EP0000173B1 - Process for the preparation of chlorosulfonic acids - Google Patents

Process for the preparation of chlorosulfonic acids Download PDF

Info

Publication number
EP0000173B1
EP0000173B1 EP78100200A EP78100200A EP0000173B1 EP 0000173 B1 EP0000173 B1 EP 0000173B1 EP 78100200 A EP78100200 A EP 78100200A EP 78100200 A EP78100200 A EP 78100200A EP 0000173 B1 EP0000173 B1 EP 0000173B1
Authority
EP
European Patent Office
Prior art keywords
chlorosulfonic acid
sulfur trioxide
hydrogen chloride
gas
der
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100200A
Other languages
German (de)
French (fr)
Other versions
EP0000173A1 (en
Inventor
Rolf Börger
Egon Malow
Albert Prof. Dr. Renken
Gerhard Dr. Riess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0000173A1 publication Critical patent/EP0000173A1/en
Application granted granted Critical
Publication of EP0000173B1 publication Critical patent/EP0000173B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/46Compounds containing sulfur, halogen, hydrogen, and oxygen
    • C01B17/466Chlorosulfonic acid (ClSO3H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids

Definitions

  • the present invention relates to a process for producing pure chlorosulfonic acid from hydrogen chloride and sulfur trioxide in chlorosulfonic acid.
  • sulfur trioxide and dry gaseous hydrogen chloride are generally allowed to react with one another, it being possible to use pure liquid or gaseous sulfur trioxide or contact gases with about 7-10% SO 3 .
  • Gaseous hydrogen chloride can also be allowed to act in a packed column on liquid sulfur trioxide or a mixture of chlorosulfonic acid and sulfur trioxide - batchwise or continuously - with the heat of reaction being removed by external cooling.
  • reaction components When using gaseous sulfur trioxide, the reaction components are allowed to react in a packed column which is sprinkled with chlorosulfonic acid. The heat of reaction is removed by cooling the pumped acid in a separate cooler.
  • reaction components in gaseous form into a layer of boiling chlorosulfonic acid, for example in a packed column, and to implement them there, the heat of reaction being removed being evaporated by means of evaporating chlorosulfonic acid (DT-AS 1 226 991).
  • the object was therefore to find a process which gives pure chlorosulfonic acid with a high space-time yield, and this should preferably be below 100 ° C.
  • a process has now been found for the production of chlorosulfonic acid from hydrogen chloride gas and sulfur trioxide, which is dissolved in chlorosulfonic acid, which is characterized in that hydrogen chloride gas and the sulfur trioxide dissolved in chlorosulfonic acid are mixed and allowed to react in a Venturi nozzle, at the end of the Venturi tube the temperature should be 70 to 100 ° C.
  • the invention is based on the knowledge that the mixing of the gas with the liquid is the rate-determining step and that the actual reaction between dissolved hydrogen chloride and sulfur trioxide proceeds very quickly.
  • hydrogen chloride is injected on the gas connection side of a Venturi tube through narrow bores which are provided on the throat (i.e. the narrowest point of the tube) or in the vicinity of the throat. Additional holes may be drilled at locations closer to the pipe exit, i.e. where the pipe already has a larger diameter.
  • the molar ratio of HCl / SO 3 is generally 1: 1, but an excess of HCl, for example of 1-10%, in particular 8-10%, can also be used.
  • Venturi tubes and Venturi nozzles are known to the person skilled in the art.
  • the spatial position of the Venturi tube is not critical; for example, the pipe can be oriented upwards, downwards or horizontally. However, if a bubble column is to be connected to the pipe, it is advantageous to align the pipe upwards.
  • the desired final temperature of 70 to 100 ° C. can easily be achieved by suitably setting the temperature of the chlorosulfonic acid containing SO 3 .
  • a chlorosulfonic acid which is practically free from sulfur trioxide can be prepared by the process according to the invention.
  • a bubble column (2) with a reactor volume of 7.4 l is arranged above a vertical venturi tube (1).
  • the venturi tube model RM 1 from Quickfit
  • 520 I per hour hydrogen chloride is pressed through the gas connection stub (3) through holes in the throat (4) (12 holes with a diameter of 0.65 mm each, which are arranged symmetrically).
  • 93 liters / h of chlorosulfonic acid (temperature: 60 ° C.), which contains S0 3 in solution, are pumped through the liquid nozzle (5) to the venturi throat.
  • the height of the venturi tube is 140 mm, the diameter at the throat 7 mm, at the widest point 19 mm.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von reiner Chlorsulfonsäure aus Chlorwasserstoff und Schwefeltrioxid in Chlorsulfonsäure.The present invention relates to a process for producing pure chlorosulfonic acid from hydrogen chloride and sulfur trioxide in chlorosulfonic acid.

Bei der technischen Herstellung von Chlorsulfonsäure läßt man im allgemeinen Schwefeltrioxid und trockenen gasförmigen Chlorwasserstoff miteinander reagieren, wobei man reines flüssiges oder gasförmiges Schwefeltrioxid oder Kontaktgase mit ca. 7-10% S03 verwenden kann.In the industrial production of chlorosulfonic acid, sulfur trioxide and dry gaseous hydrogen chloride are generally allowed to react with one another, it being possible to use pure liquid or gaseous sulfur trioxide or contact gases with about 7-10% SO 3 .

Man kann auch gasförmigen Chlorwasserstoff in einer Füllkörperkolonne auf flüssiges Schwefeltrioxid oder ein Gemisch von Chlorsulfonsäure und Schwefeltrioxid - chargenweise oder kontinuierlich - einwirken lassen, wobei man die entstehende Reaktionswärme durch Außenkühlung abführt.Gaseous hydrogen chloride can also be allowed to act in a packed column on liquid sulfur trioxide or a mixture of chlorosulfonic acid and sulfur trioxide - batchwise or continuously - with the heat of reaction being removed by external cooling.

Bei Verwendung von gasförmigem Schwefeltrioxid läßt man die Reaktionskomponenten in einer Füllkörperkolonne reagieren, die mit Chlorsulfonsäure berieselt wird. Die Reaktionswärme wird durch Kühlung der umgepumpten Säure in einem gesonderten Kühler abgeführt.When using gaseous sulfur trioxide, the reaction components are allowed to react in a packed column which is sprinkled with chlorosulfonic acid. The heat of reaction is removed by cooling the pumped acid in a separate cooler.

Es ist ferner bekannt, die Reaktionskomponenten gasförmig in einer Schicht siedender Chlorsulfonsäure, beispielsweise in einer Füllkörperkolonne einzuleiten und dort umzusetzen, wobei die entstehende Reaktionswärme durch verdampfende Chlorsulfonsäure abgeführt wird (DT-AS 1 226 991).It is also known to introduce the reaction components in gaseous form into a layer of boiling chlorosulfonic acid, for example in a packed column, and to implement them there, the heat of reaction being removed being evaporated by means of evaporating chlorosulfonic acid (DT-AS 1 226 991).

Aus der US-PS 2311619 ist ein Verfahren zur Herstellung von Chlorsulfonsäure bekannt, das in zwei Stufen arbeitet. Zünächst wird HCI-Gas in einem ersten Turm mit heißer Chlorsulfonsäure in Kontakt gebracht, die etwa 30 Gew.-% Schwefeltrioxid enthält. Anschließend werden die im ersten Turm nicht kondensierten Anteile in einem zweiten Turm niedergeschlagen, in dem kalte Chlorsulfonsäure mit einem niedrigeren SOg-Gehait zirkuliert. Bei diesem Verfahren werden also zwei Absorptionskreisläufe (enthaltend Absorptionsturm, Pumpe und Vorratsbehälter mit Chlorsulfonsäure unterschiedlicher S03-Konzentration) gebraucht.From US-PS 2311619 a process for the production of chlorosulfonic acid is known, which works in two stages. In a first tower, HCI gas is first brought into contact with hot chlorosulfonic acid, which contains about 30% by weight of sulfur trioxide. Subsequently, the portions not condensed in the first tower are deposited in a second tower in which cold chlorosulfonic acid with a lower SOg content circulates. In this process, two absorption circuits (containing the absorption tower, pump and storage container with chlorosulfonic acid of different S0 3 concentration) are used.

Diese Verfahren haben den Nachteil, daß sie apparativ sehr aufwendig und ihre Raum-Zeit-Ausbeuten relativ niedrig sind.These processes have the disadvantage that they are very complex in terms of equipment and their space-time yields are relatively low.

Nach dem Verfahren der DT-OS 20 59 293 wird Chlorwasserstoff mit gasförmigem Schwefeltrioxid in einer Zweistoffdüse gründlich durchmischt. Die gebildete Chlorsulfonsäure fällt zunächst dampfförmig an und wird in nachgeschalteten Kondensatoren verflüssigt. Da jedoch oberhalb von 100°C die Zersetzung der Chlorsulfonsäure unter Bildung von Schwefelsäure und Sulfurylchlorid einsetzt, fallen bei diesem Verfahren Produkte an, die nicht rein sind.According to the procedure of DT-OS 20 59 293, hydrogen chloride is mixed thoroughly with gaseous sulfur trioxide in a two-component nozzle. The chlorosulfonic acid formed initially occurs in vapor form and is liquefied in downstream condensers. However, since the decomposition of chlorosulfonic acid begins with the formation of sulfuric acid and sulfuryl chloride above 100 ° C., products which are not pure are obtained in this process.

Es bestand daher die Aufgabe, ein Verfahren zu finden, das bei hoher Raum-Zeit-Ausbeute reine Chlorsulfonsäure liefert, dieses sollte möglichst unter 100°C verlaufen.The object was therefore to find a process which gives pure chlorosulfonic acid with a high space-time yield, and this should preferably be below 100 ° C.

Es wurde nun ein Verfahren zur Herstellung von Chlorsulfonsäure aus Chlorwasserstoffgas und Schwefeltrioxid, das in Chlorsulfonsäure gelöst ist, gefunden, das dadurch gekennzeichnet, ist, daß man Chlorwasserstoffgas und das in Chlorsulfonsäure gelöste Schwefeltrioxid in einer Venturidüse vermischt und reagieren läßt, wobei am Ende des Venturirohres die Temperatur 70 bis 100°C betragen soll.A process has now been found for the production of chlorosulfonic acid from hydrogen chloride gas and sulfur trioxide, which is dissolved in chlorosulfonic acid, which is characterized in that hydrogen chloride gas and the sulfur trioxide dissolved in chlorosulfonic acid are mixed and allowed to react in a Venturi nozzle, at the end of the Venturi tube the temperature should be 70 to 100 ° C.

Der Erfindung liegt die Erkenntnis zugrunde, daß die Vermischung des Gases mit der Flüssigkeit den geschwindigkeitsbestimmenden Schritt darstellt und daß die eigentliche Reaktion zwischen gelöstem Chlorwasserstoff und Schwefeltrioxid sehr rasch verläuft.The invention is based on the knowledge that the mixing of the gas with the liquid is the rate-determining step and that the actual reaction between dissolved hydrogen chloride and sulfur trioxide proceeds very quickly.

Beim erfindungsgemäßen Verfahren wird Chlorwasserstoff auf der Gasanschluß-Seite eines Venturirohres durch enge Bohrungen, die an der Kehle (d.h. der engsten Stelle des Rohres) oder in der Nähe der Kehle angebracht sind, eingepreßt. Zusätzliche Bohrungen können an Stellen angebracht sein, die näher zum Rohrausgang liegen, d.h. bei denen das Rohr bereits einen größeren Durchmesser hat. Eine solche Anordnung ist z.B. in der DT-AS 1 300913 beschrieben.In the method according to the invention, hydrogen chloride is injected on the gas connection side of a Venturi tube through narrow bores which are provided on the throat (i.e. the narrowest point of the tube) or in the vicinity of the throat. Additional holes may be drilled at locations closer to the pipe exit, i.e. where the pipe already has a larger diameter. Such an arrangement is e.g. described in DT-AS 1 300913.

Es ist jedoch von Vorteil, die Löcher ausschließlich in der Nähe der Kehle anzuordnen. Die Chlorsulfonsäure wird über einen Flüssigkeitsstutzen eingepumpt. Der Zustrom der eingepumpten Flüssigkeit kann durch ein kegelförmiges Ventil reguliert werden. Die Durchmischung der Reaktionspartner findet in der Hauptsache in der Nähe der Eintrittslöcher statt. Am Ende des mit der Düse verbundenen Venturirohres ist Durchmischung und Reaktion in der Regel beendet. Um eine gründliche Durchmischung der beiden Reaktionspartner zu erreichen, soll Chlorwasserstoff in möglichst kleine Bläschen aufgelöst werden. Die Größe der Bläschen kann man durch Verändern der folgenden Parameter beeinflussen:

  • 1. Bei gegebenem Chlorwasserstoffgasstrom (Liter/Stunde) und gegebenem Gesamtquerschnitt der Öffnungen, durch die der Chlorwasserstoff in die Venturidüse eintritt, ist es vorteilhaft, möglichst viele Löcher mit jeweils kleinem Querschnitt anstatt einiger weniger Löcher mit großem Querschnitt zu verwenden. Trotz gleichem Gesamtquerschnitt werden im ersten Fall kleinere Gasbläschen resultieren.
  • 2. Bei gegebenem Gasstrom und gegebener Anzahl der Düsenlöcher sollen die Löcher möglichst groß sein, um die Gaseintrittsgeschwindigkeit (Meter/Sekunde) und damit die Größe der Gasblasen zu verringern. Jedoch sind der Vergrößerung der einzelnen Öffnungen und der Anzahl der Öffnungen durch die mechanische Stabilität der Kehle der Venturidüse Grenzen gesetzt. In der Regel werden die Öffnungen für das Chlorwasserstoffgas um die Düse so angeordnet, daß sie die Ecken eines regelmäßigen n-Eckes darstellen.
  • 3. Unabhängig vom gegebenen Gasstrom ist ein möglichst großer Flüssigkeitsstrom (Liter/ Stunde) für die Durchmischung wünschenswert. Wegen der stöchiometrischen Verknüpfung von Gas- und Schwefeltrioxid-Menge bedeutet dies, daß die Konzentration des gelösten Schwefeltrioxids in der Chlorsulfonsäure um so weiter absinkt, je größer das Verhältnis Flüssigkeit : Gas (I/h : I/h) ist.
However, it is advantageous to place the holes only near the throat. The chlorosulfonic acid is pumped in through a liquid nozzle. The inflow of the pumped liquid can be regulated by a cone-shaped valve. The mixing of the reactants takes place mainly in the vicinity of the entry holes. At the end of the Venturi tube connected to the nozzle, mixing and reaction are usually complete. In order to achieve thorough mixing of the two reactants, hydrogen chloride should be dissolved in the smallest possible bubbles. The size of the bubbles can be influenced by changing the following parameters:
  • 1. Given the hydrogen chloride gas flow (liter / hour) and the total cross section of the openings through which the hydrogen chloride enters the Venturi nozzle, it is advantageous to use as many holes with a small cross section as possible instead of a few holes with a large cross section. Despite the same overall cross-section, smaller gas bubbles will result in the first case.
  • 2. With a given gas flow and a given number of nozzle holes, the holes should be as large as possible in order to reduce the gas inlet speed (meters / second) and thus the size of the gas bubbles. However, the mechanical stability of the venturi throat limits the size of the individual openings and the number of openings. As a rule, the public Solutions for the hydrogen chloride gas arranged around the nozzle so that they represent the corners of a regular n-corner.
  • 3. Regardless of the given gas flow, the greatest possible liquid flow (liters / hour) is desirable for thorough mixing. Because of the stoichiometric combination of the amount of gas and sulfur trioxide, this means that the concentration of the dissolved sulfur trioxide in the chlorosulfonic acid decreases the greater the ratio of liquid: gas (I / h: I / h).

Die Herstellung von Lösungen von Schwefeltrioxid in Chlorsulfonsäure ist bekannt. Man kann beispielsweise gasförmiges Schwefeltrioxid mittels Absorben in Chlorsulfonsäure lösen oder flüssiges Schwefeltrioxid mit Chlorsulfonsäure vermischen. Zur Verhinderung des Auskristallisierens von Schwefeltrioxid aus diesen Lösungen ist es empfehlenswert, die Lösungen bei Temperaturen von über 40°C zu halten.The production of solutions of sulfur trioxide in chlorosulfonic acid is known. For example, gaseous sulfur trioxide can be dissolved in chlorosulfonic acid by means of absorbing, or liquid sulfur trioxide can be mixed with chlorosulfonic acid. In order to prevent sulfur trioxide from crystallizing out of these solutions, it is advisable to keep the solutions at temperatures above 40 ° C.

Das VerhältnisThe relationship

Figure imgb0001
liegt im allgemeinen bei 1 bis 40, insbesondere 4 bis 20, vorzugsweise 6 bis 10.
Figure imgb0001
is generally 1 to 40, in particular 4 to 20, preferably 6 to 10.

Bei Erhöhung des Verhältnisses V9/Vf und damit der Konzentration an gelöstem Schwefeltrioxid in der Chlorsulfonsäure, wird die Durchmischung schlechter und der durch die Reaktionswärme bedingte Temperaturanstieg höher. Es besteht damit die Gefahr, daß nicht reagiertes S03 das Venturirohr verläßt. Deshalb ist es auch sinnvoll, dem Venturirohr einen Nachreaktor, beispielsweise eine Blasensäule, nachzuschalten. Im Normalfall reicht aber das relativ kleine Volumen des Venturirohres als Reaktionsraum aus, was zu hohen Raum-Zeit-Ausbeuten führt.When the ratio V 9 / V f and thus the concentration of dissolved sulfur trioxide in the chlorosulfonic acid is increased, the mixing becomes worse and the temperature rise caused by the heat of reaction increases. There is therefore a risk that unreacted S0 3 leaves the Venturi tube. It is therefore also sensible to connect a post-reactor, for example a bubble column, to the Venturi tube. Normally, however, the relatively small volume of the venturi tube is sufficient as the reaction space, which leads to high space-time yields.

Eine Verringerung des Verhältnisses V9/Vf ist ohne weiteres möglich, aber (wegen der Erhöhung der Pumpenergie zur Erhöhung von VF und der Verringerung der Raum-Zeit-Ausbeute) unwirtschaftlich.A reduction in the ratio V 9 / V f is readily possible, but (due to the increase in pump energy to increase V F and the reduction in space-time yield) uneconomical.

Das Molverhältnis HCI/S03 liegt im allgemeinen bei 1 : 1 jedoch kann auch ein überschuß an HCI, beispielsweise von 1-10%, insbesondere 8-10% verwendet werden. Venturirohre und Venturidüsen sind dem Fachmann bekannt. Beim erfindungsgemäßen Verfahren ist die räumliche Stellung des Venturirohres nicht kritisch; beispielsweise kann das Rohr nach oben, nach unten oder in der waagrechten ausgerichtet sein. Falls an das Rohr jedoch eine Blasensäule angeschlossen werden soll, ist es vorteilhaft, das Rohr nach oben auszurichten.The molar ratio of HCl / SO 3 is generally 1: 1, but an excess of HCl, for example of 1-10%, in particular 8-10%, can also be used. Venturi tubes and Venturi nozzles are known to the person skilled in the art. In the method according to the invention, the spatial position of the Venturi tube is not critical; for example, the pipe can be oriented upwards, downwards or horizontally. However, if a bubble column is to be connected to the pipe, it is advantageous to align the pipe upwards.

Bei einer Chlorsulfonsäure, die ca. 1% S03 enthält, ist bei der Reaktion ein Temperaturanstieg von ca. 20°C zu beobachten. Durch geeignete Festsetzung der Temperatur der S03 enthaltenden Chlorsulfonsäure läßt sich die gewünschte Endtemperatur von 70 bis 100°C leicht erreichen. Nach dem erfindungsgemäßen Verfahren läßt sich eine Chlorsulfonsäure herstellen, die praktisch frei ist von Schwefeltrioxid.In the case of a chlorosulfonic acid containing approx. 1% S0 3 , a temperature increase of approx. The desired final temperature of 70 to 100 ° C. can easily be achieved by suitably setting the temperature of the chlorosulfonic acid containing SO 3 . A chlorosulfonic acid which is practically free from sulfur trioxide can be prepared by the process according to the invention.

Die Erfindung wird durch folgendes Beispiel erläutert:

  • Beispiel
The invention is illustrated by the following example:
  • example

Die Versuchsanordnung ist in der Figur dargestellt. Über einem vertikal stehenden Venturirohr (1) ist eine Blasensäüle (2) mit dem Reaktorvolumen 7,4 I angeordnet. In das Venturirohr (Modell RM 1 von Quickfit) wird durch den Gasanschluß-Stutzen (3) 520 I pro Stunde Chlorwasserstoff durch Löcher in der Kehle (4) eingepreßt (12 Löcher mit je 0,65 mm Durchmesser die symmetrisch angeordnet sind). Gleichzeitig werden 93 Liter/h Chlorsulfonsäure (Temperatur: 60°C), die S03 gelöst enthält, durch den Flüssigkeitsstutzen (5) zur Kehle des Venturirohres gepumpt. Die Höhe des Venturirohres beträgt 140 mm, der Durchmesser an der Kehle 7 mm, an der weitesten Stelle 19 mm.The experimental arrangement is shown in the figure. A bubble column (2) with a reactor volume of 7.4 l is arranged above a vertical venturi tube (1). In the venturi tube (model RM 1 from Quickfit) 520 I per hour hydrogen chloride is pressed through the gas connection stub (3) through holes in the throat (4) (12 holes with a diameter of 0.65 mm each, which are arranged symmetrically). At the same time, 93 liters / h of chlorosulfonic acid (temperature: 60 ° C.), which contains S0 3 in solution, are pumped through the liquid nozzle (5) to the venturi throat. The height of the venturi tube is 140 mm, the diameter at the throat 7 mm, at the widest point 19 mm.

An der Kehle (Düse) und im Venturirohr werden Gas und Flüssigkeit innig vermischt. Am Ende des Venturirohres beträgt die Reaktionstemperatur 80°C. Dort wird das Reaktionsgemisch über Leitung (6) abgenommen und in die Blasensäule (2) eingeführt. In der Blasensäule trennt sich die flüssige Phase vom Chlorwasserstoff, der durch Leitung (7) abgezogen wird. Das flüssige Reaktionsgemisch (Chlorsulfonsäure) wird durch den seitlichen Stutzen (8) und die Rohrleitung (9) zum Kühler (10) geführt. Der Kühler wird mit frischem Kühlmedium (Beispiel: Tetrachlorkohlenstoff oder Wasser) gekühlt. Die gekühlte Chlorsulfonsäure wird durch Leitung (11) zur Pumpe (12) geführt. Durch Leitung (13) werden stündlich 2,9 kg neu gebildete Chlorsulfonsäure abgenommen. Durch Leitung (14) werden 1,05 I S03 pro Stunde der Chlorsulfonsäure zudosiert. Diese Lösung von Schwefeltrioxid in Chlorsulfonsäure wird durch Pumpe (12) über Leitung (15) und Flüssigkeitsstutzen (5) in das Venturirohr (1) eingeführt.Gas and liquid are intimately mixed at the throat (nozzle) and in the Venturi tube. At the end of the Venturi tube, the reaction temperature is 80 ° C. There the reaction mixture is removed via line (6) and introduced into the bubble column (2). In the bubble column, the liquid phase separates from the hydrogen chloride, which is drawn off through line (7). The liquid reaction mixture (chlorosulfonic acid) is fed through the side connector (8) and the pipeline (9) to the cooler (10). The cooler is cooled with fresh cooling medium (example: carbon tetrachloride or water). The cooled chlorosulfonic acid is fed through line (11) to the pump (12). 2.9 kg of newly formed chlorosulfonic acid are removed per hour through line (13). Through line (14) 1.05 I S0 3 per hour of chlorosulfonic acid are added. This solution of sulfur trioxide in chlorosulfonic acid is introduced into the venturi tube (1) by pump (12) via line (15) and liquid nozzle (5).

Claims (1)

  1. Process for the manufacture of chlorosulfonic acid from hydrogen chloride and sulfur trioxide dissolved in chlorosulfonic acid, characterized by mixing the sulfur trioxide dissolved in chlorosulfonic acid and hydrogen chloride gas in a Venturi nozzle, allowing them to react and keeping the temperature at the end of the Venturi tube in the range of from 70 to 100°C.
EP78100200A 1977-07-02 1978-06-20 Process for the preparation of chlorosulfonic acids Expired EP0000173B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772730011 DE2730011A1 (en) 1977-07-02 1977-07-02 PROCESS FOR THE PRODUCTION OF CHLOROSULPHONIC ACID
DE2730011 1977-07-02

Publications (2)

Publication Number Publication Date
EP0000173A1 EP0000173A1 (en) 1979-01-10
EP0000173B1 true EP0000173B1 (en) 1981-01-14

Family

ID=6013039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100200A Expired EP0000173B1 (en) 1977-07-02 1978-06-20 Process for the preparation of chlorosulfonic acids

Country Status (7)

Country Link
EP (1) EP0000173B1 (en)
AR (1) AR218069A1 (en)
BR (1) BR7804183A (en)
DE (2) DE2730011A1 (en)
DK (1) DK299078A (en)
ES (1) ES471123A1 (en)
IT (1) IT1096951B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855313A (en) * 1981-09-29 1983-04-01 Nippon Soda Co Ltd Manufacture of chlorosulfonic acid
DE3429426A1 (en) * 1984-08-09 1986-02-20 Keiper Recaro GmbH & Co, 5630 Remscheid Front seat of a motor vehicle with a seatbelt system
CN106800276B (en) * 2017-03-27 2018-12-21 浙江嘉化能源化工股份有限公司 Utilize the industrialized preparing process of sterling sulfur trioxide vapor- phase synthesis chlorosulfonic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE228424C (en) * 1909-09-04
FR496189A (en) * 1918-02-01 1919-10-29 Societe De L Usine Chimique De Tenteleva Process for obtaining sulfuric chlorohydrin, so² c1 oh, by means of contact gas
US2311619A (en) * 1940-04-12 1943-02-16 American Cyanamid Co Preparation of chlorsulphonic acid

Also Published As

Publication number Publication date
BR7804183A (en) 1979-04-17
ES471123A1 (en) 1979-01-16
IT1096951B (en) 1985-08-26
DE2730011A1 (en) 1979-01-18
AR218069A1 (en) 1980-05-15
DK299078A (en) 1979-01-03
IT7825219A0 (en) 1978-06-30
DE2860323D1 (en) 1981-03-12
EP0000173A1 (en) 1979-01-10

Similar Documents

Publication Publication Date Title
DE2348108A1 (en) METHOD AND DEVICE FOR ABSORPTION OF SO DEEP 3
DE1921181B2 (en) Process for the production of nitrous oxide
EP0000173B1 (en) Process for the preparation of chlorosulfonic acids
DE3237653C2 (en) Process for the production of urea
DE3411094C2 (en) Dehydrating decomposition process for the production of carbonyl compounds
DE2115094A1 (en) Process for the continuous production of an aqueous choline chloride solution
DE4029784A1 (en) HYDROGEN PEROXIDE PRODUCTION METHOD
DE1915723A1 (en) Process for the production of sulfamic acid
EP0001570B1 (en) Process for the preparation of formaldehyde
DE3533788C1 (en) Process for the preparation of sulphosalicylic acid
DE2906069A1 (en) Process for the preparation of monochloroacetic acid
EP0294613B1 (en) Process and plant for continuous production of chlorosulphonyl isocyanate
DE2509738C3 (en) Process for the continuous production of 13-dioxa-2,4-dithiacyclohexane-2,4-tetroxide carbyl sulfate
EP0983965B1 (en) Process and apparatus for preparing dinitrogen pentoxide
DE2039360A1 (en) Process for the production of organic sulfates or sulfonates
EP0054850B1 (en) Process for producing ammonium sulfamate
DE1808458C3 (en) Process for removing unreacted ammonia from the gas mixture formed in the catalytic synthesis of acrylonitrile from ammonia, molecular oxygen and propylene
DE2018603C3 (en) Process for the conversion of iron
DE1063140B (en) Process for the continuous production of propylene chlorohydrin
DE2357856A1 (en) PROCESS FOR SEPARATING CHLORINE DIOXIDE AND GAS MIXTURES CONTAINING CHLORINE
DE2021134C3 (en) Process for the production of concentrated nitric acid
DE1943803C3 (en) Process for the continuous production of polycarbonate oligomers
DE1592676C3 (en) Process for the production of a mixed fertilizer containing ammonium nitrate and ammonium phosphate
DE1417736C3 (en) Process for the production of gallium arsenide
DE886741C (en) Continuous process for the production of chlorine dioxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2860323

Country of ref document: DE

Date of ref document: 19810312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19810522

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19810630

Year of fee payment: 4

Ref country code: BE

Payment date: 19810630

Year of fee payment: 4

Ref country code: NL

Payment date: 19810630

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19820620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19820630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19830101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19830331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910813

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT