EA003822B1 - Горизонтально направленное сверление в скважинах - Google Patents

Горизонтально направленное сверление в скважинах Download PDF

Info

Publication number
EA003822B1
EA003822B1 EA200200852A EA200200852A EA003822B1 EA 003822 B1 EA003822 B1 EA 003822B1 EA 200200852 A EA200200852 A EA 200200852A EA 200200852 A EA200200852 A EA 200200852A EA 003822 B1 EA003822 B1 EA 003822B1
Authority
EA
Eurasian Patent Office
Prior art keywords
hole
casing
shoe assembly
well
section
Prior art date
Application number
EA200200852A
Other languages
English (en)
Other versions
EA200200852A1 (ru
Inventor
Хенри Б. Мазоров
Парис Э. Блэр
Крис Санфелис
Original Assignee
Перформанс Рисерч Энд Дриллинг, Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26878561&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EA003822(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Перформанс Рисерч Энд Дриллинг, Ллк filed Critical Перформанс Рисерч Энд Дриллинг, Ллк
Publication of EA200200852A1 publication Critical patent/EA200200852A1/ru
Publication of EA003822B1 publication Critical patent/EA003822B1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • E21B49/06Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil using side-wall drilling tools pressing or scrapers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/06Cutting windows, e.g. directional window cutters for whipstock operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Soil Sciences (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)

Abstract

Предложены способ и устройство для горизонтального сверления в скважинах с использованием узла (5) башмака, расположенного на имеющем отверстие нижнем конце высаженной трубы (52). Узел (5) башмака включает в себя неподвижную секцию (10) и поворачиваемую секцию (11), подвешенную под неподвижной секцией (10). На поворачиваемой секции (11) установлены электрический двигатель (57) и соответствующие батареи (13) и гироскоп (36), которые позволяют оператору, находящемуся на поверхности, избирательно поворачивать и устанавливать поворачиваемую секцию (11) в любое требуемое угловое положение для сверления отверстия в обсадной трубе (20) скважины. После прорезания одного или нескольких отверстий в обсадной трубе (20) скважины можно извлечь сверлильный узел (12) из высаженной трубы (52) и заменить его дутьевым соплом для гидравлического размыва струей высокого давления с целью бурения каналов в зоны пласта. Гироскоп (36) дает оператору возможность точно устанавливать поворачиваемую секцию (11) в те же самые положения, где были прорезаны отверстия. Сверлильный узел (12) включает в себя электрический двигатель (57), связанную с ним батарею (13), гибкий приводной вал (59) и зубчатую коронку (61).

Description

Область техники, к которой относится изобретение
Изобретение относится как к новым скважинам, так и к возрождению уже существующих вертикальных и горизонтальных нефтяных и газовых вертикальных скважин, которые полностью истощились или больше не рентабельны, за счет увеличения пористости пластов в продуктивных зонах скважин. Это достигается путем прокладки микроканала сквозь уже существующую обсадную трубу наружу в пласт.
Уровень техники
После того, как скважина пробурена, закончена и введена в эксплуатацию, из нее можно добывать нефть и газ в течение некоторого, заранее неизвестного периода времени. Скважина продолжит давать углеводороды до тех пор, пока добыча не упадет ниже некоторого предела, который показывает, что продолжение добычи больше не рентабельно или что нужно совсем прекратить добычу. Когда это случается, от скважины либо отказываются, либо стимулируют добычу путем реализации некоторого апробированного и приемлемого способа. Два из этих способов называют кислотной разработкой и гидравлическим разрывом пласта. При кислотной обработке используют кислоту для разъедания канала в пласте и обеспечения за счет этого более легкого доступа углеводородов обратно в скважину. При гидравлическом разрыве пласта используют гидравлическое давление для растрескивания и скалывания пласта вдоль ранее существовавших трещин в пласте. Оба эти способа увеличивают пористость пласта за счет получения каналов, проходящих в пласт и облегчающих протекание углеводородов в кольцевое пространство скважины, что увеличивает добычу из скважины наряду с ее ценностью. Вместе с тем, успех этих операций весьма гипотетичен. В некоторых скважинах возможно увеличение производительности скважины во много раз по сравнению с ее предшествующим значением, а в других случаях подобная обработка может вообще «убить» скважину. В последнем случае нужно заглушать скважину и отказываться от нее. Как кислотная обработка, так и гидравлический разрыв пласта являются дорогими способами. Оба они требуют выделения тяжелого подвижного оборудования, такого, как самоходные насосы, устанавливаемые на грузовых автомобилях, автоцистерны для подачи воды, вспомогательные грузовые автомобили, автокраны, а также выделения большого штата специально подготовленного персонала для работы с этим оборудованием.
Более эффективным способом стимуляции вертикальной скважины является сверление отверстия в обсадной трубе скважины и последующее бурение горизонтального микроканала в продуктивную зону с использованием струи воды высокого давления для получения канала, по которому углеводороды проследуют в обрат ном направлении в кольцевое пространство ствола скважины. Сразу же после того, как проделано исходное боковое отверстие сквозь уже существующую обсадную трубу, микросверло нужно вернуть на поверхность. Затем в скважину опускают сопло для гидравлического размыва водяной струей высокого давления и проводят эту насадку сквозь вышеупомянутое отверстие в обсадной трубе наружу в продуктивную зону. Тогда это сопло позволяет получить конечный удлиненный канал, выходящий в радиальном направлении наружу из ствола скважины в продуктивную зону. Сразу же после завершения канала сопло нужно вернуть на поверхность.
Ввиду ограничений, присущих современной технологии, приходится вручную осуществлять с поверхности поворот всей колонны бурильных труб для поворота «вслепую» башмака колонны бурильных труб (расположенного внизу колонны бурильных труб) для следующей операции сверления и бурения. Этот процесс повторяют до тех пор, пока не будет проделано желаемое количество отверстий или пробуренных каналов.
Очень трудно и неудобно поворачивать всю колонну бурильных труб с тем, чтобы выходное отверстие башмака, который расположен внизу колонны бурильных труб, оказывалось выставленным точно в желаемом направлении. Например, если обсадная труба скважины наклонена или смещена, может произойти заедание колонны бурильных труб, при котором верхняя часть поворачивается, тогда как нижняя часть (включающая в себя башмак) фактически не может двигаться или совершает движение, меньшее, чем поворот у поверхности. Это происходит вследствие того, что приложенный крутящий момент не полностью передается к нижней части колонны бурильных труб ввиду трения, действующего в стволе скважины от устья до башмака.
Сущность изобретения
В изобретении предложены способ и устройство, предусматривающие сверление и заканчивание множества боковых отверстий в обсадной трубе скважины за один этап, удаление сверла, последующее опускание дутьевого сопла и повторяющееся введение его в каждое из отверстий последовательно для горизонтального бурения канала в пласт без перерывов или без необходимости поворота всей колонны бурильных труб на поверхности с целью переориентации на каждое отверстие.
В соответствии с изобретением, узел башмака состоит из неподвижной секции и поворачиваемой рабочей секции. Неподвижная секция ввинчена в имеющий отверстие нижний конец высаженной трубы, такой как прямая труба или сматываемая труба, или прикреплен любым другим известным способом с целью опускания всего узла башмака на желаемую глубину. Не3 подвижная секция обеспечивает центральный канал или проход, позволяющий вставлять сверлильное устройство (с гибким валом для сверления и специальным режущим инструментом) в узел.
Поворачиваемая рабочая секция прикреплена к неподвижной секции посредством специально разработанного направляющего кожуха и кольцевого зубчатого колеса, которое облегчает поворот колец поворачиваемой секции внутри обсадной трубы скважины. Кольцевое зубчатое колесо преобразует поворот передаточной штанги или ведущего вала, приводимого в движение двигателем, который представляет собой автономный двигатель постоянного тока с регулированием частоты вращения в двух направлениях, в поворот этой секции. Двигателем постоянного тока управляет оператор, находящийся на поверхности, а электропитание на этот двигатель подается от автономной литиевой батареи. Поворачиваемая секция имеет вращающийся вертикальный бур, который проходит через центр кольцевого зубчатого колеса и дальше в коленчатый канал, изменяющий направление гибкого вала для сверления и режущего инструмента от вертикального входа к горизонтальному выходу, обеспечивая сверление отверстий в обсадной трубе скважины.
Гироскоп, находящийся в поворачиваемой секции, сообщает точное угловое положение поворачиваемой секции оператору, находящемуся на поверхности, с целью ориентации поворачиваемой секции и придания ей положения, желательного для сверления отверстия. Затем, если это необходимо, оператор может переориентировать поворачиваемую секцию узла башмака для последующих операций сверления. Когда сверло извлечено, а после этого назад через башмак опущено сопло для гидравлического размыва водяной струей высокого давления, оператор снова переориентирует узел башмака.
Сверлильное устройство, состоящее из кожуха, вала и инструмента, может быть устройством любого типа, которое можно устанавливать внутри высаженной трубы, находящейся над башмаком, и пропускать через башмак. Инструмент предпочтительно представляет собой режущий инструмент с кольцевой кромкой, состоящий из полого цилиндрического корпуса со сплошным основанием на одном конце и серией резцов или зубьев на другом конце. На рабочем конце корпуса есть режущая кромка или режущие кромки, которые были нарезаны или получены каким-либо иным способом. Когда нарезанная кромка режущего инструмента упирается во внутреннюю поверхность обсадной трубы скважины, она начинает формировать круговой паз, заглубляя его в обсадную трубу. По мере приложения давления, этот паз становится все глубже до тех пор, пока из обсадной трубы не будет вырезан диск (пластинка).
В узле башмака можно установить датчики, так что лампочки или приборы аварийного оповещения, находящиеся на пульте оператора, расположенном на поверхности, могут указать некоторую совокупность интересующей информации:
а) сверлильный инструмент вошел в башмак и посажен правильно;
б) инструмент прорезал обсадную трубу насквозь, и теперь отверстие закончено.
Режущий инструмент с кольцевой кромкой можно заменить полым режущим инструментом для прохождения боковой стенки обсадной трубы и колонкового бурения части пласта. Керны, получаемые с помощью полых режущих инструментов, можно доставлять на поверхность, чтобы можно было судить о состоянии обсадной трубы и толщине цементного раствора. Режущий инструмент упомянутых типов можно заменить отрезной фрезой, позволяющей разрезать обсадную трубу надвое, если обсадная труба повреждена. Использование режущего инструмента и двигателя можно заменить использованием серии или батареи малых профилированных зарядов для получения отверстий в боковой поверхности обсадной трубы. Если ствол скважины заполнен жидкостью, башмак можно модифицировать, располагая в нем промышленно поставляемый гидролокационный прибор. Это позволяет создать систему, которую можно поворачивать на полный оборот - 360°, чтобы можно было выявить внутренние дефекты или несовершенства. Если в стволе скважины нет жидкостей, башмак можно модифицировать, располагая в нем герметизированную видеокамеру. Это позволяет создать систему, обеспечивающую круговой обзор на 360° при выявлении всех внутренних дефектов и несовершенств.
Перечень фигур
На фиг. 1 представлен вертикальный разрез устройства, выполненного в соответствии с изобретением и расположенного в обсадной трубе глубокой скважины;
на фиг. 2А - 2Е представлены разрезы устройства, сделанные в несколько увеличенном масштабе в соответствии с областями, показанными фигурными скобками на фиг. 1;
на фиг. 3 представлен поперечный разрез устройства, сделанный в плоскости 3-3, показанной на фиг. 2А;
на фиг. 4 представлен поперечный разрез устройства, сделанный в плоскости 4-4, показанной на фиг. 2А; и на фиг. 5 представлен вертикальный разрез с учетом модифицированной формы некоторых деталей устройства.
Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1 и 2А - 2Е условно изображены составные части узла 5 цилиндрического башмака, выполненного с возможностью горизон тального сверления с прохождением обсадных труб 20 вертикальных скважин насквозь и бурения с прохождением в глубь углеводородных продуктивных зон в нефтяных и газовых скважинах. Из нижеследующего описания будет понятно, что возможны другие приложения, такие, как использование полого сверла, с помощью которого можно осуществлять сверление с прохождением боковой стенки обсадной трубы 20 насквозь и забором керна, а также и бурение с прохождением части окружающего пласта, для определения состояния обсадной трубы и состава окружающего пласта, использование отрезной фрезы для разрезания обсадной трубы 20 скважины надвое, применение серии или батареи малых профилированных зарядов для получения отверстий в боковой поверхности обсадной трубы 20 или для использования видеокамеры или гидролокационного прибора с целью локализации и определения характера внутренних дефектов и несовершенств в обсадной трубе 20 скважины.
Узел 5 цилиндрического башмака состоит из неподвижной секции 10, ниже которой прикреплена поворачиваемая рабочая секция 11.
Неподвижная секция 10 ввинчена в имеющий отверстие нижний конец 51 высаженной трубы 52, которая может быть либо прямой трубой, либо сматываемой трубой. Высаженная труба 52 обеспечивает опускание узла 5 башмака на желаемую глубину внутри обсадной трубы 20 скважины. Неподвижная секция 10 имеет центральный канал или проход 53 для обеспечения вставления и извлечения сверлильного устройства 12, которое состоит из ударных штанг 9 выбранного общего веса, предназначенных для приложения давления, достаточного для резания, батареи 13, двигателя 57 для сверления, патрона 58, гибкого вала 59 для сверления и режущего инструмента 61. Ударные штанги 9, батарея 13 и двигатель 57 для сверления ввинчены друг в друга, а все устройство 12 в целом подвешено вертикально с возможностью подъема и опускания с помощью свешиваемого с поверхности многожильного металлического троса 8, известного в данной области техники. Располагаемый внутри скважины кожух двигателя сверления имеет самоориентирующуюся поверхность (такую, как используемая в известном универсальном блоке, выполненном с возможностью ориентации внутри скважины и известном в данной области техники) для самостоятельной ориентации бурового устройства 12 относительно лап 16, препятствующих повороту, закрепленных во внутреннюю стенку канала 53 для предотвращения поворота устройства 12. Патрон 58 навинчен на вал 62 двигателя 57 для бурения. К основанию патрона 58 припаян серебряным припоем или прикреплен иным образом гибкий вал 59 для сверления. В прорезь в канале 53 стенки неподвижной секции вварена рамка 14 с кулачковой поверхностью 54, по которой движется механический переключатель 15, обеспечивающий включение двигателя 57 для сверления. Датчик 50 приближения, находящийся во внутреннем направляющем корпусе 64, обнаруживает присутствие патрона 58, а сигнал из этого датчика передается в многожильный кабель. Многожильный кабель 17, который передает сигналы для управления поворотом рабочей секции 11 и указания ее углового положения для оператора, находящегося на поверхности, выполняет свои функции посредством гироскопа 36. Этот кабель связан с внешней поверхностью стенки 52 колонны бурильных труб от башмака до поверхности земли. Это предохраняет его от срезания на внутренней поверхности обсадной трубы 20 скважины и повреждения с одновременным разрывом соединения внутри или снаружи отверстия, как показано на фиг. 3.
Неподвижный внутренний направляющий кожух 64, ввинченный в имеющий отверстие нижний конец неподвижной секции 10, обеспечивает заплечики 65, на которые цилиндрическая торцевая крышка, в которую ввинчена поворачиваемая часть 11, посажена с обеспечением опоры на маслонаполненные упорные подшипники, которые обеспечивают поворот поворачиваемой секции 11 внутри обсадной трубы 20 скважины.
Поворачиваемая секция 11 содержит цилиндрический несущий корпус 23 режущего инструмента, цилиндрический кожух 24 двигателя, цилиндрический кожух 25 батарей и гироскопа, а также металлическую направляющую 37 башмака. Кольцевое зубчатое колесо 21, подробно изображенное на фиг. 4, приварено или иным образом прикреплено к основанию внутреннего направляющего кожуха 63 для преобразования вращения передающей штанги или приводного вала 22 во вращение этой секции 11 относительно верхней неподвижной секции 10. Внутренний направляющий кожух 64 также обеспечивает кольцевой зазор, способствующий свободному вращению патрона 58 гибкого вала для сверления, который навинчен на вал 62 двигателя для сверления.
Поворачиваемая вертикальная втулка 26, уплотненная уплотнительным кольцом 26 круглого поперечного сечения, утоплена в расточенное контротверстие во внутреннем направляющем кожухе 64. Втулка 26 проходит через центр кольцевого зубчатого колеса 21 и запрессована или иным образом закреплена в цилиндрический несущий корпус 23 режущего инструмента. Корпус 23 ввинчен в цилиндрическую торцевую крышку 18 или иным образом прикреплен к ней. Своим нижним концом корпус 23 ввинчен в цилиндрический кожух 24 двигателя. Поворачиваемая втулка 26 направляет режущий инструмент 61 с кольцевой кромкой и гибкий сверлильный вал 59 в коленчатый канал 29 круглого поперечного сечения, образованный в цилиндрическом несущем корпусе 23 режуще003822 го инструмента, изменяя направление при прохождении от вертикального входного отверстия до горизонтального выходного отверстия. Упрочненный вкладыш 28, находящийся в несущем корпусе 23 режущего инструмента, играет роль подшипника, служащего опорой режущему инструменту 61 с кольцевой кромкой при его вращении, и направляет режущий инструмент 61 с кольцевой кромкой в радиальном направлении. Так как можно использовать центрирующие кольца 60 разных размеров и модифицированные вкладыши 128, показанные на фиг. 5, то один и тот же узел 5 башмака можно использовать в обсадных трубах разных внутренних диаметров. Эти центрирующие кольца завинчивают, приваривают, крепят болтами или иным образом в выбранных местах снаружи узла 5 башмака. Центрирующее кольцо 60 должно иметь прорези, каналы или форму звездочки, обуславливающую касание обсадной трубы лишь несколькими точками, чтобы обеспечить свободное протекание жидкости, газа и мелких частиц мимо башмака, вверх и вниз внутри обсадной трубы скважины. Эта конструкция также способствует вставлению и извлечению башмака из обсадной трубы, действуя как центрирующая направляющая в пределах стенок обсадной трубы 20. В альтернативном варианте, можно выполнить вкладыш 128 как единое целое с центрирующим кольцом.
Хотя предпочтительным режущим инструментом 61 с кольцевой кромкой является зубчатая коронка, можно использовать другие режущие инструменты, такие, как шарошка или другие режущие инструменты, известные в данной области техники. Предпочтительный режущий инструмент 61 содержит полый цилиндрический корпус со сплошным основанием на своем проксимальном конце и режущие зубья или абразивные элементы на своем рабочем (терминальном) конце. Внутри полого корпуса может быть расположен магнит, прикрепленный к основанию для улавливания одной или более пластин, удаляемых из обсадной трубы 20 после заканчивания отверстия. В альтернативном варианте, такую пластину или диск можно оставить в пласте, а потом, посредством воды под большим давлением, вытолкнуть из русла канала, прокладываемого соплом для гидравлического размыва.
Обнаружено, что неожиданно хорошие результаты - по сравнению с обычными шарошками - были достигнуты в этой заявке путем использования стандартной зубчатой коронки. Предполагается, что ее превосходные рабочие качества имеют своей причиной способность зубчатой коронки прорезать относительно большое отверстие, удаляя пропорционально лишь малое количество материала.
Многожильный кабель 17 проходит вниз по пазу 31, отфрезерованному в стенках поворачиваемой секции 11. Многожильный кабель 17 ведет к двигателю 30 постоянного тока с регулированием частоты вращения в двух направлениях, находящемуся в кожухе 24 двигателя, и соединен с этим двигателем посредством крепежных изолирующих втулок 32. Двигатель 30 постоянного тока управляется оператором, находящимся на поверхности, через посредство многожильного кабеля 17 и вертикально стабилизирован с помощью крепежных штырей 33, предотвращающих поворот двигателя внутри кожуха 24 двигателя. Этот двигатель постоянного тока вращает передаточную штангу или приводной вал 22, проходящий вверх через радиальный роликоподшипник 34 на каждом конце вала, способствующий опоре и вращению, до кольцевого зубчатого колеса 21, для обеспечения поворота поворачиваемой секции 11.
Многожильный кабель 17 продолжается вниз по отфрезерованному пазу 31 в цилиндрическом отсеке 25 батарей и гироскопа, предназначенном для размещения блока 35 батарей питания и гироскопа 36, которые закреплены внутри отсека 25. Блок 35 батарей питания постоянного тока предпочтительно содержит литиевые батареи или другие источники питания, известные в данной области техники. Литиевые батареи 35 подают электропитание на двигатель 30 постоянного тока и на гироскоп 36.
Гироскоп 36 может быть инерционным или прецессионным гироскопом (гиротахометром), известным в данной области техники. Гироскоп 36, неподвижный относительно поворачиваемой секции 11 и специально выровненный с выходным отверстием несущего корпуса 23 режущего инструмента, сообщает выражаемое в градусах точное направление положения поворачиваемой секции оператору, находящемуся на поверхности, через посредство многожильного кабеля 17. В альтернативном варианте, эти данные можно транслировать посредством сеансов беспроводной связи (радиосвязи), позволяющих оператору эксплуатировать двигатель 30 с целью поворота поворачиваемой секции 11 в желательное положение для прорезания отверстия в обсадной трубе 20 скважины или в положение, соответствующее уже прорезанному отверстию, для подвода шланга с водой высокого давления и соответствующего дутьевого сопла для гидравлического размыва с целью начала процесса бурения (не показан). При отсутствии предпочтительного гироскопа 36 можно использовать другие способы, известные в данной области техники, для указания углового положения поворачиваемой секции 11. Соответствующие данные послужат отправной точкой и будут использованы для расположения поворачиваемой секции 11 с тем, чтобы сначала прорезать отверстие, а затем провести бурение в глубь пласта.
Имеющая фаску цилиндрическая металлическая направляющая 37 башмака закрывает дно поворачиваемой секции 11 для упрощения опускания всего узла 5 башмака по обсадной трубе 20 скважины на желаемую глубину.
На хвостовике 38, показанном штрихпунктирными линиями, может быть расположен датчик гамма-излучения или другой инструмент для каротажа, известный в данной области техники, который может быть использован для определения местонахождения углеводородной продуктивной зоны или нескольких продуктивных зон. Этот инструмент для каротажа может быть ввинчен в направляющую 37 башмака или прикреплен к ней каким-либо иным образом. К хвостовику 38 может быть прикреплен пакер 39, показанный штрихпунктирными линиями. Как известно в данной области техники, пакеру 39, предпочтительно изготовленному из надуваемой резины, придана такая конфигурация, что в расширенном состоянии в нем есть один или несколько каналов, пазов или проходов, обеспечивающих свободное протекание жидкости, газа и мелких частиц вверх и вниз по обсадной трубе скважины. В расширенном состоянии пакер 39 стабилизирует положение узла башмака, ограничивая его способность перемещаться вверх и вниз по стволу скважины и тем самым сводя на нет вероятную проблему неосуществимости повторного захода в отверстия в боковой стенке обсадной трубы.
В процессе работы, когда на обсадной трубе 20 скважины нет никаких приспособлений для перекачивания, сбора данных или любых других работ или измерений, весь узел 5 башмака ввинчивают в имеющий отверстие нижний конец высаженной трубы 52 или любого другого средства, с помощью которого весь узел 5 башмака транспортируют на желаемую глубину внутри обсадной трубы 20 скважины.
Специалисты-техники, находящиеся на поверхности, используют высокопрочный металлический трос 8 для опускания сверлильного устройства 12 вниз внутри высаженной трубы 52 в неподвижную секцию 10 узла башмака. Конструкция кожуха двигателя для сверления будет гарантировать, что сверлильное устройство 12 само выровняется надлежащим образом и сядет на лапы 16, препятствующие повороту, в центральном канале 53 неподвижной секции. В узел башмака можно установить датчики таким образом, что лампочки или другие средства указания, расположенные на или в пульте управления, обычно находящемся внутри грузового автомобиля, смогут обеспечить разнообразную информацию для оператора.
Сразу же после того, как узел 5 башмака оказывается на желаемой глубине, оператор осуществляет вращение нижней части башмака, пользуясь реостатом или другим регулирующим устройством, находящимся на поверхности, и осуществляет оперативный контроль считываемой информации, связанной с направлением башмака и передаваемой посредством сигналов, проходящих по многожильному кабелю 17. Это обуславливает использование узла батареи 35, двигателя 30 с регулированием частоты вращения в двух направлениях и гироскопа 36, посредством которых оператор может изменять направление башмака, ориентируя его в направлении, являющемся желательным или соответствующим инструкциям, основанным на потребностях пользователя.
Специалисты-техники, находящиеся на поверхности, опускают сверлильное устройство таким образом, что механическая энергия, прикладываемая к переключателю 15, вызывает включение двигателя для сверления с надлежащей скоростью, а также вращение гибкого вала 59 для сверления и режущего инструмента 61. Когда нарезная кромка режущего инструмента 61 вступает в контакт со стенкой обсадной трубы 20 скважины, она начинает формировать паз в обсадной трубе 20. Выбранная масса или вес ударных штанг 9 обеспечивает приложение подходящего осевого усилия к режущему инструменту. Паз проделывают до тех пор, пока из стенки обсадной трубы не будет вырезан диск или пластина. Датчик 50 сближения обнаруживает присутствие патрона 58 в кольцевом пространстве во внутреннем направляющем кожухе 64 и указывает оператору, что отверстие закончено.
Как только оператор прорезал первоначальное отверстие, он подтягивает буровое устройство вверх над этим отверстием примерно на 6,01 м (20 футов), чтобы гарантировать, что гибкий кабель не помешает повернуть башмак в следующем направлении. Оператор снова пользуется данными, выдаваемыми из гироскопа 36, находящегося в отсеке 25 батарей и гироскопа, и посылает сигнал в двигатель 30 постоянного тока с регулированием частоты вращения в двух направлениях, чтобы осуществить поворот поворачиваемой секции 11 на заданное количество градусов для прорезания следующего отверстия. Этот процесс продолжается на одной и той же желаемой глубине до тех пор, пока в обсадной трубе 20 скважины не будут прорезаны все желаемые отверстия. Перед подъемом сверлильного устройства 12 на поверхность, предпочтительно прорезают несколько последовательных отверстий на одной и той же глубине.
Сразу же после того, как на желаемой глубине в обсадной трубе 20 скважины прорезано желаемое количество отверстий, и сверлильное устройство извлечено из скважины, можно начинать процесс бурения в глубь углеводородной продуктивной зоны на той же глубине.
Специалисты-техники, находящиеся на поверхности, подсоединяют струйное сопло для гидравлического размыва струей высокого давления (не показано) к выпускному концу шланга высокого давления (не показан), который соединяют с гибкой сматываемой трубой, и начинают опускать это сопло вниз по высаженной трубе 52 в узел 5 башмака. Как только сопло садится в коленчатый канал 29 в несущем корпусе 23 режущего инструмента, секционное соединение шланга соединяется с выпускным соединением нагнетательного насоса очень высокого давления (не показан). Качество и рабочая характеристика этого нагнетательного насоса очень высокого давления будут находиться на уровне, приемлемом в данной области техники. Затем насос подсоединяют к подходящему источнику воды, обычно - к мобильной водяной автоцистерне (не показана).
Затем специалисты-техники сообщают оператору, работающему за пультом управления, что они готовы начать процесс бурения. Пользуясь информацией, получаемой от гироскопа 36, оператор гарантирует выравнивание несущего корпуса 23 режущего инструмента с требуемым отверстием в обсадной трубе скважины, и сообщает специалистам-техникам, что можно начинать процесс бурения.
Специалисты-техники включают насос, открывают всасывающий клапан насоса, а находящаяся в шланге вода под высоким давлением принудительно перемещает сопло через коленчатый канал 29 и отверстие в обсадной трубе в углеводородную продуктивную зону (не показана). Как известно из данной области техники, имеются конструкции кожуха сопла для гидравлического размыва, позволяющие получать пронизывающий поток воды под высоким давлением, предназначенный для проникновения в (продуктивную) зону, и получать малые водометные струйные сопла, размещаемые по периферии сзади основного сопла для продвижения этого сопла в упомянутую зону. Специалистытехники, находящиеся на поверхности, оперативно контролируют длину шланга, опускаемого в высаженную трубу 52, и отключают подачу воды и возвращают сопло обратно в коленчатый канал 29, когда достигнута желаемая длина проникновения.
Теперь, имея информацию, выдаваемую гироскопом 36, оператор, работающий за пультом управления, поворачивает узел башмака к следующему по порядку отверстию, после чего можно снова повторить процесс бурения. Сразу же по завершении процесса бурения на некоторой конкретной глубине и извлечения сопла для бурения (посредством гидравлического размыва) на поверхность, можно полностью извлечь высаженную трубу 35 и узел 5 башмака из обсадной трубы скважины, или, в альтернативном варианте, поднять их или опустить на другую глубину, чтобы еще раз начать процесс бурения.
Предусмотрен вариант, в соответствии с которым изобретение можно практически осуществить, применяя узел, подобный тому, который описан выше, но без двигателя 30 постоянного тока с регулированием частоты вращения в двух направлениях, приводного вала 22, кольцевого зубчатого колеса 21 и связанных с ними составных частей конструкции, обеспечиваю щих поворот поворачиваемой секции 11 относительно неподвижной секции 10. В этом случае поворот узла 5 башмака можно будет осуществлять посредством физического поворота высаженной трубы 52 непосредственно с поверхности. Данные, выдаваемые гироскопом 36, можно будет использовать для локализации положений прорезания отверстий и положений бурения, осуществляемой аналогично вышеописанным действиям. Хотя для вращения режущего инструмента 61 предпочтителен электродвигатель, в альтернативном варианте можно использовать гидравлический забойный бескомпрессорный реактивный двигатель, известный в данной области техники. Такой гидравлический забойный бескомпрессорный реактивный двигатель приводится в действие текучей средой, прокачиваемой через сматываемую трубу, подсоединенную к нему с поверхности.
Помимо приведенных конкретных вариантов осуществления, данные и информацию из датчика 50 сближения, гироскопа 36, датчика гамма-излучения, гидролокационных или иных датчиков, которые могут быть использованы, можно передавать оператору, находящемуся на поверхности, посредством оптического волокна, электрического кабелепровода, акустических волн или волн давления, как известно в данной области техники. Точно также, запитывание как двигателя 57 для сверления, так и двигателя 30 постоянного тока с регулированием скоростей вращения в двух направлениях можно осуществлять непосредственно с поверхности с помощью подходящих силовых кабелей.
Должно быть очевидно, что это описание приведено в качестве примера и что можно внести в него различные изменения путем добавления, модификации или исключения каких-либо деталей в рамках фактического объема притязаний, изложенных в данном описании. Поэтому изобретение не сводится к конкретным подробностям этого описания, а объем притязаний неизбежно ограничивается только нижеследующей формулой изобретения.

Claims (10)

1. Устройство для горизонтального сверления в скважинах, содержащее узел башмака, выполненный с возможностью опускания в обсадную трубу скважины на глубину, на которой требуется просверлить отверстие или отверстия в обсадной трубе, режущий инструмент, несущий корпус на упомянутом узле, служащий опорой режущему инструменту в том угловом положении, в котором желательно образовать отверстие в обсадной трубе, гироскоп на упомянутом узле, неподвижный относительно несущего корпуса и выполненный с возможностью передачи на поверхность сигнала, указывающего угловое положение несущего корпуса, причем упомянутый узел башмака содержит непод вижную секцию и поворачиваемую секцию, выполненную с возможностью поворота вокруг вертикальной оси относительно неподвижной секции.
2. Устройство по п.1, в котором узел башмака дополнительно содержит двигатель для обеспечения поворота, предназначенный для поворота поворачиваемой секции вокруг упомянутой вертикальной оси относительно неподвижной секции.
3. Устройство по п.2, в котором упомянутый двигатель для обеспечения поворота является электрическим двигателем.
4. Устройство по п.3, в котором упомянутый режущий инструмент является вращающимся режущим инструментом, приводимым в движение гибким валом, а упомянутое устройство дополнительно содержит электрический двигатель для сверления, при этом упомянутый гибкий вал соединен с упомянутым электрическим двигателем для сверления, чтобы обеспечить вращение упомянутого гибкого вала.
5. Устройство по п.4, в котором упомянутый электрический двигатель является электрическим двигателем с батарейным питанием.
6. Устройство по любому из пп.1-5, в котором упомянутый режущий инструмент является зубчатой коронкой.
7. Способ горизонтального сверления в скважинах, заключающийся в том, что создают узел башмака, имеющий неподвижную секцию и поворачиваемую секцию, опускают узел башмака вниз по обсадной трубе скважины на глубину, на которой требуется прорезать отверстия, прорезают первое отверстие в стенке обсадной трубы в одном угловом положении, поворачивают поворачиваемую секцию на угол, соответствующий желаемому угловому промежутку
Фиг. 1 между первым отверстием и вторым отверстием, прорезают второе отверстие, а потом повторяют процесс поворота поворачиваемой секции и прорезают следующее отверстие.
8. Способ горизонтального сверления в скважине, заключающийся в том, что создают узел башмака с устройством для образования отверстия в стенке обсадной трубы скважины и гироскопом, неподвижным относительно устройства, образующего отверстие, опускают узел башмака вниз по обсадной трубе вертикальной скважины на глубину, на которой требуется иметь одно или несколько отверстий, и прорезают отверстие с помощью устройства для образования отверстия, делая это в некотором угловом положении, оперативный контроль которого осуществляют с помощью гироскопа, при этом узел башмака содержит неподвижную секцию и поворачиваемую секцию, выполненную с возможностью поворота вокруг вертикальной оси относительно неподвижной секции.
9. Устройство для горизонтального сверления в скважине, содержащее узел башмака и режущий инструмент, причем упомянутый узел башмака выполнен с возможностью опускания в обсадную трубу скважины и направления упомянутого режущего инструмента в предварительно определенном направлении на глубине, на которой требуется прорезать отверстие или отверстия в стенке обсадной трубы упомянутой скважины, при этом упомянутый режущий инструмент является зубчатой коронкой.
10. Устройство по п.9, в котором упомянутая зубчатая коронка имеет полый цилиндрический корпус имеющий на том конце, где проведено нарезание, нарезную кромку, содержащую множество режущих зубьев.
EA200200852A 2000-02-16 2001-02-16 Горизонтально направленное сверление в скважинах EA003822B1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18293200P 2000-02-16 2000-02-16
US19921200P 2000-04-24 2000-04-24
PCT/US2001/005377 WO2001061141A1 (en) 2000-02-16 2001-02-16 Horizontal directional drilling in wells

Publications (2)

Publication Number Publication Date
EA200200852A1 EA200200852A1 (ru) 2003-04-24
EA003822B1 true EA003822B1 (ru) 2003-10-30

Family

ID=26878561

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200200852A EA003822B1 (ru) 2000-02-16 2001-02-16 Горизонтально направленное сверление в скважинах

Country Status (8)

Country Link
US (4) US6578636B2 (ru)
AU (2) AU4158501A (ru)
CA (1) CA2400093C (ru)
EA (1) EA003822B1 (ru)
GB (1) GB2377719B (ru)
NO (1) NO20023906L (ru)
OA (1) OA12179A (ru)
WO (1) WO2001061141A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482266C1 (ru) * 2011-09-16 2013-05-20 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин" (ОАО НПП "ВНИИГИС") Способ вскрытия пласта сверлящим перфоратором и устройство для его осуществления

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857486B2 (en) 2001-08-19 2005-02-22 Smart Drilling And Completion, Inc. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US9586699B1 (en) 1999-08-16 2017-03-07 Smart Drilling And Completion, Inc. Methods and apparatus for monitoring and fixing holes in composite aircraft
GB0010008D0 (en) * 2000-04-26 2000-06-14 Reservoir Recovery Solutions L Method and apparatus
US9625361B1 (en) 2001-08-19 2017-04-18 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US8515677B1 (en) 2002-08-15 2013-08-20 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US7686101B2 (en) 2001-11-07 2010-03-30 Alice Belew, legal representative Method and apparatus for laterally drilling through a subterranean formation
US6705921B1 (en) * 2002-09-09 2004-03-16 John D. Shepherd Method and apparatus for controlling cutting tool edge cut taper
US7002484B2 (en) * 2002-10-09 2006-02-21 Pathfinder Energy Services, Inc. Supplemental referencing techniques in borehole surveying
US7168606B2 (en) * 2003-02-06 2007-01-30 Weatherford/Lamb, Inc. Method of mitigating inner diameter reduction of welded joints
US6937023B2 (en) * 2003-02-18 2005-08-30 Pathfinder Energy Services, Inc. Passive ranging techniques in borehole surveying
US6882937B2 (en) * 2003-02-18 2005-04-19 Pathfinder Energy Services, Inc. Downhole referencing techniques in borehole surveying
GB0313281D0 (en) * 2003-06-09 2003-07-16 Pathfinder Energy Services Inc Well twinning techniques in borehole surveying
US7253401B2 (en) * 2004-03-15 2007-08-07 Weatherford Canada Partnership Spectral gamma ray logging-while-drilling system
US7357182B2 (en) * 2004-05-06 2008-04-15 Horizontal Expansion Tech, Llc Method and apparatus for completing lateral channels from an existing oil or gas well
US20060278393A1 (en) * 2004-05-06 2006-12-14 Horizontal Expansion Tech, Llc Method and apparatus for completing lateral channels from an existing oil or gas well
US7373994B2 (en) * 2004-10-07 2008-05-20 Baker Hughes Incorporated Self cleaning coring bit
US7527092B2 (en) * 2004-11-12 2009-05-05 Alberta Energy Partners Method and apparatus for jet-fluid abrasive cutting
US7530407B2 (en) * 2005-08-30 2009-05-12 Baker Hughes Incorporated Rotary coring device and method for acquiring a sidewall core from an earth formation
ATE422600T1 (de) * 2005-09-19 2009-02-15 Schlumberger Technology Bv Bohrsystem und verfahren zum bohren lateraler bohrlöcher
US7669672B2 (en) * 2005-12-06 2010-03-02 Charles Brunet Apparatus, system and method for installing boreholes from a main wellbore
US7699107B2 (en) * 2005-12-30 2010-04-20 Baker Hughes Incorporated Mechanical and fluid jet drilling method and apparatus
US7677316B2 (en) * 2005-12-30 2010-03-16 Baker Hughes Incorporated Localized fracturing system and method
US7584794B2 (en) * 2005-12-30 2009-09-08 Baker Hughes Incorporated Mechanical and fluid jet horizontal drilling method and apparatus
US8424607B2 (en) 2006-04-25 2013-04-23 National Oilwell Varco, L.P. System and method for severing a tubular
US8720565B2 (en) 2006-04-25 2014-05-13 National Oilwell Varco, L.P. Tubular severing system and method of using same
US7367396B2 (en) 2006-04-25 2008-05-06 Varco I/P, Inc. Blowout preventers and methods of use
US8720564B2 (en) 2006-04-25 2014-05-13 National Oilwell Varco, L.P. Tubular severing system and method of using same
WO2008061071A2 (en) * 2006-11-13 2008-05-22 Alberta Energy Partners System, apparatus and method for abrasive jet fluid cutting
US7690443B2 (en) * 2006-11-20 2010-04-06 Charles Brunet Apparatus, system, and method for casing hole formation in radial drilling operations
WO2008104179A2 (en) * 2007-02-28 2008-09-04 Welltec A/S Drilling head for reborinq a stuck valve
FR2922254B1 (fr) * 2007-10-16 2009-12-18 Total Sa Systeme de forage autonome d'un trou de drainage
WO2009055380A2 (en) * 2007-10-22 2009-04-30 Radjet Llc Apparatus and method for milling casing in jet drilling applications for hydrocarbon production
CN101429848B (zh) * 2007-11-06 2013-07-10 中国石油大学(北京) 水力喷射侧钻径向分支井眼的方法及装置
US7909118B2 (en) * 2008-02-01 2011-03-22 Rudy Sanfelice Apparatus and method for positioning extended lateral channel well stimulation equipment
US9260921B2 (en) 2008-05-20 2016-02-16 Halliburton Energy Services, Inc. System and methods for constructing and fracture stimulating multiple ultra-short radius laterals from a parent well
US9759030B2 (en) 2008-06-14 2017-09-12 Tetra Applied Technologies, Llc Method and apparatus for controlled or programmable cutting of multiple nested tubulars
US7823632B2 (en) * 2008-06-14 2010-11-02 Completion Technologies, Inc. Method and apparatus for programmable robotic rotary mill cutting of multiple nested tubulars
US20090308605A1 (en) * 2008-06-14 2009-12-17 Mcafee Wesley Mark Methodolgy and apparatus for programmable robotic rotary mill cutting of multiple nested tubulars
US8186459B1 (en) 2008-06-23 2012-05-29 Horizontal Expansion Tech, Llc Flexible hose with thrusters and shut-off valve for horizontal well drilling
WO2010008684A2 (en) * 2008-07-15 2010-01-21 Schlumberger Canada Limited Apparatus and methods for characterizing a reservoir
WO2010025136A1 (en) * 2008-08-25 2010-03-04 Ira Kozak Tool for working on repaired underground pipes
US8196680B2 (en) * 2009-02-04 2012-06-12 Buckman Jet Drilling Perforating and jet drilling method and apparatus
US8528989B2 (en) * 2009-03-05 2013-09-10 Fmc Corporation Method for simultaneously mining vertically disposed beds
CA2671096C (en) * 2009-03-26 2012-01-10 Petro-Surge Well Technologies Llc System and method for longitudinal and lateral jetting in a wellbore
US8844898B2 (en) 2009-03-31 2014-09-30 National Oilwell Varco, L.P. Blowout preventer with ram socketing
US8991522B2 (en) 2010-02-25 2015-03-31 Coiled Tubing Specialties, Llc Downhole hydraulic jetting assembly, and method for stimulating a production wellbore
US8752651B2 (en) * 2010-02-25 2014-06-17 Bruce L. Randall Downhole hydraulic jetting assembly, and method for stimulating a production wellbore
US8540017B2 (en) 2010-07-19 2013-09-24 National Oilwell Varco, L.P. Method and system for sealing a wellbore
US8544538B2 (en) 2010-07-19 2013-10-01 National Oilwell Varco, L.P. System and method for sealing a wellbore
US8807219B2 (en) 2010-09-29 2014-08-19 National Oilwell Varco, L.P. Blowout preventer blade assembly and method of using same
AU2015205883B2 (en) * 2010-12-22 2016-08-11 V2H International Pty Ltd Method and apparatus for milling a zero radius lateral window in casing
US9097083B2 (en) * 2010-12-22 2015-08-04 David Belew Method and apparatus for milling a zero radius lateral window in casing
US8915311B2 (en) * 2010-12-22 2014-12-23 David Belew Method and apparatus for drilling a zero-radius lateral
WO2012121866A2 (en) 2011-03-09 2012-09-13 National Oilwell Varco, L.P. Method and apparatus for sealing a wellbore
CN102278067B (zh) * 2011-07-11 2014-01-08 安东石油技术(集团)有限公司 造斜器
US10309205B2 (en) 2011-08-05 2019-06-04 Coiled Tubing Specialties, Llc Method of forming lateral boreholes from a parent wellbore
US9976351B2 (en) 2011-08-05 2018-05-22 Coiled Tubing Specialties, Llc Downhole hydraulic Jetting Assembly
US10260299B2 (en) 2011-08-05 2019-04-16 Coiled Tubing Specialties, Llc Internal tractor system for downhole tubular body
EA201300677A1 (ru) * 2012-07-06 2014-03-31 Хенк Х. Елсма Скважинная система разнонаправленного вскрытия и способы ее использования
KR101717870B1 (ko) 2013-02-21 2017-03-17 내셔널 오일웰 바르코 엘.피. 분출 방지기 감시 시스템 및 그 사용 방법
AU2013204013B2 (en) 2013-03-15 2015-09-10 Franklin Electric Company, Inc. System and method for operating a pump
US20140360784A1 (en) * 2013-06-10 2014-12-11 Baker Hughes Incorporated Through Casing Coring
US9759047B2 (en) * 2014-03-11 2017-09-12 Energyneering Solutions, Inc. Well casing perforator and apparatus
US20150267475A1 (en) * 2014-03-19 2015-09-24 Philip Marlow Rotating jetting device and associated methods to enhance oil and gas recovery
NO342614B1 (no) * 2014-10-30 2018-06-18 Blue Logic As Fremgangsmåte og apparat for bestemmelse av en tilstand av en polymerfôring av et fleksibelt rør ved å ta en prøve av polymerlaget gjennom stammelaget
CN104594838B (zh) * 2014-12-25 2017-02-22 哈尔滨工业大学 油水井井下套管径向开窗装置
CN104632081A (zh) * 2015-02-04 2015-05-20 成都大漠石油机械有限公司 有助于卡紧的造斜器
CN107429542B (zh) 2015-02-24 2019-07-05 特种油管有限责任公司 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统
CA2977373A1 (en) 2015-02-27 2016-09-01 Schlumberger Canada Limited Vertical drilling and fracturing methodology
CN105134072B (zh) * 2015-08-21 2017-12-01 中煤科工集团西安研究院有限公司 超短半径水平井钻井用的井底转向装置及其施工方法
US20170130542A1 (en) * 2015-10-13 2017-05-11 James M. Savage Pressure Control System and Optional Whipstock Repositioning System for Short Radius Lateral Drilling
EP3510245A4 (en) 2016-09-12 2020-05-13 Services Pétroliers Schlumberger ACCESS TO COMPROMISED FRACTURED PRODUCTION REGIONS AT THE OIL FIELD
NO20162055A1 (en) * 2016-12-23 2017-12-18 Sapeg As Downhole stuck object removal tool
CN106761404B (zh) * 2016-12-27 2018-12-04 中国石油大学(北京) 径向水平井软管辅助送进装置
EP3565950A4 (en) 2017-01-04 2020-08-26 Services Pétroliers Schlumberger TANK ACTIVATION WITH HYDRAULIC FRACTURING CARRIED OUT USING EXTENDED TUNNELS
US11753930B2 (en) * 2017-06-27 2023-09-12 Refex Instruments Asia Pacific Method and system for acquiring geological data from a bore hole
US11203901B2 (en) 2017-07-10 2021-12-21 Schlumberger Technology Corporation Radial drilling link transmission and flex shaft protective cover
US11486214B2 (en) 2017-07-10 2022-11-01 Schlumberger Technology Corporation Controlled release of hose
US10487634B2 (en) * 2017-09-29 2019-11-26 Titan Oil Recovery, Inc. Enhancing the effects of a low-pressure zone surrounding a well bore via radial drilling by increasing the contact zone for resident microbial enhanced oil recovery
US10519737B2 (en) * 2017-11-29 2019-12-31 Baker Hughes, A Ge Company, Llc Place-n-perf
US11193332B2 (en) 2018-09-13 2021-12-07 Schlumberger Technology Corporation Slider compensated flexible shaft drilling system
US11339611B2 (en) 2019-02-26 2022-05-24 Henry Crichlow Deep human-made cavern construction
US11408229B1 (en) 2020-03-27 2022-08-09 Coiled Tubing Specialties, Llc Extendible whipstock, and method for increasing the bend radius of a hydraulic jetting hose downhole
CN111852335B (zh) * 2020-08-24 2024-03-22 重庆科技学院 一种多分支增产工具管内导向工具
US11313225B2 (en) * 2020-08-27 2022-04-26 Saudi Arabian Oil Company Coring method and apparatus
US11591871B1 (en) 2020-08-28 2023-02-28 Coiled Tubing Specialties, Llc Electrically-actuated resettable downhole anchor and/or packer, and method of setting, releasing, and resetting
CN114183076B (zh) * 2020-09-15 2023-07-25 中国石油天然气股份有限公司 水力喷射钻孔管柱及水力喷射钻孔方法
US20240052718A1 (en) * 2020-12-18 2024-02-15 Schlumberger Technology Corporation Annular cutter catching devices
CN112761616B (zh) * 2021-02-04 2023-11-28 重庆平山机电设备有限公司 一种分支孔钻孔角度监测装置及钻孔施工方法
NO346972B1 (en) * 2021-06-03 2023-03-20 Fishbones AS Apparatus for forming lateral bores in subsurface rock formations, and wellbore string
US11624250B1 (en) 2021-06-04 2023-04-11 Coiled Tubing Specialties, Llc Apparatus and method for running and retrieving tubing using an electro-mechanical linear actuator driven downhole tractor
US11802827B2 (en) 2021-12-01 2023-10-31 Saudi Arabian Oil Company Single stage MICP measurement method and apparatus

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1904819A (en) 1933-04-18 A corporatiolf of
US76602A (en) * 1868-04-14 Improvement in bee-hives
US1733311A (en) 1929-10-29 Drill bit
US1367042A (en) 1919-12-08 1921-02-01 Granville Bernard Drilling apparatus
US1485615A (en) 1920-12-08 1924-03-04 Arthur S Jones Oil-well reamer
US1804819A (en) 1928-05-02 1931-05-12 Jr Edward A Spencer Side wall drilling organization
US2065436A (en) 1936-02-04 1936-12-22 Cecil W Ervin Rotary drill bit
US2117277A (en) * 1937-01-18 1938-05-17 Continental Oil Co Method of perforating casings in wells
US2181512A (en) * 1937-01-18 1939-11-28 John H Kirby Sample taking device
US2213498A (en) * 1937-08-06 1940-09-03 Robert B Kinzbach Milling tool
US2181980A (en) * 1938-09-16 1939-12-05 Roy Q Seale Device for obtaining core samples
US2271005A (en) 1939-01-23 1942-01-27 Dow Chemical Co Subterranean boring
US2251916A (en) 1939-06-12 1941-08-12 Cross Roy Water mining soluble materials
US2360425A (en) * 1941-10-11 1944-10-17 Kinzbach Frank Milling tool
US2516421A (en) * 1945-08-06 1950-07-25 Jerry B Robertson Drilling tool
US2521976A (en) 1946-02-26 1950-09-12 Russell R Hays Hydraulic control for drilling apparatus
US2539047A (en) * 1946-06-17 1951-01-23 Arutunoff Armais Side drill
US2516412A (en) * 1946-07-05 1950-07-25 Sulphite Products Corp Method of synthesizing syringaldehyde
US2500785A (en) * 1946-07-08 1950-03-14 Arutunoff Armais Side drill with slotted guide tube
US2633682A (en) 1950-10-14 1953-04-07 Eastman Oil Well Survey Co Milling bit
US3191697A (en) 1953-11-30 1965-06-29 Mcgaffey Taylor Corp Subsurface earth formation treating tool
US3224506A (en) 1963-02-18 1965-12-21 Gulf Research Development Co Subsurface formation fracturing method
US3262508A (en) 1963-12-04 1966-07-26 Texaco Inc Hydraulic drilling and casing setting tool
US3958649A (en) 1968-02-05 1976-05-25 George H. Bull Methods and mechanisms for drilling transversely in a well
FR2091931B1 (ru) 1970-05-15 1973-08-10 Petroles Cie Francaise
US3670831A (en) 1970-12-31 1972-06-20 Smith International Earth drilling apparatus
US3840079A (en) 1972-08-14 1974-10-08 Jacobs Ass Williamson K Horizontal drill rig for deep drilling to remote areas and method
US3838736A (en) 1972-09-08 1974-10-01 W Driver Tight oil or gas formation fracturing process
US3873156A (en) 1973-01-15 1975-03-25 Akzona Inc Bedded underground salt deposit solution mining system
US3853185A (en) 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US4007797A (en) 1974-06-04 1977-02-15 Texas Dynamatics, Inc. Device for drilling a hole in the side wall of a bore hole
GB1597951A (en) 1976-12-20 1981-09-16 Sabol K Bendalble hose apparatus for effecting lateral channelling in coal or oil shale beds
US4160616A (en) * 1977-10-03 1979-07-10 Winblad Michael E Drill containing minimum cutting material
US4185705A (en) 1978-06-20 1980-01-29 Gerald Bullard Well perforating tool
FR2442684A2 (fr) * 1978-08-25 1980-06-27 Araf Plaquette de coupe pour usinage rayonne de precision
US4354558A (en) * 1979-06-25 1982-10-19 Standard Oil Company (Indiana) Apparatus and method for drilling into the sidewall of a drill hole
US4356558A (en) * 1979-12-20 1982-10-26 Martin Marietta Corporation Optimum second order digital filter
US4445574A (en) 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4431069A (en) 1980-07-17 1984-02-14 Dickinson Iii Ben W O Method and apparatus for forming and using a bore hole
US4365676A (en) 1980-08-25 1982-12-28 Varco International, Inc. Method and apparatus for drilling laterally from a well bore
US4368786A (en) 1981-04-02 1983-01-18 Cousins James E Downhole drilling apparatus
DE3114612C2 (de) 1981-04-07 1983-11-10 Hochstrasser, Jürgen, 6600 Saarbrücken Bohrvorrichtung für Hartgestein
US4474252A (en) 1983-05-24 1984-10-02 Thompson Farish R Method and apparatus for drilling generally horizontal bores
SU1208197A1 (ru) * 1984-01-30 1986-01-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Геофизических Исследований Геолого-Разведочных Скважин Устройство дл вскрыти пласта
US4832552A (en) 1984-07-10 1989-05-23 Michael Skelly Method and apparatus for rotary power driven swivel drilling
US4890681A (en) 1984-07-10 1990-01-02 Michael Skelly Method and apparatus for rotary power driven swivel drilling
US4589499A (en) 1984-07-30 1986-05-20 Behrens Robert N Horizontal drilling apparatus
US4533182A (en) 1984-08-03 1985-08-06 Methane Drainage Ventures Process for production of oil and gas through horizontal drainholes from underground workings
US4646831A (en) 1984-09-14 1987-03-03 Develco, Incorporated Precision connector for well instrumentation
US4601353A (en) 1984-10-05 1986-07-22 Atlantic Richfield Company Method for drilling drainholes within producing zone
US4640362A (en) 1985-04-09 1987-02-03 Schellstede Herman J Well penetration apparatus and method
US4658916A (en) * 1985-09-13 1987-04-21 Les Bond Method and apparatus for hydrocarbon recovery
US4763734A (en) 1985-12-23 1988-08-16 Ben W. O. Dickinson Earth drilling method and apparatus using multiple hydraulic forces
US4842487A (en) 1986-01-17 1989-06-27 Buckman William G Pumping device using pressurized gas
US4640353A (en) 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4786874A (en) 1986-08-20 1988-11-22 Teleco Oilfield Services Inc. Resistivity sensor for generating asymmetrical current field and method of using the same
GB8630096D0 (en) 1986-12-17 1987-01-28 Drg Uk Ltd Well drilling
GB2203774A (en) 1987-04-21 1988-10-26 Cledisc Int Bv Rotary drilling device
US4790384A (en) 1987-04-24 1988-12-13 Penetrators, Inc. Hydraulic well penetration apparatus and method
EP0317605A1 (de) 1987-06-16 1989-05-31 Preussag AG Vorrichtung zur führung eines bohrwerkzeugs und/oder eines bohrgestänges
US4848486A (en) 1987-06-19 1989-07-18 Bodine Albert G Method and apparatus for transversely boring the earthen formation surrounding a well to increase the yield thereof
DE3726409A1 (de) * 1987-08-07 1989-02-16 Hofmann Werkstatt Technik Demontiervorrichtung fuer einen an einer radfelge befestigten reifen
JPH01134037A (ja) 1987-11-19 1989-05-26 Fuji Heavy Ind Ltd エンジンブレーキ制御装置
USRE33660E (en) 1988-02-17 1991-08-13 Baroid Technology Apparatus for drilling a curved borehole
US4836611A (en) 1988-05-09 1989-06-06 Consolidation Coal Company Method and apparatus for drilling and separating
US5148880A (en) 1990-08-31 1992-09-22 The Charles Machine Works, Inc. Apparatus for drilling a horizontal controlled borehole in the earth
CA2002135C (en) 1988-11-03 1999-02-02 James Bain Noble Directional drilling apparatus and method
DE4016386A1 (de) 1989-06-28 1991-01-03 Baroid Technology Inc Gebogenes bohrloch-motorgehaeuse
US5006046A (en) 1989-09-22 1991-04-09 Buckman William G Method and apparatus for pumping liquid from a well using wellbore pressurized gas
US5012877A (en) 1989-11-30 1991-05-07 Amoco Corporation Apparatus for deflecting a drill string
US5148877A (en) 1990-05-09 1992-09-22 Macgregor Donald C Apparatus for lateral drain hole drilling in oil and gas wells
US5194859A (en) 1990-06-15 1993-03-16 Amoco Corporation Apparatus and method for positioning a tool in a deviated section of a borehole
US5210533A (en) 1991-02-08 1993-05-11 Amoco Corporation Apparatus and method for positioning a tool in a deviated section of a borehole
US5165491A (en) 1991-04-29 1992-11-24 Prideco, Inc. Method of horizontal drilling
US5410303A (en) 1991-05-15 1995-04-25 Baroid Technology, Inc. System for drilling deivated boreholes
US5230386A (en) 1991-06-14 1993-07-27 Baker Hughes Incorporated Method for drilling directional wells
US5161617A (en) * 1991-07-29 1992-11-10 Marquip, Inc. Directly installed shut-off and diverter valve assembly for flowing oil well with concentric casings
US5183111A (en) 1991-08-20 1993-02-02 Schellstede Herman J Extended reach penetrating tool and method of forming a radial hole in a well casing
JPH05331903A (ja) * 1992-06-02 1993-12-14 Taisei Chiyousa Koji Kk 下水道本管に対する接続管の接続工法およびその接続のためのコアーチューブ。
US5259466A (en) * 1992-06-11 1993-11-09 Halliburton Company Method and apparatus for orienting a perforating string
FR2692315B1 (fr) 1992-06-12 1994-09-02 Inst Francais Du Petrole Système et méthode de forage et d'équipement d'un puits latéral, application à l'exploitation de gisement pétrolier.
US5318121A (en) 1992-08-07 1994-06-07 Baker Hughes Incorporated Method and apparatus for locating and re-entering one or more horizontal wells using whipstock with sealable bores
US5327970A (en) * 1993-02-19 1994-07-12 Penetrator's, Inc. Method for gravel packing of wells
US5330016A (en) * 1993-05-07 1994-07-19 Barold Technology, Inc. Drill bit and other downhole tools having electro-negative surfaces and sacrificial anodes to reduce mud balling
US5853056A (en) * 1993-10-01 1998-12-29 Landers; Carl W. Method of and apparatus for horizontal well drilling
US5413184A (en) 1993-10-01 1995-05-09 Landers; Carl Method of and apparatus for horizontal well drilling
US6125949A (en) 1993-10-01 2000-10-03 Landers; Carl Method of and apparatus for horizontal well drilling
US5392856A (en) 1993-10-08 1995-02-28 Downhole Plugback Systems, Inc. Slickline setting tool and bailer bottom for plugback operations
US5528566A (en) 1993-11-05 1996-06-18 Mcgee; Michael D. Apparatus for optical disc storage of optical discs and selective access and/or retrieval thereof via pneumatic control
US5394951A (en) 1993-12-13 1995-03-07 Camco International Inc. Bottom hole drilling assembly
US5396966A (en) 1994-03-24 1995-03-14 Slimdril International Inc. Steering sub for flexible drilling
US5439066A (en) 1994-06-27 1995-08-08 Fleet Cementers, Inc. Method and system for downhole redirection of a borehole
US5553680A (en) 1995-01-31 1996-09-10 Hathaway; Michael D. Horizontal drilling apparatus
GB9517378D0 (en) * 1995-08-24 1995-10-25 Sofitech Nv Hydraulic jetting system
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
US5687806A (en) 1996-02-20 1997-11-18 Gas Research Institute Method and apparatus for drilling with a flexible shaft while using hydraulic assistance
US5699866A (en) * 1996-05-10 1997-12-23 Perf Drill, Inc. Sectional drive system
AU719919B2 (en) * 1996-07-15 2000-05-18 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US6012526A (en) * 1996-08-13 2000-01-11 Baker Hughes Incorporated Method for sealing the junctions in multilateral wells
WO1998007955A2 (en) * 1996-08-20 1998-02-26 Baker Hughes Incorporated System for cutting materials in wellbores
US6155343A (en) * 1996-10-25 2000-12-05 Baker Hughes Incorporated System for cutting materials in wellbores
US5892460A (en) 1997-03-06 1999-04-06 Halliburton Energy Services, Inc. Logging while drilling tool with azimuthal sensistivity
JPH1134037A (ja) * 1997-07-22 1999-02-09 Sanwa Daiyamondo Kogyo Kk 切削用ビット
US5987385A (en) 1997-08-29 1999-11-16 Dresser Industries, Inc. Method and apparatus for creating an image of an earth borehole or a well casing
US6003599A (en) * 1997-09-15 1999-12-21 Schlumberger Technology Corporation Azimuth-oriented perforating system and method
US5934390A (en) 1997-12-23 1999-08-10 Uthe; Michael Horizontal drilling for oil recovery
CA2246040A1 (en) 1998-08-28 2000-02-28 Roderick D. Mcleod Lateral jet drilling system
US6276453B1 (en) 1999-01-12 2001-08-21 Lesley O. Bond Method and apparatus for forcing an object through the sidewall of a borehole
US6263984B1 (en) 1999-02-18 2001-07-24 William G. Buckman, Sr. Method and apparatus for jet drilling drainholes from wells
US6283230B1 (en) * 1999-03-01 2001-09-04 Jasper N. Peters Method and apparatus for lateral well drilling utilizing a rotating nozzle
US6352109B1 (en) 1999-03-16 2002-03-05 William G. Buckman, Sr. Method and apparatus for gas lift system for oil and gas wells
US6173773B1 (en) * 1999-04-15 2001-01-16 Schlumberger Technology Corporation Orienting downhole tools
US6260623B1 (en) * 1999-07-30 2001-07-17 Kmk Trust Apparatus and method for utilizing flexible tubing with lateral bore holes
US6558517B2 (en) * 2000-05-26 2003-05-06 Micron Technology, Inc. Physical vapor deposition methods
US6378629B1 (en) 2000-08-21 2002-04-30 Saturn Machine & Welding Co., Inc. Boring apparatus
US6412578B1 (en) 2000-08-21 2002-07-02 Dhdt, Inc. Boring apparatus
US6668948B2 (en) 2002-04-10 2003-12-30 Buckman Jet Drilling, Inc. Nozzle for jet drilling and associated method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482266C1 (ru) * 2011-09-16 2013-05-20 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин" (ОАО НПП "ВНИИГИС") Способ вскрытия пласта сверлящим перфоратором и устройство для его осуществления

Also Published As

Publication number Publication date
AU2001241585B2 (en) 2006-06-01
AU2001241585C1 (en) 2001-08-27
US6964303B2 (en) 2005-11-15
US6889781B2 (en) 2005-05-10
CA2400093C (en) 2012-03-13
NO20023906L (no) 2002-10-08
GB2377719A (en) 2003-01-22
EA200200852A1 (ru) 2003-04-24
US20050103528A1 (en) 2005-05-19
CA2400093A1 (en) 2001-08-23
OA12179A (en) 2006-05-09
GB0221212D0 (en) 2002-10-23
AU4158501A (en) 2001-08-27
US20020005286A1 (en) 2002-01-17
WO2001061141A1 (en) 2001-08-23
US20020175004A1 (en) 2002-11-28
US20020162689A1 (en) 2002-11-07
US6578636B2 (en) 2003-06-17
GB2377719B (en) 2004-08-25
NO20023906D0 (no) 2002-08-16

Similar Documents

Publication Publication Date Title
EA003822B1 (ru) Горизонтально направленное сверление в скважинах
US6189629B1 (en) Lateral jet drilling system
AU2001241585A1 (en) Horizontal directional drilling in wells
CA2238782C (en) Method and apparatus for radially drilling through well casing and formation
RU2378479C2 (ru) Способ и устройство для выполнения операций в стволе подземной скважины посредством использования гибких обсадных труб
RU2331753C2 (ru) Скважинный инструмент
US6223823B1 (en) Method of and apparatus for installing casing in a well
CA2385426C (en) Method and device for moving a tube in a borehole in the ground
CA1285550C (en) Core drilling tool for boreholes in rock
EA002944B1 (ru) Способ создания ствола скважины
CA2247812C (en) Method of removing wellhead assemblies
US10156096B2 (en) Systems using continuous pipe for deviated wellbore operations
US5350015A (en) Rotary downhole cutting tool
CN206737825U (zh) 深水桩基施工用潜水钻机
CN106703728B (zh) 往复旋转双向置换装置
CN107060645A (zh) 深水桩基施工用潜水钻机
NO347771B1 (en) A hole forming tool and method of forming a plurality of holes in a tubular wall
CN101413378A (zh) 用于钻排出孔的机动式系统
CN109826597B (zh) 直井定面水力射孔压裂装置和方法
RU2569648C1 (ru) Установка для ориентированной перфорации обсаженных скважин
US20220127921A1 (en) Subterranean well pipe and casing cutter water jet system
CN210714473U (zh) 用于油田钻井的液压旋冲工具
SU1663190A1 (ru) Способ отбора керна при планетарном бурении скважин большого диаметра
SU960414A1 (ru) Устройство дл бурени скважин
RU93050691A (ru) Способ перфорации скважины и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM BY KG MD

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AZ KZ TJ TM RU