EP0000173A1 - Process for the preparation of chlorosulfonic acids - Google Patents

Process for the preparation of chlorosulfonic acids Download PDF

Info

Publication number
EP0000173A1
EP0000173A1 EP78100200A EP78100200A EP0000173A1 EP 0000173 A1 EP0000173 A1 EP 0000173A1 EP 78100200 A EP78100200 A EP 78100200A EP 78100200 A EP78100200 A EP 78100200A EP 0000173 A1 EP0000173 A1 EP 0000173A1
Authority
EP
European Patent Office
Prior art keywords
chlorosulfonic acid
sulfur trioxide
hydrogen chloride
gas
venturi tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100200A
Other languages
German (de)
French (fr)
Other versions
EP0000173B1 (en
Inventor
Rolf Börger
Egon Malow
Albert Prof. Dr. Renken
Gerhard Dr. Riess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0000173A1 publication Critical patent/EP0000173A1/en
Application granted granted Critical
Publication of EP0000173B1 publication Critical patent/EP0000173B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/46Compounds containing sulfur, halogen, hydrogen, and oxygen
    • C01B17/466Chlorosulfonic acid (ClSO3H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids

Definitions

  • the present invention relates to a process for producing pure chlorosulfonic acid from hydrogen chloride and sulfur trioxide in chlorosulfonic acid.
  • sulfur trioxide and dry gaseous hydrogen chloride are generally allowed to react with one another, it being possible to use pure liquid or gaseous sulfur trioxide or contact gases with about 7-10% SO 3 .
  • Gaseous hydrogen chloride can also be allowed to act in a packed column on liquid sulfur trioxide or a mixture of chlorosulfonic acid and sulfur trioxide - batchwise or continuously - with the resulting heat of reaction being removed by external cooling.
  • reaction components When using gaseous sulfur trioxide, the reaction components are allowed to react in a packed column which is sprinkled with chlorosulfonic acid. The heat of reaction is removed by cooling the pumped acid in a separate cooler.
  • the object was therefore to find a process which gives pure chlorosulfonic acid with a high space-time yield.
  • a process has now been found for the production of chlorosulfonic acid from hydrogen chloride gas and sulfur trioxide, which is dissolved in chlorosulfonic acid, which is characterized in that hydrogen chloride gas and ⁇ the sulfur trioxide dissolved in chlorosulfonic acid are mixed and allowed to react in a Venturi nozzle.
  • a temperature of 70 to 100 ° C should prevail at the end of the Venturi tube.
  • the invention is based on the knowledge that the mixing of the gas with the liquid is the rate-determining step and that the actual reaction between dissolved hydrogen chloride and sulfur trioxide proceeds very quickly.
  • V g / V F A reduction in the ratio V g / V F is readily possible, but (due to the increase in pump energy to increase V F and the reduction in space-time yield) uneconomical.
  • the molar ratio of HCl / S0 3 is generally 1: 1, but an excess of HCl, for example of 1-10%, in particular 8-10%, can also be used.
  • Venturi tubes and Venturi nozzles are known to the person skilled in the art.
  • the spatial position of the Venturi tube is not critical; for example, the pipe can be oriented upwards, downwards or horizontally. However, if a bubble column is to be connected to the pipe, it is advantageous to align the pipe upwards.
  • a temperature increase of approx. 20 ° C can be observed during the reaction.
  • suitable setting of the temperature of S0 3 of chlorosulfonic acid containing the desired final temperature can be from 70 to 100 ° C eeicht reach.
  • a chlorosulfonic acid which is practically free from sulfur trioxide can be prepared by the process according to the invention.
  • a bubble column (2) with the reactor volume 7.4 1 is arranged above a vertically standing Venturi tube (1).
  • the venturi tube model RM 1 from Quickfit
  • 520 1 hydrogen chloride per hour is injected through holes in the throat (4) through the gas connection socket (3) (12 holes, each with a diameter of 0.65 mm, which are arranged symmetrically).
  • 93 liters / h of chlorosulfonic acid (temperature: 60 ° C.), which contains SO 3 dissolved, are pumped through the liquid nozzle (5) to the venturi throat.
  • the height the Venturi tube is 140 mm, the diameter at the throat 7 mm, at the widest point 19 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1. Process for the manufacture of chlorosulfonic acid from hydrogen chloride and sulfur trioxide dissolved in chlorosulfonic acid, characterized by mixing the sulfur trioxide dissolved in chlorosulfonic acid and hydrogen chloride gas in a Venturi nozzle, allowing them to react and keeping the temperature at the end of the Venturi tube in the range of from 70 to 100 degrees C.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von reiner Chlorsulfonsäure aus Chlorwasserstoff und Schwefeltrioxid in Chlorsulfonsäure.The present invention relates to a process for producing pure chlorosulfonic acid from hydrogen chloride and sulfur trioxide in chlorosulfonic acid.

Bei der technischen Herstellung von Chlorsulfonsäure läßt man im allgemeinen Schwefeltrioxid und trockenen gasförmigen Chlorwasserstoff miteinander reagieren, wobei man reines flüssiges oder gasförmiges Schwefeltrioxid oder Kontaktgase mit ca. 7 - 10 % SO3 verwenden kann.In the industrial production of chlorosulfonic acid, sulfur trioxide and dry gaseous hydrogen chloride are generally allowed to react with one another, it being possible to use pure liquid or gaseous sulfur trioxide or contact gases with about 7-10% SO 3 .

Man kann auch gasförmigen Chlorwasserstoff in einer Füllkörperkolonne auf flüssiges Schwefeltrioxid oder ein Gemisch von Chlorsulfonsäure und Schwefeltrioxid - chargenweise oder kontinuierlich - einwirken lassen, wobei man die entstehende Reaktionswärme durch Außenkühlung abführt.Gaseous hydrogen chloride can also be allowed to act in a packed column on liquid sulfur trioxide or a mixture of chlorosulfonic acid and sulfur trioxide - batchwise or continuously - with the resulting heat of reaction being removed by external cooling.

Bei Verwendung von gasförmigem Schwefeltrioxid läßt man die Reaktionskomponenten in einer Füllkörperkolonne reagieren, die mit Chlorsulfonsäure berieselt wird. Die Reaktionswärme wird durch Kühlung der umgepumpten Säure in einem gesonderten Kühler abgeführt.When using gaseous sulfur trioxide, the reaction components are allowed to react in a packed column which is sprinkled with chlorosulfonic acid. The heat of reaction is removed by cooling the pumped acid in a separate cooler.

Es ist ferner bekannt, die Reaktionskomponenten gasförmig in einer Schicht siedender Chlorsulfonsäure, beispielsweise in einer Füllkörperkolonne einzuleiten und dort umzusetzen, wobei die entstehende Reaktionswärme durch verdampfende Chlorsulfonsäure abgeführt wird (DT-AS 12 26 991).It is also known to introduce the reaction components in gaseous form in a layer of boiling chlorosulfonic acid, for example in a packed column, and to implement them there, the resulting heat of reaction is removed by evaporating chlorosulfonic acid (DT-AS 12 26 991).

Diese Verfahren haben den Nachteil, daß sie apparativ sehr aufwendig und ihre Raum-Zeit-Ausbeuten relativ niedrig sind.These processes have the disadvantage that they are very complex in terms of equipment and their space-time yields are relatively low.

Nach dem Verfahren der DT-OS 20 59 293 wird Chlorwasserstoff mit gasförmigem Schwefeltrioxid in einer Zweistoffdüse gründlich durchmischt. Die gebildete Chlorsulfonsäure fällt zunächst dampfförmig an und wird in nachgeschalteten Kondensatoren verflüssigt. Da jedoch oberhalb von 100°C die Zersetzung der Chlorsulfonsäure unter Bildung von Schwefelsäure und Sulfurylchlorid einsetzt, fallen bei diesem Verfahren Produkte an, die nicht rein sind.According to the procedure of DT-OS 20 59 293, hydrogen chloride is mixed thoroughly with gaseous sulfur trioxide in a two-component nozzle. The chlorosulfonic acid formed initially falls in vapor form and is liquefied in downstream condensers. However, since the decomposition of the chlorosulfonic acid begins with the formation of sulfuric acid and sulfuryl chloride above 100 ° C., products which are not pure are obtained in this process.

Es bestand daher die Aufgabe, ein Verfahren zu finden, das bei hoher Raum-Zeit-Ausbeute reine Chlorsulfonsäure liefert.The object was therefore to find a process which gives pure chlorosulfonic acid with a high space-time yield.

Es wurde nun ein Verfahren zur Herstellung von Chlorsulfonsäure aus Chlorwasserstoffgas und Schwefeltrioxid, das in Chlorsulfonsäure gelöst ist, gefunden, das dadurch gekennzeichnet ist, daß man Chlorwasserstoffgas und<das in Chlorsulfonsäure gelöste Schwefeltrioxid in einer Venturidüse vermischt und reagieren läßt. Dabei soll am Ende des Venturirohres eine Temperatur von 70 bis 100°C herrschen.A process has now been found for the production of chlorosulfonic acid from hydrogen chloride gas and sulfur trioxide, which is dissolved in chlorosulfonic acid, which is characterized in that hydrogen chloride gas and <the sulfur trioxide dissolved in chlorosulfonic acid are mixed and allowed to react in a Venturi nozzle. A temperature of 70 to 100 ° C should prevail at the end of the Venturi tube.

Der Erfindung liegt die Erkenntnis zugrunde, daß die Vermischung des Gases mit der Flüssigkeit den geschwindigkeitsbestimmenden Schritt darstellt und daß die eigentliche Reaktion zwischen gelöstem Chlorwasserstoff und Schwefeltrioxid sehr rasch verläuft.The invention is based on the knowledge that the mixing of the gas with the liquid is the rate-determining step and that the actual reaction between dissolved hydrogen chloride and sulfur trioxide proceeds very quickly.

Beim erfindungsgemäßen Verfahren wird Chlorwasserstoff auf der Gasanschluß-Seite eines Venturirohres durch enge Bohrungen, die an der Kehle (d.h. der engsten Stelle des Rohres) oder in der Nähe der Kehle angebracht sind, eingepreßt. Zusätzliche Bohrungen können an Stellen angebracht sein, die näher zum Rohrausgang liegen, d.h. bei denen das Rohr bereits einen größeren Durchmesser'hat. Eine solche Anordnung ist z.B. in der DT-AS 1 300 913 beschrieben. Es ist jedoch von Vorteil, die Löcher ausschließlich in der Nähe der Kehle anzuordnen. Die Chlorsulfonsäure wird über einen Flüssigkeitsstutzen eingepumpt. Der Zustrom der eingepumpten Flüssigkeit kann durch ein kegelförmiges Ventil reguliert werden. Die Durchmischung der Reaktionspartner findet in der Hauptsache in der Nähe der Eintrittslöcher statt. Spätestens am Ende des mit der Düse verbundenen Venturirohres ist Durchmischung und Reaktion in der Regel beendet. Um eine gründliche Durchmischung der beiden Reaktionspartner zu erreichen, soll Chlorwasserstoff in möglichst kleine Bläschen aufgelöst werden. Die Größe der Bläschen kann man durch Verändern der folgenden Parameter beeinflussen:

  • 1. Bei gegebenem Chlorwasserstoffgasstrom (Liter/Stunde) und gegebenem Gesamtquerschnitt der öffnungen, durch die der Chlorwasserstoff in die Venturidüse eintritt, ist es vorteilhaft, möglichst viele Löcher mit jeweils kleinem Querschnitt anstatt einiger weniger Löcher mit großem Querschnitt zu verwenden. Trotz gleichem Gesamtquerschnitt werden im ersten Fall kleinere Gasbläschen resultieren.
  • 2. Bei gegebenem Gasstrom und gegebener Anzahl der Düsenlöcher sollen die Löcher möglichst groß sein, um die Gaseintrittsgeschwindigkeit (Meter/Sekunde) und damit die Größe der Gasblasen zu verringern. Jedoch sind der Vergrößerung der einzelnen öffnungen und der Anzahl der öffnungen durch die mechanische Stabilität der Kehle der Venturidüse Grenzen gesetzt..In der Regel werden die Öffnungen für das Chlorwasserstoffgas um die Düse so angeordnet, daß sie die Ecken eines regelmäßigen n-Eckes darstellen.
  • 3. Unabhängig vom gegebenen Gasstrom ist-ein möglichst großer Flüssigkeitsstrom (Liter/Stunde) für die Durchmischung wünschenswert. Wegen der stöchiometrischen Verknüpfung von Gas- und Schwefeltrioxid-Menge bedeutet dies, daß die Konzentration des gelösten Schwefeltrioxids in der Chlorsulfonsäure um so weiter absinkt, je größer das Verhältnis Flüssigkeit : Gas (ℓ/h : ℓ/h) ist.
In the method according to the invention, hydrogen chloride is injected on the gas connection side of a Venturi tube through narrow bores which are provided on the throat (ie the narrowest point of the tube) or in the vicinity of the throat. Additional holes can be made in places which are closer to the pipe exit, ie where the pipe already has a larger diameter. Such an arrangement is described, for example, in DT-AS 1 300 913. However, it is advantageous to place the holes only near the throat. The chlorosulfonic acid is pumped in through a liquid nozzle. The inflow of the pumped liquid can be regulated by a cone-shaped valve. The mixing of the reactants takes place mainly in the vicinity of the entry holes. Mixing and reaction are usually ended at the latest at the end of the venturi tube connected to the nozzle. In order to achieve thorough mixing of the two reactants, hydrogen chloride should be dissolved in the smallest possible bubbles. The size of the bubbles can be influenced by changing the following parameters:
  • 1. Given the hydrogen chloride gas flow (liter / hour) and the total cross section of the openings through which the hydrogen chloride enters the Venturi nozzle, it is advantageous to use as many holes with a small cross section as possible instead of a few holes with a large cross section. Despite the same overall cross-section, smaller gas bubbles will result in the first case.
  • 2. With a given gas flow and a given number of nozzle holes, the holes should be as large as possible in order to reduce the gas inlet speed (meters / second) and thus the size of the gas bubbles. However, the mechanical stability of the venturi nozzle limits the size of the individual openings and the number of openings. As a rule, the openings for the hydrogen chloride gas are arranged around the nozzle in such a way that they represent the corners of a regular n-corner.
  • 3. Regardless of the given gas flow, the greatest possible liquid flow (liters / hour) for the through mixture desirable. Because of the stoichiometric combination of the amount of gas and sulfur trioxide, this means that the concentration of the dissolved sulfur trioxide in chlorosulfonic acid decreases the greater the ratio of liquid: gas (ℓ / h: ℓ / h).

Die Herstellung von Lösungen von Schwefeltrioxid in Chlorsulfonsäure ist bekannt. Man kann beispielsweise gasförmiges Schwefeltrioxid mittels Absorbern in Chlorsulfonsäure lösen oder flüssiges Schwefeltrioxid mit Chlorsulfonsäure vermischen. Zur Verhinderung des Auskristallisierens von Schwefeltrioxid aus diesen Lösungen ist es empfehlenswert, die Lösungen bei Temperaturen von über 40°C zu halten.The production of solutions of sulfur trioxide in chlorosulfonic acid is known. For example, gaseous sulfur trioxide can be dissolved in chlorosulfonic acid by means of absorbers or liquid sulfur trioxide can be mixed with chlorosulfonic acid. In order to prevent sulfur trioxide from crystallizing out of these solutions, it is advisable to keep the solutions at temperatures above 40 ° C.

Das Verhältnis

Figure imgb0001
liegt im allgemeinen bei 1 bis 40, insbesondere 4 bis 20, vorzugsweise 6 bis 10. Da für einen stöchiometrischen Umsatz sich die Konzentration c an Schwefeltrioxid in der Chlorsulfonsäure (kg/kg) nach der Gleichung c = V9 : VF · 1380) errechnet, ergeben sich so mittlere Konzentrationen an S03 in der Chlorsulfonsäure (vor Eintritt in den Reaktor) von ca. 0,07 bis 2,8 %, insbesondere 0,3 bis 1,4 %, vorzugsweise 0,4 bis 0,7 %.The relationship
Figure imgb0001
is generally 1 to 40, in particular 4 to 20, preferably 6 to 10. Since for a stoichiometric conversion, the concentration c of sulfur trioxide in the chlorosulfonic acid (kg / kg) according to the equation c = V 9 : V F · 1380) calculated, this results in average concentrations of S0 3 in the chlorosulfonic acid (before entering the reactor) of approximately 0.07 to 2.8%, in particular 0.3 to 1.4%, preferably 0.4 to 0.7 %.

Bei Erhöhung des Verhältnisses Vg/VF und damit der Konzentration an gelöstem Schwefeltrioxid in der Chlorsulfonsäure, wird die Durchmischung schlechter und der durch die Reaktionswärme bedingte Temperaturanstieg höher. Es besteht damit die Gefahr, daß nicht reagiertes S03 das Venturirohr verläßt. Deshalb ist es auch sinnvoll, dem Venturirohr einen Nachreaktor, beispielsweise eine Blasensäule, nachzuschalten. Im Normalfall reicht aber das relativ kleine Volumen des Venturirohres als Reaktionsraum aus, was zu hohen Raum-Zeit-Ausbeuten führt.When the ratio V g / V F and thus the concentration of dissolved sulfur trioxide in the chlorosulfonic acid is increased, the intermixing becomes worse and the temperature rise caused by the heat of reaction increases. There is therefore a risk that unreacted S0 3 leaves the Venturi tube. It is therefore also sensible to connect a post-reactor, for example a bubble column, to the Venturi tube. Normally, however, the relatively small volume of the venturi tube is sufficient as the reaction space, which leads to high space-time yields.

Eine Verringerung des Verhältnisses Vg/VF ist ohne weiteres möglich, aber (wegen der Erhöhung der Pumpenergie -zur Erhöhung von VF und der Verringerung der Raum-Zeit-Ausbeute) unwirtschaftlich.A reduction in the ratio V g / V F is readily possible, but (due to the increase in pump energy to increase V F and the reduction in space-time yield) uneconomical.

Das Molverhältnis HCl / S03 liegt im allgemeinen bei 1 : 1 jedoch kann auch ein Überschuß an HCl, beispielsweise von 1 - 10 %, insbesondere 8 - 10 % verwendet werden.The molar ratio of HCl / S0 3 is generally 1: 1, but an excess of HCl, for example of 1-10%, in particular 8-10%, can also be used.

Venturirohre und Venturidüsen sind dem Fachmann bekannt. Beim erfindungsgemäßen Verfahren ist die räumliche Stellung des Venturirohres nicht kritisch; beispielsweise kann das Rohr nach oben, nach unten oder in der waagrechten ausgerichtet sein. Falls an das Rohr jedoch eine Blasensäule angeschlossen werden soll, ist es vorteilhaft, das Rohr nach oben auszurichten.Venturi tubes and Venturi nozzles are known to the person skilled in the art. In the method according to the invention, the spatial position of the Venturi tube is not critical; for example, the pipe can be oriented upwards, downwards or horizontally. However, if a bubble column is to be connected to the pipe, it is advantageous to align the pipe upwards.

Bei einer Chlorsulfonsäure, die ca. 1 % SO3 enthält, ist bei der Reaktion ein Temperaturanstieg von ca. 20°C zu beobachten. Durch geeignete Festsetzung der Temperatur der S03 enthaltenden Chlorsulfonsäure läßt sich die gewünschte Endtemperatur von 70 bis 100°C eeicht erreichen. Nach dem erfindungsgemäßen Verfahren läßt sich eine Chlorsulfonsäure herstellen, die praktisch frei ist von Schwefeltrioxid.With a chlorosulfonic acid containing approx. 1% SO 3 , a temperature increase of approx. 20 ° C can be observed during the reaction. By suitable setting of the temperature of S0 3 of chlorosulfonic acid containing the desired final temperature can be from 70 to 100 ° C eeicht reach. A chlorosulfonic acid which is practically free from sulfur trioxide can be prepared by the process according to the invention.

Die Erfindung wird durch folgendes Beispiel erläutert:The invention is illustrated by the following example:

Beispielexample

Die Versuchsanordnung ist in der Figur dargestellt. über einem vertikal stehenden Venturirohr (1) ist eine Blasensäule (2) mit dem Reaktorvolumen 7,4 1 angeordnet. In das Venturirohr (Modell RM 1 von Quickfit) wird durch den Gasanschluß-Stutzen (3) 520 1 pro Stunde Chlorwasserstoff durch Löcher in der Kehle (4) eingepreßt (12 Löcher mit je 0,65 mm Durchmesser die symmetrisch angeordnet sind). Gleichzeitig werden 93 Liter/h Chlorsulfonsäure (Temperatur: 60°C), die SO3 gelöst enthält, durch den Flüssigkeitsstutzen (5) zur Kehle des Venturirohres gepumpt. Die Höhe des Venturirohres beträgt 140 mm, der Durchmesser an der Kehle 7 mm, an der weitesten Stelle 19 mm.The experimental arrangement is shown in the figure. A bubble column (2) with the reactor volume 7.4 1 is arranged above a vertically standing Venturi tube (1). In the venturi tube (model RM 1 from Quickfit) 520 1 hydrogen chloride per hour is injected through holes in the throat (4) through the gas connection socket (3) (12 holes, each with a diameter of 0.65 mm, which are arranged symmetrically). At the same time, 93 liters / h of chlorosulfonic acid (temperature: 60 ° C.), which contains SO 3 dissolved, are pumped through the liquid nozzle (5) to the venturi throat. The height the Venturi tube is 140 mm, the diameter at the throat 7 mm, at the widest point 19 mm.

An der Kehle (Düse) und im Venturirohr werden Gas und Flüssigkeit innig vermischt. Am Ende des Venturirohres beträgt die Reaktionstemperatur 80°C. Dort wird das Reaktionsgemisch über Leitung (6) abgenommen und in die Blasensäule (2) eingeführt. In der Blasensäule trennt sich die flüssige Phase vom Chlorwasserstoff, der durch Leitung (7) abgezogen wird. Das flüssige Reaktionsgemisch (Chlorsulfonsäure) wird durch den seitlichen Stutzen (8) und die Rohrleitung (9) zum Kühler (10) geführt. Der Kühler wird mit frischem Kühlmedium (Beispiel: Tetrachlorkohlenstoff oder Wasser) gekühlt Die gekühlte Chlorsulfonsäure wird durch Leitung (11) zur Pumpe (12) geführt. Durch Leitung (13) werden stündlich 2,9 kg neu gebildete Chlorsulfonsäure abgenommen. Durch Leitung (14) werden 1,05 1 S03 pro Stunde der Chlorsulfonsäure zudosiert. Diese Lösung von Schwefeltrioxid in Chlorsulfonsäure wird durch Pumpe (12) über Leitung (15) und Flüssigkeitsstutzen (5) in das Venturirohr (1) eingeführt.Gas and liquid are intimately mixed at the throat (nozzle) and in the Venturi tube. At the end of the Venturi tube, the reaction temperature is 80 ° C. There the reaction mixture is removed via line (6) and introduced into the bubble column (2). In the bubble column, the liquid phase separates from the hydrogen chloride, which is drawn off through line (7). The liquid reaction mixture (chlorosulfonic acid) is fed through the side connector (8) and the pipeline (9) to the cooler (10). The cooler is cooled with fresh cooling medium (example: carbon tetrachloride or water). The cooled chlorosulfonic acid is fed through line (11) to the pump (12). 2.9 kg of newly formed chlorosulfonic acid are removed per hour through line (13). Through line (14) 1.05 1 S0 3 per hour of chlorosulfonic acid are added. This solution of sulfur trioxide in chlorosulfonic acid is introduced into the venturi tube (1) by pump (12) via line (15) and liquid nozzle (5).

Claims (3)

1. Verfahren zur Herstellung von Chlorsulfonsäure aus Chlorwasserstoff und Schwefeltrioxid, das in Chlorsulfonsäure gelöst ist, dadurch gekennzeichnet, daß man Chlorwasserstoffgas und das in Chlorsulfonsäure gelöste Schwefeltrioxid in einer Venturidüse vermischt und reagieren läßt.1. A process for the preparation of chlorosulfonic acid from hydrogen chloride and sulfur trioxide which is dissolved in chlorosulfonic acid, characterized in that hydrogen chloride gas and the sulfur trioxide dissolved in chlorosulfonic acid are mixed and allowed to react in a Venturi nozzle. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die umzusetzende Chlorsulfonsäure 0,07 bis 2,8 Gew.-% S03 enthält.2. The method according to claim 1, characterized in that the chlorosulfonic acid to be reacted contains 0.07 to 2.8 wt.% S0 3 . 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß am Ende des Venturirohres die Reaktionstemperatur 70 bis 100°C beträgt.3. The method according to claim 1, characterized in that at the end of the Venturi tube, the reaction temperature is 70 to 100 ° C.
EP78100200A 1977-07-02 1978-06-20 Process for the preparation of chlorosulfonic acids Expired EP0000173B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2730011 1977-07-02
DE19772730011 DE2730011A1 (en) 1977-07-02 1977-07-02 PROCESS FOR THE PRODUCTION OF CHLOROSULPHONIC ACID

Publications (2)

Publication Number Publication Date
EP0000173A1 true EP0000173A1 (en) 1979-01-10
EP0000173B1 EP0000173B1 (en) 1981-01-14

Family

ID=6013039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100200A Expired EP0000173B1 (en) 1977-07-02 1978-06-20 Process for the preparation of chlorosulfonic acids

Country Status (7)

Country Link
EP (1) EP0000173B1 (en)
AR (1) AR218069A1 (en)
BR (1) BR7804183A (en)
DE (2) DE2730011A1 (en)
DK (1) DK299078A (en)
ES (1) ES471123A1 (en)
IT (1) IT1096951B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855313A (en) * 1981-09-29 1983-04-01 Nippon Soda Co Ltd Manufacture of chlorosulfonic acid
CN106800276A (en) * 2017-03-27 2017-06-06 浙江嘉化能源化工股份有限公司 Using the industrialized preparing process of sterling sulfur trioxide vapor- phase synthesis chlorosulfonic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429426A1 (en) * 1984-08-09 1986-02-20 Keiper Recaro GmbH & Co, 5630 Remscheid Front seat of a motor vehicle with a seatbelt system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR418179A (en) * 1909-09-04 1910-12-02 Saccharin Fabrik Ag Vorm Fahlb Manufacturing process of chlorosulfonic acid
FR496189A (en) * 1918-02-01 1919-10-29 Societe De L Usine Chimique De Tenteleva Process for obtaining sulfuric chlorohydrin, so² c1 oh, by means of contact gas
US2311619A (en) * 1940-04-12 1943-02-16 American Cyanamid Co Preparation of chlorsulphonic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR418179A (en) * 1909-09-04 1910-12-02 Saccharin Fabrik Ag Vorm Fahlb Manufacturing process of chlorosulfonic acid
FR496189A (en) * 1918-02-01 1919-10-29 Societe De L Usine Chimique De Tenteleva Process for obtaining sulfuric chlorohydrin, so² c1 oh, by means of contact gas
US2311619A (en) * 1940-04-12 1943-02-16 American Cyanamid Co Preparation of chlorsulphonic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855313A (en) * 1981-09-29 1983-04-01 Nippon Soda Co Ltd Manufacture of chlorosulfonic acid
CN106800276A (en) * 2017-03-27 2017-06-06 浙江嘉化能源化工股份有限公司 Using the industrialized preparing process of sterling sulfur trioxide vapor- phase synthesis chlorosulfonic acid

Also Published As

Publication number Publication date
IT7825219A0 (en) 1978-06-30
DE2730011A1 (en) 1979-01-18
EP0000173B1 (en) 1981-01-14
IT1096951B (en) 1985-08-26
BR7804183A (en) 1979-04-17
DK299078A (en) 1979-01-03
DE2860323D1 (en) 1981-03-12
ES471123A1 (en) 1979-01-16
AR218069A1 (en) 1980-05-15

Similar Documents

Publication Publication Date Title
EP0159488B1 (en) Process for the preparation of 1,2,3-trichloro-2-methyl-1-propane
DE1811768C2 (en) Process for the continuous production of alkyl sulfonyl chlorides
EP0000173B1 (en) Process for the preparation of chlorosulfonic acids
DE3411094C2 (en) Dehydrating decomposition process for the production of carbonyl compounds
DE814144C (en) Process for the preparation of hydroxylamine sulfonates and / or hydroxylamine sulfate
DE2115094A1 (en) Process for the continuous production of an aqueous choline chloride solution
DE4029784A1 (en) HYDROGEN PEROXIDE PRODUCTION METHOD
DE1915723A1 (en) Process for the production of sulfamic acid
EP0001570B1 (en) Process for the preparation of formaldehyde
CH629763A5 (en) METHOD FOR PRODUCING BENZOLSULFOCHLORIDE.
DE3533788C1 (en) Process for the preparation of sulphosalicylic acid
DE880588C (en) Process for the preparation of formic acid alkyl esters
EP0045471B1 (en) Process for producing solutions of complex fluorides of tin (ii)
DE1063140B (en) Process for the continuous production of propylene chlorohydrin
EP0983965B1 (en) Process and apparatus for preparing dinitrogen pentoxide
DE2039360A1 (en) Process for the production of organic sulfates or sulfonates
DE2509738B2 (en) Process for the continuous production of l ^ -Dioxa ^^ - dithiacycl 2,4-tetroxide carbyl sulfate
DE2021134C3 (en) Process for the production of concentrated nitric acid
EP0054850B1 (en) Process for producing ammonium sulfamate
DE886741C (en) Continuous process for the production of chlorine dioxide
DE1417736C3 (en) Process for the production of gallium arsenide
DE2200653C3 (en) Process and apparatus for the production of phosphorous acid
AT268319B (en) Process for the production of nitrosyl hydrogen pyrosulphate
DE1568177C3 (en) Process for the continuous production of alpha-acetyl-alphachlor-gamma-butyrolactone
EP0321854A1 (en) Process for the production of a detergent mixture with low dioxan content containing ether sulphate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2860323

Country of ref document: DE

Date of ref document: 19810312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19810522

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19810630

Year of fee payment: 4

Ref country code: BE

Payment date: 19810630

Year of fee payment: 4

Ref country code: NL

Payment date: 19810630

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19820620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19820630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19830101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19830331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910813

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT