EA201800244A1 - METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGS - Google Patents
METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGSInfo
- Publication number
- EA201800244A1 EA201800244A1 EA201800244A EA201800244A EA201800244A1 EA 201800244 A1 EA201800244 A1 EA 201800244A1 EA 201800244 A EA201800244 A EA 201800244A EA 201800244 A EA201800244 A EA 201800244A EA 201800244 A1 EA201800244 A1 EA 201800244A1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- equipment
- vibration
- frequencies
- wavelet
- wavelet coefficients
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Способ вибрационной диагностики роторного оборудования для выявления дефектов подшипников качения относится к области вибрационной диагностики роторного оборудования с использованием систем и способов обработки вибрационных сигналов и может использоваться для раннего выявления дефектов промышленного оборудования, возникающих в процессе эксплуатации, что позволит проводить его своевременное техническое обслуживание и ремонт. Способ вибрационной диагностики роторного оборудования для выявления дефектов подшипников качения путем обработки сигнала вибрации заключается в том, что вибрационный сигнал, полученный от установленного на оборудовании акселерометра, подвергают вейвлет-преобразованию с применением базисной функции ψ(t)где параметр kзадает скорость убывания экспоненты, а параметр ω - доминирующую циклическую частоту вейвлета, формируют матрицу вейвет-коэффициентов и строят скейлограмму сигнала; определяют доминирующие собственные частоты оборудования, содержащие ударные процессы, на основе поиска максимумов скейлограммы; выбирают наборы вейвлет-коэффициентов, соответствующие найденным на скейлограмме частотам; для каждого выбранного набора вейвлет-коэффициентов при помощи преобразования Гильберта строят огибающую, на основе которой определяют местоположение ударных импульсов во временном сигнале, рассчитывают преобразование Фурье от огибающей набора вейвлет-коэффициентов, осуществляют поиск набора подшипниковых частот в спектре и формируют матрицу найденных подшипниковых частот; по результатам сравнения совокупности найденных подшипниковых частот с шаблоном делают заключение о техническом состоянии подшипника.The method of vibration diagnostics of rotary equipment for detecting defects in rolling bearings relates to the field of vibration diagnostics of rotor equipment using systems and methods for processing vibration signals and can be used for early detection of defects in industrial equipment that arise during operation, which will allow for timely maintenance and repair. The method of vibration diagnostics of rotary equipment for detecting defects in rolling bearings by processing a vibration signal is that the vibration signal received from the accelerometer installed on the equipment is subjected to wavelet transform using the basic function ψ (t) where parameter k sets the decay rate of the exponent and parameter ω is the dominant cyclic frequency of the wavelet, form a matrix of wavelet coefficients and build a signalogram of the signal; determine the dominant natural frequencies of the equipment containing shock processes, based on the search for maximums of the scaleogram; sets of wavelet coefficients corresponding to the frequencies found on the scaleogram are selected; for each selected set of wavelet coefficients using the Hilbert transform, an envelope is built, based on which the location of the shock pulses in the time signal is determined, the Fourier transform of the envelope of the set of wavelet coefficients is calculated, a set of bearing frequencies in the spectrum is searched and a matrix of found bearing frequencies is formed; by comparing the totality of the found bearing frequencies with the template, a conclusion is made about the technical condition of the bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201800244A EA034627B1 (en) | 2018-03-06 | 2018-03-06 | Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201800244A EA034627B1 (en) | 2018-03-06 | 2018-03-06 | Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings |
Publications (2)
Publication Number | Publication Date |
---|---|
EA201800244A1 true EA201800244A1 (en) | 2019-09-30 |
EA034627B1 EA034627B1 (en) | 2020-02-28 |
Family
ID=68000186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA201800244A EA034627B1 (en) | 2018-03-06 | 2018-03-06 | Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings |
Country Status (1)
Country | Link |
---|---|
EA (1) | EA034627B1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1472781A1 (en) * | 1987-04-13 | 1989-04-15 | Институт Проблем Машиностроения Ан Усср | Method of vibrational diagnosis of rotor machine condition |
RU2356021C2 (en) * | 2007-05-02 | 2009-05-20 | Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" | Method of rotor system vibration diagnostics |
US8226568B2 (en) * | 2008-07-15 | 2012-07-24 | Nellcor Puritan Bennett Llc | Signal processing systems and methods using basis functions and wavelet transforms |
-
2018
- 2018-03-06 EA EA201800244A patent/EA034627B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EA034627B1 (en) | 2020-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD | |
CN110276416B (en) | Rolling bearing fault prediction method | |
Mishra et al. | Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising | |
US10495546B2 (en) | Method, system and computer program for the acoustic analysis of a machine | |
Ni et al. | Rolling element bearings fault diagnosis based on a novel optimal frequency band selection scheme | |
Li et al. | Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram | |
US20220003630A1 (en) | Vibro-acoustic analysis method and device and equipment-abnormality-location estimation method and device | |
WO2022132898A8 (en) | Monitoring system for estimating useful life of a machine component | |
CN108444696A (en) | A kind of gearbox fault analysis method | |
CN111693283B (en) | Bearing unsteady state fault feature non-rotating speed extraction method | |
De Lima et al. | On fault classification in rotating machines using fourier domain features and neural networks | |
CN104677580A (en) | Rotary mechanical fault diagnosis method based on analytical modal decomposition | |
CN109934136A (en) | Fault diagnosis method of rolling bearing based on Duffing oscillator and eigenmode components | |
Cao et al. | Remaining useful life prediction of wind turbine generator bearing based on EMD with an indicator | |
EA201800244A1 (en) | METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGS | |
Zhuang et al. | Rolling bearing fault diagnosis by aperiodic stochastic resonance under variable speed conditions | |
Alekseev et al. | Diagnostic features identification algorithm according to vibration parameters of a compressor installation | |
Martin-del-Campo et al. | Towards zero-configuration condition monitoring based on dictionary learning | |
Wang et al. | A hybrid approach to bearing defect diagnosis in rotary machines | |
Li et al. | A spectrum detection approach for bearing fault signal based on spectral kurtosis | |
Li et al. | Fault feature extraction of rolling bearing based on an improved cyclical spectrum density method | |
Hemmati et al. | Rolling element bearing condition monitoring using acoustic emission technique | |
Zimroz et al. | Analysis of the vibro-acoustic data from test rig-comparison of acoustic and vibrational methods | |
Damine et al. | Study of the imf selection methods using kurtosis parameter for bearing fault diagnosis | |
Mykhalkiv et al. | Identification of axle-box bearing faults of freight cars based on minimum entropy deconvolution and squared envelope spectra |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): AM AZ KZ KG TJ TM |
|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): BY RU |