DK2565658T3 - Fejldetektion baseret på strømsignaturanalyse af en generator - Google Patents

Fejldetektion baseret på strømsignaturanalyse af en generator Download PDF

Info

Publication number
DK2565658T3
DK2565658T3 DK12180667.3T DK12180667T DK2565658T3 DK 2565658 T3 DK2565658 T3 DK 2565658T3 DK 12180667 T DK12180667 T DK 12180667T DK 2565658 T3 DK2565658 T3 DK 2565658T3
Authority
DK
Denmark
Prior art keywords
electrical signals
generator
fault
detecting
components
Prior art date
Application number
DK12180667.3T
Other languages
English (en)
Inventor
Prabhakar Neti
Manoj Ramprasad Shah
Karim Younsi
Mayank Tiwari
Pinjia Zhang
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Application granted granted Critical
Publication of DK2565658T3 publication Critical patent/DK2565658T3/da

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Claims (11)

1. Fremgangsmåde (1000) til at detektere mekaniske fejl i en generator (150), hvilken fremgangsmåde omfatter: at erhverve elektriske signaler, som repræsenterer en driftstilstand af generatoren (150); at normalisere de elektriske signaler for at ekstrahere spektralinformation ved: at eliminere symmetriske komponenter fra et strømspektrum ved at kvadrere en øjeblikkelig værdi af et strømsignal af hver af en flerhed af faser og at summere de kvadrerede værdier; og at ekstrahere asymmetriske komponenter, som forekommer i strømspektret under unormale driftstilstande; og at detektere en fejl baseret på analysen af spektralinformationen.
2. Fremgangsmåden (1000) ifølge krav 1, hvor at detektere en fejl baseret på analysen af spektralinformationen omfatter at detektere en leje (120) -fejl eller en gearkasse (140) -fejl.
3. Fremgangsmåden (1000) ifølge et hvilket som helst af de foregående krav, hvor at erhverve elektriske signaler, som repræsenterer en driftstilstand af generatoren (150) omfatter at erhverve elektriske signaler for hver fase af flere faser af generatoren (150).
4. Fremgangsmåden (1000) ifølge et hvilket som helst af de foregående krav, hvor de elektriske signaler, som repræsenterer en driftstilstand af generatoren (150) omfatter strøm- og spændingssignaler.
5. Fremgangsmåden (1000) ifølge et hvilket som helst af de foregående krav, hvor strømspektret normaliseres baseret på mindst én af Fast Fourier-transformation, tidsfrekvensanalyse, og multimodal opløsningsanalyse.
6. Fremgangsmåden (1000) ifølge et hvilket som helst af de foregående krav, hvor strømspektret omfatter symmetriske komponenter, der udgør et generatorstrømspektrum underen normal driftstilstand af generatoren.
7. Fremgangsmåden (1000) ifølge et hvilket som helst af de foregående krav, yderligere omfattende: at erhverve et andet sæt af elektriske signaler, som repræsenterer en ikke-fejldriftstilstand af generatoren (150); at transformere de elektriske signaler, som repræsenterer driftstilstanden af generatoren, til hybride elektriske signaler under anvendelse af det andet sæt af elektriske signaler; at normalisere de hybride elektriske signaler for at ekstrahere spektralinformation; og at detektere en fejl baseret på analysen af spektralinformationen.
8. Fremgangsmåden (1000) ifølge krav 7, hvor at erhverve et andet sæt af elektriske signaler, som repræsentereren ikke-fejld riftstilstand af generatoren, omfatter at erhverve et andet sæt af elektriske signaler for hver fase af flere faser af generatoren.
9. Fremgangsmåden (1000) ifølge krav 7 eller krav 8, hvor at normalisere de hybride elektriske signaler for at ekstrahere spektralinformation omfatter: at dynamisk eliminere symmetriske komponenter fra de hybride elektriske signaler; at sammenligne en størrelse og fase af de asymmetriske komponenter i de hybride elektriske signaler med en størrelse og fase af det andet sæt af elektriske signaler; og at detektere en fejl, når de asymmetriske komponenter i de hybride elektriske signaler afviger fra størrelsen og fasen af det andet sæt af elektriske signaler.
10. Fremgangsmåden (1000) ifølge krav 9, hvor at detektere en fejl omfatter at detektere en fejl i rotoren (130) af generatoren (150).
11. System (100) til at detektere en mekanisk fejl afen generator (150), hvilket ; system omfatter: en eller flere sensorer (160) til at erhverve elektriske signaler, som repræsentereren driftstilstand af generatoren (150); en kontroller (170) til at normalisere de elektriske signaler for at ekstrahere spektralinformation, hvor nævnte kontroller (170) er i konfigureret til at implementere fremgangsmåden (100) ifølge et hvilket som helst af de foregående krav; og et fejldetektionenhedsmodul (190) til at detektere en eller flere fejl i generatoren (150) baseret på analysen af den ekstraherede spektralinformation.
DK12180667.3T 2011-08-29 2012-08-16 Fejldetektion baseret på strømsignaturanalyse af en generator DK2565658T3 (da)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/219,753 US8994359B2 (en) 2011-08-29 2011-08-29 Fault detection based on current signature analysis for a generator

Publications (1)

Publication Number Publication Date
DK2565658T3 true DK2565658T3 (da) 2018-11-26

Family

ID=47115208

Family Applications (1)

Application Number Title Priority Date Filing Date
DK12180667.3T DK2565658T3 (da) 2011-08-29 2012-08-16 Fejldetektion baseret på strømsignaturanalyse af en generator

Country Status (3)

Country Link
US (1) US8994359B2 (da)
EP (1) EP2565658B1 (da)
DK (1) DK2565658T3 (da)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618037B2 (en) 2008-08-01 2017-04-11 Honeywell International Inc. Apparatus and method for identifying health indicators for rolling element bearings
US8958995B2 (en) 2009-04-02 2015-02-17 Honeywell International Inc. System and method for monitoring rotating and reciprocating machinery
US8963733B2 (en) * 2012-02-13 2015-02-24 Honeywell International Inc. System and method for blind fault detection for rotating machinery
US10591519B2 (en) 2012-05-29 2020-03-17 Nutech Ventures Detecting faults in wind turbines
US10359473B2 (en) * 2012-05-29 2019-07-23 Nutech Ventures Detecting faults in turbine generators
US9645046B2 (en) * 2012-12-17 2017-05-09 General Electric Company Fault detection system and associated method
US20140303913A1 (en) * 2013-04-08 2014-10-09 General Electric Company Broken rotor bar detection based on current signature analysis of an electric machine
CN103675589B (zh) * 2013-11-19 2016-05-18 中国矿业大学 开关磁阻电机功率变换器短路故障母线电流诊断方法
CN103808509A (zh) * 2014-02-19 2014-05-21 华北电力大学(保定) 一种基于人工智能算法的风机齿轮箱故障诊断方法
US10317467B2 (en) * 2014-05-19 2019-06-11 Schweitzer Engineering Laboratories, Inc. Synchronous machine monitoring and determination of a loss-of-field event using time stamped electrical and mechanical data
CN107076639B (zh) * 2014-09-05 2019-09-24 Abb瑞士股份有限公司 监测涡轮发电机中的扭转振荡
GB201421135D0 (en) 2014-11-28 2015-01-14 Rolls Royce Plc Assessment method
US9618583B2 (en) * 2015-03-10 2017-04-11 Mitsubishi Electric Research Laboratories, Inc Fault detection in induction motors based on current signature analysis
US9702938B2 (en) * 2015-03-18 2017-07-11 Caterpillar Inc. Method and apparatus for detecting phase imbalance of an electrical component in a machine
US10429419B2 (en) * 2015-03-26 2019-10-01 The University Of Akron System and method for iterative condition monitoring and fault diagnosis of electric machines
ES2613902B1 (es) * 2015-11-26 2018-03-14 Gamesa Innovation & Technology, S.L. Método y sistemas de monitorización en tiempo real del estado del aislamiento de los devanados de generadores eólicos
CN105628383B (zh) * 2016-02-01 2017-02-22 东南大学 基于改进型lssvm迁移学习的轴承故障诊断方法和系统
US10273940B2 (en) 2016-05-12 2019-04-30 General Electric Company System and method for detecting pitch bearing damage in a wind turbine
JP6665062B2 (ja) * 2016-08-31 2020-03-13 Ntn株式会社 状態監視装置
US10928814B2 (en) 2017-02-24 2021-02-23 General Electric Technology Gmbh Autonomous procedure for monitoring and diagnostics of machine based on electrical signature analysis
US10852214B2 (en) 2017-05-19 2020-12-01 Nutech Ventures Detecting faults in wind turbines
US10495693B2 (en) * 2017-06-01 2019-12-03 General Electric Company Wind turbine fault detection using acoustic, vibration, and electrical signals
US10403116B2 (en) 2017-06-20 2019-09-03 General Electric Company Electrical signature analysis of electrical rotating machines
US10656051B2 (en) 2017-07-26 2020-05-19 Caterpillar Inc. System and method for detecting wear or failure of genset power system coupling
US11473564B2 (en) 2018-01-18 2022-10-18 General Electric Company System and method for monitoring a wind turbine pitch bearing
WO2019167086A1 (en) * 2018-03-01 2019-09-06 Aurobinda Routray A system for assessment of multiple faults in induction motors
CN109061474A (zh) 2018-10-15 2018-12-21 株洲中车时代电气股份有限公司 一种电机轴承故障诊断装置
GB2589761B (en) 2019-01-08 2021-12-08 Panoramic Power Ltd A method for determining an alternate current motor fault in a non-variable frequency device based on current analysis
CN111819452A (zh) * 2019-02-02 2020-10-23 深圳市大疆创新科技有限公司 电机运行状态的获取方法和装置
US20220187809A1 (en) * 2019-03-26 2022-06-16 Jfe Steel Corporation Process state monitoring device and process state monitoring method
US11293403B2 (en) * 2019-04-09 2022-04-05 General Electric Company System and method for preventing catastrophic damage in drivetrain of a wind turbine
US11099101B2 (en) 2019-05-03 2021-08-24 Mitsubishi Electric Research Laboratories, Inc. Method for estimating bearing fault severity for induction motors
CN110779724B (zh) * 2019-11-20 2022-03-11 重庆邮电大学 一种基于频域组稀疏降噪的轴承故障诊断方法
CN110907170B (zh) * 2019-11-30 2021-03-16 华能如东八仙角海上风力发电有限责任公司 一种风电机组齿轮箱轴承温度状态监测与故障诊断方法
CN113125953B (zh) * 2020-01-15 2022-12-09 江苏龙源风电技术培训有限公司 一种风力发电机组故障判断方法及其故障判断设备
EP4107391A4 (en) * 2020-02-18 2024-03-27 Margaret Paietta METHOD AND SYSTEM FOR MONITORING THE CONDITION OF WIND TURBINE COMPONENTS
CN111456915A (zh) * 2020-03-30 2020-07-28 上海电气风电集团股份有限公司 风机机舱内部部件的故障诊断装置及方法
US11639966B2 (en) 2021-03-15 2023-05-02 General Electric Technology Gmbh Enhanced electrical signature analysis for fault detection
US11539317B2 (en) * 2021-04-05 2022-12-27 General Electric Renovables Espana, S.L. System and method for detecting degradation in wind turbine generator bearings
US11733301B2 (en) 2021-05-13 2023-08-22 General Electric Technology Gmbh Systems and methods for providing voltage-less electrical signature analysis for fault protection
CN114415026B (zh) * 2022-03-28 2022-06-24 爱科赛智能科技(浙江)有限公司 一种基于电流和相位识别的电机故障诊断系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130634A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Method and device for monitoring oscillation of rotary machine
ATE352057T1 (de) 2003-11-14 2007-02-15 Gamesa Eolica S A Soc Uniperso Überwachungs- und datenverarbeitungseinheit für windräder und system für eine vorbeugende wartung für windräderanlagen
US7912659B2 (en) 2004-06-28 2011-03-22 General Electric Company System and method for monitoring the condition of a drive train
EP2072975A1 (en) 2007-12-19 2009-06-24 Siemens Aktiengesellschaft Method and apparatus for vibration-based automatic condition monitoring of a wind turbine
GB0807775D0 (en) 2008-04-29 2008-06-04 Romax Technology Ltd Methods for model-based diagnosis of gearbox
US7941281B2 (en) * 2008-12-22 2011-05-10 General Electric Company System and method for rotor blade health monitoring
US8451134B2 (en) * 2009-07-24 2013-05-28 Honeywell International Inc. Wind turbine generator fault diagnostic and prognostic device and method

Also Published As

Publication number Publication date
EP2565658A1 (en) 2013-03-06
US8994359B2 (en) 2015-03-31
US20130049733A1 (en) 2013-02-28
CN103033745A (zh) 2013-04-10
EP2565658B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
DK2565658T3 (da) Fejldetektion baseret på strømsignaturanalyse af en generator
US10267860B2 (en) Fault detection in induction machines
EP3068040A1 (en) Fault detection and diagnosis in an induction motor
EP2790028B1 (en) Broken rotor bar detection based on current signature analysis of an electric machine
JP5733913B2 (ja) 回転機械系の異常診断方法
Kim et al. Sensorless fault diagnosis of induction motors
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
EP2743670A1 (en) Fault detection system and associated method
JP6017649B2 (ja) 回転機械系の異常診断方法
Gong et al. Bearing fault detection for direct-drive wind turbines via stator current spectrum analysis
Corne et al. Comparing MCSA with vibration analysis in order to detect bearing faults—A case study
Yazidi et al. Rotor inter-turn short circuit fault detection in wound rotor induction machines
Haddad et al. Outer race bearing fault detection in induction machines using stator current signals
Tian et al. A review of fault diagnosis for traction induction motor
Mehala et al. Condition monitoring methods, failure identification and analysis for Induction machines
Amirat et al. Performance analysis of an EEMD-based Hilbert Huang transform as a bearing failure detector in wind turbines
Obeid et al. Stator current based indicators for bearing fault detection in synchronous machine by statistical frequency selection
Saidi et al. Stator current bi-spectrum patterns for induction machines multiple-faults detection
Alimardani et al. Mixed eccentricity fault detection for induction motors based on time synchronous averaging of vibration signals
Hussein et al. 3-phase induction motor bearing fault detection and isolation using MCSA technique based on neural network algorithm
JP5828948B2 (ja) 回転機械系の異常診断方法
Treml et al. EMD and MCSA improved via Hilbert Transform analysis on asynchronous machines for broken bar detection using vibration analysis
Vedreño-Santos et al. Diagnosis of faults in induction generators under fluctuating load conditions through the instantaneous frequency of the fault components
Singh Condition Monitoring and Fault Diagnosis Techniques of Electric Machines
Ouachtouk et al. Wireless health monitoring system for rotor eccentricity faults detection in induction machine