DK2626473T3 - Method of reducing the transfer of vibration to a mud suction vessel produced by a cutting head, and mud suction vessel to which such a method is used - Google Patents

Method of reducing the transfer of vibration to a mud suction vessel produced by a cutting head, and mud suction vessel to which such a method is used Download PDF

Info

Publication number
DK2626473T3
DK2626473T3 DK12000862.8T DK12000862T DK2626473T3 DK 2626473 T3 DK2626473 T3 DK 2626473T3 DK 12000862 T DK12000862 T DK 12000862T DK 2626473 T3 DK2626473 T3 DK 2626473T3
Authority
DK
Denmark
Prior art keywords
ladder
mud suction
vessel
vibration
starboard
Prior art date
Application number
DK12000862.8T
Other languages
Danish (da)
Inventor
Walter Dietens
Original Assignee
Jan De Nul N V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan De Nul N V filed Critical Jan De Nul N V
Application granted granted Critical
Publication of DK2626473T3 publication Critical patent/DK2626473T3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8833Floating installations
    • E02F3/8841Floating installations wherein at least a part of the soil-shifting equipment is mounted on a ladder or boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/905Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9212Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel
    • E02F3/9225Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel with rotating cutting elements
    • E02F3/9231Suction wheels with axis of rotation parallel to longitudinal axis of the suction pipe
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/06Floating substructures as supports
    • E02F9/067Floating substructures as supports with arrangements for heave compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
  • Vibration Prevention Devices (AREA)
  • Shearing Machines (AREA)

Description

DESCRIPTION
[0001] The present invention relates to a cutter suction dredger.
[0002] More particularly, the invention relates to such a cutter suction dredger which comprises a cutter dredger ladder mounted rotatably at a first extremity on the cutter suction dredger and having a second extremity on which a cutter head is provided, the second extremity being movable upwards and downwards with respect to the dredger by means of a hoisting wire system.
[0003] Typically the cutter suction dredger of the type to which the invention is related, has a hoisting wire system which comprises at least: • hoisting means on the cutter suction dredger for winding and unwinding a wire on a reel; • guiding means on a gantry of the cutter suction dredger for guiding a wire; • ladder suspension means on the cutter dredger ladder for suspending the ladder by a wire ; and, • one or more wires by which the cutter ladder is hung, at least one wire section being wound partly on the hoisting means and led over the guiding means on the gantry to the suspension means on the cutter dredger ladder.
[0004] Such types of cutter suction dredgers are known according to the state of the art and they are often used for performing excavation work in difficult soil or hard rock, or when an accurate profile has to be dredged, often at a more restricted depth (25 m to 30 m), since by means of the cutter head almost all types of soil can be attacked and sucked by a pumping system to a dredger vessel or the like, while the cutter head position can be controlled in an accurate way.
[0005] A sometimes very disturbing characteristic however of the cutter suction dredger is that its cutter head is subjected to heavy shock-loads which generate a lot of vibrations and even shock-loads on the cutter dredger ladder during excavation, especially when working in hard rock, which vibrations and shock-loads are inevitably transmitted to the dredger structure.
[0006] In extreme cases the vibrations and shock-loads are causing structural failure to the dredger or failure of sensitive equipments, as for example to electronic equipment and so on.
[0007] Another unpleasant consequence of the vibrations generated by the cutter head is that it causes a lot of discomfort to the crew of the vessel.
[0008] In very extreme cases, dredging of hard soils or rocks is made impossible by the high level of the vibrations and shocks coming from the cutter head.
[0009] It is therefore an objective of this invention to provide a solution to one or more of the above-mentioned negative consequences of the cutter head vibrations, as well as to possibly not-mentioned problems.
[0010] To this end, according to the present invention in a cutter suction dredger of a type disclosed in the non-characterizing part of claim 1, the hoisting wire system is provided with vibration reduction means for reducing the transfer of vibrations generated by the cutter head to the cutter suction dredger through the hoisting wire system.
[0011] The core of the invention is the discovery of a problem which is unrecognized according to the state of the art.
[0012] Of course, the origin of the vibrations and shock-loads is according to the state of the art well known, i.e. they originate at the cutter head.
[0013] On the other hand, the problem of the transfer of the vibrations and shocks generated by the cutter head to the dredger is according to the state of the art not correctly understood.
[0014] Indeed, the cutter dredger ladder is mounted rotatably at its first extremity to the dredger by means of two trunnion shafts which are supported by bearings in the sides of the cutter dredger ladder well.
[0015] So, the idea which is widespread in the domain of cutter suction dredger design, is that the vibrations and shocks caused by the cutter head are transferred from the cutter dredger ladder to the dredger through the rotatable connection at this first extremity of the cutter ladder as is i.e. recognized in the patent specification GB 1449843.
[0016] Another type of floating structure, more specifically a mobile harbor floater with a dampened crane, is disclosed in KR 20110073273.
[0017] According to the present state of the art, apart from the design requirement that the structure and in particular the structure around the support of the cutter ladder by means of the trunnions, must be sufficiently resistant in order to withstand the vibrations and shock loads,_no special measures are taken in order to isolate and damp the cutter head vibrations.
[0018] After an extensive measuring campaign on cutter suction dredgers in operation and after having analyzed the resulting vibration measurements as well as the resulting displacement measurements, it was discovered that a significant part of the vibrations and shocks are not transferred through the rotatable connection of the cutter ladder at its first extremity with the dredger, as was always assumed, but that this significant part of the vibrations and shocks are actually transferred through the hoisting wire system by which the cutter ladder is hung on the gantry of the dredger at its other end.
[0019] This is a rather surprising result, since, according to the general thinking in the domain of cutter dredger design, the suspension of the cutter dredger ladder by means of cables or wires is not restraining the movement of the cutter head considerably, so that the part of the vibrations or shock loads generated by the cutter head which is transferred through the hoisting wire system to the dredger was not even considered.
[0020] The discovery that the hoisting wire system is a problem zone for as far as the transfer of vibration and shock-load from the cutter head to the dredger is concerned, has in accordance with the present invention led to a completely different design of the cutter dredger ladder suspension system.
[0021] In particular, the hoisting wire system is according to the invention provided with vibration reduction means for reducing the transfer of vibrations generated by the cutter head to the cutter suction dredger through the hoisting wire system, which has never been the case in cutter suction dredger designs known according to the present state of the art.
[0022] The advantages of such a cutter suction dredger according to the invention, equipped with vibration reduction means at the hoisting wire system, speak for themselves and are of course all related to the reduced vibration and shock load levels felt at the dredger itself, so that discomfort to the crew, failure of equipment and so on are completely vanished or at least significantly reduced.
[0023] The present invention also relates to a method for reducing the transfer of vibrations to a cutter suction dredger generated by a cutter head which is provided on a cutter dredger ladder of the cutter suction dredger, the cutter dredger ladder being mounted as described before.
[0024] Such a method according to the invention at least comprises the step of providing the hoisting wire system by which the cutter dredger ladder is hung, with vibration reduction means.
[0025] According to a first preferred method in accordance with the invention, vibration reduction means of a passive type are provided for supporting the guiding means on the gantry.
[0026] An advantage of such a first preferred method in accordance with the invention is that it is simple in execution and not expensive.
[0027] According to an alternative preferred method in accordance with the invention, vibration reduction means of an active type are provided by which vibration movements in the hoisting wire system are compensated.
[0028] In such an alternative method in accordance with the present invention, the active type vibration reduction means can comprise actuators or electric motors, all kinds of electronic measuring equipment and so on in order to measure and counteract in a dynamic way the vibrations caused by the cutter head.
[0029] An advantage of such an alternative method according to the invention is that it is easily or even automatically adjustable in function of the working conditions, for example when the cutter suction dredger is working in very varying types of soil, causing vibrations or shock-loads on the cutter head of very varying frequencies and amplitudes.
[0030] With the intention of better showing the characteristics of the invention, hereafter, as examples without any limitative character, a preferred form of embodiment is described of a cutter suction dredger in accordance with the invention, as well as a method in accordance with the invention for reducing the transfer of vibrations in the cutter suction dredger, with reference to the accompanying drawings, wherein: figure 1 represents a schematic side view on a cutter suction dredger according to the invention; figure 2 represents a schematic top view along arrow F2 on the cutter suction dredger of figure 1; and, figure 3 represents on a larger scale a view on part of the hoisting wire system along arrow F3 in figure 2.
[0031] The cutter suction dredger 1 represented in figures 1 and 2 in accordance with the invention, comprises a vessel 2 on which a cutter dredger ladder 3 is mounted in a rotatable manner within a ladder well 4, which is in this case provided centrally in the bow side 5 of the vessel 2.
[0032] According to the invention it is however not excluded to provide as an alternative a cutter dredger ladder 3 at the other extremity of the vessel 2, i.e. at the stern of the vessel 2.
[0033] The cutter dredger ladder 3 is in the represented example a hollow longitudinal body 6 generally arranged for a rotational movement in a vertical plane through the axial direction AA' of the vessel 2.
[0034] Nevertheless, the cutter dredger ladder 3 can be executed in another manner, for example as a lattice girder or other steel structure.
[0035] At a first extremity 7 the cutter dredger ladder 3 is provided with two trunnion shafts 8, which extend at both sides of the cutter dredger ladder 3 in a lateral direction BB' perpendicular to the axial direction AA' of the vessel 2.
[0036] These trunnion shafts 8 rest in bearings 9 provided in opposite walls 10 of the ladder well 5 in order to obtain the above- mentioned rotatable mounting of the cutter dredger ladder 3 with respect to the vessel 2 at its first extremity 7.
[0037] At its other second extremity 11, the cutter dredger ladder 3 is provided with a rotatable cutter head 12 having teeth 13 for performing excavation works in soil or rock 14 underneath the water level 15.
[0038] This cutter head 12 is mounted at the end 16 of a cutter shaft 17 mounted rotatably on the cutter dredger ladder 3 and driven by an electric motor 18.
[0039] The cutter suction dredger 1 is furthermore provided with suction means which comprises a dredging pump 19 provided in the vessel 2, a hollow suction pipe 20 mounted on the cutter dredger ladder 3 which forms the inlet suction pipe 20 of the dredging pump 19, and a discharge pipe 21 connected at the outlet of the dredging pump 19.
[0040] In line with the invention, the cutter shaft 17 and the hollow suction pipe 20 can be mounted parallel to one another on the cutter dredger ladder 3.
[0041] In still another embodiment it is also not excluded to provide the dredging pump 19 at another position, for example on the cutter dredger ladder 3 instead of being mounted on the vessel 2.
[0042] The suction pipe 20 is with its open ended extremity 22 located near the cutter head 12 in order to suck up soil or rock 14 excavated by the cutter head 12.
[0043] In order to control the depth of the cutter head 12 the cutter dredger ladder 3 is at its second extremity 11 movable upwards and downwards with respect to the dredger vessel 2 by means of a hoisting wire system 22.
[0044] This hoisting wire system 22 comprises hoisting means 23 on the cutter suction dredger 1 for winding and unwinding a wire on a reel, which hoisting means 23 comprise in this case a pair of winches provided on the deck 24 of the cutter suction dredger 1 behind the first extremity 7 of the cutter dredger ladder 3, i.e. a starboard winch 25 and a port-side winch 26 arranged along opposite sides of the ladder well 4.
[0045] The hoisting means 23 also comprise in the embodiment represented in the figures a pair of deck sheaves, i.e. a star board deck sheave 27 and a port-side deck sheave 28, both provided on the deck 24 at the bow side 5 at a position in axial alignment with the corresponding winches, respectively the star board winch 24 and the port-side winch 25.
[0046] Nevertheless, the star board deck sheave 27 and the port-side deck sheave 28 are oriented somewhat skew with respect to the axial direction AA' of the vessel 2 in order to guide a wire towards the ladder well 4 as considered in the direction of the bow side 5.
[0047] Furthermore, the hoisting wire system 22 comprises a gantry 29 at the bow side 5 of the cutter suction dredger 1, which gantry 29 mainly consists of a central overhead beam 30, which is supported on the deck 24 of the vessel 2 by means of two supporting, vertically extending legs 31, positioned at opposite sides of the ladder well 4.
[0048] This gantry 29 is intended for taking part of the weight of the cutter dredger ladder 3.
[0049] To this aim the hoisting wire system 22 also comprises guiding means 32 on the gantry 29 for guiding a wire.
[0050] These guiding means 32 comprise in the present embodiment a pair of sets of gantry sheaves mounted at opposite sides on the central overhead beam 30 of the gantry 29, i.e. a starboard set 33 of gantry sheaves and a port-side set 34 of gantry sheaves.
[0051] The guiding means 32 on the gantry 29 are additionally provided with an intermediate set 35 of gantry sheaves located on the central overhead beam 30 centrally between the starboard set 33 of gantry sheaves and the port-side set 34 of gantry sheaves.
[0052] In the presently discussed embodiment the starboard set 33 of gantry sheaves and the port-side set 34 of gantry sheaves each consist of three gantry sheaves, mounted symmetrically with respect to a vertical plane through the axial direction AA' of the vessel 2, for forming three symmetrical pairs of gantry sheaves 36, 37 and 38.
[0053] One pair of gantry sheaves 36 is positioned further away from the vertical plane through the axial direction AA' than the other pairs of gantry sheaves 37 and 38, and will hereafter be indicated by the pair of outside gantry sheaves 36.
[0054] As with the deck sheaves 27 and 28, the outside gantry sheaves 36 are also oriented somewhat skew in respect of the axial direction AA', in order to guide a wire towards the middle of the ladder well 4 as considered in the direction of the bow side 5.
[0055] In this case the outside gantry sheaves 36 are integrated in the inside 39 of the central overhead beam 30 structure, but this is not necessarily the case according to the invention.
[0056] In the present embodiment the two other pairs of gantry sheaves 37 and 38 are mounted collaterally underneath the central overhead beam 30, at a position somewhat more to the middle of the central overhead beam 30 compared to the position of the outside gantry sheaves 36, and at a distance D from one another which is somewhat smaller than the width W of the cutter dredger ladder 3.
[0057] For this reason the pairs of gantry sheaves 37 and 38 will be called hereafter the inside gantry sheaves 37 and 38.
[0058] These two pairs of inside gantry sheaves 37 and 38 are axially oriented gantry sheaves, by which is meant that these sheaves are mainly disc shaped having a disc plane parallel to the dredgers axial direction AA' and having an axis of rotation 40 perpendicular to said axial direction AA'.
[0059] Furthermore, in the present case the intermediate set 35 of gantry sheaves consists of a pair of sheaves 35 which are transverse sheaves in that these sheaves 35 are mainly disc shaped having a disc plane perpendicular to the dredgers axial direction AA' and having an axis of rotation 41 parallel to said axial direction AA'.
[0060] According to the invention on the cutter dredger ladder 3 also ladder suspension means 42 for suspending the cutter dredger ladder 3 by a wire are provided.
[0061] In this case, the suspension means 42 on the cutter dredger ladder 3 comprise a pair of ladder suspensions means, i.e. a starboard ladder suspension means 43 and a port-side ladder suspension means 44, positioned at both lateral sides of the cutter dredger ladder 3 at a distance E from one another corresponding to the distance D between the inside gantry sheaves 37 and 38.
[0062] More in particular, the starboard ladder suspension means 43 comprise a set of starboard ladder suspension sheaves and the port-side ladder suspension means 44 comprise a set of port-side ladder suspension sheaves.
[0063] However, as an alternative it is not excluded from the invention to use other kinds of ladder suspension means 42 which are not sheaves, but which are for example hooks or eyes or the like.
[0064] In the presently discussed case, the starboard set of ladder suspension sheaves 43 and the port-side set of ladder suspension sheaves 44 each consist of three ladder suspension sheaves positioned collaterally to one another forming 3 pairs of ladder suspension sheaves, i.e. an outside pair of ladder suspension sheaves 45, an intermediate pair of ladder suspension sheaves 46 and an inner pair of ladder suspension sheaves 47.
[0065] All the pairs of ladder suspension sheaves 45 to 47 are axially oriented ladder suspension sheaves, by which is meant that these sheaves are mainly disc shaped having a disc plane parallel to the dredgers' axial direction AA' and having an axis of rotation 48 perpendicular to said axial direction AA'.
[0066] Furthermore, according to the invention the cutter ladder 3 is hung to the gantry 29, in general terms realized by one or more wires, at least one wire section being wound partly on the hoisting means 23 and led over the guiding means 32 on the gantry 29 to the ladder suspension means 42 on the cutter dredger ladder 3.
[0067] In the present case, a starboard wire section 49 is wound with an extremity part 50 of the starboard wire section 49 on the starboard winch 25 and a remaining part 51 of the starboard wire section 49 is led over the starboard set 33 of gantry sheaves and guided to the starboard set 43 of ladder suspension means.
[0068] Similarly, a port-side wire section 52 is wound with an extremity part 53 of the port-side wire section 52 on the port-side winch 26 and a remaining part 54 of the port-side wire section 52 is led over the port-side set 34 of sheaves on the gantry 29 and guided to the port-side set 44 of ladder suspension means.
[0069] According to a preferred embodiment of cutter suction dredger in line with the present invention, and as is also the case in the represented figures 1 tot 3, the starboard wire section 49 and the port-side wire section 52 are sections of a single wire 55 which is led from the starboard winch 25 to the port-side winch 26 over the gantry guiding means 32 and the ladder suspension means 42, which are in this case all sheaves.
[0070] This is in this case realized by passing the wire 55 from the starboard ladder sheave of the inside pair of ladder sheaves 47 over the intermediate set 35 of gantry sheaves to the port-side ladder suspension sheave of the inside pair of ladder suspension sheaves 47.
[0071] So, in the presently discussed embodiment, at the starboard side the wire section 49 of the single wire 55 passes from the starboard winch 26 subsequently over the following elements: • the start board deck sheave 27; • the starboard gantry sheave of the outside pair of gantry sheaves 36; • the starboard ladder suspension sheave of the outside pair 45 of ladder suspensions sheaves; • the starboard gantry sheave of the inside pair 37 of gantry sheaves; • the starboard ladder suspension sheave of the intermediate pair 46 of ladder suspensions sheaves; • the starboard gantry sheave of the inside pair 38 of gantry sheaves; • the starboard ladder suspension sheave of the intermediate pair 46 of ladder suspensions sheaves; • and the starboard gantry sheave of the intermediate set 35 of gantry sheaves.
[0072] Similarly, the port-side wire section 52 of the single wire 55 is passing over the corresponding port-side elements, so that a symmetrical arrangement is obtained.
[0073] Nevertheless, all kinds of other configurations in which more wires or wire sections, more or less sheaves or other kinds of suspension means and guiding means are applied in order to hang the cutter dredger ladder 3 to the vessel 2 are not excluded from the invention.
[0074] As explained in the introduction, the core of the invention lies in the discovery that the vibrations and shock-loads caused by the cutter head 12 are in a considerable part transferred to the vessel 2 through the hoisting wire system 22, in particular through the single wire 55 or in other embodiments though multiple wires of the hoisting wire system 22, whereas according to the state of the art it was always believed that such vibrations and shock loads are mainly transferred to the vessel through the rotatable connection of the cutter dredger ladder 3 at its first extremity 7 by means of the trunnion shafts 5 and bearings 9.
[0075] To solve the problem of the transfer of vibrations generated by the cutter head 12 to the vessel 2, it is therefore proposed by the present invention to provide the hoisting wire system 22 with vibration reduction means 56 for reducing the transfer of vibrations through the hoisting wire system 22.
[0076] According to a preferred embodiment of a cutter suction dredger in accordance with the invention, the vibration reduction means 56 comprise vibration damping means, like dashpots, rubber cushions or blocks, etc...
[0077] Alternatively or additionally, according to the invention the vibration reduction means 56 comprise vibration isolation means.
[0078] For example, the vibration reduction means 56 can comprise one or more of the following vibration reductors: • an elastic element; • a rubber element; • a spring; • a pneumatic damper; • a hydraulic damper; • a dashpot; • a shock absorber; and/or An electrical compensator.
[0079] Vibration damping means are intended for absorbing mechanical vibration energy and to reduce in that way the amplitude of the vibration oscillations, in this case the amplitude of the vibration forces exerted on the vessel 2 through the hoisting wire system 22.
[0080] The technique of isolating vibrations is a technique known according to the state of the art and is for example an excellent technique when it comes to reduce the effects of a vibration load which has a certain main frequency, which is mostly the case in devices with rotating mechanical parts.
[0081] In the present application of cutter suction dredging the cutter head 12 is also rotating at a certain speed.
[0082] However, due to the interaction with the rock or soil, the induced vibration forces can have a rather varying frequency spectrum, so that the simple principles of vibration isolation known from applications with a single main frequency, which will be explained hereafter for the purpose of better understanding what is meant by vibration isolation, might not be sufficient for designing adapted vibration isolation means in the present application and in practice some more complex analysis might be required.
[0083] This technique of isolating vibrations can be explained in a simplified manner as follows on a system with a single mass M supported by an ideal spring with a stiffness k on a base.
[0084] It is known that such a mass M will oscillates at its natural frequency on the spring under a small, temporary excitation action, which natural frequency Fn depends on the mass M and stiffness k of the spring as follows Fn = C*(k/M)A1/2.
[0085] In a system where a certain vibrating force with a forced frequency F is applied, the mass vwll vibrate at the same frequency F as the excitation force, however with a certain phase shift.
[0086] Furthermore, depending on the ratio R = F/Fn between the natural frequency Fn of the mass-spring system and the forced frequency F, the resulting amplitude of the vibration felt at the mass M will differ considerably.
[0087] In particular, when the exerted vibration force has a frequency F which is much higher than the natural frequency Fn of the supported mass-spring system, the amplitude of the vibration at the mass M will be small and in that case it is said that the mass-spring (and in practice also damper) system isolates the vibrating force from its base.
[0088] As is clear from the above formula the natural frequency Fn can be decreased by augmenting the mass M or by decreasing the stiffness k of the spring.
[0089] Applied to the presently discussed application, it is clear that the transfer of vibrations through the hoisting wire system 22 can be reduced by applying similar vibration isolation techniques, by adapting the dynamic behavior of the complete hoisting wire system, for example by adapting the stiffness of the elements by which the cutter dredger ladder 3 is suspended or by adapting the masses involved, etc...
[0090] Of course the above explanations are just a simplified way of explaining things in order to provide a better understanding of what is meant by vibration isolation means.
[0091] In practice the complete hoisting wire system 22 can obviously not be simplified by a single mass-spring-damper system, but is a complex system of which the dynamic behavior can for example by modeled in computer aided design systems, for example with finite element analysis software, etc...
[0092] What's more, there are actually two fundamentally different methods by which the transfer of vibrations can be reduced, a first of which consists in using vibration reduction means 56 of a passive type, for example for supporting the guiding means 32 on the gantry 29.
[0093] According to a preferred embodiment of a cutter suction dredger 1 in line with the present invention the guiding means 32 are mounted on the gantry 29 by means of one or more base members, while the vibration reduction means 56 are at least partly provided between the concerned base members and the gantry 29.
[0094] In the present case, as is clearly demonstrated by means of figure 3, both outside gantry sheaves of the pair of outside gantry sheaves 36 are each mounted on the gantry 29 by means of a base member 57 which forms a foot 57 of the concerned sheave.
[0095] Furthermore, this foot 57 of each concerned outside gantry sheave of the pair of outside gantry sheaves 36 is mounted on a separate vibration reductor 58.
[0096] In figure 3 these vibration reductors 58 are represented as a combination of spring elements 59 and dashpot elements 60, but of course all types of vibrations reductors 58 can be used which are suitable in the actual application.
[0097] Furthermore, in the case of figure 3 the central overhead beam 30 of the gantry 29 is forming a supporting structure 30 on which a base member 61 in the form of a mounting base 61 is provided.
[0098] The gantry sheaves of the pairs of inside gantry sheaves 37 and 38, as well as the gantry sheaves of the intermediate set of gantry sheaves 35 are mounted in a direct manner with a foot 62 of the concerned sheaves on this mounting base 61, without any additional intermediate structure being provided between the mounting base 61 and the feet 62.
[0099] On the other hand, vibration reduction means 56 formed by vibration reductors 63 are partly provided between the supporting structure formed by the central overhead beam 30 of the gantry 29 and the mounting base 61 of the gantry 29, so that multiple sheaves of the guiding means 32 are simultaneously supported in a flexible manner on the central overhead beam 30.
[0100] In figure 3 these vibration reductors 63 are again represented as a combination of spring elements 64 and dashpot elements 65, but this again just one way of representation and it is not excluded from the invention to use other kinds of vibrations' reductors 63.
[0101] It is also obvious that the invention does also not exclude configurations in which more or less sheaves or other elements of the hoisting wire system 22 are mounted by means of a vibration reductor on a supporting structure, regardless whether multiple sheaves or other elements are mounted together on a single vibration reductor, or that one or more single sheaves or other single elements are mounted on their individual vibration reductor.
[0102] In still another embodiment of a cutter suction dredger 1 according to the invention the vibration reduction means 56 are at least partly provided between the cutter dredger ladder 3 and the ladder suspensions means 42.
[0103] It is clear that by having vibration reduction means 56 at this position similar effects of reduction of vibration transfer from the cutter head 12 to the vessel 2.
[0104] According to a preferred embodiment of a cutter suction dredger 1 in accordance with the present invention the vibration reduction means 56 of the hoisting wire system 22 is suitable for substantially reducing the transfer of vibrations form the cutter head 12 to the cutter suction dredger 1, which have a frequency between 0,5 Hz and 10 Hz.
[0105] For that purpose, during design and afterwards during evaluation of the design, a simplified model can be used in first instance, such as a most realistic simplified model of the suspension of the cutter dredger ladder 3 on the vessel 2 by means of a mass-spring-damper model.
[0106] It is an aim of the design to select vibration reduction means 56 for the hoisting wire system 22 in such a way that an optimized vibration damping can be obtained for the particular application.
[0107] Depending on the actual situation, during design and evaluation of the design, a certain criterion can be used, for example that the simplified mass-spring-damper model should have a damping ratio of for example at least 0,5.
[0108] In a similar way, another criterion can be used, i.e. that in a most realistic simplified model of the suspension of the cutter dredger ladder 3 on the vessel 2 in the form of a mass-spring-damper model, the vibration reduction means 56 of the hoisting wire system 22 should be such that the mass-spring-damper model has an undamped natural frequency of not more than a certain amount of Hz.
[0109] In a special preferred embodiment the vibration reduction means 56 are provided with tuning means for modifying the frequency response of the vibration reduction means 56.
[0110] Such tuning means can in practice for example comprise means for modifying the damping characteristics of the vibration reduction means 56.
[0111] A known manner often used for example in dashpot elements 60 and 65 is an orifice through which oil is flowing during operation, the damping characteristics of such a dashpot 60 or 65 being adaptable by changing the size of the orifice.
[0112] Of course multiple other means for making tunable damping characteristics are not excluded from the invention.
[0113] In still another embodiment the tuning means can comprise as an alternative or additionally means for modifying the stiffness of the vibration reduction means 56.
[0114] A possible manner for obtaining such a means for modifying the stiffness of the vibration reduction means 56 can consist in the application of hydropneumatic suspensions elements.
[0115] In still another embodiment of a cutter suction dredger 1 according to the present invention the tuning means can also comprise means for modifying the weight of certain elements of the hoisting wire system 22.
[0116] An easy way to significantly modify the weight of elements of the hoisting wire system 22 consists for example of one more ballast tanks which can be filled with water or air, and so on.
[0117] Contrary to the above-described method in which passive elements are used, also an alternative method can be applied, wherein vibration reduction means 56 of an active type are used by which vibration movements in the hoisting wire system 22 are compensated in a more dynamic way.
[0118] With such a method with vibration reduction means 56 of an active type, apart from possible passive elements as described above, also other types of elements are used, such as: 1 1 measuring devices, for example electric or electronic measuring devices such as accelerometers, frequency measuring devices etc..., • one or more controllers for processing the measured characteristics, such as for example on-off controllers, proportional controllers, proportional-derivative controllers (PD-controllers), proportional-integral-derivative controllers (PID-controllers), etc... and • actuator means such as electric motors, hydraulic or pneumatic pumps, etc...
[0119] These elements can be configured in a feed-back loop in order to interfere actively by means of the actuator means for compensating the vibration motions.
[0120] In the present application of a cutter suction dredger 1, the vibration reduction means 56 can for example be provided with vibration frequency and vibration amplitude measuring means for measuring the amplitude of the vibrations generated by the cutter head 12 as a function of the vibration frequency and/or for measuring the frequency response of the vibration reduction means on the vibrations generated by the cutter head 12.
[0121] Still another element or other elements that can make a contribution to a reduction of the transmission of vibrations from the cutter head 12 to the vessel 2, consist in one or more wire tensioners.
[0122] For example a pair of wire tensioners can be applied, in particular, on the one hand, a starboard wire tensioner applied in the starboard wire section 49, between the starboard winch 25 and the starboard deck sheave 27, and, on the other hand, a portsided wire tensioner applied in the port-side wire section 52, between the port-side winch 26 and the port-side deck sheave 28.
[0123] Such a wire tensioner can be formed of two or more sheaves which guide the wire in a zigzag manner. One of the sheaves is preferably mounted in a movable manner with respect to the other sheave or sheaves, which are mounted fixedly and wherein the movable sheave is tensioned under the force of springs or the like in order to tension the wire.
[0124] It is obvious that such a wire tensioner does not only avoid situations wherein the wire is hanging loose, but such a wire tensioner also forms a vibration reduction means 56, if properly designed.
[0125] The present invention is by no means limited to the embodiment of a cutter suction dredger 1 according to the invention described as an example and illustrated in the drawings, but a cutter suction dredger 1 according to the invention can be realised in all kinds of variants, without departing from the scope of the invention.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description 1 1 GB1449843A [0015] • KR20110073273 [00161

Claims (24)

1. Muddersugningsfartøj (1), som omfatter en muddersugningsstige (3), hvis ene ben (7) er monteret således, at det kan rotere på muddersugningsfartøjet (1), og et andet ben (11) der er udstyret med et skærehoved (12), og hvor dette skærehoved (12) kan bevæges op og ned i forhold til muddersugningsfartøjet (1) ved hjælp af et løftewire-system (22), hvilket løftewiresystem (22) som minimum omfatter: - løfteværktøj (23) på muddersugningsfartøjet (1) til opvikling og afvikling af wiren på en rulle, - styreværktøj (32) på en galgekran (29) på muddersugningsfartøjet (1) til styring af wiren, - stigeophængsværktøj (42) på muddersugningsstigen (3) til ophængning af mudder-sugningsstigen (3) i mindst én wire, og - en eller flere wirer (55) i hvilken fartøjets muddersugningsstige (3) hænger, og at mindst en wiresektion (49,52) er viklet delvist om løfteværktøjet (23) og ført over styre-værktøjet (32) på galgekranen (29), til stigeophængsværktøjet (42) på muddersugningsstigen (3), kendetegnet ved at løftewiresystemet (22) er forsynet med tiltag til vibrationsreducering (56) der reducerer overførslen af vibrationer frembragt af skære-hovedet (12) til muddersugningsfartøjet (1) gennem løftewiresystemet (22), og hvor styreværktøjet (32) er monteret på galgekranen (29) ved hjælp af et eller flere fodstyk-ker (57,61), fordeles tiltagene til vibrationsreducering (56) delvist mellem de berørte fodstykker (57,61) og galgekranen (29), eller mellem muddersugningsstigen (3) og stigeophængsværktøjet (42).A mud suction vessel (1) comprising a mud suction ladder (3), one leg (7) of which is mounted so that it can rotate on the mud suction vessel (1), and another leg (11) equipped with a cutting head (12) ), and wherein this cutting head (12) can be moved up and down with respect to the mud suction vessel (1) by means of a lifting wire system (22), the lifting wire system (22) comprising at least: - lifting tool (23) on the mud suction vessel (1) ) for winding and unwinding the wire on a roller, - steering tool (32) on a hanger crane (29) on the mud suction vessel (1) for controlling the wire, - ladder suspension tool (42) on the mud suction ladder (3) for hanging the mud suction ladder (3) ) in at least one wire, and - one or more wires (55) in which the mud suction ladder (3) of the vessel hangs, and that at least one wire section (49,52) is partially wound around the lifting tool (23) and passed over the guide tool (32 ) on the hanger crane (29), to the ladder suspension tool (42) on the mud suction ladder (3), characterized in that the lifting wire system (22) is provided with vibration reduction measures (56) which reduce the transfer of vibrations produced by the cutting head (12) to the mud suction vessel (1) through the lifting wire system (22). ) is mounted on the hanger crane (29) by one or more footings (57,61), the vibration reduction measures (56) are partially distributed between the affected footings (57.61) and the hanger crane (29), or between the mud suction ladder ( 3) and the ladder mounting tool (42). 2. Muddersugningsfartøj (1) ifølge krav 1, kendetegnet ved at løfteværktøjet (23) omfatter flere spil (25,26) på muddersugningsfartøjet (1), dvs. et styrbordsspil (25) og et bagbordsspil (26), at styreværktøjet (32) omfatter flere (33,34) kraner på galgekranen (29) på muddersugningsfartøjet (1), dvs. et styrbords kransæt (33) og et bagbords kransæt (34), at ophængningsværktøjet (42) på muddersugningsstigen (3) omfatter flere sæt (43,44) stigeophængningsværktøj, dvs. et sæt stigeophængningsværktøj (43) på styrbords side og et sæt stigeophængningsværktøj (44) på bagbordssiden, at et styrbords wireafsnit (49) er viklet om et ben (50) på styrbords wireafsnit (49) på styrbords spil (25), og at den resterende del (51) af styrbords wireafsnit (49), føres over styrbords sæt (33) af kraner og føres til styrbords (43) stigeophængsværktøj; og at et bagbords wireafsnit (52) er viklet om et ben (53) på bagbords wireafsnit (52) på bag- bordsspillet (26), og at den resterende del (54) at bagbords wireafsnit (52), føres over bagbords sæt (34) af kraner på galgekranen (29) og føres til bagbords sæt (44) af sti-geophængsværktøjet.The mud suction vessel (1) according to claim 1, characterized in that the lifting tool (23) comprises several winches (25, 26) on the mud suction vessel (1), i. a starboard game (25) and a backboard game (26), that the steering tool (32) comprises a plurality of (33,34) cranes on the hanger crane (29) on the mud suction vessel (1), i. a starboard wreath set (33) and a backboard wreath set (34), said suspension tool (42) on the mud suction ladder (3) comprises several sets (43,44) of ladder suspension tools, i. a set of ladder suspension tools (43) on the starboard side and a set of ladder suspension tools (44) on the side of the starboard, that a starboard wire section (49) is wound around a leg (50) on starboard wire section (49) on starboard play (25) the remaining portion (51) of starboard wire section (49), is passed over starboard set (33) of cranes and fed to starboard (43) ladder suspension tool; and that a backboard wire section (52) is wound about a leg (53) on the backboard wire section (52) of the backboard play (26), and that the remaining part (54) of the backboard wire section (52) is passed over the backboard set (52). 34) of cranes on the hanger crane (29) and fed to the backboard set (44) of the path suspension tool. 3. Muddersugningsfartøj (1) ifølge krav 2, kendetegnet ved at styrbords (43) sæt af stigeophængsværktøj omfattende et sæt styrbords stigeophængskraner (45-47), at bagbords stigeophængsværktøj (44) omfatter et sæt bagbords stigeophængsværktøj (45-47) og at styrbords wireafsnit (49) og bagbords wireafsnit (52) er sektioner bestående af en enkelt wire (55), som føres fra styrbords spil (25) til bagbords spil (26) over galgekranen og stigeophængskranen.A mud suction vessel (1) according to claim 2, characterized in that the starboard (43) set of ladder suspension tools comprising a set of starboard ladder taps (45-47), that the rearward ladder suspension tool (44) comprises a set of the rearward ladder suspension tool (45-47) and wire section (49) and backboard wire section (52) are sections consisting of a single wire (55) which is passed from starboard winch (25) to backboard winch (26) over the hanger crane and ladder suspension crane. 4. Muddersugningsfartøj (1) ifølge krav 3, kendetegnet ved at styreværktøjet (32) på galgekranen (29) desuden er forsynet med et mellemstående sæt (35) kraner, placeret centralt mellem styrbords (33) kraner og bagbords (34) kraner, og at wiren (55) går fra det ene sæt af styrbords stiger, over det mellemstående sæt (35) kraner, til et sæt bagbords stiger.The mud suction vessel (1) according to claim 3, characterized in that the steering tool (32) on the hanger crane (29) is additionally provided with an intermediate set (35) cranes, located centrally between starboard (33) cranes and backboard (34) cranes, and the wire (55) goes from one set of starboard ladders, over the intermediate set (35) of cranes, to one set of backwards ladders. 5. Muddersugningsfartøj (1) ifølge krav 4, kendetegnet ved at styrbords sæt (33) kraner og bagbords sæt (34) kraner, hver består af tre kraner, der danner tre par (36-38) symmetrisk monterede kraner, og at også styrbords sæt (43) af stigeophængskraner og bagbords sæt (44) af stigeophængskraner, består af tre stigekraner der danner tre par (45-47) symmetrisk monterede stigeophængskraner.Mud suction vessel (1) according to claim 4, characterized in that the starboard set (33) cranes and the backboard set (34) cranes, each consisting of three cranes forming three pairs (36-38) symmetrically mounted cranes, and also starboard set (43) of ladder suspension cranes and backboard set (44) of ladder suspension cranes, consists of three ladder cranes forming three pairs (45-47) of symmetrically mounted ladder suspension cranes. 6. Muddersugningsfartøj (1) ifølge krav 5, kendetegnet ved at kransættet (33,34) omfatter to par (37,38) aksialt orienterede kraner og stigeophængsværktøjerne (42) omfatter tre par (45-47) aksialt orienterede stigeophængsværktøj, hvor de førnævnte aksialt orienterede kraner hovedsageligt er skiveformet med en skiveflade parallelt til mud-dermaskinens aksiale retning (AA') og hvis rotationsakse (40,48) er vinkelret på den nævnte aksiale retning (AA').A mud suction vessel (1) according to claim 5, characterized in that the crane set (33,34) comprises two pairs (37,38) of axially oriented cranes and the ladder suspension tools (42) comprise three pairs (45-47) of axially oriented ladder suspension tools, wherein the aforementioned axially oriented cranes are generally disc shaped with a disc surface parallel to the axial direction (AA ') of the dredger and whose axis of rotation (40, 48) is perpendicular to said axial direction (AA'). 7. Muddersugningsfartøjer (1) ifølge et af kravene 4 til 6, kendetegnet ved at det mellemstående sæt (35) kraner består af et sæt tværgående kraner, hvor disse kraner hovedsageligt er skiveformede med en skiveflade vinkelret på muddermaskinens aksiale retning (AA') og med rotationsaksen (41) parallelt med længderetningen (AA').Mud suction vessels (1) according to one of claims 4 to 6, characterized in that the intermediate set (35) of cranes consists of a set of transverse cranes, these cranes being mainly disc-shaped with a disc surface perpendicular to the axial direction (AA ') of the mud machine and with the axis of rotation (41) parallel to the longitudinal direction (AA '). 8. Muddersugningsfartøjer (1) ifølge et af de foregående krav, kendetegnet ved at tiltag til vibrationsreducering (56) omfatter vibrationsdæmpende midler (60,65).Mud suction vessels (1) according to one of the preceding claims, characterized in that vibration reduction measures (56) comprise vibration dampening means (60,65). 9. Muddersugningsfartøj (1) ifølge foregående krav, kendetegnet ved at tiltag til vibrationsreducering (56) omfatter vibrationsisolerende midler.Mud suction vessel (1) according to the preceding claim, characterized in that vibration reduction measures (56) comprise vibration isolating means. 10. Muddersugningsfartøjer (1) ifølge de foregående krav, kendetegnet ved at tiltage-ne til vibrationsreducering (56) omfatter en eller flere af følgende vibrationsdæmpende elementer: - et elastisk element, - et gummi element. - en fjed er, - en pneumatisk dæmper, - en hydraulisk dæmper, - en støddæmper, - en stødpude, og/eller - en elektrisk kompensator.Mud suction vessels (1) according to the preceding claims, characterized in that the vibration reduction measures (56) comprise one or more of the following vibration damping elements: - an elastic element, - a rubber element. - a spring is, - a pneumatic damper, - a hydraulic damper, - a shock absorber, - a cushion, and / or - an electric compensator. 11. Muddersugningsfartøjer (1) ifølge de foregående krav, kendetegnet ved at styre-værktøjet (32) til galgekranen (29) omfatter flere skiver (36), der alle er monteret på galgekranen (29) ved hjælp af fodstykker (57) der er udformet som en fod (57) på hver enkelt skive (36), foden (57) på hver enkelt skive (36) monteres på en separat vibrati-onsdæmper (56).Mud suction vessels (1) according to the preceding claims, characterized in that the guide tool (32) for the hanger crane (29) comprises a plurality of washers (36), all of which are mounted on the hanger crane (29) by means of foot pieces (57) which are formed as a foot (57) on each disc (36), the foot (57) on each disc (36) is mounted on a separate vibration damper (56). 12. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at galgekranen (29) er forsynet med en bærende konstruktion (30), på hvilken et fodstykke (61) i form af et monteringsfodstykke (61) er påsat, omfatter galgekranens styreværktøj (32) flere kransæt (35,37,38) der hver er monteret direkte på monteringsfodstykket (61), og tiltagene til vibrationsreducering (56) er som minimum delvist anbragt mellem den bærende konstruktion (30) på galgekranen (29), og monteringsfodstykket (61) til galgekranen (29).A mud suction vessel (1) according to one of the preceding claims, characterized in that the gallows crane (29) is provided with a supporting structure (30) on which a foot piece (61) in the form of a mounting foot piece (61) is mounted, comprising the galvanized crane. control tool (32) a plurality of wreath sets (35,37,38) each mounted directly on the mounting foot piece (61), and the vibration reduction measures (56) are at least partially disposed between the supporting structure (30) on the hanger crane (29), and the mounting foot piece (61) for the hanger crane (29). 13. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at tiltagene til vibrationsreducering (56) er egnet til væsentlig reducering af overførslen af vibrationer fra skærehovedet (12) til muddersugningsfartøjet (1) der har en frekvens mellem 0,5 Hz og 10 Hz.Mud suction vessel (1) according to one of the preceding claims, characterized in that the vibration reduction measures (56) are suitable for substantially reducing the transfer of vibration from the cutting head (12) to the mud suction vessel (1) having a frequency between 0.5 Hz and 10 Hz. 14. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at i en forenklet model af ophængningen af muddersugningsstigen (3) på muddermaskinen (1) ved hjælp af en masse-fjeder-dæmper model, er tiltagene til vibrationsreducering (56) i løftewiresystemet (22) af en sådan art at masse-fjeder-dæmper modellen har en dæmpningsrate på mindst 0,5.Mud suction vessel (1) according to one of the preceding claims, characterized in that, in a simplified model of the suspension of the mud suction ladder (3) on the mud machine (1) by means of a mass-spring damper model, the vibration reduction measures (56) are in the lifting wire system (22) of such a nature that the mass-spring-damper model has a damping rate of at least 0.5. 15. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at i en realistisk forenklet model af ophængningen af muddersugningsstigen (3) på muddermaskinen (1) ved hjælp af en masse-fjeder-dæmper model, er tiltagene til vibrationsreducering (56) i løftewiresystemet (22) af en sådan art at masse-fjeder-dæmper modellen har en udæmpet egenfrekvens (Fn) på højst 15 Hz.Mud suction vessel (1) according to one of the preceding claims, characterized in that in a realistic simplified model of the suspension of the mud suction ladder (3) on the mud machine (1) by means of a mass-spring-damper model, the vibration reduction measures (56 ) in the lifting wire system (22) of such a nature that the mass-spring-damper model has an attenuated intrinsic frequency (Fn) of not more than 15 Hz. 16. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at tiltagene til vibrationsreducering (56) er forsynet med værktøj til måling af vibrationsfre-kvens og vibrationsamplitude til måling af vibrationsamplituden der dannes af skærehovedet (12) som en del af vibrationsfrekvensen, og/eller til måling af frekvensgengi-velsen på vibrationsreduceringstiltagene (56) på de vibrationer, der dannes af skærehovedet (12).Mud suction vessel (1) according to one of the preceding claims, characterized in that the vibration reduction measures (56) are provided with tools for measuring vibration frequency and vibration amplitude for measuring the vibration amplitude formed by the cutting head (12) as part of the vibration frequency , and / or for measuring the frequency response of the vibration reduction measures (56) on the vibrations generated by the cutting head (12). 17. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at tiltagene til vibrationsreducering (56) er forsynet med tuningsmidler til modificering af frekvensgengivelsen på vibrationsreduceringstiltagene (56).Mud suction vessel (1) according to one of the preceding claims, characterized in that the vibration reduction measures (56) are provided with tuning means for modifying the frequency reproduction of the vibration reduction measures (56). 18. Muddersugningsfartøj (1) ifølge krav 17, kendetegnet ved at tuningsmidlerne omfatter mulighed for at modificere dæmpningsegenskaberne for vibrationsreduceringen (56).Mud suction vessel (1) according to claim 17, characterized in that the tuning means comprise the possibility of modifying the damping characteristics of the vibration reduction (56). 19. Muddersugningsfartøj (1) ifølge krav 17 eller 18, kendetegnet ved at tuningsmidlerne omfatter mulighed for at modificere stivheden i vibrationsreduceringen (56).Mud suction vessel (1) according to claim 17 or 18, characterized in that the tuning means comprise the possibility of modifying the stiffness of the vibration reduction (56). 20. Muddersugningsfartøj (1) ifølge kravene 17 til 19, kendetegnet ved at tuningsmid-lerne omfatter mulighed for at modificere vægten af bestemte elementer i løftewiresy-stemet (22).Mud suction vessel (1) according to claims 17 to 19, characterized in that the tuning means comprise the possibility of modifying the weight of certain elements of the lifting wire system (22). 21. Muddersugningsfartøj (1) ifølge et af de foregående krav, kendetegnet ved at til-tagene til vibrationsreducering (56) omfatter en aktuator til dynamisk kompensation for vibrationer frembragt af skærehovedet (12).Mud suction vessel (1) according to one of the preceding claims, characterized in that the vibration reduction measures (56) comprise an dynamic compensation actuator for vibration generated by the cutting head (12). 22. Metode til reducering af overførsel af vibrationer til et muddersugningsfartøj (1), der dannes af et skærehoved (12) der er anbragt på en muddersugningsstige (3) på mud-dersugningsfartøjet (1). Muddersugningsstigen (3) hvis ene ben (7) er monteret således, at det kan rotere på muddersugningsfartøjet (1), og et andet ben (11) der er udsty-ret med skærehovedet (12), dette andet ben (11) kan bevæges op og ned i forhold til muddersugningsfartøjet (1) ved hjælp af et løftewiresystem (22), hvilket løftewiresy-stem (22) som minimum omfatter: - løfteværktøj (23) på muddersugningsfartøjet (1) til opvikling og afvikling af wiren på en rulle, - styreværktøj (32) på en galgekran (29) på muddersugningsfartøjet (1) til styring af wiren, - stigeophængsværktøj (42) på muddersugningsstigen (3) til ophængning af muddersugningsstigen (3) i mindst én wire, og - en eller flere wirer (55) i hvilken fartøjets muddersugningsstige (3) hænger, at mindst en wiresektion (49,52) er viklet delvist om løfteværktøjet (23) og ført over styreværktø-jet (32) på galgekranen (29), til ophængsværktøjet (42) på muddersugningsstigen (3), kendetegnet ved at metoden omfatter trin til at udstyre løftewiresystem et (22) med tiltag til vibrationsreducering (56) og hvor styreværktøjet (32) er monteret på galgekranen (29) ved hjælp af et eller flere fodstykker (57,61), fordeles tiltagene til vibrationsreducering (56) delvist mellem de berørte fodstykker (57,61) og galgekranen (29), eller mellem muddersugningsstigen (3) og stigeophængsværktøjet (42).A method of reducing the transmission of vibration to a dredging vessel (1) formed by a cutting head (12) disposed on a dredging ladder (3) on the dredging vessel (1). The mud suction ladder (3), one leg (7) of which is mounted so that it can rotate on the mud suction vessel (1) and another leg (11) equipped with the cutting head (12), this other leg (11) can be moved up and down relative to the mud suction vessel (1) by means of a lifting wire system (22), the lifting wire system (22) comprising at least: - lifting tool (23) on the mud suction vessel (1) for winding and unwinding the wire on a roller, - steering tool (32) on a hanger crane (29) on the mud suction vessel (1) for controlling the wire, - ladder suspension tool (42) on the mud suction ladder (3) for hanging the mud suction ladder (3) in at least one wire, and - one or more wires ( 55) in which the mud suction ladder (3) of the vessel hangs, that at least one wire section (49,52) is partially wound about the lifting tool (23) and passed over the guide tool (32) on the hanger crane (29) to the suspension tool (42) on the mud suction ladder (3), characterized in that the method comprises tri n to equip the lifting wire system one (22) with vibration reduction measures (56) and wherein the control tool (32) is mounted on the hanger crane (29) by one or more footings (57,61), the vibration reduction measures (56) are partially distributed between the affected foot pieces (57,61) and the hanger crane (29), or between the mud suction ladder (3) and the ladder suspension tool (42). 23. Metode ifølge krav 22, kendetegnet ved at tiltagene til vibrationsreducering (56) af den passive type understøtter styreværktøjet (32) på galgekranen (29).Method according to claim 22, characterized in that the passive-type vibration reduction measures (56) support the control tool (32) on the hanger crane (29). 24. Metode ifølge krav 22 eller 23, kendetegnet ved at tiltagene til vibrationsreduce-ring (56) af den aktive type aktivt kompenserer vibrationsbevægelser i løftewiresysternet (22).Method according to claim 22 or 23, characterized in that the vibration reduction measures (56) of the active type actively compensate vibration movements in the lifting wire system (22).
DK12000862.8T 2012-02-09 2012-02-09 Method of reducing the transfer of vibration to a mud suction vessel produced by a cutting head, and mud suction vessel to which such a method is used DK2626473T3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12000862.8A EP2626473B1 (en) 2012-02-09 2012-02-09 Method for reducing the transfer of vibrations to a cutter suction dredger generated by a cutter head and cutter suction dredger on which such method is applied

Publications (1)

Publication Number Publication Date
DK2626473T3 true DK2626473T3 (en) 2017-03-06

Family

ID=45654940

Family Applications (1)

Application Number Title Priority Date Filing Date
DK12000862.8T DK2626473T3 (en) 2012-02-09 2012-02-09 Method of reducing the transfer of vibration to a mud suction vessel produced by a cutting head, and mud suction vessel to which such a method is used

Country Status (11)

Country Link
EP (1) EP2626473B1 (en)
CY (1) CY1118770T1 (en)
DK (1) DK2626473T3 (en)
ES (1) ES2614984T3 (en)
HR (1) HRP20170177T1 (en)
HU (1) HUE033194T2 (en)
LT (1) LT2626473T (en)
PL (1) PL2626473T3 (en)
PT (1) PT2626473T (en)
RS (1) RS55622B1 (en)
SI (1) SI2626473T1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107489180A (en) * 2017-09-27 2017-12-19 中交上海航道局有限公司 Cutter suction dredger and for cutter suction dredger can rubble reamer device
GB202007660D0 (en) 2019-11-18 2020-07-08 Harwich Haven Authority Dredging method and apparatus
CN111677034A (en) * 2020-06-21 2020-09-18 尼旭东 Hydraulic engineering is with adjustable desilting equipment
CN111847331B (en) * 2020-07-31 2022-04-29 云南量坤售电服务有限公司 High-efficiency power equipment maintenance device and use method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1107675A (en) * 1954-06-24 1956-01-04 Bretagne Atel Chantiers Connection device to a dredge with a rigid elindee
US3224121A (en) * 1963-01-29 1965-12-21 Rick A Denning Apparatus for optimizing dredge production
NL6712911A (en) * 1967-09-21 1969-03-25
US3536204A (en) * 1968-12-06 1970-10-27 Morgan Eng Anchoring device for gantry cranes
NL171609C (en) * 1972-10-03 1983-04-18 Cornelis Baars CUTTING WHEEL SUCTION WITH TRAILED CUTTING WHEEL.
FR2292897A1 (en) * 1974-11-28 1976-06-25 Poussage Voie Navigable Cie Gl Spring damper between parts of ship - has coil spring and hydraulic shock absorber in parallel
US4200054A (en) * 1976-12-10 1980-04-29 Elliston Thomas L Stabilized hoist rig for deep ocean mining vessel
DE2841203A1 (en) * 1978-09-22 1980-04-03 Orenstein & Koppel Ag CONVEYING DEVICE FOR CONVEYING SLUDGE, ESPECIALLY ORE SLUDGE, FROM GREAT DEPTHS
NL1011629C2 (en) * 1999-03-22 2000-09-27 Marine Structure Consul Method for positioning an excavating tool with respect to a vessel as well as a vessel with excavating tools.
KR101245573B1 (en) * 2009-12-22 2013-03-20 부산대학교 산학협력단 Damping joint apparatus for mobile harbor lifting system

Also Published As

Publication number Publication date
PT2626473T (en) 2017-02-03
SI2626473T1 (en) 2017-04-26
CY1118770T1 (en) 2017-07-12
HUE033194T2 (en) 2017-11-28
PL2626473T3 (en) 2017-06-30
RS55622B1 (en) 2017-06-30
EP2626473B1 (en) 2016-12-07
ES2614984T3 (en) 2017-06-02
LT2626473T (en) 2017-02-10
EP2626473A1 (en) 2013-08-14
HRP20170177T1 (en) 2017-06-02

Similar Documents

Publication Publication Date Title
DK2626473T3 (en) Method of reducing the transfer of vibration to a mud suction vessel produced by a cutting head, and mud suction vessel to which such a method is used
US10150653B2 (en) Method for reducing dynamic loads of cranes
KR101169011B1 (en) Sway mitigation in an elevator system
DK2896589T3 (en) Method and apparatus.
CN111132922B (en) Crane with a movable crane
GB2517309A (en) Riser stabilisation
KR20120035432A (en) Heave compensator
KR102337106B1 (en) drilling machine
JP2022528998A (en) Ships and methods for installing piles adapted to support offshore wind turbines
KR20100090991A (en) Semi-submersible structures with a heave damper
AU2010287050B2 (en) Improved hoisting assembly
CN111108059A (en) Crane with a movable crane
JP4874672B2 (en) Elevator equipment
KR101301992B1 (en) Cable delivery device for offshore drilling platform
JP6557803B2 (en) Floating type underwater structure for underwater work
JP5005068B2 (en) Quay crane and control method thereof
JP2013221340A (en) Underwater construction device
KR101359521B1 (en) Apparatus for Fixing Drilling Pipe and Vessel having the Same
JP6772759B2 (en) Telescopic boom type work machine
JP2005320146A (en) Crab trolly type container crane
KR20130089536A (en) Apparatus for supporting top side module of vessel and vessel
EP2514878B1 (en) Jack-up offshore platform and method for reducing lateral oscillating movements thereof
KR101587478B1 (en) Heave motion damping device for marine floating body
KR20170039406A (en) Hoisting Apparatus and drilling marine structure having the same
JP2000088042A (en) Oscillation reduction device