DK2948757T3 - Kemisk detektionsindretning - Google Patents

Kemisk detektionsindretning Download PDF

Info

Publication number
DK2948757T3
DK2948757T3 DK13872987.6T DK13872987T DK2948757T3 DK 2948757 T3 DK2948757 T3 DK 2948757T3 DK 13872987 T DK13872987 T DK 13872987T DK 2948757 T3 DK2948757 T3 DK 2948757T3
Authority
DK
Denmark
Prior art keywords
metal
nanostructures
functional group
detection device
coating
Prior art date
Application number
DK13872987.6T
Other languages
English (en)
Inventor
Zhang-Lin Zhou
Zhiyong Li
Steven J Barcelo
Original Assignee
Hewlett Packard Development Co Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co Lp filed Critical Hewlett Packard Development Co Lp
Application granted granted Critical
Publication of DK2948757T3 publication Critical patent/DK2948757T3/da

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore

Claims (10)

1. Kemisk detektionsindretning (100; 200; 300), som omfatter: et substrat (102); en flerhed af aflange nanostrukturer (104), hvor hver af de aflange nanostrukturer (104) har en fastgørelsesende og en fri ende modsat fastgørelsesenden, idet fastgørelsesenden er fastgjort til substratet (102), og den frie ende omfatter et metal; hvor hver af de aflange nanostrukturer (104) er en struktur, som har et dimensionsforhold med en længde, der er mindst dobbelt så lang som den korteste bredde; hvor de aflange nanostrukturer (104) er bøjelige og arrangeret således, at de er i stand til at bøje sig og indfange molekyler; hvor metallet er en metalbelægning eller metalhætte (108) på den frie ende; og hvor de aflange nanostrukturer (104) omfatter nanokegler, nanopyramider, nanostave, nanostænger, nanofingre, nanopæle eller nanogræs; og hvor udtrykket nanostruktur henviser til en hvilken som helst struktur, hvis bredde eller diameter har en størrelse på mindre end 1 mikrometer, kendetegnet ved, at hver af de aflange nanostrukturer (104) er belagt med en forsætligt påført metaloxidbelægning (110), hvilken metaloxidbelægning (110) har en tykkelse i intervallet fra 1 nm til 200 nm.
2. Kemisk detektionsindretning (200; 300) ifølge krav 1, som yderligere omfatter en funktionel gruppe (112), der er bundet til belægningen ved kovalent binding; og hvor den funktionelle gruppe (112) omfatter en fastgørelsesfunktionel gruppe A, en afstandsgruppe B og en målfunktionel gruppe FG ifølge formlen I:
hvor A er en organisk funktionel gruppe, som er bundet til nanostrukturen (104), B er substitueret eller usubstitueret, lineær eller forgrenet alkyl eller aryl, og FG er en organisk funktionel gruppe, der er i stand til at adsorbere et målmolekyle.
3. Kemisk detektionsindretning (200; 300) ifølge krav 2, hvor den funktionelle gruppe (112) er formuleret til at binde sig selektivt til en metalion, en organisk forbindelse eller en hydrogenion.
4. Kemisk detektionsindretning (100; 200; 300) ifølge krav 1, hvor metaloxidet er valgt fra gruppen bestående af siliciumoxid, titanoxid, zinkoxid, aluminiumoxid, galliumoxid, indiumoxid, zirconiumoxid, hafniumoxid, tantaloxid og blandinger deraf.
5. Kemisk detektionsindretning (100; 200; 300) ifølge krav 1, hvor metallet er valgt fra gruppen bestående af guld, sølv, kobber, aluminium, platin og blandinger deraf.
6. Kemisk detektionsindretning (300) ifølge krav 1, som yderligere omfatter en detektor (118), der er operativt koblet til flerheden af aflange nanostrukturer (104), hvor detektoren (118) er valgt fra gruppen bestående af et kolorimeter, et reflektometer, et spektrometer, et spektrofotometer, et Raman-spektrometer, et lysmikroskop og et instrument til at måle luminescens.
7. Kemisk detektionsindretning (300) ifølge krav 1, hvor flerheden af aflange nanostrukturer (104) udgør et array (114).
8. Kemisk detektionsindretning (300) ifølge krav 7, hvorarrayet indbefatter underarrays (116), hvilke underarrays (116) har individuel selektivitet for et målmolekyle, hvilket målmolekyle er individuelt valgt fra gruppen bestående af en metalion, en organisk forbindelse og en hydrogenion.
9. Fremgangsmåde til fremstilling af en kemisk detektionsindretning (100; 200; 300) ifølge det foreliggende krav 1, hvilken fremgangsmåde omfatter: at anbringe en flerhed af aflange nanostrukturer (104) på et substrat (102) således, at hver af de aflange nanostrukturer (104) har en fastgørelsesende fastgjort til substratet (102) og en fri ende modsat fastgørelsesenden; at afsætte et metal på den frie ende af hver af de aflange nanostrukturer (104); og belægge hver af de aflange nanostrukturer (104) med en forsætligt påført metaloxidbelægning (110); hvor hver af de aflange nanostrukturer (104) er en struktur, som har et dimensionsforhold med en længde, der er mindst dobbelt så lang som den korteste bredde; hvor de aflange nanostrukturer (104) er bøjelige, og hvor de bøjelige nanostrukturer er arrangeret således, at de er i stand til at bøje sig og indfange molekyler; hvor metallet er en metalbelægning eller metalhætte (108) på den frie ende; og hvor metaloxidbelægningen (110) har en tykkelse i intervallet fra 1 nm til 200 nm, hvor de aflange nanostrukturer (104) er valgt blandt nanokegler, nanopyramider, nanostave, nanostænger, nanofingre, nanopæle og nanogræs; og hvor udtrykket nanostruktur henviser til en hvilken som helst struktur, hvis bredde eller diameter har en størrelse på mindre end 1 mikrometer.
10. Fremgangsmåde ifølge krav 9, som yderligere omfatter trinet til at fastgøre en funktionel gruppe (112) til metaloxidbelægningen (110) på den frie ende af nanostrukturen (104).
DK13872987.6T 2013-01-25 2013-01-25 Kemisk detektionsindretning DK2948757T3 (da)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/023266 WO2014116238A1 (en) 2013-01-25 2013-01-25 Chemical sensing device

Publications (1)

Publication Number Publication Date
DK2948757T3 true DK2948757T3 (da) 2017-06-06

Family

ID=51227910

Family Applications (1)

Application Number Title Priority Date Filing Date
DK13872987.6T DK2948757T3 (da) 2013-01-25 2013-01-25 Kemisk detektionsindretning

Country Status (6)

Country Link
US (1) US9567214B2 (da)
EP (2) EP2948757B1 (da)
JP (1) JP5969711B2 (da)
CN (2) CN104937391A (da)
DK (1) DK2948757T3 (da)
WO (1) WO2014116238A1 (da)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201725385A (zh) * 2016-01-05 2017-07-16 財團法人工業技術研究院 具有薄層層析之拉曼檢測晶片及分離檢測分析物之方法
CN108496071A (zh) * 2016-04-19 2018-09-04 惠普发展公司,有限责任合伙企业 包括牺牲钝化涂层的等离子体纳米结构体
EP3374757B1 (en) * 2016-04-21 2021-09-01 Hewlett-Packard Development Company, L.P. Sels nano finger sidewall coating layer
US10871449B2 (en) 2016-04-22 2020-12-22 Hewlett-Packard Development Company, L.P. SERS sensor apparatus with passivation film
WO2017200295A1 (ko) * 2016-05-17 2017-11-23 충남대학교산학협력단 표면증강 라만산란 기판, 이를 포함하는 분자 검출용 소자 및 이의 제조방법
US10444155B2 (en) * 2016-10-10 2019-10-15 Hewlett-Packard Development Company, L.P. Nanostructure with electrowetting
WO2018164198A1 (ja) * 2017-03-09 2018-09-13 Scivax株式会社 電磁波増強素子およびその製造方法並びにアミノ酸配列決定方法
US11293920B2 (en) * 2017-04-18 2022-04-05 Okinawa Institute Of Science And Technology School Corporation Nanoplasmonic instrumentation, materials, methods and system integration
EP4022007B1 (en) 2019-08-28 2024-04-03 Merck Patent GmbH Aromatic isothiocyanates
CN114502691A (zh) * 2019-10-10 2022-05-13 默克专利股份有限公司 氟化芳族化合物
WO2021116080A1 (en) 2019-12-10 2021-06-17 Merck Patent Gmbh Aromatic isothiocyanates
WO2021262163A1 (en) * 2020-06-24 2021-12-30 Hewlett-Packard Development Company, L.P. Plasmonic sensors and detection
US11808747B1 (en) * 2022-07-06 2023-11-07 King Fahd University Of Petroleum And Minerals Hydrogen gas sensor, and method of making and using thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0216197D0 (en) * 2002-07-12 2002-08-21 Univ Strathclyde Serrs active particles
US7163659B2 (en) * 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
KR100554155B1 (ko) 2003-06-09 2006-02-22 학교법인 포항공과대학교 금속/반도체 나노막대 이종구조를 이용한 전극 구조물 및그 제조 방법
US8048377B1 (en) 2004-03-08 2011-11-01 Hewlett-Packard Development Company, L.P. Immobilizing chemical or biological sensing molecules on semi-conducting nanowires
CN100357738C (zh) * 2004-03-26 2007-12-26 博奥生物有限公司 一种检测小分子化合物的方法
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
JP4783907B2 (ja) * 2005-01-07 2011-09-28 国立大学法人京都大学 光学的センサ及びその製造方法
US7247594B2 (en) * 2005-04-13 2007-07-24 Chevron Phillips Chemical Co. Lp Catalysts for olefin polymerization
DE102006013484A1 (de) 2006-03-23 2007-09-27 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Metallische Nanodrähte mit einer Hülle aus Oxid und Herstellungsverfahren derselben
US7911010B2 (en) 2006-07-17 2011-03-22 Kwj Engineering, Inc. Apparatus and method for microfabricated multi-dimensional sensors and sensing systems
US7388200B2 (en) 2006-10-19 2008-06-17 Hewlett-Packard Development Company, L.P. Sensing method and nanosensing device for performing the same
US7388661B2 (en) * 2006-10-20 2008-06-17 Hewlett-Packard Development Company, L.P. Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (NERS)
US20080170230A1 (en) * 2007-01-11 2008-07-17 Lamdagen Corporation Silanization of noble metal films
WO2008094089A1 (en) 2007-01-29 2008-08-07 Nanexa Ab Active sensor surface and a method for manufacture thereof
EP1992938A1 (en) * 2007-05-14 2008-11-19 Koninklijke Philips Electronics N.V. Improved methods of SE(R)RS detection using multiple labels
JP5500571B2 (ja) * 2009-03-26 2014-05-21 株式会社ニデック 試験片,該試験片の製造方法
WO2010132727A1 (en) 2009-05-13 2010-11-18 University Of Southern California Electrical wiring of polynucleotides for nanoelectronic applications
JP5412207B2 (ja) * 2009-08-04 2014-02-12 株式会社日立ハイテクノロジーズ 生体分子固定基板及びその製造方法
US20110166045A1 (en) 2009-12-01 2011-07-07 Anuj Dhawan Wafer scale plasmonics-active metallic nanostructures and methods of fabricating same
US8398921B2 (en) 2009-12-18 2013-03-19 Electronics And Telecommunications Research Institute Chemical sensor using metal nano-particles and method for manufacturing chemical sensor using metal nano-particles
CN102822249B (zh) * 2010-03-19 2016-04-06 新日铁住金化学株式会社 金属微粒复合体
CN102834709A (zh) * 2010-04-20 2012-12-19 惠普发展公司,有限责任合伙企业 用于分子分析的多柱结构
US8358407B2 (en) * 2010-04-30 2013-01-22 Hewlett-Packard Development Company, L.P. Enhancing signals in Surface Enhanced Raman Spectroscopy (SERS)
US8462333B2 (en) * 2010-10-15 2013-06-11 Hewlett-Packard Development Company, L.P. Apparatus for performing SERS
WO2012079018A2 (en) * 2010-12-09 2012-06-14 University Of Florida Research Foundation, Inc. Surface plasmon sensors and methods for producing the same

Also Published As

Publication number Publication date
EP3214431A1 (en) 2017-09-06
US20150355097A1 (en) 2015-12-10
EP2948757A4 (en) 2015-12-23
JP5969711B2 (ja) 2016-08-17
CN107655860A (zh) 2018-02-02
JP2016510405A (ja) 2016-04-07
EP2948757A1 (en) 2015-12-02
WO2014116238A1 (en) 2014-07-31
CN104937391A (zh) 2015-09-23
US9567214B2 (en) 2017-02-14
EP2948757B1 (en) 2017-04-26
EP3214431B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
DK2948757T3 (da) Kemisk detektionsindretning
US7969570B2 (en) Applications of laser-processed substrate for molecular diagnostics
US20130040862A1 (en) Multi-pillar structure for molecular analysis
US8993339B2 (en) Hybrid nanostructures for molecular analysis
EP2771658B1 (en) Apparatus for use in a sensing application having a destructible cover
US9310306B2 (en) Apparatus for use in sensing applications
Luo et al. Durable and flexible Ag-nanowire-embedded PDMS films for the recyclable swabbing detection of malachite green residue in fruits and fingerprints
US8848183B2 (en) Apparatus having nano-fingers of different physical characteristics
US9377409B2 (en) Fabricating an apparatus for use in a sensing application
EP2948771B1 (en) Chemical sensing device
Přikryl et al. Photodeposited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis
Zhang et al. Rationally designed graphene/bilayer silver/Cu hybrid structure with improved sensitivity and stability for highly efficient SERS sensing
Pradhan et al. Surface-enhanced Raman scattering on chemically etched copper surface: an upper-level spectroscopic measurement and analysis
JP6468572B2 (ja) 増強電磁場を用いたアレイ型センサーを使用した測定方法及び測定装置
JP2017032580A (ja) 化学的な検知器
JP6373553B2 (ja) アレイ型センサーを使用した測定装置
Alexson et al. The role of surface adsorption in surface-enhanced Raman scattering from Benzene thiols
Kawakami et al. Evaluation of Alkyl-chain-length Dependency for Localized Surface Plasmon Resonance Optical Characteristics
Bawazeer Developments of new techniques for studies of coupled diffusional and interfacial physicochemical processes