EA034991B1 - Фармацевтический аэрозольный состав ингибитора протеаз - Google Patents

Фармацевтический аэрозольный состав ингибитора протеаз Download PDF

Info

Publication number
EA034991B1
EA034991B1 EA201201362A EA201201362A EA034991B1 EA 034991 B1 EA034991 B1 EA 034991B1 EA 201201362 A EA201201362 A EA 201201362A EA 201201362 A EA201201362 A EA 201201362A EA 034991 B1 EA034991 B1 EA 034991B1
Authority
EA
Eurasian Patent Office
Prior art keywords
aerosol
aprotinin
mixture
composition
aerosol composition
Prior art date
Application number
EA201201362A
Other languages
English (en)
Other versions
EA201201362A1 (ru
Inventor
Олег Петрович ЖИРНОВ
Original Assignee
Олег Петрович ЖИРНОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Петрович ЖИРНОВ filed Critical Олег Петрович ЖИРНОВ
Publication of EA201201362A1 publication Critical patent/EA201201362A1/ru
Publication of EA034991B1 publication Critical patent/EA034991B1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/57Protease inhibitors from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

Изобретение относится к медицине и описывает лекарственную композицию водорастворимых белковых или полипептидных соединений из группы ингибиторов протеолитических ферментов для создания мелкодисперсного аэрозоля с помощью аэрозольных устройств, снабженных дозирующим клапаном. Изобретение создано на основе трехкомпонентной выталкивающей смеси, состоящей из глицерола, этанола и фторсодержащего водонерастворимого пропеллента, с соотношением водного раствора активного вещества и трехкомпонентной смеси 0,02-5 и 95-99,986%. Созданный аэрозольный состав может найти применение при лечении заболеваний, сопровождающихся нарушением протеолитического баланса, таких как респираторные инфекции, включая грипп, кератоконъюнктивиты вирусной и бактериальной этиологии, герпетические поражения слизистых оболочек и кожи, хроническая обструктивная бронхопневмония, астма и др.

Description

Область техники
Изобретение относится к медицине и направлено на создание фармацевтических аэрозолей с активными веществами белковой природы и выталкивающими пропеллентными системами для лечения широкого круга заболеваний у людей.
Предшествующий уровень
Известна выталкивающая система Модулит, состоящая из водонерастворимого озонсберегающего пропеллента, глицерола и этанола, которая применялась для изготовления противоастматических аэрозолей с активным веществом синтетической небелковой природы типа беклометазона [Ganderton et al. 2002]. Главными медицинскими пропеллентами нового поколения из группы озонсберегающих (свободных от хлоросодержащих флюорокарбонов; CFC-free -chlorofluorocarbons free) служат 134А (1,1,1,2-тетрафторэтан) и 227 (1,1,1,2,3,3,3-гептафторпропан). Пропеллентная система Модулит может частично смешиваться с водной фазой. Однако для применения системы Модулит не известно, каким образом и в каком соотношении нужно соединить перечисленные четыре компонента, чтобы создать гомогенную смесь, в водной фазе которого изначально растворен белковый ингибитор протеаз, включая апротинин, и предотвратить денатурацию белковой или полипептидной молекулы ингибитора протеаз на возможном разделе фаз под воздействием пропеллента или этанола. Белковые молекулы плохо растворимы в указанных флюорокарбоных смесях и денатурируют, теряя активность при смешивании с указанными поверхностно активными веществами.
Известен способ лечения гриппа и других респираторных инфекций аэрозолем ингибиторов протеаз, преимущественно апротинина, приготовленным из водного раствора или его сухого вещества [патент РФ 2054851]. Апротинин, ингибитор широкого спектра протеаз, который является природным низкомолекулярным полипептадом, состоящим из 58 аминокислот (мол. масса 6 кД) [Trautschold et al. 1983]. Однако в этом патенте не описано, каким образом можно приготовить аэрозольный состав, содержащий в качестве активного ингредиента белковый или полипептидный ингибитор протеаз, включая апротинин, и в качестве выталкивающей силы водонерастворимый озон-сберегающий пропеллент, чтобы состав гомогенно смешивался и не денатурировал белковую и полипептидную молекулу ингибитора при распылении из аэрозольного устройства с клапаном. Эта задача решена в настоящем изобретении, которое описывает количественное соотношение компонентов и процедуру их смешивания для получения аэрозольного состава, позволяющего генерировать аэрозоль активного белкового вещества из группы ингибиторов протеаз.
Известны дозирующие аэрозольные устройства, состоящие из контейнера с особым покрытием устойчивым к озон-сберегающим пропеллентом и дозирующим устройством (головкой), выпускающей определенное количество аэрозоля за одно нажатие клапана. Например, устройства такого типа производят фирмы Bespack, Ovar 3M Pharmaceuticals и др. Аэрозольное устройство для медицинского использования содержит находящийся под давлением пропеллент, активные и вспомогательные вещества. Фармацевтический аэрозольный состав высвобождается из устройства путем распыления аэрозольного состава через выходное отверстие под действием выталкивающей силы пропеллента.
Сущность изобретения
Задачей изобретения являлось создание универсальной аэрозольной композиции, содержащей активное вещество полипептидной природы из группы ингибиторов протеаз и выталкивающую систему с водонерастворимым озон-сберегающим пропеллентом, пригодной для использования в различных дозирующих аэрозольных устройствах.
Для достижения технического результата, заключающегося в создании аэрозолей с физиологически активными белками и полипептидами, необходим подбор уникального соотношения и режима смешивания указанных вспомогательных ингредиентов и активного вещества, позволяющий (1) сохранить аэрозоль-генерирующие свойства многокомпонентной композиции и (2) не нарушить функциональные свойства активного вещества. Чтобы решить эту двоякую задачу, мы используем уникальное соотношение композиционных ингредиентов и метод их поэтапного смешивания, при котором последовательно водный раствор ингибитора протеаз смешивают с глицеролом, этанолом, другими вспомогательными добавками и на последней стадии с пропеллентом.
Разработанный аэрозольный состав на основе озон-сберегающего пропеллента, преимущественно 134А (1,1,1,2-тетрафторэтана), свободного от хлора и поэтому не оказывающего окислительного действия на полипептидные молекулы, пригоден для использования в аэрозольных устройствах, генерирующих аэрозоль активного протеазного ингибитора белковой и полипептидной структуры. Использование этого состава в ручных ингаляторах позволяет оптимизировать индивидуальное применение фармацевтического белкового аэрозоля и исключать кросс-контаминацию инфекции среди людей, которая имеет место при применении ингаляторов стационарного типа.
Медицинская применимость
Грипп и другие респираторные инфекции вирусной и бактериальной природы приносят огромный вред здоровью человека. Для лечения гриппа предлагается аэрозоль порошка занамивира, ингибитора нейраминидазы, для ингаляций у гриппозных больных [Moscona 2005]. Аэрозольный занамивир ингибирует размножение вируса в респираторном тракте посредством ингибирования вирусной нейраминидазы.
- 1 034991
Хорошо известно, что респираторные инфекции, включая гриппозную инфекцию, сопровождаются нарушением протеолитического баланса в респираторном тракте [Kido et al. 2007]. Для коррекции этого нарушения предлагается применение ингибиторов протеаз, которые имеют белковую природу или полипептидную структуру, состоящую из аминокислот и их дериватов. Наиболее рациональным лечебным способом применения служит прямое орошение очага инфекции в респираторном тракте аэрозольной формой ингибиторов протеаз, среди которых типичным представителем служит апротинин. Такое воздействие ингибитора протеаз, во-первых, блокирует размножение вируса за счет ингибирования протеазной активации вирусных белков и, во-вторых, подавляет патогенез заболевания за счет снижения уровня вредных протеаз непосредственно в очаге и в инфицированном организме. В результате, в отличие от занамивира, аэрозоль ингибиторов протеаз оказывает бинарное антивирусное и патогенетическое лечебное действие.
Разработанный фармацевтический аэрозольный состав ингибиторов протеаз, преимущественно апротинина - ингибитора обширного спектра протеаз, найдет широкое медицинское применение, поскольку нарушение протеолитического баланса, требующее коррекции ингибиторами протеаз, развивается при многих заболеваниях человека и животных, В частности, антипротеазный аэрозольный состав может найти применение при таких заболеваниях, как респираторные инфекции, включая грипп, кератоконъюнктивиты вирусной и бактериальной этиологии, герпетические поражения слизистых оболочек и кожи, хроническая обструктивная бронхопневмония, астма и другие.
Фармацевтический аэрозольный состав ингибитора протеаз с озон-сберегающим пропеллентом, состоящий из гомогенной смеси водного раствора активного вещества из группы ингибиторов протеаз, содержащего 0,05-250 мг протеазного ингибитора на мл раствора, и ингредиентов трехкомпонентной выталкивающей смеси, а именно - глицерола, этанола и фторсодержащего водонерастворимого пропеллента, с соотношением водного раствора активного вещества и трехкомпонентной смеси 0,02-5 и 9599,98 об.%, где состав получен последовательным поэтапным смешиванием смеси водного раствора активного вещества с каждым из ингредиентов трехкомпонентной выталкивающей смеси с глицеролом, полученную смесь смешивали с этанолом и затем смешивали с фторсодержащим пропеллентом, взятыми в объемном соотношении 0,1-10:1-13:77-98,9% от объема выталкивающей смеси соответственно.
Состав, отличающийся тем, что активное вещество, выбранное из группы ингибиторов протеаз, представлено веществами белковой и полипептидной природы, такими как апротинин, альфа 2антиплазмин альфа-1 антитрипсин, антитрипсин, цистатин, преимущественно апротинин или их комбинацией.
Состав, отличающийся тем, что активное вещество выбрано из группы антипротеазных олигопептидов, состоящих из двух и более аминокислотных остатков или модифицированных производных аминокислотных остатков.
Состав дополнительно содержит одну или несколько органолептических добавок из группы растительных масел, включающей масло мяты перечной, мяты душистой, ментоловое масло в количестве 0,05-0,9% от общего объема.
Состав дополнительно содержит одну или несколько добавок из группы поверхностно-активных веществ, включающих твин-20, твин-80, спан-20, спан-80, олеиновую кислоту, глицерил моноолеат, диметилсульфоксид, полиэтиленгликоль, в количестве 0,1-3,0% от общего объема.
Состав, позволяющий генерировать аэрозоль с диаметром частиц в аэрозольном облаке в диапазоне 0,5-1000 мкм.
Примеры реализации изобретения
Пример 1. Получение аэрозольного состава из водного раствора апротинина и озон-сберегающего пропеллента.
Для получения аэрозольного состава приведен состав N1, для его получения проводят последовательное один за другим смешивание индивидуальных компонентов в следующей последовательности и соотношениях; 0,12 мл водного раствора, содержащего 3,84 мг белка (или 25000 калликреин ингибирующих единиц (КИЕ)) белка апротинина, в него вносят 1,2 мл 96% водного раствора глицерола; далее в полученную смесь вносят 2,0 мл 96% этанола и к полученной смеси добавляют 0,013 мл масла мяты перечной и на заключительном этапе при постоянном помешивании добавляют 13,5 мл пропеллента 134А под давлением в герметичной емкости. В качестве дополнительного примера приведен аэрозольный состав N2, который получен смешиванием компонентов в большем объеме в последовательности, приведенной в составе N1. Полученные аэрозольные составы имеют следующее соотношение ингредиентов (табл. 1).
- 2 034991
Таблица 1. Соотношение компонентов в аэрозольном составе водорастворимого апротинина и водонерастворимого пропеллента 134А ....................
Компоненты Состав N1 Состав N2 Диапазон соотношения
Фазы в системе пропеллента Фазы в аэрозольном составе
Водорастворимый апротинин:
Апротинин, .. Водная фаза Суммарная водная
концентрирован 0,12 мл (содержит 0,18 мл (содержит 35000 активного
ный водный 25000 КИЕ или 3,64 КИЕ или 5,45 мг белка вещества фаза
раствор мг белка апротинина) апротинина) 0,5-5,0 об.% 0,5-5.0 об.%
Выталкивающая система фторсодержащего пропеллента: Система
пропеллента 95,0-99,5% об., в Пропеллентная
которой: фаза в целом 95.0-99.5% об.,
Пропеллент
134А 13,5 мл 20,0 мл пропеллент
¢1.1,1.2- 80 - 96% об.
тетрафтарэтан) CHjFCFj Глицерол (96 % ——.——— глицерол
водный раствор) 1,2 мл 1,5 мл 1 - 7% об.
Этанол (96 % —— : х этанол
водный раствор) 2,0 мл 3,3 мл 3-13% об.
Вспомогательные добавки:
Органолептическая
Масло мяты 0,013 мл 0,02 мл фаза
перечной 0,05-0.9 об.%
Полученный аэрозольный состав разливают принудительно под давлением в герметичные баллоны, выполненные из сплава алюминия и снабженные дозированным выпускным клапаном, имеющим отверстие с диаметром 0,3 мм. Заполненные баллоны хранят при температуре 18-20°С в течение 0,5 и 4 лет. В качестве дополнительных поверхностно-активных веществ для приготовления смеси активного ингибитора протеаз используют твин-20, твин-80, спан-20, спан-80, олеиновую кислоту, глицерил моноолеат, диметилсульфоксид, полиэтилен гликоль, в количестве 0,01-3,0 об.% состава.
Пример 2. Полипептидные ингибиторы протеаз медицинского назначения
Пример иллюстрирует список различных ингибиторов протеаз полипептидной природы, которые растворяют в водно-глицерино-спиртовой фазе предлагаемого аэрозольного состава, приготовленной согласно зависимому п.1 формулы, для использования в качестве активного компонента в фармацевтическом аэрозольном составе.
- 3 034991
Таблица 2. Список полипептидных ингибиторов протеаз медицинского назначения [
1 Название ингибитора номер доступа SWISS-PROT
Апротинин Р00974
Альфа-протеазный ингибитор Р01009
Альфа 1 - антихимотрипсин Р01011
Цистатин А Р01040
Цистатин С Р01034
Тиостатин Р01042
Кальпастатин Р20810
Альфа 2- макроглобулин Р01023
Альфа 1-микроглобулин Р02760
I Ингибитор фактора 1 тканевого пути Р10646
Ингибитор фактора 2 тканевого пути Р48307
Серозный ингибитор протеаз Р00995
Епафин Р19957
Леупептин ацетил-1_еи-Ьеи-Агд-альдегид
Ингибитор апоптоза BIRC 5 015392
Ингибитор апоптоза XIAP Р98170
Ингибитор каспаз c-FLIP 015519
Тканевой ингибитор металлопроетаз (1-4) ХО1683 '
Серпин А1 (альфа 1- антитрипсин) Р01009
Серпин АЗ (инти-химотрипсин) Р01011
Серпин F2 (альфа 2-антиплазмин) Р08697
Серпин G1 (С1 ингибитор) Р05155 · .
Лейкоцитарный секреторный ингибитор Р03973
! Протеазный ингибитор Bowman-BIRK Х68704
Ангиотензин-3 Р01019
Протеазный ингибитор SPINK-1 _________ NM003122
Пример 3. Отсутствие физической денатурации аэрозольного состава
Чтобы оценить смешиваемость ингредиентов в полученных образцах аэрозольного состава, исследовали оптические свойства, т.е. прозрачность раствора. С этой целью аэрозольный состав выпускали из баллона путем открытия клапана и выпуска аэрозоля в пробирки объемом 15 мл (фирма Falcon; Германия). Сразу после выпуска порцию собранного раствора из 15-миллитровой пробирки переносили в кювету для измерения (объемом 0,5 мл) и определяли оптическую плотность раствора в потоке видимого света на спектрофотометре Ultraspec-2 (Pharmacia, Швеция). Оптическую плотность (прозрачность) аэрозольного раствора сравнивают с оптической плотностью дистиллированной воды, которую принимают за нулевое значение. Тестируют три порции аэрозольного состава: из полного баллона (выпуски номер 1040), выпуски 120-150 (наполовину заполненный баллон); выпуски 190-240 (последняя фракция баллона). Всего в баллоне содержалось 25 мл аэрозольного состава что позволяло сделать около 300 выпусков объемом 85 мкл каждый из одного баллона. Результаты оптической плотности аэрозольного состава трех фракций приведены в табл. 3.
Таблица 3. Оптическая плотность ранних и поздних фракций аэрозольного состава
Г Фракции аэрозольного | состава Срок хранения
0 0,5 года 4 года
Ранняя 0,0 + 0,03 0,0 + 0,03 0,0 + 0,06
Средняя 0,0 ±0,05 0,0 ±0,04 0,0 ±0,03
Поздняя 0,0 ± 0,04 0,0 ± 0,02 0,0 + 0,06
Данные табл. 3 показывают, что аэрозольный раствор, генерированный из ранних и поздних фракций баллона, имеет полную прозрачность подобно дистиллированной воде. Этот результат указывает на хорошую совместимость компонентов и отсутствие преципитации компонентов взвешенных частиц в аэрозольном составе как в баллоне, так и в генерируемом аэрозоле.
Пример 4. Биофизическая стабильность апротинина в аэрозольном составе
Для тестирования биофизических свойств апротинина используют метод фракционирования белков в полиакриламидном геле в электрическом поле, так называемый электрофорез полипептидов в полиакриламидном геле (ПАГЭ). Тестированию подвергаются, во-первых, ранние и поздние порции аэрозольного состава одного баллона и, во-вторых, из баллонов, хранившихся 0,5 и 4 года при температуре 1822°C. Для проведения тестирования получают ранние, средние и поздние порции аэрозольного состава путем сбора указанных фракций, как описано в разделе 3.
Из собранных порций аэрозольного состава отбирают равные аликвоты (15 мкл), которые смешивают с 5 мкл диссоциирующего раствора, содержащего 5% додецилсульфата натрия (ДСН) и 200 мкМ дитиотреитола (ДТТ), нагревают в течение 10 мин при 70°C и наносят на 3% полиакриламидный фоку
- 4 034991 сирующий гель, приготовленный на 0,12 М трис-HCl (рН 6,8) и 0,1% ДСН. Фокусирующий гель имеет толщину 1,2 мм и высоту 1 см. Разделительный гель имел высоту 7 см и содержал 17,5% акриламида, 0,3% метиленбисакриламида, 0,4 М трис-HCl (рН 8,3), 0,1% ДСН. Фокусирующий и разделительный гели полимеризуют с помощью системы катализаторов - персульфат аммония (0,05%) и тетраметилэтилен диамина (ТЕМЕД; 0,2%). Буфер для электродов содержал трисгидроксиаминометан (0,03 М), глицин (0,2 М), 0,1% ДСН и имел рН 8,3, который размещают по 75 мл в анодной и катодной камерах, электрофорезная буферная система по методу Laemmli (1970). Электрофоретическое фракционирование проводят при 70V на пластину ПАГ шириной 8 см в течение 2 ч. После окончания электрофореза полипептиды в геле окрашивают Кумаси голубым R-350 (0,1%), который растворяли в смеси вода:этанол:уксусная кислота в соотношении по объему 5:5:1 в течение 2 ч при комнатной температуре. Не связавшуюся краску отмывают из геля в смеси вода:этанол:уксусная кислота с соотношением 88:5:7 соответственно. Для сравнения в качестве стандартного образца апротинина используют коммерческий препарат очищенного апротинина, выделенного из легких крупного рогатого скота (фирма Sigma, США).
На фиг. 1 показаны результаты анализа образцов аэрозольного состава, полученного из баллона сразу после заполнения и после хранения в течение 0,5 и 4 лет при комнатной температуре (18-22°C). Первое, как видно, апротинин из аэрозольного состава ранних и поздних фракций имел типичный профиль электрофоретической подвижности для полипептида с молекулярной массой около 7кД и полностью соответствовал по электрофоретическим характеристикам стандартного апротинина. Второе, в образцах аэрозоля апротинина не обнаружено высокомолекулярных белковых аггрегатов. Эта высокомолекулярная зона (ВМЗ), соответствующая мол.массе 150-250 кДа, показана на фиг. 1 в рамке на вершине разделительного геля. Как видно на рисунке, в зоне аггрегатов не выявлялось заметных количеств белка в образцах, полученных сразу после заполнения баллонов и в образцах из баллонов, хранившихся 4 года. Эти результаты указывают на то, что апротинин в аэрозольном составе сохраняет свои исходные структурные свойства и не формирует аггрегаты в процессе хранения аэрозольного состава и его последующего распыления.
После электрофореза проводят оценку белков в геле методом сканирования геля. Для этого гель окрашивают Кумаси голубым и сканируют в видимом свете при помощи сканера ScanJet 6300. Количественную оценку интенсивности белковых пятен на сканограмме определяют с помощью программы, позволяющей сканировать оптическую плотность участков. Используя полученные величины интенсивности пятен на электрофореграмме, рассчитывают отношения площадей участков в расчете на единицу площади сканируемой зоны для апротинина и примесных белков в высокомолекулярной зоне, соответствующей молекулярным массам от 150 до 250 кДа. Интенсивность основного пика апротинина (молекулярная масса около 7000 дальтон) принимают за 100%.
; , А
N = —------х ТОО,
В где
A - оптическая интенсивность высокомолекулярной зоны (ВМЗ);
В - оптическая интенсивность пятна апротинина;
N - процент высокомолекулярных примесей.
Количество белка в высокомолекулярной зоне не превышает 3%.
Пример 5. Иммунологическая стабильность апоотинина в аэрозольном составе
Иммунологические свойства апротинина в аэрозольном составе тестируют по его взаимодействию со специфическими антителами по методу вестерн-блот. Исследуют три образца; стандартный апротинин (фирма Sigma, США) и аэрозольный состав из баллона, хранившегося 0,5 и 4 года при температуре 20-22 градуса Цельсия. После электрофореза а ПАГе белки из геля переносят на нитроцеллюлозную протрановую мембрану с диаметром пор 0,45 мкм (фирма Shleiher & Schull, Германия) и далее адсорбированный на мембране белок тестируют по взаимодействию со специфическими к апротанину антителами, Взаимодействие на мембране апротинина с антителами идентифицируют методом усиленной хемилюминесценции с помощью коньюгата пероксидазы со вторичным анти-видовым антителом. В качестве субстрата на пероксидазу используют коммерческий препарат фирмы Pierce (США) и его свечение регистрируют на рентгеновской пленке Kodak (США). Первое, фиг. 2 показывает, что апротинин стандарта и обоих исследованных образцов аэрозольного состава хорошо взаимодействует с антителами против апротинина, что подтверждает его иммунологическую стабильность в аэрозольном составе. Второе, после 4-годичного хранения аэрозольного состава апротинин сохраняет способность реагировать со специфическими антиапротининовыми антителами. Этот результат показывает, что апротинин сохраняет нативную иммунологическую структуру при хранении аэрозольного состава в течение 4 лет.
Пример 6. Сохранение антипротеазной активности апротинина в аэрозольном составе
Антипротеазную активность аэрозольного состава проверяют по его способности ингибировать гидролитическую функцию трипсина. Для этого устанавливают стандартное количество стандартного препарата трипсина (Sigma; США), которое расщепляет хромогенный субстрат L-ZAPA (Z-Arg-pNA; BACHEM, Швейцария) с образованием нитроанилида (NA) с интенсивностью желтого окрашивания
- 5 034991 около 0,8 единиц при длине волны 405 нм (ОП405). Это количество составляет около 100 нг трипсина при общем объеме реакционной смеси 150 мкл. Далее это количество трипсина в объеме 50 мкл смешивают с серийными разведениями образцов аэрозольного состава (объем 50 мкл) и инкубируют 30 мин при температуре 20°C для связывания апротинина с трипсином и его ингибирования. После этого в смесь вносят субстрат L-ZAPA (25 мкл раствора с концентрацией 1 мг/мл), инкубируют 15 мин при 20°С и гидролитическую реакцию останавливают добавлением 25 мкл 1М раствора соляной кислоты и измеряют оптическую плотность при 405 нм для определения остаточной активности трипсина (показано на фиг. 3). Для расчета молярного соотношения трипсина и апротинина, при котором происходит 50% ингибирование трипсина, определяют концентрации белка трипсина и апротинина в исходных растворах. Для определения концентрации белка апротинина используют стандартную методику Брэдфорда, в которой в качестве стандарта берут бычий сывороточный альбумин (Sigma, США) и кумаси голубой G-250 (Sigma, США).
Учитывая фактор разведения тестируемого аэрозольного состава, при котором отмечалось 50% снижение оптической плотности ОП405 высвободившегося субстратного нитроанилида, рассчитывают молярное соотношение трипсин/апротинин.
Кривые титрования апротинина в аэрозольном составе сразу после приготовления баллонов и после 4 годового хранения приведены на фиг. 3. Как показывают исследования, 50% ингибирование трипсина наблюдается с исходным веществом апротинина при молярном соотношении трипсин/апротинин=1/1. При тестировании аэрозольного состава наблюдается сходная антитрипсиновая активность апротинина и 50% ингибирование (на фиг. 4 показано стрелкой) также регистрируется при молярном соотношении трипсин/апротинин=1/1. Таким образом, это тестирование показывает, что апротинин остается стабильным в аэрозольном составе и устойчиво сохраняет антипротеазную активность на уровне исходного апротинина в процессе хранения в течение 4 лет.
Пример 7. Сохранение активности ингибиторов протеаз в трехфазной водно-глицеролоспиртовой аэрозольной смеси
Водный раствор ингибиторов протеаз, содержащий либо полипептидный апротинин, леупептин (олигопептид; acetyl-Leu-Leu-Arg-aldehyde (Sigma, США)), либо белковый альфа1-антитрипсин (Boehringer, Г ермания) с концентрацией 1 мг сухого вещества на мл раствора, последовательно смешивают с водным раствором 99% раствора глицерола (FisherBiotech, США) и 96% этанола медицинской квалификации. Тестируют два диапазона соотношения ингредиентов А и Б. После инкубации аэрозольного состава в течение 1 ч при 20°С определяют антипротеазную активность по ингибированию гидролитической активности трипсина. Гидролитическую активность трипсина определяют по способности расщеплять хромогенный субстрат L-zapa (фирма ВАСНЕМ, Швейцария) по методике, описанной выше в примере 6. Положительной реакцией ингибирования считают результат, при котором в пробе с тестируемым образцом ингибитора определяют уменьшение оптического сигнала свободного нитроанилида на 75% и более по сравнению с контрольной пробой трипсина без ингибитора. Установлено, что смешивание белковых и полипептидных ингибиторов протеаз с трехфазной водно-глицеролоспиртовой смесью не ингибирует их активность в аэрозольном составе.
......Таблица 4. Активность ингибиторов протеаз в аэрозольной смеси
Ингредиенты
Объем (мл)
Объем (мл)
Водный раствор ингибитора протеаз (1 мг/мл)
Глицерол (99%)
Этанол (95%) ~ ”
1,0
Соотношение
Соотношение
О^Е10
2,2
1,5
Антитрипсиновая активность*1
Апротинин~
Леупептин ~ ............... '
Альфа 1- “ +' антитрипсин..... ..........................
Примечание *) Полученную смесь объединяли с пропеллентом А134 в соотношении 4,0 и 96% или 20 и 80% согласно п.2 формулы изобретения, перемешивали при пониженной температуре, инкубировали в течение часа и распыляли при комнатной температуре. Генерируемый аэрозоль конденсировали в пробирке при комнатной температуре, как описано в примере 3, и определяли антитрипсиновую активность. Соотношение водной фазы и пропеллентной системы в составе составляет по объему 0,07% (для соотношения 4,0-96%) и 0,3% (для соотношения 20-80%) соответственно.
- 6 034991
Пример 8. Сохранение противовирусной активности апротинина в аэрозольном составе
Для тестирования антивирусных свойств аэрозольного состава использовали критерий расщепления вирусного белка HA0 и его ингибирования апротинином при размножении вируса гриппа человека A/Puerto Rico/34 (H1N1) и A/Aichi/2/68 (H3N2) в куриных эмбрионах. 9-дневные куриные эмбрионы заражали путем введения вируса в аллантоисную полость эмбриона в количестве около 1000 вирусных частиц. Сразу после заражения в аллантоисную полость эмбриона дополнительно вводили исследуемый аэрозольный состав. После 24 ч инкубации эмбрионов при 37°С получали аллантоисную жидкость из куриных эмбрионов и исследовали количество накопившегося синтезируемого инфекционного вируса и белковый состав вируса.
Чтобы доказать антивирусное действие аэрозольного состава исследовали белковый состав вируса, синтезируемого в куриных эмбрионах в присутствии аэрозольного состава. Образцы аллантоисной жидкости (АЖ) подвергали 2-этапному центрифугированию для очистки вирусных частиц. Для осаждения клеточных обломков образцы АЖ центрифугировали при 4000 об/мин в течение 30 мин и далее 3 мл осветленной АЖ центрифугировали в ультрацентрифуге Spinko L7-50 (ротор SW 55.1) при 27000 об/мин в течение 2,5 ч в пробирке объемом 5,5 мл, на дно которой подслаивали 2 мл 18% раствора сахарозы, приготовленного на фосфатном буфере (ФБ: 10 мМ Na2HPO4/NaH2PO4 pH 7,2; 2,7 мМ KCl; 137 мМ NaCl). При центрифугировании вирус проходил слой сахарозы и оседал на дно пробирки (препарат вируса), тогда как загрязняющие белки оставались в надосадочной жидкости. Полипептиды вирусных осадков подвергали электрофорезу в ПАГе, по методу Laemmli (1970), описанному выше в разделе 3, и анализировали техникой вестерн-блот (ВБ) с антителами к белку НА. С этой целью белки из геля переносили на нитроцеллюлозную мембрану (Protran; Shleiher & Schull, Германия) в буфере для полусухого переноса белков (0,05 М трис; 0,01 М глицин; рН 9,7; 0,01% ДСН; 17,5% этанол). Перенос проводили при 0,8 mA на см2 мембраны в течение 1 ч. После переноса мембрану насыщали в течение ночи в 3% растворе обезжиренного молока коров и далее инкубировали в течение 1 ч при температуре 20°C в ФБ, содержащем 0,5% БСА и антитела морской свинки против вирусного белка НА, и образованные на мембране иммунные комплексы идентифицировали с помощью пероксидазного конъюгата против иммуноглобулина свинки (Pierce; США) методом усиленной хемилюминесценции (ECL) с ECL-субстратом (a Pierce; США).
Профиль полипептидов HA0 (мол.вес 75 kD) и НА1 (мол.вес 55 kD) в препаратах вируса показан на фиг. 4. Следует иметь в виду, что полипептид HA0 входит в состав неинфекционных вирионов, тогда как НА1 делает вирионы инфекционными. Переход HA0^HA1 осуществляется трипсиновыми протеазами куриного эмбриона, на которые направлено действие апротинина. Как видно на фиг. 4, в эмбрионах, не обработанных аэрозольным составом, в составе вируса выявлялся в активный HA1 (около 95%), что указывало на образование инфекционного вируса в таких эмбрионах. Напротив, в вирусе из эмбрионов, обработанных аэрозольным составом, преобладал нерасщепленный HA0 (около 50%), что показало преимущественное накопление неинфекционного вируса в этих эмбрионах. Эти результаты, показывают, что апротинин в аэрозольном составе сохраняет свою антипротеазную функцию и после 4-летнего хранения и блокирует активацию вируса гриппа посредством ингибирования расщепления HA0^HA1.
Для оценки влияния аэрозольного состава на репродукцию вируса сравнивали урожай инфекционного вируса в куриных эмбрионах, обработанных и не обработанных аэрозольным составом. Тестировали аэрозольный состав, хранившийся 5 месяцев и 4 года при комнатной температуре (18-22°С). Урожай вируса определяли по общепринятой методике титрования инфекционного вируса методом инфекционных фокусов в клеточной культуре МДСК. Каждый образец аэрозольного состава вводили в 3 эмбриона и исследовали урожай вируса независимо в каждом из эмбрионов, Результаты приведены в табл. 5. Как видно, оба образца аэрозольного состава из баллонов оказывали выраженное вирус-ингибирующее действие и снижали в 100 и более раз накопление инфекционного вируса. Важно отметить, что вирусингибирующая активность аэрозольного состава, хранившегося 4 года, была равна таковой исходного образца аэрозольного состава перед хранением. Эти результаты доказывают, что аэрозольный состав обладает антивирусной активностью по ингибированию размножения инфекционного вируса и эта активность состава сохраняется на высоком исходном уровне в течение по крайней мере 4 лет хранения.
- 7 034991
Таблица 5. Ингибирование вируса гриппа аэрозольным составом
Инфекционный титр вируса (иф/мл)
Номер эмбриона'·* Контроль (без апротинина) 0,5 года 4 года
1, 2,7 х 10' 1,3 х 10й 2,0 х10й
2. 1,9х 107 1,5 х 105 • 1,7 х 10й
3. 1,2 х 10х 0,7 х105 3,3 х 104
4. 0,9 х 10й 4,3 хЮ4 5Д х Ю4
5. 2,9 х 10' 1,8 хЮ4 2,8 х 10й
Среднее значение 1,92± 2,0 хЮ' 1,14± 1,46 х10ь 1,47± 1,1 х10й
(*) 9-дневные куриные эмбрионы заражали вирусом гриппа введением в аллантоисную полость эмбриона около 1000 вирионов и дополнительно вводили 75 мкл аэрозольного состава, полученного через 0,5 и 4 года после хранения при температуре 20°C. Берут по 5 эмбрионов на один образец состава, после 24 ч инкубации эмбрионов при 37°С отбирали аллантоисную жидкость (АЖ) из куриных эмбрионов и определяют количество синтезированного инфекционного вируса методом титрования инфекционных фокусов в культуре клеток МДСК. Количество вируса рассчитывают по количеству вирусных частиц на мл аллантоисной жидкости (средние значения ±σ). В качестве контрольного брали эмбрионы, которые заражали вирусом гриппа без введения аэрозольного состава.
Пример 9. Профиль дисперсности при распылении аэрозольного состава.
Определение проводят микроскопически после выпуска аэрозоля на стекло. Аэрозольный баллон встряхивают и распыляют 1 дозу на чистое сухое обезжиренное предметное стекло, расположенное перпендикулярно направлению распыления на расстоянии 6 см от выходного отверстия распылительной насадки. Определение величины влажных частиц осуществляют с помощью микроскопа при 450кратном увеличении сразу после напыления аэрозоля на стекло. Диаметр частиц определяют с помощью прозрачной матрицы, имеющей размеченную сетку. Подсчет проводят на 10 полях зрения (фиг. 5). Измерение проводят 3 раза из одного баллона на разных сроках выпуска аэрозоля, в испытании используют 3 баллона, рассчитывают распределение частиц по фракциям с определенным диапазоном по диаметру частиц в процентах от общего количества частиц на стекле в поле зрения.
Литературные источники
1. Патент РФ 2054180 «Способ лечения вирусных респираторных инфекций, аэрозоль для его осуществления» приоритет 21 августа 1991 г
2. Ganderton D, Lewis D, Davies R, Meakin B, Brambilla G, Church T. 2002, Modulite: a means of designing the aerosols generated by pressurized metered dose inhalers. Respir Med. 96 Suppl D:S3-8.
3. Moscona A. 2005. Oseltamivir resistance - disabling our influenza defenses, N Engl J Med. 353(25):2633-6.
4. Trautschold L, Werte E.p Zickgraf-Rudel G, 1967. Trasylol. Biochem. Pharmacol, 16: 59-
72.
5. Kido H, Okumura Y, Yamada H, Le TQ, Yano M. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents. Curr Pharm Des. 2007; 13(4):405-14. Review. PubMed PMID: 1731.1557.
6. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5, PubMed PMID: 5432063.
Пояснения к фигурам
Фиг. 1 - структурная стабильность апротинина в аэрозольном составе. Эквивалентные количества аэрозольного состава стандартного апротинина, и образцов аэрозольного состава, хранившегося 0,5 и 4 г, подвергали электрофорезу в 15% ПАГе. После электрофореза гели окрашивали Кумаси голубым R350 и окрашенные гели фотографировали в обычном свете, В качестве маркерных белков с известным мол. весом использовали смесь фирмы Fermentas (Латвия).
Фиг. 2 - иммунологическая стабильность апротинина в аэрозольном составе.
Образцы аэрозольного состава, хранившегося 0,5 и 4 г подвергали электрофорезу в 15% ПАГе и анализировали техникой вестерн-блот (ВБ) с антителами к белку апротинина. Количество белка в аэрозольном составе, нанесенное на дорожку геля, указано на фигуре под дорожками. Для регистрации белков, реагирующих с антителами к апротинину, использовали методику усиленной хемилюминесценции
- 8 034991 (ECL) с пероксидазным субстратом фирмы Pierce (США). Позитивные белковые компоненты показаны на рисунке в виде черных зон. В качестве маркерных белков с известным мол. весом (позиции на мембране показаны стрелками) использовали смесь фирмы Fermentas (Латвия).
Фиг. 3 - антипротеазная активность аэрозольного состава. Различные количества аэрозольного состава в объеме 50 мкл, полученного через 0,5 и 4 г после хранения при температуре 220°С, смешивали с 50 мкл 0,15 М фосфатного буфера (ФБ), содержащего 100 нг трипсина и инкубировали в течение 30 мин при температуре 200°С. После этого в смесь вносили 25 мкл субстрата L-zapa (1 мг/мл), инкубировали 30 мин при 200°С и реакцию останавливали добавлением 25 мкл 1М раствора гидрохлористой кислоты. Остаточную активность трипсина в пробе определяли по интенсивности окрашивания (ОП) высвободившегося нитроанилида, которую измеряли при 405 нм. По оси ординат отложены средние значения ОД405 по трем независимым измерениям; по оси абсцисс показаны количества белка апротинина в одной пробе.
Фиг.4 - ингибирование протеолиза вирусного белка HA0^HA1 аэрозольным составом.
9-дневные куриные эмбрионы заражают вирусом гриппа введением в аллантоисную полость эмбриона около 1000 вирионов и дополнительно вводят 75 мкл аэрозольного состава ранних и поздних фракций. Тестируют два образца аэрозольного состава, полученного через 0,5- и 4-летнего хранения в аэрозольных баллонах при температуре 20°C. После 24 ч инкубации эмбрионов при 37°C отбирают аллантоисную жидкость (АЖ) из куриных эмбрионов, из которой выделяют вирус, и тестируют профиль белков HA0 и HA1 в его составе. Полипептиды вируса подвергают электрофорезу в ПАГе и тестируют техникой вестерн-блот (ВБ) с антителами к белку HA. На фигуре приведены пробы, полученные из 5 индивидуальных эмбрионов. Под фигурой указаны количественные данные соотношения белков HA0/HA1 в вирусном препарате, которые получены при сканировании сигналов на мембране и расчета площадей пиков с помощью программы TINA. Суммарное содержание HA0+HA1 принято за 100%.
Фиг. 5 - профиль дисперсности частиц, генерируемых из аэрозольного состава.
Аэрозольный состав, приготовленный согласно прописи (1) в табл. 1, распыляли из баллона открытием клапана на поверхность обезжиренного стекла, расположенного на расстоянии 4,5 см от выпускного отверстия баллона. Диаметр капель на стекле определяли с помощью светового микроскопа при увеличении 400 по микронной сетке, нанесенной на стекле. По оси абсцисс показаны диапазоны диаметра частиц: 1 (0,5-10 мкм), 2 (10-50 мкм), 3 (50-100 мкм), 4 (100-1000 мкм). По оси ординат показано долевое содержание фракций данного диаметра в % от общего содержания частиц в аэрозоле.

Claims (6)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Фармацевтический аэрозольный состав ингибитора протеаз с озон-сберегающим пропеллентом, состоящий из гомогенной смеси водного раствора активного вещества из группы ингибиторов протеаз, содержащего 0,05-250 мг протеазного ингибитора на мл раствора, и ингредиентов трехкомпонентной выталкивающей смеси, а именно глицерола, этанола и фторсодержащего водонерастворимого пропеллента, с соотношением водного раствора активного вещества и трехкомпонентной смеси 0,02-5 и 9599,98 об.%, где состав получен последовательным поэтапным смешиванием смеси водного раствора активного вещества с каждым из ингредиентов трехкомпонентной выталкивающей смеси - с глицеролом, полученную смесь смешивали с этанолом и затем смешивали с фторсодержащим пропеллентом, взятыми в объемном соотношении 0,1-10:1-33:77-98,9% от объема выталкивающей смеси соответственно.
  2. 2. Состав по п.1, отличающийся тем, что активное вещество, выбранное из группы ингибиторов протеаз, представлено веществами белковой и полипептидной природы, такими как апротинин, альфа 2антиплазмин, альфа-1 антитрипсин, антитрипсин, нистатин, преимущественно апротинин, или их комбинацией.
  3. 3. Состав по п.1, отличающийся тем, что активное вещество выбрано из группы антипротеазных олигопептидов, состоящих из двух и более аминокислотных остатков или модифицированных производных аминокислотных остатков.
  4. 4. Состав по п.1 дополнительно содержит одну или несколько органолептических добавок из группы растительных масел, включающей масло мяты перечной, мяты душистой, ментоловое масло в количестве 0,05-0,9% от общего объема.
  5. 5. Состав но п.1 дополнительно содержит одну или несколько добавок из группы поверхностноактивных веществ, включающих твин-20, твин-80, спан-20, спан-80, олеиновую кислоту, глицерил моноолеат, диметилсульфоксид, полиэтиленгликоль, в количестве 0,1-3,0% от общего объема.
  6. 6. Состав по п.1, позволяющий генерировать аэрозоль с диаметром частиц в аэрозольном облаке в диапазоне 0,5-1000 мкм.
EA201201362A 2011-11-03 2012-10-27 Фармацевтический аэрозольный состав ингибитора протеаз EA034991B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011144624A RU2657523C2 (ru) 2011-11-03 2011-11-03 Фармацевтический аэрозольный состав ингибиторов протеаз с озон-сберегающим пропеллентом и его получение

Publications (2)

Publication Number Publication Date
EA201201362A1 EA201201362A1 (ru) 2013-05-30
EA034991B1 true EA034991B1 (ru) 2020-04-15

Family

ID=48192963

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201201362A EA034991B1 (ru) 2011-11-03 2012-10-27 Фармацевтический аэрозольный состав ингибитора протеаз

Country Status (4)

Country Link
EA (1) EA034991B1 (ru)
GB (1) GB2511011A (ru)
RU (1) RU2657523C2 (ru)
WO (1) WO2013066214A2 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711080C2 (ru) * 2015-06-15 2020-01-15 Олег Петрович Жирнов Комбинированный аэрозольный состав на основе ингибиторов протеаз и его получение
WO2022216172A1 (ru) * 2021-04-06 2022-10-13 Андрей Александрович ИВАЩЕНКО Водная апротинин-содержащая противовирусная фармацевтическая композиция

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003708A1 (en) * 1991-08-21 1993-03-04 Oleg Petrovich Zhyrnov Pharmaceutical aerosol preparation and its use for treatment and prophylaxis of viral diseases
US5618786A (en) * 1987-04-30 1997-04-08 Cooper Laboratories, Inc. Aerosolization of protein therapeutic agent
US6294153B1 (en) * 1998-12-21 2001-09-25 Generex Pharmaceuticals, Inc. Aerosol pharmaceutical formulation for pulmonary and nasal delivery
RU2175866C2 (ru) * 1994-12-22 2001-11-20 Астра Актиеболаг Аэрозольные препараты пептидов и белков

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010006939A1 (en) * 1997-10-03 2001-07-05 Ralph W. Niven Secretory leukocyte protease inhibitor dry powder pharmaceutical compositions
US6849263B2 (en) * 1998-12-21 2005-02-01 Generex Pharmaceutical Incorporated Pharmaceutical compositions for buccal delivery of pain relief medications
US6485706B1 (en) * 1999-06-04 2002-11-26 Delrx Pharmaceutical Corp. Formulations comprising dehydrated particles of pharma-ceutical agents and process for preparing the same
JP2004526674A (ja) * 2000-12-01 2004-09-02 バテル・メモリアル・インスティテュート 液体処方物中における生体分子の安定化のための方法
GB0507577D0 (en) * 2005-04-14 2005-05-18 Novartis Ag Organic compounds
RU2356537C2 (ru) * 2007-07-25 2009-05-27 Закрытое Акционерное Общество (ЗАО) "Пульмомед" Фармацевтический состав дозированных аэрозолей, содержащий противоастматические лекарственные средства в виде суспензий, растворов, эмульсий, растворов и эмульсий
RU2425691C1 (ru) * 2010-07-15 2011-08-10 ВАКЕ спол с.р.о. Аэрозольный препарат на основе апротинина для лечения вирусных респираторных инфекций

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618786A (en) * 1987-04-30 1997-04-08 Cooper Laboratories, Inc. Aerosolization of protein therapeutic agent
WO1993003708A1 (en) * 1991-08-21 1993-03-04 Oleg Petrovich Zhyrnov Pharmaceutical aerosol preparation and its use for treatment and prophylaxis of viral diseases
RU2175866C2 (ru) * 1994-12-22 2001-11-20 Астра Актиеболаг Аэрозольные препараты пептидов и белков
US6294153B1 (en) * 1998-12-21 2001-09-25 Generex Pharmaceuticals, Inc. Aerosol pharmaceutical formulation for pulmonary and nasal delivery

Also Published As

Publication number Publication date
RU2657523C2 (ru) 2018-06-14
EA201201362A1 (ru) 2013-05-30
GB2511011A (en) 2014-08-20
WO2013066214A3 (ru) 2013-08-22
WO2013066214A2 (ru) 2013-05-10
GB201409877D0 (en) 2014-07-16
RU2011144624A (ru) 2013-05-10

Similar Documents

Publication Publication Date Title
RU2711080C2 (ru) Комбинированный аэрозольный состав на основе ингибиторов протеаз и его получение
Klenk et al. Host cell proteases controlling virus pathogenicity
Stohlman et al. Phosphoproteins of murine hepatitis viruses
Kido et al. Cellular proteinases trigger the infectivity of the influenza A and Sendai viruses
US9353157B2 (en) Influenza inhibiting compositions and methods
Kugler et al. Histochemical demonstration of peptidases in the human kidney
RU2657523C2 (ru) Фармацевтический аэрозольный состав ингибиторов протеаз с озон-сберегающим пропеллентом и его получение
JPH069428A (ja) 気道部ウィルス疾患の予防及び治療剤
KR20010040906A (ko) 각질세포 성장 인자-2의 치료학적 용도
KR101399175B1 (ko) 항염증성 및 항알레르기성 시클릭 펩티드
CN115811983A (zh) 与抗病毒治疗剂有关的组合物和方法
Tassy et al. Muscle endopin 1, a muscle intracellular serpin which strongly inhibits elastase: purification, characterization, cellular localization and tissue distribution
US8222204B2 (en) Influenza inhibiting compositions and methods
EA040577B1 (ru) Комбинированный аэрозольный состав на основе ингибиторов протеаз и его получение
CZ265896A3 (en) Tryptase inhibitor, its use and pharmaceutical compositions containing thereof
RU2750933C1 (ru) Способ тестирования биологической активности аэрозольных препаратов
Thompson et al. The calpain system in human placenta
DE202012013134U1 (de) Pharmazeutische Aerosolformulierung von Protease-Inhibitoren und deren Zubereitung
Nishiyama et al. Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells
Kido et al. Molecular basis of proteolytic activation of Sendai virus infection and the defensive compounds for infection
MXPA96004207A (en) Novedous remedy for tractor pyrrato viral disease
US20220160846A1 (en) Carbamoyl phosphate synthatase-1 for the treatment and prevention of internal tissue injury
AU747723C (en) Prevention and/or treatment of allergic conditions
Coralie Mechanisms of gasdermin pore formation in response to viral sensing in human respiratory epithelial cells
JP2024509543A (ja) ACE2 Fc融合タンパク質の製剤

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): TJ TM