EP0000563B1 - Procédé de préparation d'uréthanes aromatiques - Google Patents

Procédé de préparation d'uréthanes aromatiques Download PDF

Info

Publication number
EP0000563B1
EP0000563B1 EP78100468A EP78100468A EP0000563B1 EP 0000563 B1 EP0000563 B1 EP 0000563B1 EP 78100468 A EP78100468 A EP 78100468A EP 78100468 A EP78100468 A EP 78100468A EP 0000563 B1 EP0000563 B1 EP 0000563B1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
group
process according
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100468A
Other languages
German (de)
English (en)
Other versions
EP0000563A1 (fr
Inventor
Yutaka Hirai
Katsuharu Miyata
Makoto Aiga
Seiji Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26429816&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0000563(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP8844177A external-priority patent/JPS5424853A/ja
Priority claimed from JP8980577A external-priority patent/JPS5424854A/ja
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Publication of EP0000563A1 publication Critical patent/EP0000563A1/fr
Application granted granted Critical
Publication of EP0000563B1 publication Critical patent/EP0000563B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids

Definitions

  • This invention relates to improvements in the preparation of aromatic urethanes. More particularly, it relates to an improved process for preparing an aromatic urethane (hereinafter referred to simply as “urethane") which comprises reacting an aromatic nitro compound, an organic compound containing at least one hydroxyl group (hereinafter referred to simply as “hydroxyl-containing compound”), and carbon monoxide at elevated temperature and pressure in the presence of a catalytic system composed of a catalyst selected from the group consisting of platinum group metals, compounds of platinum group metals and mixtures thereof and a promoter selected from the group consisting of
  • U.S. Patent No. 3,338,956 describes a process wherein urethanes are prepared from alcohols, carbon monoxide, and nitro compounds with the aid of a rhodium chlorocarbonyl catalyst.
  • this process is not economically advantageous in the preparation of highly pure urethanes because the desired product is obtained only at low yield even if the urethanation reaction is carried out for a long period of time in the presence of a large amount of the catayst.
  • the invention relates therefore to a process for preparing an aromatic urethane wherein an aromatic nitro compound, an organic hydroxyl-containing compound having at least one hydroxyl group, and carbon monoxide are reacted with each other in the presence of a catalytic system at a temperature of from 80 to 230°C and a pressure of from 10 to 1000 kg/cm 2 G
  • the process according to the invention is characterized in that the reaction is carried out in the presence of a catalytic system composed of a catalyst selected from the group consisting of platinum group metals, compounds of platinum group metals and mixtures thereof and a promoter selected from the group consisting of
  • the urethanation reaction is carried out in the presence of a small amount of water and one or more of those organic primary amino compounds, urea compounds, biuret compounds, and allophanate compounds which can be derived from the starting aromatic compound.
  • the starting aromatic nitro compound is a compound of the formula where A represents a substituted or unsubstituted aromatic residue of an aromatic nitro compound from which the nitro group or groups are removed and x is an integer equal to from 1 to 4
  • the starting hydroxyl-containing compound is a compound of the formula where R i represents a linear or branched alkyl group containing from 1 to 16 carbon atoms, a cycloalkyl group of 6 carbon atoms with or without an alkyl substituent containing from 1 to 3 carbon atoms or an aryl group with or without at least one alkyl substituent containing from 1 to 6 carbon atoms
  • these alkyl, cycloalkyl and aryl groups may further include at least one halogen, aryl, alkenyl, nitro, alkoxy, phenoxy or carbamate substituent, those organic primary amino compounds, urea compounds, biuret compounds, and allophanate compounds which can be derived from the starting aromatic nitro compound are represented
  • a and x have the same meanings as defined in formula (V), R 1 has the same meanings as defined in formula (VI), y is an integer equal to from 1 to 4, z is an integer equal to from 0 to 3, and the sum of y and z does not exceed x.
  • A' represents a group of the formula where A, R,, x, y and z have the same meanings as defined in formula (VII).
  • the desired aromatic urethane can be prepared at a higher reaction rate, or in a shorter reaction time, than that attainable by the afore-mentioned processes. Morever, when one or more of those organic primary amino compounds, urea compounds, biuret compounds, and allophanate compounds which can be derived from the starting aromatic nitro compound are used, the yield of the desired aromatic urethane is enhanced. The yield based on the starting aromatic nitro compound can even reach a substantially theoretical level depending on the amount of the aforesaid compound or compounds added to the reaction system.
  • reaction rate is further increased without reducing the yield of the desired product.
  • the aromatic nitro compounds useful as the main starting material in the process of the invention are those represented by the formula where A and x have the same meanings as defined in formula (V), and may be mononitro and polynitro compounds. They include, for example, nitrobenzene, dinitrobenzenes, dinitrotoluenes, nitronaphtha- lenes, nitroanthracenes, nitrobiphenyls, bis(nitrophenyl)alkanes, bis(nitrophenyl)ethers, bis(nitrophenyl)-thioethers, bis(nitrophenyl)sulfones, nitrodiphenoxyalkanes, nitrophenothiazines, and heterocyclic compounds such as 5-nitropyrimidine.
  • nitro compounds are nitrobenzene, o-, m-, and p-nitrotoluenes, o-nitro-p-xylene, 1-nitronaphthalene, m- and p-dinitrobenzenes, 2,4- and 2,6-dinitrotoluenes, dinitromesitylene, 4,4'-dinitrobiphenyl, 2,4-dinitrobiphenyl, 4,4'-dinitrodibenzyl, bis(4-nitrophenyl)methane, bis(4-nitrophenyl)ether, bis(2.4-dinitrophenyl)ether, bis(4-nitrophenyl)thioether, bis(4-nitrophenyl)sulfone, bis(4-nitrophenoxy)ethane, ⁇ , ⁇ '-dinitro-p-xylene, ⁇ . ⁇ '- dinitro-m-xylene, 2,4,6-trinitrotoluene, o-, m- and
  • aromatic nitro compounds mononitro compounds such as nitrobenzene, o-, m- and p-chloronitrobenzenes, 2,3- and 3,4-dichloronitrobenzenes, etc. and dinitro compounds such as m- and p-dinitrobenzenes, 2,4- and 2,6-dinitrotoluenes, 1,5-dinitronaphthalene, etc. are preferred because they can be readily reacted with other reactants to give high yields of desired products which have wide applications in the manufacture of drugs, agricultural chemicals, polyurethanes, and the like.
  • hydroxyl-containing compounds useful in the process of the invention are those represented by the formula where R, has the same meanings as defined in formula (VI), and n is an integer equal to or greater than 1 and preferably in the range of from 1 to 3. They include monohydric and polyhydric alcohols having one or more hydroxyl groups attached to primary, secondary or tertiary carbon atoms, as well as monohydric and polyhydric phenols.
  • suitable alcohols are monohydric alcohols such as methyl alcohol, ethyl alcohol, n- and iso-propyl alcohols, n-, iso- and t-butyl alcohols, linear or branched amyl alcohol, hexyl alcohol, cyclohexyl alcohol, lauryl alcohol, cetyl alcohol, benzyl alcohol, chlorobenzyl alcohol, methoxybenzyl alcohol, etc.; dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, etc.; trihydric alcohols such as glycerol, hexanetriol, etc.; and further polyhydric alcohols.
  • monohydric alcohols such as methyl alcohol, ethyl alcohol, n- and iso-propyl alcohols, n-, iso- and t-butyl alcohols, linear or branched amyl alcohol, hexyl alcohol, cyclohexyl alcohol, lau
  • Suitable phenols are phenol, chlorophenol, cresol, ethylphenol, linear or branched propylphenol, butyl- and higher alkylphenols, catechol, resorcinol, 4,4'-dihydroxy-diphenylmethane, 2,2'-isopropylidenediphenol, anthranol, phenanthrol, pyrogallol, phloroglucinol, etc.
  • methyl alcohol, ethyl alcohol, and isobutyl alcohol are preferred because they give higher yields of desired products at a higher reaction rate as compared with other hydroxyl-containing compounds.
  • the catalysts useful in the process of the invention include, for example, elemental palladium, rhodium and ruthenium; the halides, cyanides, thiocyanides, isocyanides, oxides, sulfates, nitrates and carbonyl compounds of these metals; the addition products or complexes of these compounds with tertiary amines such as triethylamine, pyridine, isoquinoline, etc. and the complexes of these compounds with organic phosphorus compounds such triphenylphosphine, etc.; and mixtures of the foregoing.
  • These catalysts may be used either by adding them directly to the reaction system or by associating them with carriers such as alumina, silica, carbon, barium sulfate, calcium carbonate, asbestos, bentonite, diatomaceous earth, fullers's earth, organic ion exchange resins, inorganic ion exchange resins, magnesium silicate, aluminum silicate, molecular sieve, and the like and then adding them to the reaction system.
  • carriers such as alumina, silica, carbon, barium sulfate, calcium carbonate, asbestos, bentonite, diatomaceous earth, fullers's earth, organic ion exchange resins, inorganic ion exchange resins, magnesium silicate, aluminum silicate, molecular sieve, and the like and then adding them to the reaction system.
  • these carriers may be added to the reaction system separately from the catalysts including elemental palladium, rhodium and ruthenium as well as compounds thereof.
  • elemental palladium and palladium compounds are preferred. Specific examples are elemental palladium, palladium chloride, palladium bromide, and elemental palladium associated with a carrier such as carbon or alumina.
  • the Lewis acids useful as the promoter in the process of the invention are, for example, those described in Jack Hine: “Physical Organic Chemistry” (McGraw-Hill Book Co., New York, 1962) and imply Bronsted acids. They include, for example, the halides, sulfates, acetates, phosphates, and nitrates of metals such as tin, titanium, germanium, aluminum, iron, nickel, zinc, cobalt, manganese, thallium, zirconium, copper, lead, vanadium, niobium, tantalum, mercury, etc.
  • Lewis acids are ferric chloride, ferrous chloride, stannic chloride, stannous chloride, aluminum chloride, cupric chloride, cuprous chloride, copper acetate, etc.
  • Lewis acids with tertiary amines also complexes of Lewis acids with tertiary amines and mixtures of Lewis acids and a complex of a Lewis acid with a tertiary amine and also a mixture of a tertiary amine and a complex of a Lewis acid with tertiary amines.
  • Specific examples of the complex-forming tertiary amines are triethylamine, N,N-diethylaniline, N,N-diethylcyclohexylamine, 1,4-diazabicyclo[2,2,2]octane, pyridine, picoline, isoquinoline, quinoline, etc.
  • nitrogen-containing heterocyclic compounds such as pyridine, picoline and isoquinoline are preferred.
  • the use of'a complex derived from such a nitrogen-containing heterocyclic compound and a Lewis acid prevents the corrosion ot the reactor by the Lewis acid, enhances the yield of the desired product, and facilitates recovery of the catalyst, as compared with the use of the Lewis acid alone.
  • the reaction rate is further increased by adding a small amount of water to the reaction system.
  • the amount of water added should be from 1 to 70 moles of preferaby from 10 to 50 moles per 100 moles of the starting aromatic nitro compound. If the amount is less than 1 mole, the addition of water will be virtually ineffective, while if the amount is more than 70 moles, the yield of the desired product will be greatly reduced.
  • the organic primary amino compounds useful in the process of the invention include, for example methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, ethylenediamine, propylenediamine, butylenediamine, hexanediamine, cyclohexylamine, cyclohexaldiamine, aniline, o-, m- and p-diaminobenzenes, 2-amino-4-carbamatetoluene, 4-amino-2-carbamatetoluene, 2-amino-6-carba- matetoluene, o-, m- and p-nitroanilines, 4-nitro-2-aminotoluene, 2-nitro-4-aminotoluene, 2-nitro-6-aminotoluene, 3-nitro-4-aminotoluene, 4-nitro-3-aminotoluene, 2-nitro-3-aminotoluene,
  • aromatic amino compounds those which can be derived from the starting aromatic nitro compounds are preferred.
  • nitrobenzene is used as the starting aromatic nitro compound
  • aniline is preferred.
  • 2-amino-4-nitrotoluene, 4-amino-2-nitrotoluene, 2-amino-4-carbamatetoluene, 4-amino-2-carbamatetoluene, and 2,4-diaminotoluene are preferably used when the starting aromatic nitro compound is 2,4-dinitrotoluene
  • 2-amino-6-nitrotoluene, 2-amino-6-carbamatetoluene, and 2,6-diaminotoluene are preferably used when the starting aromatic nitro compound is 2,6-dinitrotoluene.
  • urea compounds, biuret compounds, and allophanate compounds useful in the process of the invention are those represented by the respective formulae (VIII), (IX) and (X) in which, for example, A' is a phenyl group when the starting aromatic nitro compound is nitrobenzene or a tolyl group having a nitro, amino or carbamate group when the starting aromatic nitro compound is dinitrotoluene.
  • Suitable solvents include, for example, aromatic solvents such as benzene, toluene, xylene, etc.; nitriles such as acetonitrile, benzonitrile, etc.; sulfones such as sulfolane, etc.; halogenated aliphatic hydrocarbons such as 1,1,2-trichloro-1,2,2-trifluorethane, etc.; halogenated aromatic hydrocarbons such as monochlorobenzene, dichlorobenzene, trichlorobenzene, etc.; ketones; esters; and other solvents such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, etc.
  • aromatic solvents such as benzene, toluene, xylene, etc.
  • nitriles such as acetonitrile, benzonitrile, etc.
  • sulfones such as sulfolane,
  • the hydroxyl-containing compound and carbon monoxide are preferably used in amounts equal to at least 1 mole per mole of the nitro group of the starting aromatic nitro compound.
  • the amount of platinum group metal or platinum group metal compound used as the catalyst may vary widely according to the type thereof and other reaction conditions. However, on a weight basis, the amount of catalyst is generally in the range of from 1 x 10- 5 to 1 part, and preferably from 1 x 10- 4 to 5 x 10-' part, per part of the starting aromatic nitro compound when expressed in terms of its metallic component.
  • the amount of Lewis acid used as the promoter is generally in the range of from 2 x 10- 3 to 2 parts, and preferably from 5 x 10- 2 to 1 part, per part of the starting aromatic nitro compund.
  • the reaction temperature is held in the range of from 80° to 230°C, and preferably from 140° to 200°C.
  • the reaction pressure is in the range of from 10 to 1,000 kg/cm 2 G, and preferably from 30 to 500 kg/cm 2 G.
  • the reaction time depends on the nature of aromatic nitro compound used, the reaction temperature, the reaction pv :.;sure, the type and amount of catalyst used, the type and amount of organic primary amino compound, urea compound, biuret compound, or allophanate compound added, the type of reactor employed, and the like, but is generally in the range of from 5 minutes to 6 hours.
  • the reaction mixture is cooled and the gas is discharged from the reactor.
  • the reaction mixture is subjected to any conventional procedure including filtration, distillation, or other suitable separation steps, whereby the resulting urethane is separated from any unreacted materials, any by-products, the solvent, the catalyst, and the like.
  • the urethanes prepared by the process of the invention have wide applications in the manufacture of agricultural chemicals, isocyanates, and polyurethanes.
  • Example 2 The procedure of Example 1 was repeated except that the aniline was replaced by 0.7 g of diphenylurea (Example 2). In addition, the procedure of Example 1 was repeated except that the aniline was omitted (Control 1). The results of Example 2 and Control 1, together with those of Example 1, are summarized in Table 1 below.
  • Example 3 The procedure of Example 3 was repeated except that the isopropylamine was replaced by a variety of primary amino compounds and urea compounds (Examples 4-11). In addition, the procedure of Example 3 was repeated except that the isopropylamine was omitted (Control 2). The results of Examples 4-11 and Control 2 are summarized in Table 2 below.
  • Example 3 The procedure of Example 3 was repeated except that the ethanol was replaced by 68 ml of isobutanol and the isopropylamine was replaced by 0.8 g of 2-amino-4-isobutylcarbamatetoluene and 0.8 g of 4-amino-2-isobutylcarbamatetoluene. After 160 minutes of reaction, the yield of diurethane was 99%.
  • Example 13 The procedure of Example 13 was repeated except that the aminoethylcarbamatetoluenes were omitted. The reaction was carried out for the same period of time, or 120 minutes, as in Example 13. Analysis of the resulting solution revealed that the starting 2,4-dininitrotoluene was absent but the yield of mononitromonourethane was 15% and that of diurethane was 80%.
  • Example 14 The procedure of Example 14 was repeated except that the allophanate compound was replaced by 1.4 g of a biuret compound (formed by heating a mixture of 2,4-toluene diisocyanate and water). The absorption of carbon monoxide ceased in 120 minutes. Analysis of the resulting solution revealed that the yield of diurethane was 97%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (21)

1. Procédé de préparation d'un uréthane aromatique dans lequel on fait réagir entre eux un composé aromatique nitré, un composé hydroxylé organique portant au moins un groupe hydroxy et du monoxyde de carbone en présence d'un système catalytique à une température de 80 à 230°C et sous une pression manométrique de 10 à 1.000 kg/cm2, caractérisé en ce que la réaction est effectuée en présence d'un système catalytique composé d'un catalyseur choisi dans le groupe formé par les métaux du groupe du platine, les composés des metaux du groupe du platine et leurs mélanges, et d'un activateur choisi dans le groupe consistant en:
a) un mélange d'un acide de Lewis avec une amine tertiaire;
b) un complexe d'un acide de Lewis avec une amine tertiaire; et
c) un mélange d'un acide de Lewis et d'un complexe d'un acide de Lewis avec une amine tertiaire, et en présence d'au moins un composé choisi dans le groupe consistant en:
un composé organique aminé primaire de formule:
Figure imgb0026
où Ra représente un groupe alcoyle linéaire ou ramifié contenant de 1 à 16 atomes de carbone, un groupe cycloalcoyle à 6 atomes de carbone portant ou non un substituant alcoyle contenant de 1 à 3 atomes de carbone, ou un groupe aryle portant ou non au moins un substituant alcoyle contenant de 1 à 6 atomes de carbone, ces groupes alcoyle, cycloalcoyle et aryle pouvant en outre porter au moins un substituant halogéno, aryle, alcényle, cyano, nitro, alcoxy, phénoxy, alcoylthio, phénylthio, carbalcoxy, carbamate, carbamyle, carboaryloxy ou thiocarbamyle;
un composé de type urée de formule:
Figure imgb0027
où chacun des symboles R' et R" représente un atome d'hydrogène, un groupe alcoyle linéaire ou ramifié contenant de 1 à 16 atomes de carbone, un groupe cycloalcoyle à 6 atomes de carbone portant ou non un substituant alcoyle contenant de 1 à 3 atomes de carbone, ou une groupe aryle portant ou non au moins un substituant alcoyle contenant de 1 à 6 atomes de carbone, ces groupes alcoyle, cycloalcoyle et aryle pouvant en outre porter au moins un substituant halogéno, aryle, alcényle, cyano, nitro, alcoxy, phénoxy, alcoylthio, phénylthio, carbalcoxy, carbamate, carbamyle, carboaryloxy ou thiocarbamyle;
un composé de type biuret de formule:
Figure imgb0028
où chacun des symboles R', R" et R"' a les mêmes significations que R' et R" dans la formule (II); et un composé de type allophanate de formule:
Figure imgb0029
où chacun des symboles R' et R" a les mêmes significations que R' et R" dans la formule (II), R, représente un groupe alcoyle linéaire ou ramifié contenant de 1 à 16 atomes de carbone, un groupe cycloalcoyle à 6 atomes de carbone portant ou non un substituant alcoyle contenant de 1 à 3 atomes de carbone, ou un groupe aryle portant ou non au moins un substituant alcoyle contenant de 1 à 6 atomes de carbone, ces groupes alcoyle, cycloalcoyle et aryle pouvant en outre porter au moins un substituant halogéno, aryle, alcényle, nitro, alcoxy, phénoxy ou carbamate.
2. Procédé selon la revendication 1 selon lequel ledit composé organique aminé primaire est l'aniline.
3. Procédé selon la revendication 1 ou 2 selon lequel ledit composé de type urée est l'urée.
4. Procédé selon la revendication 1 selon lequel ledit composé aromatique nitré est un nitrobenzène.
5. Procédé selon la revendication 1 selon lequel ledit composé aromatique nitré est le dinitrotoluene.
6. Procédé selon la revendication 1 selon lequel ledit composé organique hydroxylé est l'alcool éthylique.
7. Procédé selon la revendication 1 selon lequel ledit composé organique hydroxylé est l'alcool isobutylique.
8. Procédé selon la revendication 1 selon lequel ledit catalyseur est le palladium élémentaire, un composé du palladium ou un mélange de ceux-ci.
9. Procédé selon la revendication 1 selon lequel ledit activateur est le chlorure ferreux, un complexe de chlorure ferreux avec une amine tertiaire, ou un mélange de ceux-ci.
10. Procédé selon la revendication 1 selon lequel ledit activateur est le chlorure ferrique, un complexe de chlorure ferrique avec une amine tertiaire, ou un mélange de ceux-ci.
11. Procédé selon la revendication 1 selon lequel ledit activateur est un complexe composé de chlorure ferreux et d'un composé hétérocyclique azoté.
12. Procédé selon la revendication 11 selon lequel on ajoute dans le système de réaction de l'eau en une quantité de 1 à 70 moles pour 100 moles des composés aromatiques nitrés de départ.
13. Procédé selon la revendication 1, caractérisé en ce que le composé aromatique nitré a la formule:
Figure imgb0030
où A représente un reste aromatique substitué ou non substituté d'un composé aromatique nitré dont on a éliminé le groupe ou les groupes nitro et x est un nombre entier dont la valeur va de 1 à 4, le composé organique hydroxylé a la formule:
Figure imgb0031
où R1 représente un groupe alcoyle linéaire ou ramifié contenant de 1 à 6 atomes de carbone, un groupe cycloalcoyle à 6 atomes de carbone portant ou non un substituant alcoyle contenant de 1 à 3 atomes de carbone, ou un groupe aryle portant ou non au moins un substituant alcoyle contenant de 1 à 6 atomes de carbone, ces groupes alcoyle, cycloalcoyle et aralcoyle pouvant en outre porter un substituant halogéno, aryle, alcényle, nitro, alcoxy, phénoxy ou carbamate,
le composé aromatique aminé primaire a la formule:
Figure imgb0032
où A et x ont les mêmes significations que dans la formule (V), R, a la même significations que dans la formule (VI), y est un nombre entier allant de 1 à 4, z est un nombre entier allant de 0 à 3, et la somme de y et z ne dépasse pas x;
le composé de type urée a la formule:
Figure imgb0033
où A représente un groupe de formule:
Figure imgb0034
et A, Rj, x, y et z ont les mêmes significations que dans la formule (VII),
et le composé de type biuret a la formule:
Figure imgb0035
où A' a la même signification que dans la formule (VIII) et RI a la même signification que dans la formule (VI).
14. Procédé selon la revendication 13 selon lequel A dans la formule (V) est un groupe phényle et R, dans la formule (VI) est un groupe éthyle ou isobutyle.
15. Procédé selon la revendication 13 selon lequel A dans la formule (V) est un groupe tolyle et RI dans la formule (VI) est un groupe éthyle ou isobutyle.
16. Procédé selon la revendication 13 selon lequel ledit catalyseur est le palladium élémentaire; un composé du palladium ou un mélange de ceux-ci.
17. Procédé selon la revendication 13 selon lequel ledit activateur est le chlorure ferreux, un complexe de chlorure ferreux avec une amine tertiaire, ou un mélange de ceux-ci.
18. Procédé selon la revendication 13 selon lequel ledit activateur est le chlorure ferrique, un complexe de chlorure ferrique avec une amine tertiaire, ou un mélange de ceux-ci.
19. Procédé selon la revendication 13 selon lequel ledit activateur est un complexe composé de chlorure ferreux et d'un composé hétérocyclique azoté.
20. Procédé selon la revendication 19 selon lequel on ajoute dans le système de réaction de l'eau en une quantité de 1 à 70 moles pour 100 moles des composés aromatiques nitrés de départ.
21. Procédé selon la revendication 20 selon lequel ledit catalyseur est le palladium élémentaire, un composé du palladium ou un mélange de ceux-ci et ledit activateur est un complexe composé de chlorure ferreux et d'un composé hétérocyclique azoté.
EP78100468A 1977-07-25 1978-07-21 Procédé de préparation d'uréthanes aromatiques Expired EP0000563B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP88441/77 1977-07-25
JP8844177A JPS5424853A (en) 1977-07-25 1977-07-25 Preparation of aromatic urethane compound
JP89805/77 1977-07-28
JP8980577A JPS5424854A (en) 1977-07-28 1977-07-28 Preparation of aromatic urethane compound

Publications (2)

Publication Number Publication Date
EP0000563A1 EP0000563A1 (fr) 1979-02-07
EP0000563B1 true EP0000563B1 (fr) 1982-05-12

Family

ID=26429816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100468A Expired EP0000563B1 (fr) 1977-07-25 1978-07-21 Procédé de préparation d'uréthanes aromatiques

Country Status (4)

Country Link
US (1) US4178455A (fr)
EP (1) EP0000563B1 (fr)
DE (1) DE2861807D1 (fr)
IT (1) IT1097336B (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2838754A1 (de) * 1978-09-06 1980-03-20 Bayer Ag Verfahren zur herstellung von urethanen
US4258201A (en) * 1979-01-29 1981-03-24 Halcon Research And Development Corp. Process for the manufacture of carbamates
DE2903950A1 (de) * 1979-02-02 1980-08-07 Bayer Ag Verfahren zur herstellung von urethanen
DE2908251A1 (de) * 1979-03-02 1980-09-11 Bayer Ag Verfahren zur herstellung von urethanen
DE2908252A1 (de) * 1979-03-02 1980-09-11 Bayer Ag Verfahren zur herstellung von urethanen
DE2908250A1 (de) * 1979-03-02 1980-09-11 Bayer Ag Verfahren zur herstellung von urethanen
US4266070A (en) * 1979-05-25 1981-05-05 Halcon Research And Development Corp. Catalytic process for the manufacture of urethanes
US4260781A (en) * 1979-05-25 1981-04-07 Halcon Research And Development Corp. Process for the manufacture of carbamates
US4621149A (en) * 1981-12-25 1986-11-04 Asahi Kasei Kogyo Kabushiki Kaisha Production of urethane compounds
US4709073A (en) * 1985-06-17 1987-11-24 Catalytica Associates Process for the preparation of urethanes
KR890005036B1 (ko) * 1985-09-04 1989-12-08 니홍 고강 가부시기가이샤 방향족 우레탄 및 그 중간생성물의 제조방법
US4876379A (en) * 1987-09-21 1989-10-24 Amoco Corporation Oxidative alkoxycarbonylation of amines and amine derivatives
US5101062A (en) * 1988-09-13 1992-03-31 Babcock-Hitachi Kabushiki Kaisha Process for producing carbamic acid esters
US5130464A (en) * 1989-05-31 1992-07-14 Nkk Corporation Method of manufacturing aromatic urethanes
PL164286B1 (pl) * 1990-10-08 1994-07-29 Inst Chemii Przemyslowej Sposób wytwarzania estrów kwasu N-fenylokarbaminowego PL
US5578652A (en) * 1995-02-17 1996-11-26 Exxon Chemical Patents, Inc. Method of producing rigid foams and products produced therefrom
US5866626A (en) * 1995-07-03 1999-02-02 Exxon Chemical Patents Inc. Method of producing rigid foams and products produced therefrom
US20030158277A1 (en) * 1995-07-03 2003-08-21 Blanpied Robert H. Method of producing rigid foams and products produced therefrom
US6306919B1 (en) 1995-07-03 2001-10-23 Exxonmobil Chemical Patents, Inc. Thermosetting plastic foam
KR100239678B1 (ko) * 1997-05-13 2000-01-15 박호군 카바메이트류의 제조방법
US6748995B2 (en) * 2000-08-24 2004-06-15 Radio Frequency Services, Inc. Apparatus and method for manufacturing panels from wood pieces
CN102952022B (zh) * 2012-09-13 2014-04-09 赛鼎工程有限公司 二硝基甲苯连续制备二胺基甲苯的方法及使用的催化剂和催化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1087896A (en) * 1965-07-06 1967-10-18 Ici Ltd Process for the manufacture of urethanes
US3956360A (en) * 1973-06-21 1976-05-11 Atlantic Richfield Company Process for the manufacture of urethanes
US3993685A (en) * 1974-10-21 1976-11-23 Atlantic Richfield Company Process for the production of urethanes
JPS51149242A (en) * 1975-06-17 1976-12-22 Mitsui Toatsu Chem Inc Process for preparing urethanes

Also Published As

Publication number Publication date
IT7826046A0 (it) 1978-07-24
US4178455A (en) 1979-12-11
IT1097336B (it) 1985-08-31
EP0000563A1 (fr) 1979-02-07
DE2861807D1 (en) 1982-07-01

Similar Documents

Publication Publication Date Title
EP0000563B1 (fr) Procédé de préparation d'uréthanes aromatiques
CA1153386A (fr) Methode de preparation d'urethanes
US3993685A (en) Process for the production of urethanes
US3895054A (en) Process for the manufacture of urethanes
US4080365A (en) Process for preparing aromatic urethanes
US4134880A (en) Process for producing an aromatic urethane from nitro compounds, hydroxyl compounds and carbon monoxide using metal-Lewis acid-ammonia catalyst systems
US4170708A (en) Process for preparing aromatic urethanes
US4236016A (en) Process for the preparation of urethanes
US4251667A (en) Process for the preparation of aromatic urethanes
US4262130A (en) Process for the production of urethanes
US4304922A (en) Process for the preparation of urethane
US4227008A (en) Process for preparing aromatic urethanes
US4600793A (en) Process for the preparation of urethanes
EP0000815B1 (fr) Procédé de préparation de N-aryle ou N-aralcoyle uréthanes
US4603216A (en) Process for the preparation of urethanes
EP0157828B1 (fr) Procede de preparation d'urethanes
US4230876A (en) Process for the preparation of urethanes
EP0029460B1 (fr) Procede de preparation d'urethane aromatique
US3728370A (en) Catalytic process for converting aromatic nitro compounds to aromatic isocyanates
US3714216A (en) Process for preparing aromatic isocyanates
US5241118A (en) Process for the preparation of trisubstituted ureas by reductive carbonylation
KR790001664B1 (ko) 우레탄의 제조방법
JPS5811943B2 (ja) 芳香族ウレタン化合物の製造方法
EP0220205A1 (fr) Procede de preparation d'urethanes
US3812169A (en) Preparation of aromatic isocyanates in a tubular reactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2861807

Country of ref document: DE

Date of ref document: 19820701

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BAYER AG, LEVERKUSEN ZENTRALBEREICH PATENTE, MARKE

Effective date: 19820925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840625

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840714

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850731

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19860228

NLR2 Nl: decision of opposition
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
ITCP It: supplementary protection certificate

Spc suppl protection certif: CCP 341