EP0000400A1 - Verfahren zum Verhindern der Polymerkrustenabscheidung an den Reaktorwänden - Google Patents
Verfahren zum Verhindern der Polymerkrustenabscheidung an den Reaktorwänden Download PDFInfo
- Publication number
- EP0000400A1 EP0000400A1 EP78100399A EP78100399A EP0000400A1 EP 0000400 A1 EP0000400 A1 EP 0000400A1 EP 78100399 A EP78100399 A EP 78100399A EP 78100399 A EP78100399 A EP 78100399A EP 0000400 A1 EP0000400 A1 EP 0000400A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- polymerization
- reaction
- acid
- polyaromatic amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 41
- 229920000642 polymer Polymers 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000008569 process Effects 0.000 title claims abstract description 16
- 150000001412 amines Chemical class 0.000 claims abstract description 38
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011260 aqueous acid Substances 0.000 claims abstract description 10
- 239000000243 solution Substances 0.000 claims description 32
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims description 7
- 229940018564 m-phenylenediamine Drugs 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims 4
- 239000008199 coating composition Substances 0.000 abstract description 7
- 238000001035 drying Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 25
- 239000000178 monomer Substances 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 9
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- -1 vinylidene halides Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical group C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 3
- 238000010557 suspension polymerization reaction Methods 0.000 description 3
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- RUOKPLVTMFHRJE-UHFFFAOYSA-N benzene-1,2,3-triamine Chemical class NC1=CC=CC(N)=C1N RUOKPLVTMFHRJE-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000010062 adhesion mechanism Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- MIAUJDCQDVWHEV-UHFFFAOYSA-N benzene-1,2-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1S(O)(=O)=O MIAUJDCQDVWHEV-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229960004838 phosphoric acid Drugs 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229950000244 sulfanilic acid Drugs 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/002—Scale prevention in a polymerisation reactor or its auxiliary parts
- C08F2/004—Scale prevention in a polymerisation reactor or its auxiliary parts by a prior coating on the reactor walls
Definitions
- a coating composition comprising a straight chain polyaromatic amine dissolved in an aqueous acid solution, such as aqueous HC1, for example, polymer buildup on said surfaces of the reactor is essentially eliminated. Due to the nature of the coating composition, it can be applied to the inner surfaces of the reactor without opening the same thus providing a closed polymerization system. In polymerizing the olefinic monomers, the same is done in an aqueous polymerization medium which is kept in constant contact with said coated surfaces throughout the polymerization reaction.
- a film or coating of a polyaromatic amine is applied to the interior surfaces of a polymerization reactor or vessel by merely contacting said surfaces with an aqueous acid solution of said polyaromatic amine.
- all exposed surfaces in the interior of the reactor, other than the walls, such as the baffles, agitator, and the like, are also treated in like manner.
- the polymerization medium can be introduced to the reactor and the reaction started without the necessity of drying the surfaces prior to said introduction of the polymerization medium.
- the exact mechanism by which the polyaromatic amine coating or film functions to prevent buildup of polymeric scale on the interior surfaces of the reaction vessel is not certain but it is believed to be a free radical destroying mechanism or free radical trapping mechanism. This is believed to be so because aromatic diamines are known to destroy free radicals, for example, as in their well-known activity as antioxidants. Thus, with the destruction of the free radicals by the polyaromatic amine coating or film, polymerization on the interior surfaces of the reactor is inhibited.
- the polyaromatic amines useful in the practice of the present invention are made by the self-condensation reaction of a polyamino benzene. Generally, such reactions are carried out with heat in the presence of an acidic catalyst.
- the polyaromatic amines thus formed have the following general structure: wherein R is H or NH 2 , n is an integer from 0 to 5 and x and y are 1 or 2.
- R is H or NH 2
- n is an integer from 0 to 5
- x and y are 1 or 2.
- the polyamino benzenes there may be named the ortho-, meta-, and para- phenylene diamines and triamino benzenes.
- polyaromatic amines are possible when triamino benzenes are employed.
- any two or more of the above amines can be reacted together or cocondensed.
- the molecular weight or degree of condensation of the polyaromatic amine depends upon the time and temperature of heating; and the kind and concentration of the catalyst. When reacting two amines together, they are employed in approximately equal molar proportions. Polyaromatic amines having a molecular weight in the range of about 250 to about 1000 are satisfactory for use in the present invention. Suffice it to say that the particular polyaromatic amine should have a molecular weight such that it is workable and soluble in an aqueous acid solution so that it can be easily applied to the inner surfaces of the reactor. We have found that polyaromatic amines having a molecular weight in the range of about 300 to about 600 are preferred.
- the softening point of the polyaromatic amine is determined as follows: the polyaromatic amine is melted and cast into a split aluminum mold to make a cube which is 1/2 inch on a side. The mold is cooled, the cube removed therefrom and allowed to cool thoroughly. The cube is then attached to a thermometer bulb by heating the bulb to a temperature in excess of the expected softening point and laying it on the side of the cube, then cooling to 35°C. The thermometer with the cube attached is inserted into a mercury bath which has been preheated to 35°C. The insertion is made so that the top face of side of the cube is one inch below the mercury surface. The mercury bath is then heated at a rate of 4°C. per minute.
- the softening point is determined as the temperature at which, as the cube moves upward, the cube just breaks the surface of the mercury. It is to be noted that the cube should crawl up on the thermometer and not "pop up.” This is accomplished by carefully controlling the rate of rise in temperature of the mercury bath.
- an acid catalyst is employed.
- HC1 the most effective catalyst.
- other useful catalysts may likewise be employed, such as, for example, methane sulfonic acid, benzene sulfonic acid, sulfanilic acid, phosphoric acid, iodine, benzene disulfonic acid, hydrogen bromide (HBr), hydrogen iodide (HI), aluminum chloride, and the like.
- concentration of catalyst will vary depending upon the particular one used. It has been found, however, that a catalyst concentration of from about 0.005 mole to about 0.20 mole per mole of the compound or compounds being self-condensed, or cocondensed, is satisfactory. At any rate, the amount of catalyst employed is not critical.
- the temperature of the reaction will vary depending upon the time of the reaction and the molecular weight desired in the final product. For example, one can heat the reaction ingredients to 315°C. rapidly and then hold at that temperature for various periods of time. Also, the reaction ingredients can be heated to various temperatures above 300°C. and immediately cooled. When this latter procedure is employed, we define the time of reaction as 0 hours. Accordingly, the temperature of the reaction will vary from about 150°C. to about 360°C. and the time of reaction will vary from about 0 hour to about 3 hours. The preferred range of reaction temperature is from 175°C. to 330°C. and the time of reaction from 0 hour to 1 hour. It is understood, of course, that the particular time and temperature selected is dependent upon the catalyst employed and the final molecular weight desired.
- the polyaromatic amine coating solution is made by conventional methods, using heat and agitation where necessary.
- the polyaromatic amine is dissolved in the appropriate aqueous acid solution to an extent such that the solids content of the coating solution does not prevent it being sprayed on the inner surfaces of the reactor through spray nozzles mounted permanently thereon.
- a coating solution having a solids content of polyaromatic amine in the range of about 0.1% to about 20.0% by weight is satisfactory.
- the solids content depends upon the molecular weight of the polyaromatic amine. That is, the solids content could in certain instances, be greater than 20.0% or less than 0.1% by weight.
- additives may be employed in the coating solution, if desired, such as plasticizers-, stabilizers, lubricants, or fillers, and the like. Of course, when additives are employed, suitable adjustment in the solids content of the coating solution is made.
- the aqueous acid solutions used in making the coating solutions of the instant invention are those made from inorganic and organic acids.
- Representatives of the inorganic acids are hydrochloric, sulfuric, phosphoric, and the like.
- organic acids there may be named acetic acid, formic acid, chloroacetic acid and toluene sulfonic acid, etc.
- the most important point is that the acid chosen must give the proper pH in aqueous solution. Usually, a pH in the range of about 1 to about 5 is satisfactory. A preferred pH range is from 1.5 to 3.
- the temperature of the aqueous acid solution when the polyaromatic amine is dissolved therein is not critical. Usually a temperature in the range of about 5°C, to about 100°C. is satisfactory. A preferred pH range is from 1.5 to 3.
- the temperature of the aqueous acid solution when the polyaromatic amine is dissolved therein is not critical. Usually a temperature in the range of about 5°C. to about 100°C. is satisfactory. Agitation during dissolution of the polyaromatic amine is desirable and in some instances necessary.
- the concentration of the acid in the aqueous solution may be varied between about 0.01% by weight to about 20.0% by weight. The preferred concentration of acid is from 0,05% to 2.0% by weight.
- the coating solution is usually applied to the inner reactor surfaces by spraying. However, it is also possible to apply the coating solution by flooding the reactor and then draining, or by brushing or painting on, but spraying is the most practical and economical method of application. After spraying the coating solution on the inner surfaces and draining the reactor, the polymerization reaction can be started immediately without further treatment of said surfaces. However, it has been found that best results are obtained when after applying the coating solution to the surfaces of the reactor, the surfaces are sprayed with water and the reactor drained prior to charging the reactor with the polymerization mix.
- the present coating works equally well on glass or metal surfaces, such as stainless steel, and the like.
- the coating composition of the present invention does substantially eliminate polymer buildup on the reactor surfaces and what little polymer buildup, if any, that may occur, is of the sandy type which is of such a nature that it is readily removable from the reactor surfaces.
- the polymer buildup to be avoided is what is referred to as "paper buildup" since this type of buildup is very difficult to remove and usually requires hand scraping or a high pressure jet stream of water or other liquid. In either event, the reactor must be opened in order to clean the same, which of course, allows the escape into the atmosphere of unreacted monomer, such as vinyl chloride.
- polymerizations may be run in a coated reactor before having to recoat the surfaces thereof.
- the spray nozzles permanently mounted at strategic points on the reactor, it is possible to reach all inner surfaces thereof. After each polymerization is complete and the reactor is drained, the inner surfaces are sprayed with water and the reactor flushed. Then the coating solution is sprayed on the surfaces and the reactor is drained of the excess solution in such a way that the solution can be sent to a recovery system, if desired.
- the reaction to be carried out in the equipment may be commenced immediately, no particular modification of processing techniques being required due to the presence of the coating. Further, utilization of the internally coated reaction vessel of the present invention does not adversely affect the heat stability or other physical and chemical properties of the polymers produced therein.
- the polymerization process is usually conducted at a temperature in the range of about 0°C. to about 100°C. depending upon the particular monomer or monomers being polymerized. However, it is preferred to employ temperatures in the range of about 40°C. to about 70°C., since, at these temperatures polymers having the most beneficial properties are produced.
- the time of the polymerization reaction will normally vary from about 2 to about 15 hours.
- the polymerization process may be carried out at autogenous pressures although superatmospheric pressures of up to 10 atmospheres or more may be employed with some advantage with the more volatile monomers.
- Superatmospheric pressures may also be employed with those monomers having the requisite volatilities at reaction temperatures permitting reflux cooling of the reaction mixture.
- the polymerization process may be carried out utilizing a full reactor technique. That is, the reaction vessel is completely filled with the polymerization medium and kept that way throughout the reaction by constant addition thereto of water or additional make-up liquid containing the monomer or monomers in the same proportion as at start-up. Upon the addition of a certain predetermined amount of liquid, the polymerization reaction is terminated, usually be the addition thereto of a short-stopping agent. The necessity for the addition of liquid is due to the shrinkage in volume of the reaction medium produced by the conversion of the monomer or monomers to the polymeric state.
- the self-condensation product of m-phenylenediamine (m-PDA) was made for use in this Example.
- the polyaromatic amine was made by charging 109 grams of m-PDA to a flask equipped with a reflux condenser and heating to a temperature of 200°C. After reaching this temperature, 0.5 gram of AlC13 catalyst was added and the temperature was raised to 250°C. Heating at 250°C. was continued for 11 hours and the NH 3 coming off was collected in a water trap. Thereafter the reaction mixture was vacuum distilled in order to remove any unreacted diamine.
- the resulting polyaromatic amine or condensed m-PDA had a softening point of 64°C.
- the polyaromatic amine was dissolved in 0.1 N-HC1 i give a 1.5% by weight solution of self-condensed m-PDA.
- the pH of the resultant coating solution was 2.7.
- the internal surfaces of a polymerization reactor were coated with this solution and then rinsed with water. The following recipe was then charged to the reactor in usual fashion:
- the polymerization reaction was carried out in a full reactor, that is, sufficient water was added to fill the reactor, and at a temperature of 57°C. with agitation. The reaction was continued with addition of water as the reaction mixture shrank because of formation of polymer in order to keep the reactor full. The reaction was discontinued upon the additior of 400 grams of water. After removal of the contents of the reactor the internal surfaces were classified or rated with the following results: paper buildup 0.0 and sandy buildup 0.01. This clearly shows the superiority of the use of a coated reactor over an uncoated reactor.
- the cycle is repeated with each batch without opening the polymerizer. This is accomplished by using spray nozzles mounted in the dome of the reaction vessel or polymerizer, spraying the coating solution on the interior surfaces, draining, and recovering, if desired, spraying with water through the same nozzles, draining and then charging the polymerization mixture. After polymerization, the contents are removed and the interior rinsed with water by means of the spray nozzles. Thereafter the cycle is repeated without opening the reactor. Numerous other advantages of the present invention will be apparent to those skilled in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/815,977 US4255470A (en) | 1977-07-15 | 1977-07-15 | Process for preventing polymer buildup in a polymerization reactor |
US815977 | 1977-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0000400A1 true EP0000400A1 (de) | 1979-01-24 |
Family
ID=25219339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100399A Withdrawn EP0000400A1 (de) | 1977-07-15 | 1978-07-14 | Verfahren zum Verhindern der Polymerkrustenabscheidung an den Reaktorwänden |
Country Status (4)
Country | Link |
---|---|
US (1) | US4255470A (de) |
EP (1) | EP0000400A1 (de) |
JP (1) | JPS5420089A (de) |
IN (1) | IN148956B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2598710A1 (fr) * | 1986-05-16 | 1987-11-20 | Europ Vinyls Corp Italia Spa | Procede de polymerisation en suspension aqueuse de monomeres vinyliques halogenes |
US4713434A (en) * | 1982-06-11 | 1987-12-15 | Rohm Gmbh Chemische Fabrik | Continuous emulsion polymerization process |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4297320A (en) * | 1979-04-30 | 1981-10-27 | The B. F. Goodrich Company | Coating polymerization reactors with the reaction products of thiodiphenols and a bleach |
US4532311A (en) * | 1981-03-26 | 1985-07-30 | Union Carbide Corporation | Process for reducing sheeting during polymerization of alpha-olefins |
JPH0615567B2 (ja) * | 1989-05-02 | 1994-03-02 | 信越化学工業株式会社 | 重合体スケールの付着防止方法 |
JPH0768289B2 (ja) * | 1990-03-08 | 1995-07-26 | 台灣塑膠工業股▲ひん▼有限公司 | 塩化ビニル重合体製造用の重合反応器 |
JPH03115305A (ja) * | 1990-05-25 | 1991-05-16 | Shin Etsu Chem Co Ltd | 重合体スケールの付着防止方法および重合体スケール付着防止剤 |
EP1687248B1 (de) * | 2003-11-20 | 2011-06-01 | SOLVAY (Société Anonyme) | Verfahren zur herstellung von dichlorpropanol aus glycerin und einem chlorinierungsmittel in anwesenheit von einem katalysator ausgewählt aus adipin- und glutarsaeure |
EP1885671A1 (de) * | 2005-05-20 | 2008-02-13 | Solvay SA | Verfahren zur herstellung eines chlorhydrins ausgehend von einem mehrfach hydroxilierten aliphatischen kohlenwasserstoff |
KR20080037618A (ko) | 2005-05-20 | 2008-04-30 | 솔베이(소시에떼아노님) | 폴리히드록실화 지방족 탄화수소 및 염소화제 간의 반응에의한 클로로히드린 제조 방법 |
EP2043984A1 (de) * | 2006-06-14 | 2009-04-08 | Solvay S.A. | Rohes produkt auf glyzerinbasis, verfahren zu dessen aufreinigung und dessen verwendung bei der herstellung von dichlorpropanol |
US20100032617A1 (en) * | 2007-02-20 | 2010-02-11 | Solvay (Societe Anonyme) | Process for manufacturing epichlorohydrin |
FR2913421B1 (fr) * | 2007-03-07 | 2009-05-15 | Solvay | Procede de fabrication de dichloropropanol. |
FR2913684B1 (fr) * | 2007-03-14 | 2012-09-14 | Solvay | Procede de fabrication de dichloropropanol |
TW200911740A (en) | 2007-06-01 | 2009-03-16 | Solvay | Process for manufacturing a chlorohydrin |
TW200911693A (en) * | 2007-06-12 | 2009-03-16 | Solvay | Aqueous composition containing a salt, manufacturing process and use |
TWI500609B (zh) * | 2007-06-12 | 2015-09-21 | Solvay | 含有環氧氯丙烷的產品,其製備及其不同應用中的用途 |
JP2011502032A (ja) * | 2007-10-02 | 2011-01-20 | ソルヴェイ(ソシエテ アノニム) | 容器の耐腐食性を向上させるためのケイ素を含有する組成物の使用 |
FR2925045B1 (fr) | 2007-12-17 | 2012-02-24 | Solvay | Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol |
TWI478875B (zh) * | 2008-01-31 | 2015-04-01 | Solvay | 使水性組成物中之有機物質降解之方法 |
CN101980995B (zh) | 2008-04-03 | 2014-06-18 | 索尔维公司 | 包含甘油的组合物、获得该组合物的方法以及它们在二氯丙醇生产中的用途 |
FR2935968B1 (fr) | 2008-09-12 | 2010-09-10 | Solvay | Procede pour la purification de chlorure d'hydrogene |
FR2939434B1 (fr) * | 2008-12-08 | 2012-05-18 | Solvay | Procede de traitement de glycerol. |
JP6049087B2 (ja) | 2010-09-30 | 2016-12-21 | ソルヴェイ(ソシエテ アノニム) | 天然起源のエピクロロヒドリンの誘導体 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2362165A1 (fr) * | 1976-08-16 | 1978-03-17 | Goodrich Co B F | Reacteur a revetement interne destine a etre utilise pour des polymerisations olefiniques |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4024330A (en) * | 1975-04-08 | 1977-05-17 | The B. F. Goodrich Company | Internally coated reaction vessel and process for coating the same |
-
1977
- 1977-07-15 US US05/815,977 patent/US4255470A/en not_active Expired - Lifetime
-
1978
- 1978-07-05 IN IN743/CAL/78A patent/IN148956B/en unknown
- 1978-07-10 JP JP8312578A patent/JPS5420089A/ja active Pending
- 1978-07-14 EP EP78100399A patent/EP0000400A1/de not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2362165A1 (fr) * | 1976-08-16 | 1978-03-17 | Goodrich Co B F | Reacteur a revetement interne destine a etre utilise pour des polymerisations olefiniques |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713434A (en) * | 1982-06-11 | 1987-12-15 | Rohm Gmbh Chemische Fabrik | Continuous emulsion polymerization process |
FR2598710A1 (fr) * | 1986-05-16 | 1987-11-20 | Europ Vinyls Corp Italia Spa | Procede de polymerisation en suspension aqueuse de monomeres vinyliques halogenes |
GB2190604A (en) * | 1986-05-16 | 1987-11-25 | Europ Vinyls Corp | Process for the polymerization in aqueous suspension of halogen-containing vinylic monomers |
BE1000425A5 (fr) * | 1986-05-16 | 1988-12-06 | Europ Vinyls Corp Italia | Procede de polymerisation en suspension aqueuse de monomeres vinyliques halogenes. |
GB2190604B (en) * | 1986-05-16 | 1990-05-30 | Europ Vinyls Corp | Process for the polymerization in aqueous suspension of halogen-containing vinylic monomers |
Also Published As
Publication number | Publication date |
---|---|
IN148956B (de) | 1981-07-25 |
US4255470A (en) | 1981-03-10 |
JPS5420089A (en) | 1979-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4255470A (en) | Process for preventing polymer buildup in a polymerization reactor | |
US4024301A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
US4080173A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
US4081248A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
EP0020541B1 (de) | Überzug von polymerisations-reaktoren mit oligomer-überzügen, die von den reaktionsprodukten substituierter phenole abstammen | |
US4579758A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
US4105840A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
US4228130A (en) | Coating polymerization reactors with oligomers derived from polyhydric phenols plus a bleach | |
JPH0122281B2 (de) | ||
EP0177775B1 (de) | Reaktor mit beschichteten Innenwänden für die Polymerisation von Olefinen | |
GB1592403A (en) | Internally coated reaction vessel for use in olefinic polymerization | |
EP0027466B1 (de) | Beschichtung von polymerisationsreaktoren mit den reaktionsprodukten von thiodiphenolen und einem bleichmittel | |
AU552670B2 (en) | Internally coated reaction vessel for use in olefinic polymerization | |
EP0070296B1 (de) | Innenbeschichteter reaktionskessel zur verwendung bei olefinischer polymerisation | |
US4297320A (en) | Coating polymerization reactors with the reaction products of thiodiphenols and a bleach | |
EP0071223A1 (de) | Innen beschichteter Reaktionsbehälter zum Gebrauch von Suspensionspolymerisation von Vinylmonomeren | |
AU537544B2 (en) | Coating polymerization reactors with the reaction products ofthiodiphenols and a bleach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB NL |
|
17P | Request for examination filed | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19810721 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WITENHAFER, DONALD EDWARD Inventor name: HAEHN, JAMES BERNARD Inventor name: COHEN, LOUIS |