Plasma
Chernyavskiy et al. Properties of an electrodynamical system for relativistic backward-wave oscillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 2861052

Country of ref document: DE

Date of ref document: 19811126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT