EA201800244A1 - METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGS - Google Patents

METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGS

Info

Publication number
EA201800244A1
EA201800244A1 EA201800244A EA201800244A EA201800244A1 EA 201800244 A1 EA201800244 A1 EA 201800244A1 EA 201800244 A EA201800244 A EA 201800244A EA 201800244 A EA201800244 A EA 201800244A EA 201800244 A1 EA201800244 A1 EA 201800244A1
Authority
EA
Eurasian Patent Office
Prior art keywords
equipment
vibration
frequencies
wavelet
wavelet coefficients
Prior art date
Application number
EA201800244A
Other languages
Russian (ru)
Other versions
EA034627B1 (en
Inventor
Юрий Павлович Асламов
Original Assignee
Общество с ограниченной ответственностью "Сител"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Сител" filed Critical Общество с ограниченной ответственностью "Сител"
Priority to EA201800244A priority Critical patent/EA034627B1/en
Publication of EA201800244A1 publication Critical patent/EA201800244A1/en
Publication of EA034627B1 publication Critical patent/EA034627B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Способ вибрационной диагностики роторного оборудования для выявления дефектов подшипников качения относится к области вибрационной диагностики роторного оборудования с использованием систем и способов обработки вибрационных сигналов и может использоваться для раннего выявления дефектов промышленного оборудования, возникающих в процессе эксплуатации, что позволит проводить его своевременное техническое обслуживание и ремонт. Способ вибрационной диагностики роторного оборудования для выявления дефектов подшипников качения путем обработки сигнала вибрации заключается в том, что вибрационный сигнал, полученный от установленного на оборудовании акселерометра, подвергают вейвлет-преобразованию с применением базисной функции ψ(t)где параметр kзадает скорость убывания экспоненты, а параметр ω - доминирующую циклическую частоту вейвлета, формируют матрицу вейвет-коэффициентов и строят скейлограмму сигнала; определяют доминирующие собственные частоты оборудования, содержащие ударные процессы, на основе поиска максимумов скейлограммы; выбирают наборы вейвлет-коэффициентов, соответствующие найденным на скейлограмме частотам; для каждого выбранного набора вейвлет-коэффициентов при помощи преобразования Гильберта строят огибающую, на основе которой определяют местоположение ударных импульсов во временном сигнале, рассчитывают преобразование Фурье от огибающей набора вейвлет-коэффициентов, осуществляют поиск набора подшипниковых частот в спектре и формируют матрицу найденных подшипниковых частот; по результатам сравнения совокупности найденных подшипниковых частот с шаблоном делают заключение о техническом состоянии подшипника.The method of vibration diagnostics of rotary equipment for detecting defects in rolling bearings relates to the field of vibration diagnostics of rotor equipment using systems and methods for processing vibration signals and can be used for early detection of defects in industrial equipment that arise during operation, which will allow for timely maintenance and repair. The method of vibration diagnostics of rotary equipment for detecting defects in rolling bearings by processing a vibration signal is that the vibration signal received from the accelerometer installed on the equipment is subjected to wavelet transform using the basic function ψ (t) where parameter k sets the decay rate of the exponent and parameter ω is the dominant cyclic frequency of the wavelet, form a matrix of wavelet coefficients and build a signalogram of the signal; determine the dominant natural frequencies of the equipment containing shock processes, based on the search for maximums of the scaleogram; sets of wavelet coefficients corresponding to the frequencies found on the scaleogram are selected; for each selected set of wavelet coefficients using the Hilbert transform, an envelope is built, based on which the location of the shock pulses in the time signal is determined, the Fourier transform of the envelope of the set of wavelet coefficients is calculated, a set of bearing frequencies in the spectrum is searched and a matrix of found bearing frequencies is formed; by comparing the totality of the found bearing frequencies with the template, a conclusion is made about the technical condition of the bearing.

EA201800244A 2018-03-06 2018-03-06 Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings EA034627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201800244A EA034627B1 (en) 2018-03-06 2018-03-06 Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EA201800244A EA034627B1 (en) 2018-03-06 2018-03-06 Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings

Publications (2)

Publication Number Publication Date
EA201800244A1 true EA201800244A1 (en) 2019-09-30
EA034627B1 EA034627B1 (en) 2020-02-28

Family

ID=68000186

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201800244A EA034627B1 (en) 2018-03-06 2018-03-06 Method for vibration diagnostics of rotary equipment to detect defects of rolling bearings

Country Status (1)

Country Link
EA (1) EA034627B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1472781A1 (en) * 1987-04-13 1989-04-15 Институт Проблем Машиностроения Ан Усср Method of vibrational diagnosis of rotor machine condition
RU2356021C2 (en) * 2007-05-02 2009-05-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Method of rotor system vibration diagnostics
US8226568B2 (en) * 2008-07-15 2012-07-24 Nellcor Puritan Bennett Llc Signal processing systems and methods using basis functions and wavelet transforms

Also Published As

Publication number Publication date
EA034627B1 (en) 2020-02-28

Similar Documents

Publication Publication Date Title
Yang et al. Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD
CN110276416B (en) Rolling bearing fault prediction method
Mishra et al. Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising
US10495546B2 (en) Method, system and computer program for the acoustic analysis of a machine
Ni et al. Rolling element bearings fault diagnosis based on a novel optimal frequency band selection scheme
Li et al. Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram
US20220003630A1 (en) Vibro-acoustic analysis method and device and equipment-abnormality-location estimation method and device
WO2022132898A8 (en) Monitoring system for estimating useful life of a machine component
CN108444696A (en) A kind of gearbox fault analysis method
CN111693283B (en) Bearing unsteady state fault feature non-rotating speed extraction method
De Lima et al. On fault classification in rotating machines using fourier domain features and neural networks
CN104677580A (en) Rotary mechanical fault diagnosis method based on analytical modal decomposition
CN109934136A (en) Fault diagnosis method of rolling bearing based on Duffing oscillator and eigenmode components
Cao et al. Remaining useful life prediction of wind turbine generator bearing based on EMD with an indicator
EA201800244A1 (en) METHOD FOR VIBRATION DIAGNOSTICS OF ROTARY EQUIPMENT FOR IDENTIFICATION OF DEFECTS OF ROLLING BEARINGS
Zhuang et al. Rolling bearing fault diagnosis by aperiodic stochastic resonance under variable speed conditions
Alekseev et al. Diagnostic features identification algorithm according to vibration parameters of a compressor installation
Martin-del-Campo et al. Towards zero-configuration condition monitoring based on dictionary learning
Wang et al. A hybrid approach to bearing defect diagnosis in rotary machines
Li et al. A spectrum detection approach for bearing fault signal based on spectral kurtosis
Li et al. Fault feature extraction of rolling bearing based on an improved cyclical spectrum density method
Hemmati et al. Rolling element bearing condition monitoring using acoustic emission technique
Zimroz et al. Analysis of the vibro-acoustic data from test rig-comparison of acoustic and vibrational methods
Damine et al. Study of the imf selection methods using kurtosis parameter for bearing fault diagnosis
Mykhalkiv et al. Identification of axle-box bearing faults of freight cars based on minimum entropy deconvolution and squared envelope spectra

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ KZ KG TJ TM

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): BY RU