DK2279265T3 - Cyanobakterie-saxitoxin-gencluster og detektering af cyanotoksiske organismer - Google Patents
Cyanobakterie-saxitoxin-gencluster og detektering af cyanotoksiske organismer Download PDFInfo
- Publication number
- DK2279265T3 DK2279265T3 DK08874034.5T DK08874034T DK2279265T3 DK 2279265 T3 DK2279265 T3 DK 2279265T3 DK 08874034 T DK08874034 T DK 08874034T DK 2279265 T3 DK2279265 T3 DK 2279265T3
- Authority
- DK
- Denmark
- Prior art keywords
- seq
- leu
- sequence
- ala
- val
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/001—Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1003—Transferases (2.) transferring one-carbon groups (2.1)
- C12N9/1018—Carboxy- and carbamoyl transferases (2.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/13—Transferases (2.) transferring sulfur containing groups (2.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/04—Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Food Science & Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
Description Technical Field [0001] The present invention relates to methods for the detection of cyanobacteria, dinoflagellates, and in particular, methods for the detection of cyanotoxic organisms. Kits for the detection of cyanobacteria, dinoflagellates, and cyanotoxic organisms are provided. The invention further relates to methods of screening for compounds that modulate the activity of polynucleotides and/or polypeptides of the saxitoxin and cylindrospermopsin biosynthetic pathways.
Background [0002] Cyanobacteria, also known as blue-green algae, are photosynthetic bacteria widespread in marine and freshwater environments. Of particular significance for water quality and human and animal health are those cyanobacteria which produce toxic compounds. Under eutrophic conditions cyanobacteria tend to form large blooms which drastically promote elevated toxin concentrations. Cyanobacterial blooms may flourish and expand in coastal waters, streams, lakes, and in drinking water and recreational reservoirs. The toxins they produce can pose a serious health risk for humans and animalsand this problem is internationally relevant since most toxic cyanobacteria have a global distribution.
[0003] A diverse range of cyanobacterial genera are well known for the formation of toxic blue-green algal blooms on water surfaces. Saxitoxin (SXT) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts on coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. PSP toxins are among the most potent and pervasive algal toxins and are considered a serious toxicological health-risk that may affect humans, animals and ecosystems worldwide. These toxins block voltagegated sodium and calcium channels, and prolong the gating of potassium channels preventing the transduction of neuronal signals. It has been estimated that more than 2000 human cases of PSP occur globally every year. Moreover, coastal blooms of producing microorganisms result in millions of dollars of economic damage due to PSP toxin contamination of seafood and the continuous requirement for costly biotoxin monitoring programs. Early warning systems to anticipate paralytic shellfish toxin (PST)-producing algal blooms, such as PCR and ELISA-based screening, are as yet unavailable due to the lack of data on the genetic basis of PST production.
[0004] SXT is a tricyclic perhydropurine alkaloid which can be substituted at various positions leading to more than 30 naturally occurring SXT analogues. Although SAT biosynthesis seems complex and unique, organisms from two kingdoms, including certain species of marine dinoflagellates and freshwater cyanobacteria, are capable of producing these toxins, apparently by the same biosynthetic route. In spite of considerable efforts none of the enzymes or genes involved in the biosynthesis and modification of SAT have been previously identified.
[0005] The occurrence of the cyanobacterial genus Cylindrospermopsishas been documented on all continents and therefore poses a significant public health threat on a global scale. The major toxin produced byCylindrospermopsis is cylindrospermopsin (CYR). Besides posing a threat to human health, cylindrospermopsin also causes significant economic losses for farmers due to the poisoning of livestock with cylindrospermopsin-contaminated drinking water. Cylindrospermopsin has hepatotoxic, general cytotoxic and neurotoxic effects and is a potential carcinogen. Its toxicity is due to the inhibition of glutathione and protein synthesis as well as inhibiting cytochrome P450. Six cyanobacterial species have so far been identified to produce cylindrospermopsin; Cylindrospermopsis raciborskii, Aphanizomenon ovalisporum, Aphanizomerzon flos-aquae, Umezakia natans, Rhaphdiopsis curvata and Anabaena bergii. Incidents of human poisoning with cylindrospermopsin have only been reported in sub-tropical Australia to date, however C. raciborskii and A. flos-aquae have recently been detected in areas with more temperate climates. The tendency of C. raciborskii to form dense blooms and the invasiveness of the producer organisms gives rise to global concerns for drinking water quality and necessitates the monitoring of drinking water reserves for the presence of cylindrospermopsin producers.
[0006] There is a need for rapid and accurate methods detecting cyanobacteria, and in particular those strains which are capable of producing cyanotoxins such as saxitoxin and cylindrospermopsin. Rapid and accurate methods for detecting cyanotoxic organisms are needed for assessing the potential health hazard of cyanobacterial blooms and for the implementation of effective water management strategies to minimize the effects of toxic bloom outbreaks.
Summary [0007] In a first aspect, there is provided an isolated polynucleotide comprising a sequence according
to SEQ ID NO: 1 or a variant sharing at least 80% identity with SEQ ID NO: 1 or fragment thereof wherein, the fragment comprises a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID
NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID
NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68.
[0008] In a second aspect, there is provided an isolated ribonucleic acid or an isolated complementary DNA encoded by a sequence according to the first aspect.
[0009] In a third aspect, there is provided an isolated saxitoxin biosynthetic pathway polypeptide encoded by the fragment of the first aspect and comprising an amino acid sequence sharing at least 80%
identity with a sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID
NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID
NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69.
[0010] In one embodiment, there is provided a probe or primer that hybridises specifically with one or more of: a polynucleotide according to the first aspect, a ribonucleic acid or complementary DNA according to the second aspect, or a polypeptide according the third aspect.
[0011] It is described a vector comprising a polynucleotide according to the first aspect, or a ribonucleic acid or complementary DNA according the second aspect. The vector may be an expression vector.
[0012] It is described a host cell comprising the vector.
[0013] In another embodiment, there is provided an isolated antibody capable of binding specifically to a polypeptide according to the third aspect.
[0014] In a fourth aspect, there is provided a method for detecting a cyanotoxic organism comprising the steps of obtaining a sample for use in the method and analyzing the sample for the presence of an iSATcluster gene present only in saxitoxin-producing organisms, wherein said analysing comprises detecting: (i) a polynucleotide comprising a sequence selected from the group consisting of: SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, and SEQ ID NO: 36; (ii) a variant polynucleotide having at least 80% sequence identity with a polynucleotide of (i); (iii) a ribonucleic acid or complementary DNA encoded by a sequence according to (i); (iv) a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 15, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, and SEQ ID NO: 37; or, (v) a variant polypeptide having at least 80% sequence identity with a polypeptide of (iv), and wherein said presence is indicative of cyanotoxic organisms in the sample.
[0015] In one embodiment of the fourth aspect, the cyanotoxic organism is a cyanobacteria or a dinoflagellate.
[0016] In one embodiment of the fourth aspect, analyzing the sample comprises amplification of DNA from the sample by polymerase chain reaction and detecting the amplified sequences. The polymerase chain reaction may utilise one or more primers comprising a sequence selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, and variants having at least 80% sequence identity with anyone of the said polynucleotide sequences.
[0017] In another embodiment of the fourth aspect, the method comprises further analyzing the sample for the presence of one or more of: (i) a polynucleotide comprising a sequence selected from the group consisting of: SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants having at least 80% sequence identity with anyone of the said polynucleotide sequences , (ii) a ribonucleic acid or complementary DNA encoded by a sequence according to (i), (iii) a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants having at least 80% sequence identity with anyone of the said polypeptide sequences.
[0018] The further analysis of the sample may comprise amplification of DNA from the sample by polymerase chain reaction. The polymerase chain reaction may utilise one or more primers comprising a sequence selected from the group consisting of SEQ ID NO: 111, SEQ ID NO: 112, or variants having at least 80% sequence identity with anyone of the said polynucleotide sequences.
[0019] It is described a method for the detection of dinoflagellates, the method comprising the steps of obtaining a sample for use in the method and analyzing the sample for the presence of one or more of: (i) a polynucleotide comprising a sequence according to the first aspect, (ii) a ribonucleic acid or complementary DNA according to the second aspect, (iii) a polypeptide comprising a sequence according to the third aspect, wherein said presence is indicative of dinoflagellates in the sample.
[0020] Analysing the sample may comprise amplification of DNA from the sample by polymerase chain reaction and detecting the amplified sequences.
[0021] In one embodiment of the fourth aspect, the detection comprises one or both of gel electrophoresis and nucleic acid sequencing. The sample may comprise one or more isolated or cultured organisms. The sample may be an environmental sample. The environmental sample may be derived from salt water, fresh water or a blue-green algal bloom.
[0022] In a fifth aspect, there is provided a kit for the detection of cyanotoxic organisms, the kit comprising at least one agent for detecting the presence of an SXT cluster gene present only in saxitoxin-producing organisms, wherein either: (i) said agent can detect a polynucleotide comprising a sequence selected from the group consisting of: SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 36, and variants having at least 80% sequence identity with any one of said polynucleotide sequences and said agent is a primer or a probe; (ii) said agent can detect a ribonucleic acid or complementary DNA encoded by a sequence according to (i) and said agent is a primer or a probe; or (iii) said agent can detect a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 15, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 37, and variants having at least 80% sequence identity with any one of said polypeptide sequences, and said agent is an antibody capable of specifically binding to the polypeptide.
[0023] The primer or probe may comprise a sequence selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78,, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124,, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, and variants having at least 80% sequence identity with any one of said polypeptide sequences.
[0024] In another embodiment of the fifth aspect, the kit further comprises at least one additional agent for detecting the presence of one or more of: (i) a polynucleotide comprising a sequence selected from the group consisting of: SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants having at least 80% sequence identity with any one of said polynucleotide sequences, (ii) a ribonucleic acid or complementary DNA encoded by a sequence according to (i), (iii) a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants having at least 80% sequence identity with any one of said polypeptide sequences.
[0025] The at least one additional agent may be a primer, antibody or probe. The primer or probe may comprise a sequence selected from the group consisting of SEQ ID NO: 109, SEQ ID NO: 110, and variants having at least 80% sequence identity with any one of said polypeptide sequences.
[0026] It is described a kit for the detection of dinoflagellates, the kit comprising at least one agent for detecting the presence of one or more of: (i) a polynucleotide comprising a sequence according to the first aspect, (ii) a ribonucleic acid or complementary DNA according to the second aspect, (iii) a polypeptide comprising a sequence according to the third aspect, wherein said presence is indicative of dinoflagellates in the sample.
[0027] It is further described a method of screening for a compound that modulates the expression or activity of one or more polypeptides according to the third aspect, the method comprising contacting the polypeptide with a candidate compound under conditions suitable to enable interaction of the candidate compound and the polypeptide, and assaying for activity of the polypeptide.
[0028] Modulating the expression or activity of one or more polypeptides may comprise inhibiting the expression or activity of said polypeptide.
[0029] Modulating the expression or activity of one or more polypeptides may comprise enhancing the expression or activity of said polypeptide.
Definitions [0030] As used in this application, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a stem cell" also includes a plurality of stem cells.
[0031] As used herein, the term "comprising" means "including." Variations of the word "comprising", such as "comprise" and "comprises," have correspondingly varied meanings. Thus, for example, a polynucleotide "comprising" a sequence encoding a protein may consist exclusively of that sequence or may include one or more additional sequences.
[0032] As used herein, the terms "antibody" and "antibodies" include IgG (including IgGl, IgG2,
IgG3, and IgG4), IgA (including IgAl and IgA2), IgD, IgE, or IgM, and IgY, whole antibodies, including single-chain whole antibodies, and antigen-binding fragments thereof. Antigen-binding antibody fragments include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. The antibodies may be from any animal origin. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entire or partial of the following: hinge region, CHI, CH2, and CH3 domains. Also included are any combinations of variable region(s) and hinge region, CHI, CH2, and CH3 domains. Antibodies may be monoclonal, polyclonal, chimeric, multispecific, humanized, and human monoclonal and polyclonal antibodies which specifically bind the biological molecule.
[0033] As used herein, the terms "polypeptide" and "protein" are used interchangeably and are taken to have the same meaning.
[0034] As used herein, the terms "nucleotide sequence" and "polynucleotide sequence" are used interchangeably and are taken to have the same meaning.
[0035] As used herein, the term "kit" refers to any delivery system for delivering materials. In the context of the detection assays described herein, such delivery systems include systems that allow for the storage, transport, or delivery of reaction reagents (for example labels, reference samples, supporting material, etc. in the appropriate containers) and/or supporting materials (for example, buffers, written instructions for performing the assay etc.) from one location to another. For example, kits include one or more enclosures, such as boxes, containing the relevant reaction reagents and/or supporting materials.
[0036] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention before the priority date of this application.
Brief Description of the Drawings [0037] A preferred embodiment of the present invention will now be described, by way of an example only, with reference to the accompanying drawings wherein:
Figure 1A is a table showing the distribution of the sxt genes in toxic and non-toxic cyanobacteria. PSP, saxitoxin; CYLN, cylindrospermopsin; +, gene fragment amplified; - no gene detected.
Figure IB is a table showing primer sequences used to amplify various SXT genes.
Figure 2 is a table showing sxt genes from the saxitoxin gene cluster of C. raciborskii T3, their putative length, their BLAST similarity match with similar protein sequences from other organisms, and their predicted function.
Figure 3 is a diagram showing the structural organisation of the sxtgene cluster from C. raciborskii T3. Abbreviations used are: IS4, insertion sequence 4; at, aminotransferase; dmt, drug metabolite transporter; ompR, transcriptional regulator of ompR family; penP, penicillin binding; smf, gene predicted to be involved in DNA uptake. The scale indicates the gene cluster length in base pairs.
Figure 4 is a flow diagram showing the pathway for XYTbiosynthcsis and the putative functions of sxt genes.
Figure 5 shows MS/MS spectra of selected ions from cellular extracts of Cylindrospermopsis raciborskii T3. The predicted fragmentation of ions and the corresponding m!z values are indicated. Figure 5A, arginine (m!z 175); Figure 5B, saxitoxin (m/z300); Figure 5C, intermediate A' (ni/z 187); Figure 5D, intermediate C (m/z 211); Figure 5E, intermediate E' {ml z 225).
Figure 6 is a table showing the cyr genes from the cylindrospermopsin gene cluster of C. raciborskii AWT205, their putative length, their BLAST similarity match with similar protein sequences from other organisms, and their predicted function.
Figure 7 is a table showing the distribution of the sulfotransferase gene {cyrJ) in toxic and nontoxic cyanobacteria. 16S rRNA gene amplification is shown as a positive control. CYLN, cylindrospermopsin; SXT, saxitoxin; N.D., not detected; +, gene fragment amplified; -, no gene detected; NA, not available; AWQC, Australian Water Quality Center.
Figure 8 is a flow diagram showing the biosynthetic pathway of cylindrospermopsin biosynthesis.
Figure 9 is a diagram showing the structural organization of the cylindrospermopsin gene cluster from C. raciborskii AWT205. Scale indicates gene cluster length in base pairs.
Description [0038] The inventors have identified a gene cluster responsible for saxitoxin biosynthesis (the SXT gene cluster) and a gene cluster responsible for cylindrospermopsin biosynthesis (the CYR gene cluster). The full sequence of each gene cluster has been determined and functional activities assigned to each of the genes identified therein. Based on this information, the inventors have elucidated the full saxitoxin and cylindrospermopsin biosynthetic pathways.
[0039] Accordingly, the invention provides polynucleotide and polypeptide sequences derived from each of the SXT and CYR gene clusters and in particular, sequences relating to the specific genes within each pathway. Methods and kits for the detection of cyanobacterial strains in a sample are provided based on the presence (or absence) in the sample of one or more of the sequences of the invention. The inventors have determined that certain open-reading frames present in the SXT gene cluster of saxitoxin-producing microorganisms are absent in the SXT gene cluster of microorganisms that do not produce saxitoxin. Similarly, it has been discovered that one open-reading frame present in the CYR gene cluster of cylindrospermopsin-producing microorganisms is absent in non-cylindrospermopsin-producing microorganisms. Accordingly, the invention provides methods and kits for the detection of toxin-producing microorganisms.
[0040] Also provided by the invention are screening methods for the identification of compounds capable of modulating the expression or activity of proteins in the saxitoxin and/or cylindrospermopsin biosynthetic pathways.
Polynucleotides and polypeptides [0041] The inventors have determined the full polynucleotide sequence of the saxitoxin (SXT) gene cluster and the cylindrospermopsin (CYR) gene cluster.
[0042] In accordance with aspects and embodiments of the invention, the SXT gene cluster may have, but is not limited to, the polynucleotide sequence as set forth SEQ ID NO: 1 (GenBank accession number DQ787200), or display sufficient sequence identity thereto to hybridise to the sequence of SEQ ID NO: 1.
[0043] The SATgene cluster comprises 31 genes and 30 intergenic regions.
[0044] Gene 1 of the SXT gene cluster is a 759 base pair (bp) nucleotide sequence set forth in SEQ ID NO: 4. The nucleotide sequence of SXT Gene 1 ranges from the nucleotide in position 1625 up to the nucleotide in position 2383 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 1 (SXTD) is set forth in SEQ ID NO: 5.
[0045] Gene 2 of the SXT gene cluster is a 396 bp nucleotide sequence set forth in SEQ ID NO: 6. The nucleotide sequence of SXT Gene 2 ranges from the nucleotide in position 2621 up to the nucleotide in position 3016 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 2 (ORF3) is set forth in SEQ ID NO: 7.
[0046] Gene 3 of the SXT gene cluster is a 360 bp nucleotide sequence set forth in SEQ ID NO: 8. The nucleotide sequence of SXT Gene 3 ranges from the nucleotide in position 2955 up to the nucleotide in position 3314 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 3 (ORF4) is set forth in SEQ ID NO: 9.
[0047] Gene 4 of the SXT gene cluster is a 354 bp nucleotide sequence set forth in SEQ ID NO: 10.
The nucleotide sequence of SXT Gene 4 ranges from the nucleotide in position 3647 up to the nucleotide in position 4000 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 4 (SXTC) is set forth in SEQ ID NO: 11.
[0048] Gene 5 of the SXT gene cluster is a 957 bp nucleotide sequence set forth in SEQ ID NO: 12.
The nucleotide sequence of SXT Gene 5 ranges from the nucleotide in position 4030 up to the nucleotide in position 4986 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 5 (SXTB) is set forth in SEQ ID NO: 13.
[0049] Gene 6 of the SXT gene cluster is a 3738 bp nucleotide sequence set forth in SEQ ID NO: 14. The nucleotide sequence of SATGene 6 ranges from the nucleotide in position 5047 up to the nucleotide in position 8784 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 6 (SXTA) is set forth in SEQ ID NO: 15.
[0050] Gene 7 of the SXT gene cluster is a 387 bp nucleotide sequence set forth in SEQ ID NO: 16.
The nucleotide sequence of SXT Gene 7 ranges lfom the nucleotide in position 9140 up to the nucleotide in position 9526 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 7 (SXTE) is set forth in SEQ ID NO: 17.
[0051] Gene 8 of the SXT gene cluster is a 1416 bp nucleotide sequence set forth in SEQ ID NO: 18. The nucleotide sequence of SATGene 8 ranges from the nucleotide in position 9686 up to the nucleotide in position 11101 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 8 (SXTF) is set forth in SEQ ID NO: 19.
[0052] Gene 9 of the SXT gene cluster is an 1134 bp nucleotide sequence set forth in SEQ ID NO: 20. The nucleotide sequence of SATGene 9 ranges from the nucleotide in position 11112 up to the nucleotide in position 12245 of SEQ ID NO: 1. The polypeptide sequence encoded by SXT Gene 9 (SATG) is set forth in SEQ ID NO: 21.
[0053] Gene 10 of the SXT gene cluster is a 1005 bp nucleotide sequence set forth in SEQ ID NO: 22. The nucleotide sequence of SATGene 10 ranges from the nucleotide in position 12314 up to the nucleotide in position 13318 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 10 (SXTH) is set forth in SEQ ID NO: 23.
[0054] Gene 11 of the SXT gene cluster is an 1839 bp nucleotide sequence set forth in SEQ ID NO: 24. The nucleotide sequence of SATGene 11 ranges from the nucleotide in position 13476 up to the nucleotide in position 15314 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 11 (SXTT) is set forth in SEQ ID NO: 25.
[0055] Gene 12 of the SXT gene cluster is a 444 bp nucleotide sequence set forth in SEQ ID NO: 26. The nucleotide sequence of SATGene 12 ranges from the nucleotide in position 15318 up to the nucleotide in position 15761 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 12 (SXTJ) is set forth in SEQ ID NO: 27.
[0056] Gene 13 of the SXT gene cluster is a 165 bp nucleotide sequence set forth in SEQ ID NO: 28. The nucleotide sequence of SATGene 13 ranges from the nucleotide in position 15761 up to the nucleotide in position 15925 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 13 (SXTK) is set forth in SEQ ID NO: 29.
[0057] Gene 14 of the SXT gene cluster is a 1299 bp nucleotide sequence set forth in SEQ ID NO: 30. The nucleotide sequence of SATGene 14 ranges from the nucleotide in position 15937 up to the nucleotide in position 17235 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 14 (SXTL) is set forth in SEQ ID NO: 31.
[0058] Gene 15 of the SXT gene cluster is a 1449 bp nucleotide sequence set forth in SEQ ID NO: 32. The nucleotide sequence of SATGene 15 ranges from the nucleotide in position 17323 up to the nucleotide in position 18771 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 16 (SXTM) is set forth in SEQ ID NO: 33.
[0059] Gene 16 of the SAT gene cluster is an 831 bp nucleotide sequence set forth in SEQ ID NO: 34. The nucleotide sequence of SATGene 16 ranges from the nucleotide in position 19119 up to the nucleotide in position 19949 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 16 (SXTN) is set forth in SEQ ID NO: 35.
[0060] Gene 17 of the SXT gene cluster is a 11A bp nucleotide sequence set forth in SEQ ID NO: 36. The nucleotide sequence of SATGene 17 ranges from the nucleotide in position 20238 up to the nucleotide in position 21011 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 17 (SXTX) is set forth in SEQ ID NO: 37.
[0061] Gene 18 of the SXT gene cluster is a 327 bp nucleotide sequence set forth in SEQ ID NO: 38. The nucleotide sequence of SATGene 18 ranges from the nucleotide in position 21175 up to the nucleotide in position 21501 ofSEQ ID NO: 1. The polypeptide sequence encoded by Gene IS(SXTW) is set forth in SEQ ID NO: 39.
[0062] Gene 19 of the SXT gene cluster is a 1653 bp nucleotide sequence set forth in SEQ ID NO: 40. The nucleotide sequence of SATGene 219 ranges from the nucleotide in position 21542 up to the nucleotide in position 23194 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 19 (SXTV) is set forth in SEQ ID NO: 41.
[0063] Gene 20 of the SXT gene cluster is a 750 bp nucleotide sequence set forth in SEQ ID NO: 42. The nucleotide sequence of SATGene 20 ranges from the nucleotide in position 23199 up to the nucleotide in position 23948 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 20 (SXTJJ) is set forth in SEQ ID NO: 43.
[0064] Gene 21 of the SXT gene cluster is a 1005 bp nucleotide sequence set forth in SEQ ID NO: 44. The nucleotide sequence of SATGene 21 ranges from the nucleotide in position 24091 up to the nucleotide in position 25095 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 21 (SXTT) is set forth in SEQ ID NO: 45.
[0065] Gene 22 of the SAT gene cluster is a 726 bp nucleotide sequence set forth in SEQ ID NO: 46. The nucleotide sequence of SATGene 22 ranges from the nucleotide in position 25173 up to the nucleotide in position 25898 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 22 (SXTS) is set forth in SEQ ID NO: 47.
[0066] Gene 23 of the SAT gene cluster is a 576 bp nucleotide sequence set forth in SEQ ID NO: 48. The nucleotide sequence of SATGene 23 ranges from the nucleotide in position 25974 up to the nucleotide in position 26549 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 23 (ORF24) is set forth in SEQ ID NO: 49.
[0067] Gene 24 of the SAT gene cluster is a 111 bp nucleotide sequence set forth in SEQ ID NO: 50. The nucleotide sequence of SATGene 24 ranges from the nucleotide in position 26605 up to the nucleotide in position 27381 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 24 (SXTR) is set forth in SEQ ID NO: 51.
[0068] Gene 25 of the SXT gene cluster is a 777 bp nucleotide sequence set forth in SEQ ID NO: 52. The nucleotide sequence of SXTGene 25 ranges from the nucleotide in position 27392 up to the nucleotide in position 28168 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 25 (SXTQ) is set forth in SEQ ID NO: 53.
[0069] Gene 26 of the SXT gene cluster is a 1227 bp nucleotide sequence set forth in SEQ ID NO: 54. The nucleotide sequence of SXTGene 26 ranges from the nucleotide in position 28281 up to the nucleotide in position 29507 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 26 (SXTP) is set forth in SEQ ID NO: 55.
[0070] Gene 27 of the SXT gene cluster is a 603 bp nucleotide sequence set forth in SEQ ID NO: 56. The nucleotide sequence of SXTGene 27 ranges from the nucleotide in position 29667 up to the nucleotide in position 30269 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 27 (SXTO) is set forth in SEQ ID NO: 57.
[0071] Gene 28 of the SXT gene cluster is a 1350 bp nucleotide sequence set forth in SEQ ID NO: 58. The nucleotide sequence of .SXTGene 28 ranges from the nucleotide in position 30612 up to the nucleotide in position 31961 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 28 (ORF29) is set forth in SEQ ID NO: 59.
[0072] Gene 29 of the SXT gene cluster is a 666 bp nucleotide sequence set forth in SEQ ID NO: 60. The nucleotide sequence of SXTGene 29 ranges from the nucleotide in position 32612 up to the nucleotide in position 33277 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 29 (SXTY) is set forth in SEQ ID NO: 61.
[0073] Gene 30 of the SXT gene cluster is a 1353 bp nucleotide sequence set forth in SEQ ID NO: 62. The nucleotide sequence of SXTGene 30 ranges from the nucleotide in position 33325 up to the nucleotide in position 34677 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 30 (SXTZ) is set forth in SEQ ID NO: 63.
[0074] Gene 31 of the SXT gene cluster is an 819 bp nucleotide sequence set forth in SEQ ID NO: 64. The nucleotide sequence of SXTGene 31 ranges from the nucleotide in position 35029 up to the nucleotide in position 35847 of SEQ ID NO: 1. The polypeptide sequence encoded by Gene 31 (OMPR) is set forth in SEQ ID NO: 65.
[0075] The 5' border region of SXT gene cluster comprises a 1320 bp gene (orfl), the sequence of which is set forth in SEQ ID NO: 2. The nucleotide sequence of orfl ranges from the nucleotide in position 1 up to the nucleotide in position 1320 of SEQ ID NO: 1. The polypeptide sequence encoded by orfl is set forth in SEQ ID NO: 3.
[0076] The 3' border region of SXT gene cluster comprises a 774 bp gene (hisA), the sequence of which is set forth in SEQ ID NO: 66. The nucleotide sequence of hisA ranges from the nucleotide in position 35972 up to the nucleotide in position 36745 of SEQ ID NO: 1. The polypeptide sequence encoded by his A is set forth in SEQ ID NO: 67.
[0077] The 3' border region of SXTgene cluster also comprises a 396 bp gene (orfA), the sequence of which is set forth in in SEQ ID NO: 68. The nucleotide sequence of orfA ranges from the nucleotide in position 37060 up to the nucleotide in position 37455 of SEQ ID NO: 1. The polypeptide sequence encoded by orfA is set forth in SEQ ID NO: 69.
[0078] In accordance with other aspects and embodiments of the invention, the CYR gene cluster may have, but is not limited to, the nucleotide sequence as set forth SEQ ID NO: 80 (GenBank accession number EU140798), or display sufficient sequence identity thereto to hybridise to the sequence of SEQ ID NO: 80.
[0079] The CYR gene cluster comprises 15 genes and 14 intergenic regions.
[0080] Gene 1 of the CYR gene cluster is a 5631 bp nucleotide sequence set forth in SEQ ID NO: 81. The nucleotide sequence of CYRGcnc 1 ranges from the nucleotide in position 444 up to the nucleotide in position 6074 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 1 (CYRD) is set forth in SEQ ID NO: 82.
[0081] Gene 2 of the CYR gene cluster is a 4074 bp nucleotide sequence set forth in SEQ ID NO: 83. The nucleotide sequence of CTÆGene 2 ranges from the nucleotide in position 6130 up to the nucleotide in position 10203 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 2 (CYRF) is set forth in SEQ ID NO: 84.
[0082] Gene 3 of the CYR gene cluster is a 1437 bp nucleotide sequence set forth in SEQ ID NO: 85. The nucleotide sequence of CYRGcnc 3 ranges from the nucleotide in position 10251 up to the nucleotide in position 11687 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 3 (CYRG) is set forth in SEQ ID NO: 86.
[0083] Gene 4 of the CYR gene cluster is an 831 bp nucleotide sequence set forth in SEQ ID NO: 87. The nucleotide sequence of CYRGcnc 4 ranges from the nucleotide in position 11741 up to the nucleotide in position 12571 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 4 (CYR/) is set forth in SEQ ID NO: 88.
[0084] Gene 5 of the CYR gene cluster is a 1398 bp nucleotide sequence set forth in SEQ ID NO: 89. The nucleotide sequence of CYRGene 5 ranges from the nucleotide in position 12568 up to the nucleotide in position 13965 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 5 (CYRK) is set forth in SEQ ID NO: 90.
[0085] Gene 6 of the CYR gene cluster is a 750 bp nucleotide sequence set forth in SEQ ID NO: 91. The nucleotide sequence of CYR Gene 6 ranges from the nucleotide in position 14037 up to the nucleotide in position 14786 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 6 (CYRL) is set forth in SEQ ID NO: 92.
[0086] Gene 7 of the CYR gene cluster is a 1431 bp nucleotide sequence set forth in SEQ ID NO: 93. The nucleotide sequence of CYRGcnc 7 ranges from the nucleotide in position 14886 up to the nucleotide in position 16316 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 7 (CYRH) is set forth in SEQ ID NO: 94.
[0087] Gene 8 of the CYR gene cluster is a 780 bp nucleotide sequence set forth in SEQ ID NO: 95. The nucleotide sequence of CYR Gene 8 ranges from the nucleotide in position 16893 up to the nucleotide in position 17672 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 8 (CYRJ) is set forth in SEQ ID NO: 96.
[0088] Gene 9 of the CYR gene cluster is an 1176 bp nucleotide sequence set forth in SEQ ID NO: 97. The nucleotide sequence of CTÆGene 9 ranges from the nucleotide in position 18113 up to the nucleotide in position 19288 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 9 (CYRA) is set forth in SEQ ID NO: 98.
[0089] Gene 10 of the CYR gene cluster is an 8754 bp nucleotide sequence set forth in SEQ ID NO: 99. The nucleotide sequence of CYRGcnc 10 ranges from the nucleotide in position 19303 up to the nucleotide in position 28056 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 10 (CYRB) is set forth in SEQ ID NO: 100.
[0090] Gene 11 of the CYR gene cluster is a 5667 bp nucleotide sequence set forth in SEQ ID NO: 101. The nucleotide sequence of CYRGcnc 11 ranges from the nucleotide in position 28061 up to the nucleotide in position 33727 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 11 (GYRE) is set forth in SEQ ID NO: 102.
[0091] Gene 12 of the CYR gene cluster is a 5004 bp nucleotide sequence set forth in SEQ ID NO: 103. The nucleotide sequence of CYRGcnc 12 ranges from the nucleotide in position 34299 up to the nucleotide in position 39302 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 12 cCYRC) is set forth in SEQ ID NO: 104.
[0092] Gene 13 of the CYR gene cluster is a 318 bp nucleotide sequence set forth in SEQ ID NO: 105. The nucleotide sequence of CTKGene 13 ranges from the nucleotide in position 39366 up to the nucleotide in position 39683 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 13 (CYRM) is set forth in SEQ ID NO: 106.
[0093] Gene 14 of the CYR gene cluster is a 600 bp nucleotide sequence set forth in SEQ ID NO: 107. The nucleotide sequence of CYRGcnc 14 ranges from the nucleotide in position 39793 up to the nucleotide in position 40392 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 14 (CYRN) is set forth in SEQ ID NO: 108.
[0094] Gene 15 of the CYR gene cluster is a 1548 bp nucleotide sequence set forth in SEQ ID NO: 109. The nucleotide sequence of CYRGcnc 15 ranges from the nucleotide in position 40501 up to the nucleotide in position 42048 of SEQ ID NO: 80. The polypeptide sequence encoded by Gene 15 (CYRO) is set forth in SEQ ID NO: 110.
[0095] In general, the nucleic acids and polypeptides of the invention are of an isolated or purified form.
[0096] SXT and CYR polynucleotides disclosed herein may be deoxyribonucleic acids (DNA), ribonucleic acids (RNA) or complementary deoxyribonucleic acids (cDNA).
[0097] RNA may be derived from RNA polymerase-catalyzed transcription of a DNA sequence. The RNA may be a primary transcript derived transcription of a corresponding DNA sequence. RNA may also undergo post-transcriptional processing. For example, a primary RNA transcript may undergo post-transcriptional processing to form a mature RNA. Messenger RNA (mRNA) refers to RNA derived from a corresponding open reading frame that may be translated into protein by the cell. cDNA refers to a doublestranded DNA that is complementary to and derived from mRNA. Sense RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. Antisense RNA refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and may be used to block the expression of a target gene.
[0098] The skilled addresse will recognise that RNA and cDNA sequences encoded by the SXT and CYR DNA sequences disclosed herein may be derived using the genetic code. An RNA sequence may be derived from a given DNA sequence by generating a sequence that is complementary the particular DNA sequence. The complementary sequence may be generated by converting each cytosine ('C') base in the DNA sequence to a guanine ('G') base, each guanine ('G') base in the DNA sequence to a cytosine ('C') base, each thymidine (T) base in the DNA sequence to an adenine ('A') base, and each adenine ('A') base in the DNA sequence to a uracil ('U') base.
[0099] A complementary DNA (cDNA) sequence may be derived from a DNA sequence by deriving an RNA sequence from the DNA sequence as above, then converting the RNA sequence into a cDNA sequence. An RNA sequence can be converted into a cDNA sequence by converting each cytosine ('C') base in the RNA sequence to a guanine ('G') base, each guanine ('G') base in the RNA sequence to a cytosine ('C') base, each uracil ('U') base in the RNA sequence to an adenine ('A') base, and each adeneine (A') base in the RNA sequence to a thymidine (Τ') base.
[0100] The term "variant" as used herein refers to a substantially similar sequence. In general, two sequences are "substantially similar" if the two sequences have a specified percentage of amino acid residues or nucleotides that are the same (percentage of "sequence identity"), over a specified region, or, when not specified, over the entire sequence. Accordingly, a "variant" of a polynucleotide and polypeptide sequence disclosed herein may share at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 83% 85%, 88%, 90%, 93%, 95%, 96%, 97%, 98% or 99% sequence identity with the reference sequence.
[0101] In general, polypeptide sequence variants possess qualitative biological activity in common. Polynucleotide sequence variants generally encode polypeptides which generally possess qualitative biological activity in common. Also included within the meaning of the term "variant" are homologues of polynucleotides and polypeptides of the invention. A polynucleotide homologue is typically from a different bacterial species but sharing substantially the same biological function or activity as the corresponding polynucleotide disclosed herein. A polypeptide homologue is typically from a different bacterial species but sharing substantially the same biological function or activity as the corresponding polypeptide disclosed herein. For example, homologues of the polynucleotides and polypeptides disclosed herein include, but are not limited to those from different species of cyanobacteria.
[0102] Further, the term "variant" also includes analogues of the polypeptides of the invention. A polypeptide "analogue" is a polypeptide which is a derivative of a polypeptide of the invention, which derivative comprises addition, deletion, substitution of one or more amino acids, such that the polypeptide retains substantially the same function. The term "conservative amino acid substitution" refers to a substitution or replacement of one amino acid for another amino acid with similar properties within a polypeptide chain (primary sequence of a protein). For example, the substitution of the charged amino acid glutamic acid (Glu) for the similarly charged amino acid aspartic acid (Asp) would be a conservative amino acid substitution.
[0103] In general, the percentage of sequence identity between two sequences may be determined by comparing two optimally aligned sequences over a comparison window. The portion of the sequence in the comparison window may, for example, comprise deletions or additions (i.e. gaps) in comparison to the reference sequence (for example, a polynucleotide or polypeptide sequence disclosed herein), which does not comprise deletions or additions, in order to align the two sequences optimally. A percentage of sequence identity may then be calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
[0104] In the context of two or more nucleic acid or polypeptide sequences, the percentage of sequence identity refers to the specified percentage of amino acid residues or nucleotides that are the same over a specified region, (or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection.
[0105] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be determined conventionally using known computer programs, including, but not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, California, USA).
[0106] The BESTFIT program (Wisconsin Sequence Analysis Package, for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711) uses the local homology algorithm of Smith and Waterman to find the best segment of homology between two sequences (Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981)). When using BESTFIT or any other sequence alignment program to determine the degree of homology between sequences, the parameters may be set such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.
[0107] GAP uses the algorithm described in Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP presents one member of the family of best alignments.
[0108] Another method for determining the best overall match between a query sequence and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag and colleagues (Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity.
[0109] The BLAST and BLAST 2.0 algorithms, may be used for determining percent sequence identity and sequence similarity. These are described in Altschul et al. (1977) Nuc. Acids Res. 25:3389-3402, and Altschul et al (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (seeHenikoff and Henikoff (1989) Proc. Natl, Acad. Sci USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands. [0028] The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g.,Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.
[0110] The invention also contemplates fragments of the polypeptides disclosed herein. A polypeptide "fragment" is a polypeptide molecule that encodes a constituent or is a constituent of a polypeptide of the invention or variant thereof. Typically the fragment possesses qualitative biological activity in common with the polypeptide of which it is a constituent. The peptide fragment may be between about 5 to about 3000 amino acids in length, between about 5 to about 2750 amino acids in length, between about 5 to about 2500 amino acids in length, between about 5 to about 2250 amino acids in length, between about 5 to about 2000 amino acids in length, between about 5 to about 1750 amino acids in length, between about 5 to about 1500 amino acids in length, between about 5 to about 1250 amino acids in length, between about 5 to about 1000 amino acids in length, between about 5 to about 900 amino acids in length, between about 5 to about 800 amino acids in length, between about 5 to about 700 amino acids in length, between about 5 to about 600 amino acids in length, between about 5 to about 500 amino acids in length, between about 5 to about 450 amino acids in length, between about 5 to about 400 amino acids in length, between about 5 to about 350 amino acids in length, between about 5 to about 300 amino acids in length, between about 5 to about 250 amino acids in length, between about 5 to about 200 amino acids in length, between about 5 to about 175 amino acids in length, between about 5 to about 150 amino acids in length, between about 5 to about 125 amino acids in length, between about 5 to about 100 amino acids in length, between about 5 to about 75 amino acids in length, between about 5 to about 50 amino acids in length, between about 5 to about 40 amino acids in length, between about 5 to about 30 amino acids in length, between about 5 to about 20 amino acids in length, and between about 5 to about 15 amino acids in length. Alternatively, the peptide fragment may be between about 5 to about 10 amino acids in length.
[0111] Also contemplated are fragments of the polynucleotides disclosed herein. A polynucleotide "fragment" is a polynucleotide molecule that encodes a constituent or is a constituent of a polynucleotide of the invention or variant thereof. Fragments of a polynucleotide do not necessarily need to encode polypeptides which retain biological activity. The fragment may, for example, be useful as a hybridization probe or PCR primer. The fragment may be derived from a polynucleotide of the invention or alternatively may be synthesized by some other means, for example by chemical synthesis.
[0112] Certain embodiments of the invention relate to fragments of SEQ ID NO: 1. A fragment of SEQ ID NO: 1 may comprise, for example, a constituent of SEQ ID NO: 1 in which the 5' gene border region gene o/;/7is absent. Alternatively, a fragment of SEQ ID NO: 1 may comprise, for example, a constituent of SEQ ID NO: 1 in which the 3' gene border region gene h is A is absent. Alternatively, a fragment of SEQ ID NO: 1 may comprise, for example, a constituent of SEQ ID NO: 1 in which the 3' gene border region gene orfA is absent. Alternatively, a fragment of SEQ ID NO: 1 may comprise, for example, a constituent of SEQ ID NO: 1 in which the 5' gene border region gene orfl is absent and the 3' border region gene orfA is absent. Alternatively, a fragment of SEQ ID NO: 1 may comprise, for example, a constituent of SEQ ID NO: 1 in which the 5' gene border region gene orfl is absent and the 3' border region genes/zzA4 and orfA are absent.
[0113] In other embodiments, a fragment of SEQ ID NO: 1 may comprise one or more SXT open reading frames. The SXT open reading frame may be selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants thereof.
[0114] Additional embodiments of the invention relate to fragments of SEQ ID NO: 80. The fragment of SEQ ID NO: 80 may comprise one or more CYR open reading frames. The CYR open reading frame may be selected from the group consisting of of SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants thereof.
[0115] In particular embodiments, the polynucleotides of the invention may be cloned into a vector.
The vector may comprise, for example, a DNA, RNA or complementary DNA (cDNA) sequence. The vector may be a plasmid vector, a viral vector, or any other suitable vehicle adapted for the insertion of foreign sequences, their introduction into cells and the expression of the introduced sequences.
Typically the vector is an expression vector and may include expression control and processing sequences such as a promoter, an enhancer, ribosome binding sites, polyadenylation signals and transcription termination sequences. The invention also contemplates host cells transformed by such vectors. For example, the polynucleotides of the invention may be cloned into a vector which is transformed into a bacterial host cell, for example E. coh. Methods for the construction of vectors and their transformation into host cells are generally known in the art, and described in, for example,Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press,
Plainview, New York, and, Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc.
Nucleotide Probes, Primers and Antibodies [0116] The invention contemplates nucleotides and fragments based on the sequences of the polynucleotides disclosed herein for use as primers and probes for the identification of homologous sequences.
[0117] The nucleotides and fragments may be in the form of oligonucleotides. Oligonucleotides are short stretches of nucleotide residues suitable for use in nucleic acid amplification reactions such as PCR, typically being at least about 5 nucleotides to about 80 nucleotides in length, more typically about 10 nucleotides in length to about 50 nucleotides in lenght, and even more typically about 15 nucleotides in length to about 30 nucleotides in length.
[0118] Probes are nucleotide sequences of variable length, for example between about 10 nucleotides and several thousand nucleotides, for use in detection of homologous sequences, typically by hybridization. Hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides.
[0119] Methods for the design and/or production of nucleotide probes and/or primers are generally known in the art, and are described inSambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York; Itakura K. et al. (1984) Annu. Rev. Biochem. 53:323; Innis et al., (Eds) (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, (Eds) (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, (Eds) (1999) PCR Methods Manual (Academic Press, New York). Nucleotide primers and probes may be prepared, for example, by chemical synthesis techniques for example, the phosphodiester and phosphotriester methods (see for example Narang S. A. et al. (1979) Meth. Enzymol. 68:90; Brown, E. L. (1979) et al. Meth. Enzymol. 68:109; andU.S. Patent No. 4356270), the diethylphosphoramidite method (see Beaucage S.L et al. (1981) Tetrahedron Letters, 22:1859-1862). A method for synthesizing oligonucleotides on a modified solid support is described inU.S. Patent No. 4458066.
[0120] The nucleic acids of the invention, including the above-mentioned probes and primers, may be labelled by incorporation of a marker to facilitate their detection. Techniques for labelling and detecting nucleic acids are described, for example, in Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc.Examples of suitable markers include fluorescent molecules (e.g. acetylaminofluorcnc, 5-bromodeoxyuridine, digoxigenin, fluorescein) and radioactive isotopes (e.g. 32P, 35S, 3H, 33P). Detection of the marker may be achieved, for example, by chemical, photochemical, immunochemical, biochemical, or spectroscopic techniques.
[0121] The probes and primers of the invention may be used, for example, to detect or isolate cyanobacteria and/or dinoflagellates in a sample of interest. Additionally or alternatively, the probes and primers of the invention may be used to detect or isolate a cyanotoxic organism and/or a cylindrospermopisn-producing organism in a sample of interest. Additionally or alternatively, the probes or primers of the invention may be used to isolate corresponding sequences in other organisms including, for example, other bacterial species. Methods such as the polymerase chain reaction (PCR), hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences that are selected based on their sequence identity to the entire sequences set forth herein or to fragments thereof are encompassed by the embodiments. Such sequences include sequences that are orthologs of the disclosed sequences. The term "orthologs" refers to genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.
[0122] In hybridization techniques, all or part of a known nucleotide sequence is used to generate a probe that selectively hybridizes to other corresponding nucleic acid sequences present in a given sample. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labelled with a detectable marker. Thus, for example, probes for hybridization can be made by labelling synthetic oligonucleotides based on the sequences of the invention.
[0123] The level of homology (sequence identity) between probe and the target sequence will largely be determined by the stringency of hybridization conditions. In particular the nucleotide sequence used as a probe may hybridize to a homologue or other variant of a polynucleotide disclosed herein under conditions of low stringency, medium stringency or high stringency. There are numerous conditions and factors, well known to those skilled in the art, which may be employed to alter the stringency of hybridization. For instance, the length and nature (DNA, RNA, base composition) of the nucleic acid to be hybridized to a specified nucleic acid; concentration of salts and other components, such as the presence or absence of formamide, dextran sulfate, polyethylene glycol etc; and altering the temperature of the hybridization and/or washing steps.
[0124] Typically, stringent hybridization conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30% to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulfate) at 37 °C, and a wash in IX to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50°C to 55 °C. Exemplary moderate stringency conditions include hybridization in 40% to 45% formamide, 1.0 M NaCl, 1% SDS at 37 °C, and a wash in 0.5X to IX SSC at 55°C to 60 °C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37 °C, and a final wash in 0.1X SSC at 60°C to 65 °C for at least about 20 minutes. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. The duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.
[0125] Under a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York); Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc; Maniatis et al. Molecular Cloning (1982), 280-281; Innis et al. (Eds) (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, (Eds) (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, (Eds) (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.
[0126] The skilled addressee will recognise that the primers described herein for use in PCR or RT-PCR may also be used as probes for the detection of SXT or CYR sequences.
[0127] Also contemplated by the invention are antibodies which are capable of binding specifically to the polypeptides of the invention. The antibodies may be used to qualitatively or quantitatively detect and analyse one or more SXT or CYR polypeptides in a given sample. By "binding specifically" it will be understood that the antibody is capable of binding to the target polypeptide or fragment thereof with a higher affinity than it binds to an unrelated protein. For example, the antibody may bind to the polypeptide or fragment thereof with a binding constant in the range of at least about 10"4M to about 10" 10M. Preferably the binding constant is at least about 10"5M, or at least about 10"6M, more preferably the binding constant of the antibody to the SXT or CYR polypeptide or fragment thereof is at least about 10' 7M, at least about 10"8M, or at least about 10"9M or more.
[0128] Antibodies of the invention may exist in a variety of forms, including for example as a whole antibody, or as an antibody fragment, or other immunologically active fragment thereof, such as complementarity determining regions. Similarly, the antibody may exist as an antibody fragment having functional antigen-binding domains, that is, heavy and light chain variable domains. Also, the antibody fragment may exist in a form selected from the group consisting of, but not limited to: Fv, Fab, F(ab)2, scFv (single chain Fv), dAb (single domain antibody), chimeric antibodies, bi-specific antibodies, diabodies and triabodies.
[0129] An antibody 'fragment' may be produced by modification of a whole antibody or by synthesis of the desired antibody fragment. Methods of generating antibodies, including antibody fragments, are known in the art and include, for example, synthesis by recombinant DNA technology. The skilled addressee will be aware of methods of synthesising antibodies, such as those described in, for example, US Patent No. 5296348 and Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc.
[0130] Preferably antibodies are prepared from discrete regions or fragments of the SXT or CYR polypeptide of interest. An antigenic portion of a polypeptide of interest may be of any appropriate length, such as from about 5 to about 15 amino acids. Preferably, an antigenic portion contains at least about 5, 6,1, 8, 9, 10, 11, 12, 13 or 14 amino acid residues.
[0131] In the context of this specification reference to an antibody specific to a SXT or CYR polypeptide of the invention includes an antibody that is specific to a fragment of the polypeptide of interest.
[0132] Antibodies that specifically bind to a polypeptide of the invention can be prepared, for example, using the purified SXT or CZRpolypeptides or their nucleic acid sequences using any suitable methods known in the art. For example, a monoclonal antibody, typically containing Fab portions, may be prepared using hybridoma technology described in Harlow and Lane (Eds) Antibodies - A Laboratory Manual, (1988), Cold Spring Harbor Laboratory, N.Y; Coligan, Current Protocols in Immunology (1991); Goding, Monoclonal Antibodies: Principles and Practice (1986) 2nd ed; and Kohler & Milstein, (1975) Nature 256: 495-497. Such techniques include, but are not limited to, antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, for example,Huse et al. (1989) Science 246: 1275-1281; Ward et al. (1989) Nature 341: 544-546).
[0133] It will also be understood that antibodies of the invention include humanised antibodies, chimeric antibodies and fully human antibodies. An antibody of the invention may be a bi-specific antibody, having binding specificity to more than one antigen or epitope. For example, the antibody may have specificity for one or more SXT or CYR polypeptide or fragments thereof, and additionally have binding specificity for another antigen. Methods for the preparation of humanised antibodies, chimeric antibodies, fully human antibodies, and bispecific antibodies are known in the art and include, for example as described in United States Patent No.6995243 issued February 7, 2006 to Garabedian, et al. and entitled "Antibodies that recognize and bind phosphorylated human glucocorticoid receptor and methods of using same".
[0134] Generally, a sample potentially comprising SXT or CLRpolypeptides can be contacted with an antibody that specifically binds theSXT or CYR polypeptide or fragment thereof. Optionally, the antibody can be fixed to a solid support to facilitate washing and subsequent isolation of the complex, prior to contacting the antibody with a sample. Examples of solid supports include, for example, microtitre plates, beads, ticks, or microbeads. Antibodies can also be attached to a ProteinChip array or a probe substrate as described above.
[0135] Detectable labels for the identification of antibodies bound to th eSXT or CYR polypeptides of the invention include, but are not limited to fluorochromes, fluorescent dyes, radiolabels, enzymes such as horse radish peroxide, alkaline phosphatase and others commonly used in the art, and colorimetric labels including colloidal gold or coloured glass or plastic beads. Alternatively, the marker in the sample can be detected using an indirect assay, wherein, for example, a second, labelled antibody is used to detect bound marker-specific antibody.
[0136] Methods for detecting the presence of or measuring the amount of, an antibody-marker complex include, for example, detection of fluorescence, chemiluminescence, luminescence, absorbance, birefringence, transmittance, reflectance, or refractive index such as surface plasmon resonance, ellipsometry, a resonant mirror method, a grating coupler wave guide method or interferometry. Radio frequency methods include multipolar resonance spectroscopy. Electrochemical methods include amperometry and voltametry methods. Optical methods include imaging methods and non-imaging methods and microscopy.
[0137] Useful assays for detecting the presence of or measuring the amount of, an antibody-marker complex include, include, for example, enzyme-linked immunosorbent assay (ELISA), a radioimmune assay (RIA), or a Western blot assay. Such methods are described in, for example, Clinical Immunology (Stites & Terr, eds., 7th ed. 1991);Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993); and Harlow & Lane, supra.
Methods and kits for detection [0138] The invention provides methods and kits for the detection and/or isolation of SXT nucleic acids and polypeptides. Also provided are methods and kits for the detection and/or isolation CYR nucleic acids and polypeptides.
[0139] In one aspect, the invention provides a method for the detection of cyanobacteria. The skilled addressee will understand that the detection of "cyanobacteria" encompasses the detection of one or more cyanobacteria. The method comprises obtaining a sample for use in the method, and detecting the presence of one or more SXT polynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof. The presence of SXT polynucleotides, polypeptides, or variants or fragments thereof, is indicative of cyanobacteria in the sample.
[0140] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ
ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID
NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID
NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48,' SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0141] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ
ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ
ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ
ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0142] The SXT polypeptide may comprising an amino acid sequence selected from the group
consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID,
NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID
NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69, and variants and fragments thereof.
[0143] The inventors have determined that several genes of the SATgene cluster exist in saxitoxin-producing organisms, and are absent in organisms with the SXT gene cluster that do not produce saxitoxin. Specifically, the inventors have identified that gene 6 (sxtA) (SEQ ID NO: 14), gene 9 (sxtG) (SEQ ID NO: 20), gene 10 (sxtH) (SEQ ID NO: 22), gene 11 (sxtl) (SEQ ID NO: 24) and gene 17 (sxtX) (SEQ ID NO: 36) of the SXT gene cluster are present only in organisms that produce saxitoxin.
[0144] Accordingly, in another aspect the invention provides a method of detecting a cyanotoxic organism. The method comprises obtaining a sample for use in the method, and detecting a cyanotoxic organism based on the detection of one or more SXT polynucleotides comprising a sequence set forth in SEQ ID NO: 14 (sxtA, gene 6), SEQ ID NO: 20 (sxtG, gene 9), SEQ ID NO: 22 (sxtH, gene 10), SEQ ID NO: 24 (sxtl,gene 11), SEQ ID NO: 36 (sxtX, gene 17), or variants or fragments thereof. Additionally or alternatively, a cyanotoxic organism may be detected based on the detection of an RNA or cDNA comprising a sequence encoded by SEQ ID NO: 14 (sxtA, gene 6), SEQ ID NO: 20(sxtG, gene 9), SEQ ID NO: 22 (sxtH, gene 10), SEQ ID NO: 24 (sxtl,gene 11), SEQ ID NO: 36 (sxtX, gene 17), or variants or fragments thereof. Additionally or alternatively, a cyanotoxic organism may be detected based on the detection of one or more polypeptides comprising a sequence set forth in SEQ ID NO: 15 (SXTA), SEQ ID NO: 21 (SXTG), SEQ ID NO: 23 (SXTH), SEQ ID NO: 25 (SXTT), SEQ ID NO: 37 (SXTX), or variants or fragments thereof, in a sample suspected of comprising one or more cyanotoxic organisms. The cyanotoxic organism may be any organism capable of producing saxitoxin. In a preferred embodiment of the invention, the cyanotoxic organism is a cyanobacteria or a dinoflagellate.
[0145] In certain embodiments of the invention, the methods for detecting cyanobacteria or the methods for detecting cyanotoxic organisms may further comprise the detection of one or more CTOpolynuclcotides or CYR polypeptides as disclosed herein, or a variant or fragment thereof. The CYR polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants or fragments thereof.
[0146] Alternatively, the CYR polynucleotide may be an RNA or cDNA encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants or fragments thereof.
[0147] The CYR polypeptide may comprise a sequence selected from the group consisting of SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants or fragments thereof.
[0148] The inventors have determined gene 8 (cyrJ) (SEQ ID NO: 95) of the CYR gene cluster exists in cylindrospermopsin-producing organisms, and is absent in organisms with the CYR gene cluster that do not produce cylindrospermopsin. Accordingly, the methods for detecting cyanobacteria or the methods for detecting cyanotoxic organisms may further comprise the detection of a cylindrospermopsin-producing organism based on the detection of a CYR polynucleotide comprising a sequence set forth in SEQ ID NO: 95, or a variant or fragment thereof. Additionally or alternatively, the methods for detecting cyanobacteria or the methods for detecting cyanotoxic organisms may further comprise the detection of a cylindrospermopsin-producing organism based on the detection of an RNA or cDNA comprising a sequence encoded by SEQ ID NO: 95, or a variant or fragment thereof. Additionally or alternatively, the methods for detecting cyanobacteria or the methods for detecting cyanotoxic organisms may further comprise the detection of a cylindrospermopsin-producing organism based on the detection of a CYR polypeptide comprising a sequence set forth in SEQ ID NO: 96, or a variant or fragment thereof.
[0149] In another aspect, the invention provides a method for the detection of cyanobacteria. The skilled addressee will understand that the detection of "cyanobacteria" encompasses the detection of one or more cyanobacteria. The method comprises obtaining a sample for use in the method, and detecting the presence of one or more CTRpolynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof. The presence of CYR polynucleotides, polypeptides, or variants or fragments thereof, is indicative of cyanobacteria in the sample.
[0150] The CYR polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109 and variants and fragments thereof.
[0151] Alternatively, the CYR polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109 and variants and fragments thereof.
[0152] The CYR polypeptide may comprise a sequence selected from the group consisting of SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants or fragments thereof.
[0153] In another aspect of the invention there is provided a method of detecting a cylindrospermopsin-producing organism based on the detection of CYR gene 8 (cyrJ). The method comprises obtaining a sample for use in the method, and detecting the presence of a CTRpolynucleotide comprising a sequence set forth in SEQ ID NO: 95, or a variant or fragment thereof. Additionally or alternatively, the method for detecting a cylindrospermopsin-producing organism based on the detection of CYR gene 8 (cyrJ) may comprise the detection of an RNA or cDNA comprising a sequence encoded by SEQ ID NO: 95, or a variant or fragment thereof. Additionally or alternatively, the method for detecting a cylindrospermopsin-producing organism based on the detection of CYRgcnc 8 (cyrJ) may comprise the detection of a CYR polypeptide comprising a sequence set forth in SEQ ID NO: 96, or a variant or fragment thereof.
[0154] In certain embodiments of the invention, the methods for detecting cyanobacteria comprising the detection of CYR sequences or variants or fragments thereof further comprise the detection of one or more SXT polynucleotides or SXT polypeptides as disclosed herein, or a variant or fragment thereof.
[0155] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0156] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0157] The SXT polypeptide may comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69, and variants and fragments thereof.
[0158] In another aspect, the invention provides a method for the detection of dinoflagellates. The skilled addressee will understand that the detection of "dinoflagellates" encompasses the detection of one or more dinoflagellates. The method comprises obtaining a sample for use in the method, and detecting the presence of one or more XATpolynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof. The presence of SXT polynucleotides, polypeptides, or variants or fragments thereof, is indicative of dinoflagellates in the sample.
[0159] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0160] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0161] The SXT polypeptide may comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69, and variants and fragments thereof.
[0162] A sample for use in accordance with the methods described herein may be suspected of comprising one or more cyanotoxic organisms. The cyanotoxic organisms may be one or more cyanobacteria and/or one or more dinoflagellates. Additionally or alternatively, a sample for use in accordance with the methods described herein may be suspected of comprising one more cyanobacteria and/or one or more dinoflagellates. A sample for use in accordance with the methods described herein may be a comparative or control sample, for example, a sample comprising a known concentration or density of a cyanobacteria and/or dinoflagellates, or a sample comprising one or more known species or strains of cyanobacteria and/or dinoflagellates.
[0163] A sample for use in accordance with the methods described herein may be derived from any source. For example, a sample may be an environmental sample. The environmental sample may be derived, for example, from salt water, fresh water or a blue-green algal bloom. Alternatively, the sample may be derived from a laboratory source, such as a culture, or a commercial source.
[0164] It will be appreciated by those in the art that the methods and kits disclosed herein are generally suitable for detecting any organisms in which the SXT and/or CYR gene clusters are present. Suitable cyanobacteria to which the methods of the invention are applicable may be selected from the orders Oscillatoriales, Chroococcales, Nostocales and Stigonematales. For example, the cyanobacteria may be selected from the genera Anabaena, Nostoc, Microcystis, Planktothrix, Oscillatoria,
Phormidium, and Nodularia. For example, the cyanobacteria may be selected from the species Cylindrospermopsis raciborskii T3,Cylindrospermopsis raciborskii AWT205, Aphanizomenon ovalisporum, Aphanizomenon flos-aquae, Aphanizomenon sp„ Umezakia natans, Raphidiopsis curvata, Anabaena bergii, Lyngbya wollei, and Anabaenacircimlis. Examples of suitable dinoflagellates to which the methods and kits of the invention are applicable may be selected from the generaAlexandrium, Pyrodinium and Gymnodinium. The methods and kits of the invention may also be employed for the discovery of novel hepatotoxic species or genera in culture collections or from environmental samples. The methods and kits of the invention may also be employed to detect cyanotoxins that accumulate in other animals, for example, fish and shellfish.
[0165] Detection of SXT and CYR polynucleotides and polypeptides disclosed herein may be performed using any suitable method. For example, methods for the detection of SXT and CYR polynucleotides and/or polypeptides disclosed herein may involve the use of a primer, probe or antibody specific for one or more SXT and CYR polynucleotides and polypeptides. Suitable techniques and assays in which the skilled addressee may utilise a primer, probe or antibody specific for one or more SXT and CYR polynucleotides and polypeptides include, for example, the polymerase chain reaction (and related variations of this technique), antibody based assays such as ELISA and flow cytometry, and fluorescent microscopy. Methods by which the SXT and CZRpolypeptides disclosed herein may be identified are generally known in the art, and are described for example in Coligan J. E. et al. (Eds) Current Protocols in Protein Science (2007), John Wiley and Sons, Inc;Walker, J. M., (Ed) (1988) New Protein Techniques: Methods in Molecular Biology, Humana Press, Clifton, N.J; and Scopes, R. K. (1987) Protein Purification: Principles and Practice, 3rd. Ed., Springer-Verlag, New York, N.Y. For example, SXT and CYR polypeptides disclosed herein may be detected by western blot or spectrophotometric analysis. Other examples of suitable methods for the detection of SXT and CTRpolypeptides are described, for example, in US Patent No. 4683195, US Patent No. 6228578, US Patent No. 7282355, US Patent No. 7348147and PCT publication No. WO/2007/056723.
[0166] In a preferred embodiment of the invention, the detection of SLYTand CYR polynucleotides and polypeptides is achieved by amplification of DNA from the sample of interest by polymerase chain reaction, using primers that hybridise specifically to the SXT and/or CYR sequence, or a variant or fragment thereof, and detecting the amplified sequence.
[0167] Nucleic acids and polypeptides for analysis using methods and kits disclosed herein may be extracted from organisms either in mixed culture or as individual species or genus isolates.
Accordingly, the organisms may be cultured prior to nucleic acid and/or polypeptide isolation or alternatively nucleic acid and/or polypeptides may be extracted directly from environmental samples, such as water samples or blue-green algal blooms.
[0168] Suitable methods for the extraction and purification of nucleic acids for analysis using the methods and kits invention are generally known in the art and are described, for example, in Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc; Neilan (1995) Appl. Environ. Microbiol. 61:2286-2291; andNeilan et al. (2002) Astrobiol. 2:271-280. The skilled addressee will readily appreciate that the invention is not limited to the specific methods for nucleic acid isolation described therein and other suitable methods are encompassed by the invention. The invention may be performed without nucleic acid isolation prior to analysis of the nucleic acid.
[0169] Suitable methods for the extraction and purification of polypeptides for the purposes of the invention are generally known in the art and are described, for example, in Coligan J. E. et al. (Eds) Current Protocols in Protein Science (2007), John Wiley and Sons, Inc; Walker, J. M., (Ed) (1988) New Protein Techniques: Methods in Molecular Biology, Humana Press, Clifton, N.J; and Scopes, R. K. (1987) Protein Purification: Principles and Practice, 3rd. Ed., Springer-Verlag, New York, N.Y. Examples of suitable techniques for protein extraction include, but are not limited to dialysis, ultrafiltration, and precipitation. Protein purification techniques suitable for use include, but are not limited to, reverse-phase chromatography, hydrophobic interaction chromatography, centrifugation, gel filtration, ammonium sulfate precipitation, and ion exchange.
[0170] In accordance with the methods and kits of the invention, SXTand CYR polynucleotides or variants or fragments thereof may be detected by any suitable means known in the art. In a preferred embodiment of the invention, SXT and CYR polynucleotides are detected by PCR amplification. Under the PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify SXT and CTRpolynucleotides of the invention. Also encompassed by the invention is the PCR amplification of complementary DNA (cDNA) amplified from messenger RNA (mRNA) derived from reverse-transcription of SXT and CYR sequences (RT-PCR). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like. Methods for designing PCR and RT-PCR primers are generally known in the art and are disclosed, for example, in Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc;Maniatis et al. Molecular Cloning (1982), 280-281; Innis et al. (Eds) (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, (Eds) (1995) PCR Strategies (Academic Press, New York); Innis and Gelfand, (Eds) (1999) PCR Methods Manual (Academic Press, New York); and Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York.
[0171] The skilled addressee will readily appreciate that various parameters of PCR and RT-PCR procedures may be altered without affecting the ability to achieve the desired product. For example, the salt concentration may be varied or the time and/or temperature of one or more of the denaturation, annealing and extension steps may be varied. Similarly, the amount of DNA, cDNA, or RNA template may also be varied depending on the amount of nucleic acid available or the optimal amount of template required for efficient amplification. The primers for use in the methods and kits of the present invention are typically oligonucleotides typically being at least about 5 nucleotides to about 80 nucleotides in length, more typically about 10 nucleotides in length to about 50 nucleotides in length, and even more typically about 15 nucleotides in length to about 30 nucleotides in length. The skilled addressee will recognise that the primers described herein may be useful for a number of different applications, including but not limited to PCR, RT-PCR, and use of probes for the detection of SXT or CYR sequences.
[0172] Such primers can be prepared by any suitable method, including, for example, direct chemical synthesis or cloning and restriction of appropriate sequences. Not all bases in the primer need reflect the sequence of the template molecule to which the primer will hybridize, the primer need only contain sufficient complementary bases to enable the primer to hybridize to the template. A primer may also include mismatch bases at one or more positions, being bases that are not complementary to bases in the template, but rather are designed to incorporate changes into the DNA upon base extension or amplification. A primer may include additional bases, for example in the form of a restriction enzyme recognition sequence at the 5' end, to facilitate cloning of the amplified DNA.
[0173] The invention provides a method of detecting a cyanotoxic organism based on the detection of one or more of SXT gene 6 (sxtA),SXT gene 9 (sxtG), SXT gene 10 (sxtH), SXT gene 11 (sxtl) and SXTgene 17 (sxtX) (SEQ ID NOS: 14, 20, 22, 24, and 36 respectively), or fragments or variants thereof. Additionally or alternatively, a cyanotoxic organism may be detected based on the detection of one or more of the following SXT polypeptides: SXTA (SEQ ID NO: 15), SXTG (SEQ ID NO: 21), SXTH (SEQ ID NO: 23), 5X77 (SEQ ID NO: 25), SXTX (SEQ ID NO: 37), or fragments or variants thereof.
[0174] The skilled addressee will recognise that any primers capable of the amplifying the stated SXT and/or CYR sequences, or variants or fragments thereof, are suitable for use in the methods of the invention. For example, suitable oligonucleotide primer pairs for the PCR amplification of SXT gene 6 (sxtA) may comprise a first primer comprising the sequence of SEQ ID NO: 70 and a second primer comprising the sequence of SEQ ID NO: 71, a first primer comprising the sequence of SEQ ID NO: 72 and a second primer comprising the sequence of SEQ ID NO: 73, a first primer comprising the sequence of SEQ ID NO: 74 and a second primer comprising the sequence of SEQ ID NO: 75, a first primer comprising the sequence of SEQ ID NO: 76 and a second primer comprising the sequence of SEQ ID NO: 77, a first primer comprising the sequence of SEQ ID NO: 78 and a second primer comprising the sequence of SEQ ID NO: 79, a first primer comprising the sequence of SEQ ID NO: 113 and a second primer comprising the sequence of SEQ ID NO: 114, or a first primer comprising the sequence of SEQ ID NO: 115 or SEQ ID NO: 116 and a second primer comprising the sequence of SEQ ID NO: 117.
[0175] Suitable oligonucleotide primer pairs for the amplification of SATgene 9 (sxtG) may comprise a first primer comprising the sequence of SEQ ID NO: 118 and a second primer comprising the sequence of SEQ ID NO: 119, or a first primer comprising the sequence of SEQ ID NO: 120 and a second primer comprising the sequence of SEQ ID NO: 121.
[0176] Suitable oligonucleotide primer pairs for the amplification of SXTgcm 10 (sxtH) may comprise a first primer comprising the sequence of SEQ ID NO: 122 and a second primer comprising the sequence of SEQ ID NO: 123.
[0177] Suitable oligonucleotide primer pairs for the amplification of XATgene 11 (sxtl) may comprise a first primer comprising the sequence of SEQ ID NO: 124 or SEQ ID NO: 125 and a second primer comprising the sequence of SEQ ID NO: 126, or a first primer comprising the sequence of SEQ ID NO: 127 and a second primer comprising the sequence of SEQ ID NO: 128.
[0178] Suitable oligonucleotide primer pairs for the amplification of SXT gene 17 (sxtX) may comprise a first primer comprising the sequence of SEQ ID NO: 129 and a second primer comprising the sequence ofSEQIDNO: 130, or a first primer comprising the sequence of SEQ ID NO: 131 anda second primer comprising the sequence of SEQ ID NO: 132.
[0179] The skilled addressee will recognise that fragments and variants of the above-mentioned primer pairs may also efficiently amplify SATgene 6 (sxtA), SXT gene 9 (sxlG), SXT gene 10 (sxtH), SXT gene 11 (sxtl) or SXT gene 17 (sxtX) sequences.
[0180] In certain embodiments of the invention, polynucleotide sequences derived from the CYR gene are detected based on the detection of CYR gene 8 (cyrJ) (SEQ ID NO: 95). Suitable oligonucleotide primer pairs for the PCR amplification of CYR gene 8 (cyrJ) may comprise a first primer having the sequence of SEQ ID NO: 111 or a fragment or variant thereof and a second primer having the sequence of SEQ ID NO: 112 or a fragment thereof.
[0181] Also included within the scope of the present invention are variants and fragments of the exemplified oligonucleotide primers. The skilled addressee will also recognise that the invention is not limited to the use of the specific primers exemplified, and alternative primer sequences may also be used, provided the primers are designed appropriately so as to enable the amplification of SXT and/or CFRsequences. Suitable primer sequences can be determined by those skilled in the art using routine procedures without undue experimentation. The location of suitable primers for the amplification of SXT and/or CFRsequences may be determined by such factors as G+C content and the ability for a sequence to form unwanted secondary structures.
[0182] Suitable methods of analysis of the amplified nucleic acids are well known to those skilled in the art and are described for example, in,Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York);Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc; and Maniatis et al. Molecular Cloning (1982), 280-281. Suitable methods of analysis ofthe amplified nucleic acids include, for example, gel electrophoresis which may or may not be preceded by restriction enzyme digestion, and/or nucleic acid sequencing. Gel electrophoresis may comprise agarose gel electrophoresis or polyacrylamide gel electrophoresis, techniques commonly used by those skilled in the art for separation of DNA fragments on the basis of size. The concentration of agarose or polyacrylamide in the gel in large part determines the resolution ability of the gel and the appropriate concentration of agarose or polyacrylamide will therefore depend on the size of the DNA fragments to be distinguished.
[0183] In other embodiments of the invention, SXT and CTRpolynucleotides and variants or fragments thereof may be detected by the use of suitable probes. The probes of the invention are based on the sequences of SXT and/or CYR polynucleotides disclosed herein. Probes are nucleotide sequences of variable length, for example between about 10 nucleotides and several thousand nucleotides, for use in detection of homologous sequences, typically by hybridization. Hybridization probes of the invention may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides.
[0184] Methods for the design and/or production of nucleotide probes are generally known in the art, and are described, for example, inRobinson P. J.. et al. (Eds) Current Protocols in Cytometry (2007), John Wiley and Sons, Inc; Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc; Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York; and Maniatis et al. Molecular Cloning (1982), 280-281. Nucleotide probes may be prepared, for example, by chemical synthesis techniques, for example, the phosphodiester and phosphotriester methods (see for example Narang S. A. et al. (1979) Meth. Enzymol. 68:90; Brown, E. L. (1979) et al. Meth. Enzymol. 68:109; andU.S. Patent No. 4356270), the diethylphosphoramidite method (see Beaucage S.L et al. (1981) Tetrahedron Letters, 22:1859-1862). A method for synthesizing oligonucleotides on a modified solid support is described in U.S. Patent No. 4458066.
[0185] The probes of the invention may be labelled by incorporation of a marker to facilitate their detection. Techniques for labelling and detecting nucleic acids are described, for example, in Ausubel F. M. et al. (Eds) Current Protocols in Molecular Biology (2007), John Wiley and Sons, Inc.Examples of suitable markers include fluorescent molecules (e.g. acetylaminofluorene, 5-bromodeoxyuridine, digoxigenin, fluorescein) and radioactive isotopes (e.g. 32P, 35S, 3H, 33P). Detection of the marker may be achieved, for example, by chemical, photochemical, immunochemical, biochemical, or spectroscopic techniques.
[0186] The methods and kits of the invention also encompass the use of antibodies which are capable of binding specifically to the polypeptides of the invention. The antibodies may be used to qualitatively or quantitatively detect and analyse one or more SXT or CYR polypeptides in a given sample. Methods for the generation and use of antibodies are generally known in the art and described in, for example, Harlow and Lane (Eds) Antibodies - A Laboratory Manual, (1988), Cold Spring Harbor Laboratory, N.Y: Coligan, Current Protocols in Immunology (1991); Goding, Monoclonal Antibodies: Principles and Practice (1986) 2nd ed; and Kohler & Milstein, (1975) Nature 256: 495-497. The antibodies may be conjugated to a fluorochrome allowing detection, for example, by flow cytometry, immunohistochemisty or other means known in the art. Alternatively, the antibody may be bound to a substrate allowing colorimetric or chemiluminescent detection. The invention also contemplates the use of secondary antibodies capable of binding to one or more antibodies capable of binding specifically to the polypeptides of the invention.
[0187] The invention also provides kits for the detection of cyanotoxic organisms and/or cyanobacteria, and/or dinoflagellates. In general, the kits of the invention comprise at least one agent for detecting the presence of one or more SXT and/or CYR polynucleotide or polypeptides disclosed herein, or a variant or fragment thereof. Any suitable agent capable of detecting SXT and/or CYR sequences of the invention may be included in the kit. Non-limiting examples include primers, probes and antibodies.
[0188] In one aspect, the invention provides a kit for the detection of cyanobacteria, the kit comprising at least one agent for detecting the presence the presence of one or more SXT polynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof.
[0189] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ
ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID
NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID
NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID
NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0190] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0191] The SXT polypeptide may comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69, and variants and fragments thereof.
[0192] Also provided is a kit for the detection of cyanotoxic organisms. The kit comprises at least one agent for detecting the presence of one or more SXT polynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof.
[0193] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 36, and variants and fragments thereof.
[0194] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 36, and variants and fragments thereof.
[0195] The SXT polypeptide may comprising an amino acid sequence selected from the group consisting of consisting of SEQ ID NO: 15, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 37, and variants and fragments thereof.
[0196] The at least one agent may be any suitable reagent for the detection of SXT polynucleotides and/or polypeptides disclosed herein. For example, the agent may be a primer, an antibody or a probe. By way of exemplification only, the primers or probes may comprise a sequence selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, and variants and fragments thereof.
[0197] In certain embodiments of the invention, the kits for the detection of cyanobacteria or cyanotoxic organisms may further comprise at least one additional agent capable of detecting one or more CYR polynucleotide and/or CYR polypeptide sequences as disclosed herein, or a variant or fragment thereof.
[0198] The CYR polynucleotide may comprise a polynucleotide comprising a sequence selected from the group consisting of: SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants and fragments thereof.
[0199] Alternatively, the CYR polynucleotide may comprise a ribonucleic acid or complementary DNA encoded by a sequence selected from the group consisting of: SEQ ID NO: 80, SEQ ID NO: 81, SEQ NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants and fragments thereof.
[0200] The CYR polypeptide may comprise a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants and fragments thereof.
[0201] The at least one additional agent may be selected, for example, from the group consisting of primers, antibodies and probes. A suitable primer or probe may comprise a sequence selected from the group consisting of SEQ ID NO: 111, SEQ ID NO: 112, and variants and fragments thereof.
[0202] In another aspect, the invention provides a kit for the detection of cyanobacteria, the kit comprising at least one agent for detecting the presence the presence of one or more CYR polynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof.
[0203] The CYR polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 81, SEQ ID NO: 83, SEQ NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants and fragments thereof.
[0204] Alternatively, the CYR polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, and variants and fragments thereof.
[0205] The CYR polypeptide may comprise a sequence selected from the group consisting of SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92 , SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, and SEQ ID NO: 110, and variants or fragments thereof.
[0206] In certain embodiments of the invention, the kits for detecting cyanobacteria comprising one or more agents for the detection of CTRsequences or variants or fragments thereof, may further comprise at least one additional agent capable of detecting one or more of the SATpolynucleotides and/or SXT polypeptides disclosed herein, or variants or fragments thereof.
[0207] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0208] Alternatively, the SXT polynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ m NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0209] The at least one agent may be any suitable reagent for the detection of CYR polynucleotides and/or polypeptides disclosed herein. For example, the agent may be a primer, an antibody or a probe. By way of exemplification only, the primers or probes may comprise a sequence selected from the group consisting of SEQ ID NO: 111, SEQ ID NO: 112, and variants and fragments thereof.
[0210] Also provided is a kit for the detection of dinoflagellates, the kit comprising at least one agent for detecting the presence one or moreSAT polynucleotides or polypeptides as disclosed herein, or a variant or fragment thereof.
[0211] The SXT polynucleotide may comprise a sequence selected from the group consisting of SEQ
ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID
NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID
NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID
NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof.
[0212] Alternatively, the SXTpolynucleotide may be an RNA or cDNA encoded by a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, and variants and fragments thereof and/or polypeptides as disclosed herein, or a variant or fragment thereof.
[0213] The SXT polypeptide may comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 69, and variants and fragments thereof.
[0214] In general, the kits of the invention may comprise any number of additional components. By way of non-limiting examples the additional components may include, reagents for cell culture, reference samples, buffers, labels, and written instructions for performing the detection assay.
Methods of screening [0215] The polypeptides and polynucleotides of the present invention, and fragments and analogues thereof are useful for the screening and identification of compounds and agents that interact with these molecules. In particular, desirable compounds are those that modulate the activity of these polypeptides and polynucleotides. Such compounds may exert a modulatory effect by activating, stimulating, increasing, inhibiting or preventing expression or activity of the polypeptides and/or polynucleotides. Suitable compounds may exert their effect by virtue of either a direct (for example binding) or indirect interaction.
[0216] Compounds which bind, or otherwise interact with the polypeptides and polynucleotides of the invention, and specifically compounds which modulate their activity, may be identified by a variety of suitable methods. Non limiting methods include the two-hybrid method, co-immunoprecipitation, affinity purification, mass spectroscopy, tandem affinity purification, phage display, label transfer, DNA microarrays/gene coexpression and protein microarrays.
[0217] For example, a two-hybrid assay may be used to determine whether a candidate agent or plurality of candidate agents interacts or binds with a polypeptide of the invention or a variant or fragment thereof. The yeast two-hybrid assay system is a yeast-based genetic assay typically used for detecting protein-protein interactions (Fields and Song., Nature 340: 245-246 (1989)). The assay makes use of the multi-domain nature of transcriptional activators. For example, the DNA-binding domain of a known transcriptional activator may be fused to a polypeptide of the invention or a variant or fragment thereof, and the activation domain of the transcriptional activator fused to the candidate agent. Interaction between the candidate agent and the polypeptide of the invention or a variant or fragment thereof, will bring the DNA-binding and activation domains of the transcriptional activator into close proximity. Subsequent transcription of a specific reporter gene activated by the transcriptional activator allows the detection of an interaction.
[0218] In a modification of the technique above, a fusion protein may be constructed by fusing the polypeptide of the invention or a variant or fragment thereof to a detectable tag, for example alkaline phosphatase, and using a modified form of immunoprecipitation as described by Flanagan and Leder (Flanagan and Leder, Cell 63:185-194 (1990)) [0219] Alternatively, co-immunoprecipation may be used to to determine whether a candidate agent or plurality of candidate agents interacts or binds with polypeptide of the invention or a variant or fragment thereof. Using this technique, cyanotoxic organisms, cyanobacteria and/or dinoflagellates may be lysed under nondenaturing conditions suitable for the preservation of protein-protein interactions.
The resulting solution can then be incubated with an antibody specific for a polypeptide of the invention or a variant or fragment thereof and immunoprecipitated from the bulk solution, for example by capture with an antibody-binding protein attached to a solid support. Immunoprecipitation of the polypeptide of the invention or a variant or fragment thereof by this method facilitates the co-immunoprecipation of an agent associated with that protein. The identification an associated agent can be established using a number of methods known in the art, including but not limited to SDS-PAGE, western blotting, and mass spectrometry.
[0220] Alternatively, the phage display method may be used to to determine whether a candidate agent or plurality of candidate agents interacts or binds with a polypeptide of the invention or a variant or fragment thereof. Phage display is a test to screen for protein interactions by integrating multiple genes from a gene bank into phage. Under this method, recombinant DNA techniques are used to express numerous genes as fusions with the coat protein of a bacteriophage such the peptide or protein product of each gene is displayed on the surface of the viral particle. A whole library of phage-displayed peptides or protein products of interest can be produced in this way. The resulting libraries of phage-displayed peptides or protein products may then be screened for the ability to bind a polypeptide of the invention or a variant or fragment thereof. DNA extracted from interacting phage contains the sequences of interacting proteins.
[0221] Alternatively, affinity chromatography may be used to to determine whether a candidate agent or plurality of candidate agents interacts or binds with a polypeptide of the invention or a variant or fragment thereof. For example, a polypeptide of the invention or a variant or fragment thereof, may be immobilised on a support (such as sepharose) and cell lysates passed over the column. Proteins binding to the immobilised polypeptide of the invention or a variant or fragment thereof may then be eluted from the column and identified, for example by N-terminal amino acid sequencing.
[0222] Potential modulators of the activity of the polypeptides of the invention may be generated for screening by the above methods by a number of techniques known to those skilled in the art. For example, methods such as X-ray crystallography and nuclear magnetic resonance spectroscopy may be used to model the structure of polypeptide of the invention or a variant or fragment thereof, thus facilitating the design of potential modulating agents using computer-based modeling. Various forms of combinatorial chemistry may also be used to generate putative modulators.
[0223] Polypeptides of the invention and appropriate variants or fragments thereof can be used in high-throughput screens to assay candidate compounds for the ability to bind to, or otherwise interact therewith. These candidate compounds can be further screened against functional polypeptides to determine the effect of the compound on polypeptide activity.
[0224] The present invention also contemplates compounds which may exert their modulatory effect on polypeptides of the invention by altering expression of the polypeptide. In this case, such compounds may be identified by comparing the level of expression of the polypeptide in the presence of a candidate compound with the level of expression in the absence of the candidate compound.
[0225] It will be appreciated that the methods described above are merely examples of the types of methods that may be utilised to identify agents that are capable of interacting with, or modulating the activity of polypeptides of the invention or variants or fragments thereof. Other suitable methods will be known by persons skilled in the art and are within the scope of this invention.
[0226] Using the methods described above, an agent may be identified that is an agonist of a polypeptide of the invention or a variant or fragment thereof. Agents which are agonists enhance one or more of the biological activities of the polypeptide. Alternatively, the methods described above may identify an agent that is an antagonist of a polypeptide of the invention or a variant or fragment thereof. Agents which are antagonists retard one or more of the biological activities of the polypeptide.
[0227] Antibodies may act as agonists or antagonists of a polypeptide of the invention or a variant or fragment thereof. Preferably suitable antibodies are prepared from discrete regions or fragments of the polypeptides of the invention or variants or fragments thereof. An antigenic portion of a polynucleotide of interest may be of any appropriate length, such as from about 5 to about 15 amino acids. Preferably, an antigenic portion contains at least about 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 amino acid residues.
[0228] Methods for the generation of suitable antibodies will be readily appreciated by those skilled in the art. For example, monoclonal antibody specific for a polypeptide of the invention or a variant or fragment thereof typically containing Fab portions, may be prepared using hybridoma technology described in Antibodies-A Laboratory Manual, Harlow and Lane, eds., Cold Spring Harbor Laboratory, N.Y. (1988).
[0229] In essence, in the preparation of monoclonal antibodies directed toward polypeptide of the invention or a variant or fragment thereof, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include the hybridoma technique originally developed by Kohler et al., Nature, 256:495-497 (1975), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today, 4:72 (1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, pp. 77- 96, Alan R. Liss, Inc., (1985)). Immortal, antibody-producing cell lines can be created by techniques other than fusion, such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, for example, M. Schreier et al., "Hybridoma Techniques" Cold Spring Harbor Laboratory, (1980); Hammerling et al., "Monoclonal Antibodies and T-cell Hybridomas" Elsevier/North-Holland Biochemical Press, Amsterdam (1981); and Kennett et al., "Monoclonal Antibodies", Plenum Press (1980).
[0230] In brief, a means of producing a hybridoma from which the monoclonal antibody is produced, a myeloma or other self-perpetuating cell line is fused with lymphocytes obtained from the spleen of a mammal hyperimmunised with a recognition factor-binding portion thereof, or recognition factor, or an origin-specific DNA-binding portion thereof. Hybridomas producing a monoclonal antibody useful in practicing this invention are identified by their ability to immunoreact with the present recognition factors and their ability to inhibit specified transcriptional activity in target cells.
[0231] A monoclonal antibody useful in practicing the invention can be produced by initiating a monoclonal hybridoma culture comprising a nutrient medium containing a hybridoma that secretes antibody molecules of the appropriate antigen specificity. The culture is maintained under conditions and for a time period sufficient for the hybridoma to secrete the antibody molecules into the medium. The antibody-containing medium is then collected. The antibody molecules can then be further isolated by well-known techniques.
[0232] Similarly, there are various procedures known in the art which may be used for the production of polyclonal antibodies. For the production of polyclonal antibodies against a polypeptide of the invention or a variant or fragment thereof, various host animals can be immunized by injection with a polypeptide of the invention, or a variant or fragment thereof, including but not limited to rabbits, chickens, mice, rats, sheep, goats, etc. Further, the polypeptide variant or fragment thereof can be conjugated to an immunogenic carrier (e.g., bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH)). Also, various adjuvants may be used to increase the immunological response, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminium hydroxide, surface active substances such as rysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.
[0233] Screening for the desired antibody can also be accomplished by a variety of techniques known in the art. Assays for immunospecific binding of antibodies may include, but are not limited to, radioimmunoassays, ELISAs (enzyme-linked immunosorbent assay), sandwich immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays, Western blots, precipitation reactions, agglutination assays, complement fixation assays, immunofluorescence assays, protein A assays, and Immunoelectrophoresis assays, and the like (see, for example, Ausubel et al., Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York (1994)). Antibody binding may be detected by virtue of a detectable label on the primary antibody. Alternatively, the antibody may be detected by virtue of its binding with a secondary antibody or reagent which is appropriately labelled. A variety of methods are known in the art for detecting binding in an immunoassay and are included in the scope of the present invention.
[0234] The antibody (or fragment thereof) raised against a polypeptide of the invention or a variant or fragment thereof, has binding affinity for that protein. Preferably, the antibody (or fragment thereof) has binding affinity or avidity greater than about 105M4, more preferably greater than about 106 M"1, more preferably still greater than about 107M-1 and most preferably greater than about 108M-1.
[0235] In terms of obtaining a suitable amount of an antibody according to the present invention, one may manufacture the antibody(s) using batch fermentation with serum free medium. After fermentation the antibody may be purified via a multistep procedure incorporating chromatography and viral inactivation/removal steps. For instance, the antibody may be first separated by Protein A affinity chromatography and then treated with solvent/detergent to inactivate any lipid enveloped viruses. Further purification, typically by anion and cation exchange chromatography may be used to remove residual proteins, solvents/detergents and nucleic acids. The purified antibody may be further purified and formulated into 0.9% saline using gel filtration columns. The formulated bulk preparation may then be sterilised and viral filtered and dispensed.
[0236] Embodiments of the invention may utilise antisense technology to inhibit the expression of a nucleic acid of the invention or a fragment or variant thereof by blocking translation of the encoded polypeptide. Antisense technology takes advantage of the fact that nucleic acids pair with complementary sequences. Suitable antisense molecules can be manufactured by chemical synthesis or, in the case of antisense RNA, by transcription in vitro or in vivo when linked to a promoter, by methods known to those skilled in the art.
[0237] For example, antisense oligonucleotides, typically of 18-30 nucleotides in length, may be generated which are at least substantially complementary across their length to a region of the nucleotide sequence of the polynucleotide of interest. Binding of the antisense oligonucleotide to their complementary cellular nucleotide sequences may interfere with transcription, RNA processing, transport, translation and/or mRNA stability. Suitable antisense oligonucleotides may be prepared by methods well known to those of skill in the art and may be designed to target and bind to regulatory regions of the nucleotide sequence or to coding (gene) or non-coding (intergenic region) sequences. Typically antisense oligonucleotides will be synthesized on automated synthesizers. Suitable antisense oligonucleotides may include modifications designed to improve their delivery into cells, their stability once inside a cell, and/or their binding to the appropriate target. For example, the antisense oligonucleotide may be modified by the addition of one or more phosphorothioate linkages, or the inclusion of one or morpholine rings into the backbone (so-called 'morpholino' oligonucleotides).
[0238] An alternative antisense technology, known as RNA interference (RNAi), may be used, according to known methods in the art (see for example WO 99/49029 and WO 01/70949), to inhibit the expression of a polynucleotide. RNAi refers to a means of selective post-transcriptional gene silencing by destruction of specific mRNA by small interfering RNA molecules (siRNA). The siRNA is generated by cleavage of double stranded RNA, where one strand is identical to the message to be inactivated. Doublestranded RNA molecules may be synthesised in which one strand is identical to a specific region of the p53 mRNA transcript and introduced directly. Alternatively corresponding dsDNA can be employed, which, once presented intracellularly is converted into dsRNA. Methods for the synthesis of suitable molecule for use in RNAi and for achieving post-transcriptional gene silencing are known to those of skill in the art.
[0239] A further means of inhibiting expression may be achieved by introducing catalytic antisense nucleic acid constructs, such as ribozymes, which are capable of cleaving mRNA transcripts and thereby preventing the production of wild type protein. Ribozymes are targeted to and anneal with a particular sequence by virtue of two regions of sequence complementarity to the target flanking the ribozyme catalytic site. After binding the ribozyme cleaves the target in a site-specific manner. The design and testing of ribozymes which specifically recognise and cleave sequences of interest can be achieved by techniques well known to those in the art (see for example Lieber and Strauss, 1995, Molecular and Cellular Biology, 15:540-551.
[0240] The invention will now be described with reference to specific examples, which should not be construed as in any way limiting the scope of the invention.
Examples [0241] The invention will now be described with reference to specific examples, which should not be construed as in any way limiting the scope of the invention.
Example 1: Cyanobacterial cultures and characterisation of the SATgene cluster.
[0242] Cyanobacterial strains used in the present study (Figure 1) were grown in Jaworski medium in static batch culture at 26°C under continuous illumination (10 pmol m'2 s'1). Total genomic DNA was extracted from cyanobacterial cells by lysozyme/SDS/proteinase K lysis following phenol-chloroform extraction as described inNeilan, B. A. 1995.. Appl Environ Microbiol 61:2286-2291. DNA in the supernatant was precipitated with 2 volumes - 20°C ethanol, washed with 70% ethanol, dissolved in TE-buffer (10:1), and stored at - 20°C. PCR primer sequences used for the amplification of sxt ORFs are shown in Figure IB).
[0243] PCR amplicons were separated by agarose gel electrophoresis in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 7.8), and visualised by UV translumination after staining in ethidium bromide (0.5 pg/ml). Sequencing of unknown regions of DNA was performed by adaptor-mediated PCR as described in Moffitt et al. (2004) Appl. Environ. Microbiol. 70:6353-6362. Automated DNA sequencing was performed using the PRISM Big Dye cycle sequencing system and a model 373 sequencer (Applied Biosystems). Sequence data were analysed using ABI Prism-Autoassembler software, and percentage similarity and identity to other translated sequences determined using BLAST in conjunction with the National Center for Biotechnology Information (NIH), Fugue blast (http://www-cryst.bioc.cam.ac.uk/fugue/) was used to identify distant homologs via sequence-structure comparisons. The sxt gene clusters were assembled using the software Phred, Phrap, and Consed ('http://www.phrap.org/phredphrapconsed.htmlt. and open reading frames manually identified. GenBank accession numbers for the sxt gene cluster from C. raciborskii T3 is DQ787200.
Example 2: Mass spectrometric analysis of SXT intermediates.
[0244] Bacterial extracts and SXT standards were analysed by HPLC (Thermo Finnigan Surveyor HPLC and autosampler) coupled to an ion trap mass spectrometer (Thermo Finnigan LCQ Deca XP Plus) fitted with an electrospray source. Separation of analytes was obtained on a 2.1 mm x 150 mm Phenomenex Luna 3 micron Cl 8 column at 100 mL/min. Analysis was performed using a gradient starting at 5% acetonitrile inlO mM heptafluorobutyric acid (HFBA) This was maintained for 10 min, then ramped to 100% acetonitrile, over 30 min. Conditions were held at 100% acetonitrile for 10 min to wash the column and then returned to 5% acetonitrile inlO mM HFBA and again held for 10 min to equilibrate the column for the next sample. This resulted in a runtime of 60 min per sample. Sample volumes of 10-100 mL were injected for each analysis. The HPLC eluate directly entered the electrospray source, which was programmed as follows: electrospray voltage 5 kV, sheath gas flow rate 30 arbitrary units, auxiliary gas flow rate 5 arbitrary units. The capillary temperature was 200°C and had a voltage of 47 V. Ion optics were optimised for maximum sensitivity before sample analysis using the instruments autotune function with a standard toxin solution. Mass spectra were acquired in the centroid mode over the m/z range 145-650. Mass range setting was ’normal’, with 200 ms maximum ion injection time and automatic gain control (AGC) on. Tandem mass spectra were obtained over a m/z range relevant to the precursor ion. Collision energy was typically 20-30 ThermoFinnigan arbitrary units, and was optimised for maximal information using standards where available.
Example 3: Identification and sequencing of the SXT gene cluster inCylindrospermopsis raciborskii T3 [0245] O-carbamoyltransferase was initially detected in C. raciborskii T3 via degenerate PCR, and later named sxtl. Further investigation showed that homologues of sxtl were exclusively present in SAT toxin-producing strains of four cyanobacterial genera (Table 1), thus representing a good candidate gene in SAT toxin biosynthesis. The sequence of the complete putative SAT biosynthetic gene cluster (sxt) was then obtained by genome walking up- and downstream of sxtl in C. raciborskii T3 (Figure 3). In C. raciborskii T3, this sxt gene cluster spans approximately 35000 bp, encoding 31 open reading frames (Figure 2). The cluster also included other genes encoding SAT-biosynthesis enzymes, including a methyltransferase (sxtAl), a class II aminotransferase (sxtA4), an amidinotransferase (sxtG), dioxygenases (sxtH), in addition to the Ocarbamoyltransferase (sxtl). PCR screening of selected sxt open reading frames in toxic and non-toxic cyanobacteria strains showed that they were exclusively present in SAT toxin-producing isolates (Figure 1A), indicating the association of these genes with the toxic phenotype. In the following passages we describe the open reading frames in the putative sxt gene cluster and their predicted functions, based on bioinformatic analysis, LCMS/ MS data on biosynthetic intermediates and in vitro biosynthesis, when applicable.
Example 4: Functional prediction of the parent molecule SATbiosynthetic genes [0246] Bioinformatic analysis of the sxt gene cluster revealed that it contains a previously undescribed example of a polyketide synthase (PKS) like structure, named sxt A. SxtA possesses four catalytic domains, SxtAl to SxtA4. An iterated PSI-blast search revealed low sequence homology of SxtAl to S-adenosylmethionine (SAM)-dependent methyltransferases. Further analysis revealed the presence of three conserved sequence motifs in SxtAl (278-ITDMGCGDG- 286, 359-DPENILHI-366, and 424-VYNKHGLMIL-433) that are specific for SAMdependent methyltransferases. SxtA2 is related to GCN5-related N-acetyl transferases (GNAT). GNAT catalyse the transfer of acetate from acetyl-CoA to various heteroatoms, and have been reported in association with other unconventional PKSs, such as PedI, where they load the acyl carrier protein (ACP) with acetate. SxtA3 is related to an ACP, and provides a phosphopantetheinyl-attachment site. SxtA4 is homologous to class II aminotransferases and was most similar to 8-amino-7-oxononanoate synthase (AONS). Class II aminotransferases are a monophyletic group of pyridoxal phosphate (PLP)-dependent enzymes, and the only enzymes that are known to perform Claisen-condensations of amino acids. We therefore reasoned that sxlA performs the first step in SXT biosynthesis, involving a Claisen-condensation.
[0247] The predicted reaction sequence of SxtA, based on its primary structure, is the loading of the ACP (SxtA3) with acetate from acetyl-CoA, followed by the SxtAl-catalysed methylation of acetyl-ACP, converting it to propionyl-ACP. The class II aminotransferase domain, SxtA4, would then perform a Claisen-condensation between propionyl-ACP and arginine (Figure 4). The putative product of SxtA is thus 4-amino-3-oxoguanidinoheptane which is here designated as Compound A', (Figure 4). To verify this pathway for SXT biosynthesis based on comparative gene sequence analysis, cell extracts of C. raciborskii T3 were screened by LC-MS/MS for the presence of compound A' (Figure 5) as well as arginine and SXT as controls. Arginine and SXT were readily detected (Figure 5) and produced the expected fragment ions. On the other hand, LC-MS/MS data obtained from m!z 187 was consistent with
the presence of structure A from C. raciborskii T3 (Figure 5). MS/MS spectra showed the expected fragment ion (m/z 170, m/z 128) after the loss of ammonia and guanidine from A'. LC-MS/MS data strongly supported the predicted function of SxtA and thus a revised initiating reaction in the SXT biosynthesis pathway.
[0248] sxlG encodes a putative amidinotransferase, which had the highest amino acid sequence similarity to L-arginine:lysine amidinotransferases. It is proposed that the product of SxtA is the substrate for the amidinotransferase SxtG, which transfers an amidino group from arginine to the a-amino group A' (Figure 4), thus producing 4,7-diguanidino-3-oxoheptane designated compound B' (Figure 3). This hypothetical sequence of reactions was also supported by the detection of C by LC-MS/MS (Figure 4). Cell extracts from C. raciborskii T3, however, did not contain any measurable levels of B' (4,7-diguanidino-3- oxoheptane). A likely explanation for the failure to detect the intermediate B' is its rapid cyclisation to form C via the action of SxtB.
[0249] The sxt gene cluster encodes an enzyme, sxtB, similar to the cytidine deaminase-like enzymes from g-proteobacteria. The catalytic mechanism of cytidine deaminase is a retro-aldol cleavage of ammonia from cytidine, which is the same reaction mechanism in the reverse direction as the formation of the first heterocycle in the conversion from B' to C (Figure 4). It is therefore suggested that SxtB catalyses this retroaldol- like condensation (step 4, Figure 4).
[0250] The incorporation of methionine methyl into SXT, and its hydroxylation was studied. Only one methionine methyl-derived hydrogen is retained in SXT, and a 1,2-H shift has been observed between acetate-derived C-5 and C-6 of SXT. Hydroxylation of the methyl side-chain of the SXT precursor proceeds via epoxidation of a double-bond between the SAM-derived methyl group and the acetate derived C-6. This incorporation pattern may result from an electrophilic attack of methionine methyl on the double bond between C-5 and C-6, which would have formed during the preceding cyclisation. Subsequently, the new methylene side-chain would be epoxidated, followed by opening to an aldehyde, and subsequent reduction to a hydroxyl. Retention of only one methionine methyl-derived hydrogen, the 1,2-H shift between C-5 and C-6, and the lacking 1,2-H shift between C-l and C-5 is entirely consistent with the results of this study, whereby the introduction of methionine methyl precedes the formation of the three heterocycles.
[0251] sxtD encodes an enzyme with sequence similarity to sterol desaturase and is the only candidate desaturase present in the sxt gene cluster, SxtD is predicted to introduce a double bond between C-l and C-5 of C, and cause a 1,2-H shift between C-5 and C-6 (compound D', Figure 3). The gene product of -yxiiSTias sequence homology to non-heme iron 2-oxoglutaratedependent (20G) dioxygenases. These are multifunctional enzymes that can perform hydroxylation, epoxidation, desaturation, cyclisation, and expansion reactions. 20G dioxygenases have been reported to catalyse the oxidative formation of heterocycles. SxtS could therefore perform the consecutive epoxidation of the new double bond, and opening of the epoxide to an aldehyde with concomitant bicyclisation. This explains the retention of only one methionine methyl-derived hydrogen, and the lack of a 1,2-H shift between C-l and C-5 of SXT (steps 5 to 7, Figure 4). SxtU has sequence similarity to short-chain alcohol dehydrogenases. The most similar enzyme with a known function is clavaldehyde dehydrogenase (AAF86624), which reduces the terminal aldehyde of clavulanate-9-aldehyde to an alcohol. SxtU is therefore predicted to reduce the terminal aldehyde group of the SXT precursor in step 8 (Figure 4), forming compound E'.
[0252] The concerted action of SxtD, SxtS and SxtU is therefore the hydroxylation and bicyclisation of compound C to E' (Figure 4). In support for this proposed pathway of SXT biosynthesis, LC-MS/MS obtained from mlz 211 and mlz 225 allowed the detection of compounds C and E' from C. raciborskii T3 (Figure 5). On the other hand, no evidence could be found by LC-MS/MS for intermediates B (mlz 216), and C {mlz 198). MS/MS spectra showed the expected fragment ions after the loss of ammonia and guanidine from C, as well as the loss of water in the case of E'.
[0253] The detection of E' indicated that the final reactions leading to the complete SXT molecule are the O-carbamoylation of its free hydroxyl group and a oxidation of C-12. The actual sequence of these final reactions, however, remains uncertain. The gene product of sxtl is most similar to a predicted Ocarbamoyltransferase from Trichodesmium erythraeum (accession ABG50968) and other predicted O-carbamoyltransferases from cyanobacteria. O-carbamoyltransferases invariably transfer a carbamoyl group from carbamoylphosphate to a free hydroxyl group. Our data indicate that Sxtl may catalyse the transfer of a carbamoyl group from carbamoylphosphate to the free hydroxy group of E'. Homologues of sxtJ and sxtK with a known function were not found in the databases, however it was noted that sxtJ and sxtK homologues were often encoded adjacent to O-carbamoyltransferase genes.
[0254] The sxt gene cluster contains two genes, sxtH and sxlT, each encoding a terminal oxygenase subunit of bacterial phenyl-propionate and related ring-hydroxylating dioxygenases. The closest homologue with a predicted function was capreomycidine hydroxylase fromStreptomyces vinaceus, which hydroxylates a ringcarbon (C-6) of capreomycidine. SxtH and SxtT may therefore perform a similar function in SXT biosynthesis, that is, the oxidation or hydroxylation and oxidation of C-12, converting F' into SXT.
[0255] Members belonging to bacterial phenylpropionate and related ring-hydroxylating dioxygenases are multi-component enzymes, as they require an oxygenase reductase for their regeneration after each catalytic cycle. The sxt gene cluster provides a putative electron transport system, which would fulfill this function. sxtV encodes a 4Fe-4S ferredoxin with high sequence homology to a ferredoxin from Nos toe punctiforme. sxtWwas most similar to fumarate reductase/succinate dehydrogenase-like enzymes from A. variabilis and Nostoc punctiforme, followed by AsfA from Pseudomonas putida. AsfA and AsfB are enzymes involved in the transport of electrons resulting from the catabolism of aryl sulfonates. SxtV could putatively extract an electron pair from succinate, converting it to fumarate, and then transfer the electrons via ferredoxin (SxtW) to SxtH and SxtT.
Example 5: Comparative sequence analysis and functional assignment of SXTtailoring genes [0256] Following synthesis of the parent molecule SXT, modifying enzymes introduce various functional groups. In addition to SXT, C.raciborskii T3 produces N-l hydroxylated (neoSXT), decarbamoylated (dcSXT), and N-sulfurylated (GTX-5) toxins, whereas A. circinalis XSNQC 131C produces decarbamoylated (dcSXT), O-sulfurylated (GTX-3/2, dcGTX-3/2), as well as both O-andN-sulfurylated toxins (C- 1/2), but no N-l hydroxylated toxins.
[0257] sxtX encodes an enzyme with homology to cephalosporin hydroxylase. sxtX was only detected in C. raciborskii T3, A. flos-aquaeNH- 5, and Lyngbya wollei, which produce N-l hydroxylated analogues of SXT, such as neoSXT. This component of the gene cluster was not present in any strain of A. circinalis, and therefore probably the reason why this species does not produce N-l hydroxylated PSP toxins (Figure 1 A). The predicted function of SxtX is therefore the N-l hydroxylation of SXT.
[0258] A. circinalis AWQC131C and C. raciborskii T3 also produces N- and O-sulfated analogues of SXT (GTX-5, C-2/3, (dc)GTX- 3/4). The activity of two 3'-phosphate 5'-phosphosulfate (PAPS)-dependent sulfotransferases, which were specific for the N- 21 of SXT and GTX-3/2, and 0-22 of 11-hydroxy SXT, respectively, has been described from thsSXT toxin-producing dinoflagellate Gymnodinium catenatum. The svigene cluster from C. raciborskii T3 encodes a putative sulfotransferase, SxtN. A PSI-BLAST search with SxtN identified only 25 hypothetical proteins of unknown function with an E value above the threshold (0.005). A profile library search, however, revealed significant structural relatedness of SxtN to estrogen sulfotransferase (1AQU) (Z-score=24.02) and other sulfotransferases. SxtN has a conserved N-terminal region, which corresponds to the adenosine 3'-phosphate 5'-phosphosulfate (PAPS) binding region in 1 AQU. It is not known, however, whether SxtN transfers a sulfate group to N-21 or 0-22. Interestingly, the sxt gene cluster encodes an adenylylsulfate kinase (APSK), SxtO, homologues of which are involved in the formation of PAPS (Figure 2). APKS phosphorylates the product of ATPsulfurylase, adenylylsulfate, converting it to PAPS. Other biosynthetic gene clusters that result in sulfated secondary metabolites also contain genes required for the production of PAPS.
[0259] Decarbamoylated analogues of SXT could be produced via either of two hypothetical scenarios. Enzymes that act downstream of the carbamoyltransferase, Sxtl, in the biosynthesis of PSP toxins are proposed to have broad substrate specificity, processing both carbamoylated and decarbamoylated precursors of SXT. Alternatively, hydrolytic cleavage of the carbamoyl moiety from SXT or its precursors may occur. SxtL is related to GDSL-lipases, which are multifunctional enzymes with thioesterase, arylesterase, protease and lysophospholipase activities. The function of SxtL could therefore include the hydrolytic cleavage of the carbamoyl group from SXT analogues.
Example 6: Cluster-associated SXT genes involved in metabolite transport [0260] sxtF and sxlM encoded two proteins with high sequence similarity to sodium-driven multidrug and toxic compound extrusion (MATE) proteins of the NorM family. Members of the NorM family of MATE proteins are bacterial sodium-driven antiporters, that export cationic substances. All of the PSP toxins are cationic substances, except for the C-toxins which are zwitterionic. It is therefore probable that SxtF and SxtM are also involved in the export of PSP toxins. A mutational study of NorM from V. parahaematolyticus identified three conserved negatively charged residues (D32, E251, and D367) that confer substrate specificity, however the mechanism of substrate recognition remains unknown. In SxtF, the residue corresponding to E251 of NorM is conserved, whereas those corresponding to D32 and D367 are replaced by the neutral amino acids asparagine and tyrosine, respectively. Residues corresponding to D32 and E251 are conserved in SxtM, but D367 is replaced by histidine. The changes in substrate-binding residues may reflect the differences in PSP toxin substrates transported by these proteins.
Example 7: Putative transcriptional regulators of saxitoxin synthase [0261] Environmental factors, such as nitrogen and phosphate availability have been reported to regulate the production of PSP toxins in dinoflagellates and cyanobacteria. Two transcriptional factors, sxt Fand sxtZ, related to PhoU and OmpR, respectively, as well as a two component regulator histidine kinase were identified proximal to the 3'-end of the sxt gene cluster in C. raciborskii T3. PhoU-related proteins are negative regulators of phosphate uptake whereas OmpR-like proteins are involved in the regulation of a variety of metabolisms, including nitrogen and osmotic balance. It is therefore likely that PSP toxin production in C.raciborskii T3 is regulated at the transcriptional level in response to the availability of phosphate, as well as, other environmental factors.
Example 8: Phylogenetic origins of the SXT genes [0262] The sxt gene cluster from C. raciborskii T3 has a true mosaic structure. Approximately half of the sxt genes of C. raciborskii T3 were most similar to counterparts from other cyanobacteria, however the remaining genes had their closest matches with homologues from proteobacteria, actinomycetes, sphingobacteria, and firmicutes. There is an increasing body of evidence that horizontal gene transfer (HGT) is a major driving force behind the evolution of prokaryotic genomes, and cyanobacterial genomes are known to be greatly affected by HGT, often involving transposases and phages. The fact that the majority of ågenes are most closely related to homologues from other cyanobacteria, suggests that SAT biosynthesis may have evolved in an ancestral cyanobacterium that successively acquired the remaining genes from other bacteria via HGT. The structural organisation of the investigated .sxtgcnc cluster, as well as the presence of several transposases related to the IS4-family, suggests that small cassettes of sxt genes are mobile.
Example 9: Cyanobacterial cultures and characterisation of the CYR gene cluster.
[0263] Cyanobacterial strains were grown in Jaworski medium as described in Example 1 above. Total genomic DNA was extracted from cyanobacterial cells by lysozyme/SDS/proteinase K lysis following phenol-chloroform extraction as described previously Neilan, B. A. 1995.. Appl Environ Microbiol 61:2286-2291. DNA in the supernatant was precipitated with 2 volumes -20°C ethanol, washed with 70% ethanol, dissolved in TE-buffer (10:1), and stored at -20°C.
[0264] Characterization of unknown regions of DNA flanking the putative cylindrospermopsin biosynthesis genes was performed using an adaptor-mediated PCR as described in Moffitt et al. (2004) Appl. Environ. Microbiol. 70:6353-6362. PCRs were performed in 20 μΐ reaction volumes containing 1 x Taq polymerase buffer 2.5 mM MgCl2, 0.2 mM deoxynucleotide triphosphates, 10 pmol each of the forward and reverse primers, between 10 and 100 ng genomic DNA and 0.2 U of Tugpolymerase (Fischer Biotech, Australia). Thermal cycling was performed in a GeneAmp PCR System 2400 Thermal cycler (Perkin Elmer Corporation, Norwalk, CT). Cycling began with a denaturing step at 94°C for 3 min followed by 30 cycles of denaturation at 94°C for 10 s, primer annealing between 55° and 65°C for 20 s and a DNA strand extension at 72°C for 1-3 min. Amplification was completed by a final extension step at 72°C for 7 min. Amplified DNA was separated by agarose gel electrophoresis in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 7.8), and visualized by UV transillumination after staining with ethidium bromide (0.5 pg/ml).
[0265] Automated DNA sequencing was performed using the PRISM Big Dye cycle sequencing system and a model 373 sequencer (Applied Biosystems, Foster City, CA). Sequence data were analyzed using ABI Prism-Autoassembler software, while identity/similarity values to other translated sequences were determined using BLAST in conjunction with the National Center for Biotechnology Information (NIH, Bethesda, MD). Fugue blast (htto://www-cryst.bioc.cam.ac.uk/fuquc/) was used to identify distant homologs via sequence-structure comparisons. The gene clusters were assembled using the software Phred, Phrap, and Consed (http://www.phrap.orq/ohrcdphrapconsed.html). open reading frames were manually identified. Polyketide synthase and non-ribosomal peptide synthetase domains were determined using the specialized databases based on crystal structures (http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor; http://www.tigr.org/iravel/nrps/. http://www.nii.res.in/nrps-pks.htmlt.
Example 10: Genetic screening of Cylindrospermopsin-producing and non-producing cyanobacterial strains [0266] Cylindrospermopsin-producing and non-producing cyanobacterial strains were screened for the presence of the sulfotransferase gene cyrJ using the primer set cynsulfF (5' ACTTCTCTCCTTTCCCTATC 3’) (SEQ ID NO: 111) and cylnamR (5’ GAGTGAAAATGCGTAGAACTTG 3') (SEQ ID NO: 112). Genomic DNA was tested for positive amplification using the 16S rRNA gene primers 27F and 809 as described in Neilan et al. (1997) Int. J.
Syst. Bacteriol. 47:693-697. Amplicons were sequenced, as described in Example 9 above, to verify the identity of the gene fragment.
[0267] The biosynthesis of cylindrospermopsin involves an amidinotransferase, a NRPS, and a PKS (AoaA, AoaB and AoaC, respectively). In order to obtain the entire sequence of the cylindrospermopsin biosynthesis gene cluster, we used adaptor-mediated 'gene-walking' technology, initiating the process from a partial sequence of the amidinotransferase gene from C. raciborskii AWT205. Successive outward facing primers were designed and the entire gene cluster spanning 43 kb was sequenced, together with a further 3.5 kb on either side of the toxin gene cluster.
[0268] These flanking regions encode putative accessory genes (hypgenes), which include molecular chaperons involved in the maturation of hydrogenases. Due to the fact that these genes are flanking the cylindrospermopsin gene cluster at both ends, we postulate that the toxin gene cluster was inserted into this area of the genome thus interrupting the HYP gene cluster. This genetic rearrangement is mechanistically supported by the presence of transposase-like sequences within the cylindrospermopsin cluster.
[0269] Bioinformatic analysis of the toxin gene cluster was performed and based on gene function inference using sequence alignments (NCBI BLAST), predicted structural homologies (Fugue Blast), and analysis of PKS and NRPS domains using specialized blast servers based on crystal structures. The cylindrospermopsin biosynthesis cluster contains 15 ORFs, which encode all the functions required for the biosynthesis, regulation and export of the toxin cylindrospermopsin (Figure 6).
Example 11: Formation of the CYR carbon skeleton [0270] The first step in formation of the carbon skeleton of cylindrospermopsin involves the synthesis of guanidinoacetate via transamidination of glycine. CyrA, the AoaA homolog, which encodes an amidinotransferase similar to the human arginine:glycine amidinotransferase GATM, transfers a guanidino group from a donor molecule, most likely arginine, onto an acceptor molecule of glycine thus forming guanidinoacetate (Figure 8, step 1).
[0271] The next step (Figure 8, step 2) in the biosynthesis is carried out by CyrB (AoaB homolog), a mixed NRPS-PKS. CyrB spans 8.7 kb and encodes the following domains; adenylation domain (A domain) and a peptidyl carrier protein (PCP) of an NRPS followed by a pketosynthasc domain (KS), acyltransferase domain (AT), dehydratase domain (DH), methyltransferase domain (MT), ketoreductase domain (KR), and an acyl carrier protein (ACP) of PKS origin. CyrB therefore must catalyse the second reaction since it is the only gene containing an A domain that could recruit a starter unit for subsequent PKS extensions. The specific amino acid activated by the CyrB A domain cannot be predicted as its substrate specificity conferring residues do not match any in the available databases (http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor; http://www.tigr.org/iravel/nrps/. http://www.nii.res.in/nrps-nks.htmlL So far, no other NRPS has been described that utilizes guanidinoacetate as a substrate. The A domain is thought to activate guanidinoacetate, which is then transferred via the swinging arm of the peptidyl carrier protein (PCP) to the KS domain. The AT domain activates malonyl-CoA and attaches it to the ACP. This is followed by a condensation reaction between the activated guanidinoacetate and malonyl-CoA in the KS domain. CyrB contains two reducing modules, KR and DH. Their concerted reaction reduces the keto group to a hydroxyl followed by elimination of H20, resulting in a double bond between C13 and C14. The methyl transferase (MT) domain identified in CyrB via the NRPS/PKS databases (Example 9 above), is homologous to S-adenosylmethionine (SAM) dependent MT. It is therefore suggested that the MT methylates C13. It is proposed that a nucleophilic attack of the amidino group at N19 onto the newly formed double bond between Cl3 and C14 occurs via a Michael addition'. The cyclization follows Baldwin's rules for ring closure (Baldwin et al. (1997) J. Org. Chem 42;3846-3852), resulting in the formation of the first ring in cylindrospermopsin. This reaction could be spontaneous and may not require enzymatic catalysis, as it is energetically favourable. This is the first of three ring formations.
[0272] The third step (Figure 8, step 3) in the biosynthesis involves CyrC (AoaC homolog), which encodes a PKS with KS, AT, KR, and ACP domains. The action of these domains results in the elongation of the growing chain by an acetate via activation of malonyl-CoA by the AT domain, its transfer to ACP and condensation at the KS domain with the product of CyrB. The elongated chain is bound to the ACP of CyrC and the KR domain reduces the keto group to a hydroxyl group on Cl 2. The PKS module carrying out this step contains a KR domain and does not contain a DH domain, this corresponds only to CyrC.
[0273] Following the catalysis of enzyme CyrC is CyrD (Figure 8, step 4), a PKS with five modules; KS, AT, DH, KR, and an ACP. The action of this PKS module on the product of CyrC results in the addition of one acetate and the reduction of the keto group on CIO to a hydroxyl and dehydration to a double bond between C9 and CIO. This double bond is the site of a nucleophilic attack by the amidino group N19 via another Michael addition that again follows Baldwin's rules of ring closure, resulting in the formation of the second ring, the first 6-membered ring made in cylindrospermopsin.
[0274] The product of CyrD is the substrate for CyrE (step 5 in Figure 8), a PKS containing a KS, AT, DH, KR domains and an ACP. Since this sequence of domains is identical to that of CyrD, it is not possible at this stage to ascertain which PKS acts first, but as their action is proposed to be identical it is immaterial at this point. CyrE catalyzes the addition of one acetate and the formation of a double bond between C7 and C8. This double bond is attacked by N18 via a Michael addition and the third cyclisation occurs, resulting in the second 6-member ring.
[0275] CyrF is the final PKS module (step 6 of Figure 8) and is a minimal PKS containing only a KS, AT, and ACP. CyrF acts on the product of CyrE and elongates the chain by an acetate, leaving C4 and C6 unreduced.
[0276] Step 7 in the pathway (Figure 8) involves the formation of the uracil ring, a reaction that is required for the toxicity of the final cylindrospermopsin compound. The cylindrospermopsin gene cluster encodes two enzymes with high sequence similarity (87%) that have been denoted CyrG and
CyrH. A Psi-blast search (NCBI) followed by a Fugue profile library search (see materials and methods) revealed that CyrG and CyrH are most similar to the enzyme family of amidohydrolases/ureases/dihydroorotases, whose members catalyze the formation and cleavage of N-C bonds. It is proposed that these enzymes transfer a second guanidino group from a donor molecule, such as arginine or urea, onto C6 and C4 of cylindrospermopsin resulting in the formation of the uracil ring. These enzymes carry out two or three reactions depending on the guanidino donor. The first reaction consists of the formation of a covalent bond between the N of the guanidino donor and C6 of cylindrospermopsin followed by an elimination of H20 forming a double bond between C5 and C6. The second reaction catalyses the formation of a bond between the second N on the guanidino donor and C4 of cylindrospermopsin, co-committently with the breaking of the thioester bond between the acyl carrier protein of CyrE and cylindrospermopsin, causing the release of the molecule from the enzyme complex. Feeding experiments with labeled acetate have shown that the oxygen at C4 is of acetate origin and is not lost during biosynthesis, therefore requiring the de novo formation of the uracil ring. The third reaction - if required - would catalyze the cleavage of the guanidino group from a donor molecule other than urea. The action of CyrG and CyrH in the formation of the uracil ring in cylindrospermopsin describes a novel biosynthesis pathway of a pyrimidine.
[0277] One theory suggest a linear polyketide which readily assumes a favorable conformation for the formation of the rings. Cyclization may thus be spontaneous and not under enzymatic control. These analyses show that this may happen step-wise, with successive ring formation of the appropriate intermediate as it is synthesized. This mechanism also explains the lack of a thioesterase or cyclization domain, which are usually associated with NRPS/PKS modules and catalyze the release and cyclization of the final product from the enzyme complex.
Example 12: CYR tailoring reactions [0278] Cylindrospermopsin biosynthesis requires the action of tailoring enzymes in order to complete the biosynthesis, catalyzing the sulfation at C12 and hydroxylation at C7. Analysis of the cylindrospermopsin gene cluster revealed three candidate enzymes for the tailoring reactions involved in the biosynthesis of cylindrospermopsin, namely CyrI, CyrJ, and CyrN. The sulfation of cylindrospermopsin at C12 is likely to be carried out by the action of a sulfotransferase. CyrJ encodes a protein that is most similar to human 3'-phosphoadenylyl sulfate (PAPS) dependent sulfotransferases. The cylindrospermopsin gene cluster also encodes an adenylsulfate kinase (ASK), namely CyrN. ASKs are enzymes that catalyze the formation of PAPS, which is the sulfate donor for sulfotransferases. It is proposed that CyrJ sulfates cylindrospermopsin at Cl 2 while CyrN creates the pool of PAPS required for this reaction. Screening of cylindrospermopsin producing and non-producing strains revealed that the sulfotransferase genes were only present in cylindrospermopsin producing strains, further affirming the involvement of this entire cluster in the biosynthesis of cylindrospermopsin (Figure 7).
The cyrJ gene might therefore be a good candidate for a toxin probe, as it is more unique than NRPS and PKS genes and would presumably have less cross-reactivity with other gene clusters containing these genes, which are common in cyanobacteria. The final tailoring reaction is carried out by Cyrl. A Fugue search and an iterated Psi-Blast revealed that Cyrl is similar to a hydroxylase belonging to the 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily, which includes the mammalian Prolyl 4-hydroxylase alpha subunit that catalyze the hydroxylation of collagen. It is proposed that Cyrl catalyzes the hydroxylation of Cl, a residue that, along with the uracil ring, seems to confer much of the toxicity of cylindrospermopsin. The hydroxylation at C7 by Cyrl is probably the final step in the biosynthesis of cylindrospermopsin.
Example 13: CYR toxin transport [0279] Cylindrospermopsin and other cyanobacterial toxins appear to be exported out of the producing cells. The cylindrospermopsin gene cluster contains an ORF denoted CyrK, the product of which is most similar to sodium ion driven multi-drug and toxic compound extrusion proteins (MATE) of the NorM family. It is postulated that CyrK is a transporter for cylindrospermopsin, based on this homology and its central location in the cluster. Heterologous expression and characterization of the protein are currently being undertaken to verify its putative role in cylindrospermopsin export.
Example 14: Transcriptional regulation of the toxin gene cluster [0280] Cylindrospermopsin production has been shown to be highest when fixed nitrogen is eliminated from the growth media (Saker et al. (1999) J. Phycol 35:599-606). Flanking the cylindrospermopsin gene cluster are "hyp” gene homologs involved in the maturation of hydrogenases. In the cyanobacterium Nostoc PCC73102 they are under the regulation of the global nitrogen regulator NtcA, that activates transcription of nitrogen assimilation genes. It is plausible that the cylindrospermopsin gene cluster is under the same regulation, as it is located wholly within the "hyp" gene cluster in C. raciborskii AWT205, and no obvious promoter region in the cylindrospermopsin gene cluster could be identified.
[0281] Finally, the cylindrospermopsin cluster also includes an ORF at its 3' -end designated CyrO. By homology, it encodes a hypothetical protein that appears to possess an ATP binding cassette, and is similar to WD repeat proteins, which have diverse regulatory and signal transduction roles. CyrO may also have a role in transcriptional regulation and DNA binding. It also shows homology to AAA family proteins that often perform chaperone-like functions and assist in the assembly, operation, or disassembly of protein complexes. Further insights into the role of CyrO are hindered due to low sequence homology with other proteins in databases.
SEQUENCE LISTING
[0282] <110> NewSouth Innovations Pty Ltd. <120> Detection of Cyantoxic Organisms <130 852090 <160> 186
<170> Patentln version 3.2 <210> 1 <211> 37606 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 1 atgatcccag ctaaaaaagt ttatttttta ttgagtttag caatagttat ttcacccttt 60 ttatccatga ttgtgggtat ttacgaaaat attaaattta gggtattatt tgatttggtg 120 gtcagggcac taatggtggt tgactgcttc aatatcaaaa aacatcgggt caaaattagt 130 cgtcaattac ctctacgttt atctattgga cgtgagaatt tagtaatatt gaaggtagag 240 tctgggaatg tcaatagtgc tattcaaatt cgtgattact atcccacaga atttcccgta 300 tccacatcta acctgatagt taaccttccc cctaatcata ctcaggaagt aaagtacacc 360 attcgaccta atcaacgggg agaatettgg tggggaaata ttcaagttcg acagctggga 420 aattggtctc tagggtggga caattggcaa attccccaaa aaactgtggc taaggtgtat 480 cctgatttgt taggactcag atccctcgct attcgtttaa ccctacaatc ttctggatct 540 aCcactaaat tgcgtcaacg gggaatggga acggaatttg ccgaactccg taattactgc 600 atgggggatg atctacggtt aattgattgg aaagctacag ctagacgtgc ttatggaaat 660 ctgagtcccc tagtaagagc CtCagagcct caacaggaac aaactctgct tatattatta 720 gatcgtggta gactaatgac agctaatgta caagggttaa aacgatatga ttggggttta 780 aataccacct tgtctttggc attagcagga ttacataggg gcgatcgcgt aggagtaggg 840 gtatttgact cccagctgca tacctggata cctccagagc gaggacaaaa tcatctcaat 900 cggcttatag acagacteac acctattgaa ccagtgttag tggagtctga ttatttaaat 960 gccattacct atgtagtaaa acaacagact cgtagatctc tagtagtgtt aattactgat 1020 ttagtcgatg ttactgcttc ccatgaacta ctagtagcgc tgtgtaaatt agtgcctcga 1080 tatctacctt tttgtgtaac actcagggat cctgggattg ataaaatagc tcataatttt 1140 agtcaagact taacacaggc ttataatcga gcagtttctt tggacttgat atcacaaaga 1200 gaaattgctt ttgctcagtt gaaacaacag ggagttttgg tgttggatgc accagcaaat 1260 caaatttccg agcagttggt agaaaggtac ttacaaatca aagccaaaaa tcagatttga 1320 ctccctgtcg agataattga gaacttctgg aaagaatagc ccaataaact cgacaaagaa 13B0 cgtggttaga agttctttaa agagtctatc atgccgaatc atattttaac agaagagcga 1440 tcgctcttcc taagggatag agtctgaaag ccacttcaac ggacgataat gcaactcttg 1500 ttccagctgg agtgcggaga attaccacat ccgaaataga caaaaagaaa taattggagt 1560 taagaagata agtacataaa tagtgataat atacaaaact agtcagcacg gattaaattt 1620 actaatgata gatacaatat cagtactatt aagagagtgg actgtaattt cccttacagg 1680 tttagccttc tggctttggg aaattcgctc tcccttccat caaattgåat acaaagctaa 1740 attcttcaag gaattgggat gggcgggaat atcattcgtc tttagaaatg tttatgcata 1800 tgtttctgtg gcaattataa aactattgag ttctctattt atgggagagt cagcaaattt I860 tgcaggagta atgtatgtgc ccctctggct gaggatcatc actgcatata tattacagga 1920 cttaactgac Catctattac acaggacaat gcatagtaat cagtttcttt ggttgacgca 1980 caaatggcat cattcaacaa agcaatcatg gtggctgagt ggaaacaaag atagctttac 2040 cggcggactt ttatatactg ttacagcttt gtggtttcca ctgctggaca ttccctcaga 2100 ggttatgtot gtagtggcag tacatcaagt gattcataac aattggatac acctcaatgt 2160 aaagtggaac tcctggttag gaataattga atggatttat gttacgcccc gtattcacac 2220 tttgcatcat cttgatacag ggggaagaaa tttgagttct atgtttactt tcatcgaccg 2280 attatttgga acctatgtgt ttccagaaaa ctttgatata gaaaaatcta aaaatagatt 2340 ggatgatcaa tcagtaacgg tgaagacaat tttgggtttt taatagactt gggttctaag 2400 tggaatggac ggaaaaaatg gcggttaccc gcatctttaa tatatcetct ttttggggtt 2460 gagatttgga taaagcggct tgtactctgt catcactcaa åtagccatgg cgttgcatat 2520 ttgcgggatg atttaagatt ttctcctaat ttgaaaaatt tctcttgtag gacgattgcg 2580 aagcactcgc gagattgcat tattaataaa accctgatag tcacccccaa cttattgcag 2640 aaaaactttt ttctcttagg taataaatta gtagtttaat tgaaaagcat agcatctctt 2700 ttgacttgga ataacaaaat gtcttacgat gtagtctagc taaatagtga cgcaaacgac 2760 tgttttctcc ctcaactcta gtcattgatg ttttactaat aatttggtct ccatcgggaa 2820 taaattttgg gCaaacttta tagccatccg taatccaaaa ataggatttc caatgctcta 2880 tctttttcca taatttggca aatgttttgg cacttctatc tcccactaca tattgaataa 2940 ttcccgaacg tttgttatct acaactgtce agacccatat cttgtttttt tttaccaata 3000 aatgtttcca actcatccag ttgacaaact tcaggtgttt gggaattatt attactatct 3060 gataactgac gacctagctt tttgacccaa cgaatgactg tattgtgatt tactttagtc 3120 attctttcaa ttgccctaaa tccattccca tttacataca tggttaaaca tgcttccttt 3180 acctcttggg aataacctct aggagaataa gattcaataa attgacgacc acaattcttg 3240 cattgataat tttgttttcc ccttctctgg ccattttttc taatattatt ggaatcacag 3300 tttgaacagt tcatcttgat ttcttcctcg cggcgatcgc ctgctaaaaa ttcttcccct 3360 tattatacat catcccgtgc aggtgcaacg cccaaatagc catagtttat gatcggtatc 3420 gaattcgcta ttgttttttc tgccatatcc cttacctaag atgggacgat attcgctcat 3480 aataccactg tcaattagat catcagcaac atggtgagtg tatcctgacg accatcgata 3540 tggccaccaa gatcactagc taccccactg ggcaacaatt cgagtaaaag cgagtagccc 3600 tactgtagca ttgaaaccat ccaagtttga agttaaatac ctaaaattat gacctcattt 3660 tcatttctag acgttcagca acgggcatta actcacgtat cagatcaaag tttcctacgt 3720 tccgtctcat ccagtctaat aagaattttt cCccttcatc tagcttacct ttatcatcaa 3780 caaaaaccat ctgctcgcac caatctacaa atccggaatt agtcatctca tagactaaaa 3840 tgatgggagg aaagtgtgcg aatcccattt tttcaatgac ttccatacaa accagcttaa 3900 atacttgttc gtttgtcaat tcattagaca taaagaattt tcctttaatc aattctgttt 3960 ctaatcctac cacagagtaa taactcttgg tctggaacat aaattattct gtttttatca 4020 atgcgtaagt cataacttat tacttgacgg agttgcaggg gcatacctta acttgacctt 4080 gggagcgata gaagaaagga aggcttcagt gacgggtctt tgactaatcc cagtttccac 4140 ttcaactaaa acagcatcac aaatgtcgaa tagtgattga gaatatctat tcatattcat 4200 gaaagtcaga gcagattcca tcggagacat ggatgaatta aaggcagcgt tttcagcgta 4260 tcgacctgta aatatattcc cgtgggaatc ttttaacgct acccctgcaa aatttttcgt 4320 gtagggagca taactttgat tggcagcgga tagagcagca agcacaacat catcggtaga 4380 ataggtctcc agatcatgaa atactgtttg cattaatcca cctgtgagtc ctagatccgc 4440 tggtccaaat ggctcgggta gaaaatgtgg gagtttattt gaggtataag tttgctcagg 4500 ctgtgattca ttagacttca caagaagaac aaaattctga tttacagttg ccatctcgta 4560 taaaaattgt cggcagtatc cacatggtgc ttcgtggatt gctaatgctt gtaaaccggt 4620 ttctcegtgc aaccacgcat ttatggtggc ggattgttct gcgtgaactg agaaactaag 4680 tgcctgtcct acaaattcca tgtcggcacc aaaataaaga gttccagaac ccagttgatt 4740 cttagattgt ggtttaccaa gagcgatcgc ccctacaCaa aactgcgata ttggtaccct 4800 agcataagtt gcggctacgg gtagtaattg aatoattaac gtactaatat tagtaccaag 4860 tcgatcaatc caagatgcga caacacttga gtcaattaca gcatgttggg caagaattgt 4920 ccttaactct gattgaatgg aacgtggaac cttggcaatc gcctgttcta atgctacatg 4980 ggtcatttgg gttattcttg gacagagaga taaagatata ttagttttta tgaatcaatt 5040 tcccacttaa tgcttgagta tgttttcctc ctgcttacaa ggcaaagctt tccttttttg 5100 tagcaaatcc caaactgctt tgagagattt aattgcttgg tctatctcct cttcggtatt 5160 ggcggctgta atcgaaaacc ttaaagcact tttatttaaa ggtacgattg gaaaaatagc 5220 aggagtaatt aaaataccat attcccaaag gagCtgacac acatcaatca tgtgttgagc 5280 atctcccact aacacgeeta cgatgggaac gtaaccatag ttatccactt cgaatccaat 5340 ggctcttgct tgtgtaacca atttgtgagt taggtgataa atttgttttc ttaactgctc 5400 cccctcctga cgattcacct gtaatccggc taaggcactt gccaaactcg caacaggaga 5460 aggaccagaa aatatggcag tccaagcgtt gcggaagttg gttttgatcc ggcgatcgcc 5520 acaagttaag aatgctgcgt aagaagaaCa ggctttggac aaaccagcta catagatgat 5580 attatcctct gcaaaccgca ggtcaaaata attcaccatc ccgtttcctt tgtaaccgta 5640 aggcatatcg ctgctgggat tttcgcccaa aatgccaaaa ccatgagcat catccatgta 5700 aattaaggca ttgtactctt ttgccagatg cacgtaagct ggcagatcgg gaaaatctgc 5760 cgacatggaa tacacgccat caatgacaat aatctttact tgttcaggcg gatattttgc 5820 tagtttttcg gctaaatcgt tcaaatcatt atgtcgatat tggatgaact gggctccttt 5880 gtgctgagcc agacagcacg cttcataaat acaacgatgt gcagctatgt caccaaagat 5940 gacaccatta ttcccagtta atagtggtaa aattcctatc tgaagcagtg ttacagctgg 6000 aaatactaaa acatcaggta cgcctaaaag tttggacaat tcttcctcca attcctcata 6060 aattgctggg gaagcaacaa gccgagtcca gcttggatgt gtgccccatt tatccaaagc 6120 tggtggaatt gcttccttaa cttttggatg caagtcaaga cctaaatagt tgcaagaagc 6180 aaagtctatc acccaatgtc cgtcaattag caccttgcga ccttgttgtt ctgtgacgac 6240 tcttgtgact tgaggaattt tttgttggtt aactacgttt tccagagtgt tgatttcgtt 6300 ggctgagtca acaggtggag ctagatcaga ttgtttctct tgtaccactt ggttttggaa 6360 ataagtgatg atggcagttg gagtgttctt ttgtaaaaag aacgttccag acagattgat 6420 ccctaaacgt tcctctagga gcgtttgcag ttctaataaa tctaaagaat ctaatcecat 6480 atccagcagt ttttgttgtg gagcgtaggc tgcctgacgt tgggaaccca ttacttttaa 6540 gatgcattct ttaacgagat ccgctacagt tttgttttcc ttagttgcag atgttgcttt 6600 tggtaccaat gaaccaattg ctgagttaat atacggtcct ttgcgatcac caggcgagtg 6660 caaageactg tcgcgcaggt tatattcaat caaaataccc atgccgagat tatctgtatc 6720 ttccggacga taattagcaa taattcccct aatttcggct cctcccgaca catggaaacc 6780 cacaattgga tccagaagct gtcgttgctc attgtgtagc tttaaatact ccatcatcgg 6840 catttgggaa taattgacat aatttcgaca gcgagttaca cccaccacgc tctcaatgcc 6900 gcctttcagg gtacagtagt aaagcataaa gtcccgcaat tcatttccta acccccgcgc 6960 ctgaaactca ggtagaatat ttagtgcgag cagttgaata actgaccctt ggggagtatg 7020 taacgtcggc acttgcgcat attttacatt ctctaatgcc tcagtgctgg taattgtttg 7080 ggaataaatc gcaccaataa tttgatcttc tataatcagc actaaattac cttgcgggtt 7140 tagctcaagt cttcgccgaa tttcatgagt agatgcccgt aaattttctg gccaacactt 7200 gacctccaag tcaactaagg caggtaaatc tgacaaatag gcatgactaa ttttgtaagg 7260 tcttttctcg aagtaattaa gcgtaatgcg agtaaaagga aatgtttttg ggtatctttt 7320 agaaagctct agttttggaa atagacctac ttgtgcagca gacatgagaa aaacctcagc 7380 ttccacaaga tactgctgag aaaatccctg aaacgcatcg aaatgtaagt tttcgctttt 7440 gtctaaaaac tgatagacta cccttggttc caaacaatgg acctccaaaa tcattaaacc 7500 gtgtttattg accacttgag accatctttc taagtgttcc accaaacttt gcaccataac 7560 atgaggagga ataagctctc cttgatcatc gacacagact gattggtaag gtaagtgagc 7620 acgttctttc aattcgtttc ttttctgagg aggaataaag agacgatcat ggtcgaggaa 7680 cgaacggatg tgcaggatat tttcgggatc atgaatgcca tgagcttcta aagaacgcac 7740 catttgttct gggttcccaa tatctccctg taaaactaag tggggaaggc tagcaagggt 7800 gcgtgtggta gcttttaaag aagcttcgtt ataatctaca cctataagac gcaggggata 7860 ctgttcgagt gcttttcccc tagcagactt aaattgaatg gtttcccaga ctcgtttcag 7920 gagagttcca tcgccacacc ccatgtcagt aatgtatttg ggttgttctt ctaatggcaa 7980 ctgattgaat actgagagga tactttcttc taaatcggca aaatatttct ggtgttgaaa 8040 tccactcccg atcacgttaa gggtgcgatc aatgtgcctt tcgtgaccgg aagcatctct 8100 ttggaatacg gagagacaat tgccaaacaa tacatcatga atgcgggaca acataggagt 8160 gtaggacgcc actatggctg tattcaaggc tcgctctccc ataaatcgac caagttcggt 8220 tatggtcaaa cgacctgctg taaggtcagc ccagccaagg tggagaaata acttacccaa 8280 ctcttcttgc actgttgagc ttaatgagga gagcaaaggt ttgtcctccg aatctgcaag 8340 caagttgtgt ttgtgcagtg ccagcaggag tgggatgacc agtaatccat ctaaaaaatc 8400 tgccattagg ggattgtcca ggttccacaa ttggcaagaa cgctcaatcc atcttcccag 8460 caaatttcct tgtttCCCtt ctaaataaga ctgaattggt aggttgtaca attgaagaat 8520 gtcttccgaa attttgttgt gaatcgctgc ttctgcggtt agagagtatt taagctcctt 8580 atttcgggaa agccaatgta aagactcgag catcctcaaa gcaacttgaa aatgtccgct 8640 gttagctccc agatgttcca ccatttggtt taaagagaga ggactttcat cggcgagtaa 8700 ttcaaaaaca cctttttctc gacacgcaag aataacggga accgccacaa agccgtgagt 8760 ataacgatta atcttttgta acatttagac gattattgat taatttatga ggaatgcatt 8820 tttagtgcat accacgagat tttgattgtc tcagaagttg tgtgaaaaag caagacaagt 8880 agaccaaaaa aataagctaa ataagtgtag tagcaataaa aagacgaatc gcaattgtac 8940 gtgtcttgac taacaagcca agtctctcta gataataatc gccctctacc agttgcgtaa 9000 gtcccattgt tgttttaaac tttaattgct aattaaacag ttatcaaatc ctgttcataa 9060 cggatattta cagcaatttt cggttatata aaattgcata tactgtaagt aatagcagaa 9120 aattaattta ggtaggaaaa tgttgaaaga tttcaaccag tttttaatca gaacactagc 9180 attcgtattc gcatttggta ttttcttaac cactggagtt ggcattgcta aagctgacta 9240 cctagttaaa ggtggaaaga ttaccaatgt tcaaaatact tcttctaacg gtgataatta 9300 tgccgttagt atcagcggtg ggtttggtcc ttgcgcagat agagtgatta tcctaccaac 9360 ttcaggagtg ataaatcgag acattcatat gcgtggctat gaagccgcat taactgcact 9420 atccaatggc tttttagtag atatttacga ctaeactggc tcttcttgca gcaatggtgg 9480 ccaactaaot attaccaacc aattaggtaa gctaatcagc aattaggttg tatcatgata 9540 agatgaagta gtttaaccat ggcaccacca gccaaaaact ttttaacgct agggtgtaac 9600 agttatgggt gtggaatgta ggttgtatcc agtgcatgaa acagccataa ttttagtata 9660 agcaaacact aagattggag aattcatgga aacaacctca aaaaaattta agtcagatct 9720 gatattagaa gcacgagcaa gcctaaagtt gggaatcccc ttagtcattt cacaaatgtg 9780 cgaaacgggt atttatacag cgaatgcagt catgatgggt ttacttggta cgcaagtttt 9840 ggccgccggt gctttgggcg cgctcgcttt tttgacctta ttatttgcct gccatggtat 9900 tctctcagta ggaggatcac tagcagccga agctCttggg gcaaataaaa tagatgaagt 9960 tagtcgtatt gcttccgggc aaatatggct agcagttacc ttgtctttac ctgcaatgct 10020 tctgctttgg catggcgata ctatcttgct gctattcggt caagaggaaa gcaatgtgtt 10080 attgacaaaa acgtatttac actcaatttt atggggcttt cccgctgcgc ttagtatttt 10140 gacattaaga ggcattgcct ctgctctcaa cgttccccga ttgataacta ttactatgct 10200 cactcagctg atattgaata ccgccgccga ttatgtgtca atattcggta aatttggtct 10260 tcctcaactt ggtttggctg gaataggctg ggcaactgct ctgggttttt gggttagttt 10320 tacattgggg cttatcttgc tgattttctc cctgaaagtt agagattata aacttttccg 10380 ctacttgcat cagtttgata aacagatctt tgtcaaaatt tttcaaactg gatggcccat 10440 ggggtttcaa tggggggcgg aaacggcact atttaacgtc accgcttggg tagcagggta 10500 tttaggaacg gtaacattag cagcccatga tattggcttc caaacggcag aactggcgat 10560 ggttatacca ctcggagtcg gcaatgtcgc tatgacaaga gtaggtcaga gtataggaga 10620 aaaaaaccct ttgggtgcaa gaagggtagc atcgattgga attacaatag ttggcattta 10680 tgccagtatt gtagcacttg ttttctggtt gtttccatat caaattgccg gaatttattt 10740 aaatataaac aatcccgaga atatcgaagc aattaagaaa gcaactactt ttatcccctt 10800 ggcgggacta ttccaaatgt tttacagtat tcaaataatt attgttgggg ctttggtcgg 10860 tcfcgcgggat acatttgttc cagtatcaat gaacttaatt gtctggggtc ttggattggc 10920 aggaagctat ttcatggcaa tcattttagg atgggggggg atcgggattt ggttggctat 10980 ggttttgagt ccactcctct cggcagttat tttaactgtt cgtttttatc gagtgattga 11040 caatcttctt gccaacagtg atgatatgtt acagaatgcg tctgttacta ctctaggctg 11100 agaaaagcta tatgaccaat caaaataacc aagaattaga gaacgattta ccaatcgcca 11160 agcagccttg tccggtcaat tcttataatg agtgggacac acttgaggag gtcattgttg 11220 gtagtgttga aggtgcaatg ttaccggccc tagaaccaat caacaaatgg acattccctt 11280 ttgaagaatt ggaatctgcc caaaagatac tctctgagag gggaggagtt ccttatccac 11340 cagagatgat tacattagca cacaaagaac taaatgaatt tattcacatt cttgaagcag 11400 aaggggtcaa agttcgtcga gttaaacctg tagatttctc tgtccccttc tccacaccag 11460 cttggcaagt aggaagtggt ttttgtgccg ccaatcctcg cgatgttttt ttggtgattg 11520 ggaatgagat tattgaagca ccaatggcag atcgcaaccg ctattttgaa acttgggcgt 11580 atcgagagat gctcaaggaa tattttcagg caggagctaa gtggactgca gcgccgaagc 11640 cacaattatt cgacgcacag tatgacttca atttccagtt tcctcaactg ggggagccgc 11700 cgcgtttcgt cgttacagag tttgaaccga cttttgatgc ggcagatttt gtgcgctgtg 11760 gacgagatat ttttggtcaa aaaagtcat'g tgactaatgg tttgggcata gaatggttac 11820 aacgtcactt ggaagacgaa taccgtattc atattattga atcgcattgt ccggaagcac 11880 tgcacatcga taccacctta atgccecttg cacccggcaa aatactagta aatccagaat 11940 ttgtagatgt taataaattg ccaaaaatcc Cgaaaagctg ggacattttg gttgcacctt 12000 accccaacca tatacctcaa aaccagctga gactggtcag tgaatgggca ggtttgaatg 12060 tactgatgtt agatgaagag cgagtcattg tagaaaaaaa ccaggagcag atgattaaag 12120 cactgaaaga ttggggattt aagcctattg tttgccattt tgaaagctac tatccatttt 12180 taggatcatt tcactgtgca acattagacg ttcgccgacg cggaactctt cagtoctatt 12240 tttaagattt atttcgatta tcctttatcc tgatcatcca gagtgataag agcattacaa 12300 ctaggagaca attatgacaa ctgctgacct aatcttaatt aacaactggt acgtagtcgc 12360 aaaggtggaa gattgtaaac caggaagtac caccacggct cCtttattgg gagttaagtt 12420 ggtactatgg cgcagtcgtg aacagaattc ccccatacag atatggcaag actactgccc 12480 tcaccgaggt gtggctctge ctatgggaga aattgctaat aatactttgg tttgtccgta 12540 tcacggatgg agatataatc aagcaggtaa atgcgtacat atcccggctc accctgacat 12600 gacaccccca gcaagtgccc aagccaagat ctatcattgc caggagcgat acggattagt 12660 atgggtgtgc ttaggtgatc ctgtcaatga tataccttca ttacccgaat gggacgatcc 12720 gaattatcat aatacttgta ctaaatctta ttttattcaa gctagtgcgt ttcgtgtaat 12780 ggataatttc atagatgtat ctcattttcc ttttgtccac gacggtgggt taggtgatcg 12840 caaccacgca caaattgaag aatttgaggt aaaagtagac aaagatggca ttagcatagg 12900 taaccttaaa ctccagatgc caaggtttaa cagcagtaac gaagatgact catggactct 12960 ttaccaaagg attagtcatc ccttgtgtca atactatatt actgaatcct ctgaaattcg 13020 gactgcggat ttgatgctgg taacaccgat tgatgaagac aacagcttag tgcgaatgtt 13080 agtaacgtgg aaccgctccg aaatattaga gtcaacggta ctagaggaat ttgacgaaac 13140 aatagaacaa gatattccga ttatacactc tcaacagcca gcgcgtttac cactgttacc 13200 ttcaaagcag ataaacatgc aatggttgtc acaggaaata catgtaccgC cagatcgatg 13260 cacagttgcc tatcgtcgat ggctaaagga actgggcgtt acctatggtg tttgttaatt 13320 tcagggttgt tggtatctgg ataggtatgg ttttgagtcc actgctatct ggagggåttt 13380 taatggttgg tttttatcaa cagcttgcca ataagtatta ctaatagtga tgatggggaa 13440 gagaatcaaa ctatactcac caacaaggtg ttaaaatgca gatcttagga atttcagctt 13500 actaccacga tagtgctgcc gcgatggtta tcgatggcga aattgttgct gcagctcagg 13560 aagaacgttt ctcaagacga aagcacgatg ctgggtttcc gactggagcg attacttact 13620 gtctaaaaca agtaggaacc aagttacaat atatcgatca aattgttttt tacgacaagc 13680 cattagtcaa atttgagcgg ttgctagaaa catatttagc atatgcccca aagggatttg 13740 gctcgtttat tactgctatg cccgtttggc tcaaagaaaa gctttaccta aaaacacttt 13800 taaaaaaaga attggcgctt ttgggggagt gcaaagcttc tcaattgcct cctctactgt 13860 ttacctcaca tcaccaagcc catgcggccg ctgctttttt tcccagtcct tttcagcgtg 13920 ctgccgttct gtgcttagat ggtgtaggag agtgggcaac tacttctgtc tggttgggag 13980 aaggaaataa actcacacca caatgggaaa ttgatt.ttcc ccattccctc ggtttgcttt 14040 actcagcgtt tacctactac actgggttca aagttaactc aggtgagtac aaactcatgg 1410.0 gtttagcacc ctacggggaa cccaaatatg tggaccaaat tctcaagcat ttgttggatc 14160 tcaaagaaga tggtactttt aggttgaata tggactactt caactacacg gtggggctaa 14220 ccatgaccaa tcataagttc catagtatgt ttggaggacc accacgccag gcggaaggaa 14280 aaatctccca aagagacatg gatctggcaa gttcgatcca aaaggtgact gaagaagtca 14340 tactgcgtct ggctagaact atcaaaaaag aactgggtgt agagtatcta tgtttagcag 14400 gtggtgtcgg tctcaattgc gtggctaacg gacgaattct ccgagaaagt gatttcaaag 14460 atatttggat tcaacccgca gcaggagatg ccggtagtgc agtgggagca gctttagcga 14520 tttggcatga ataccataag aaacctcgca cttcaacagc aggcgatcgc atgaaaggtt 14580 cttatctggg acctagcttt agcgaggcgg agattctcca gtttcttaat tctgttaaca 14640 taccctacca tcgatgcgtt gataacgaac ttatggctcg tcttgcagaa attttagacc 14700 agggaaatgt tgtaggctgg ttttctggac gaatggagtt tggtccgcgt gctttgggtg 14760 gccgttcgat tattggcgat tcacgcagtc caaaaatgca atcggtcatg aacctgaaaa 14820 ttaaatatcg tgagtccttc cgtccatttg ctccttcagt cttggctgaa cgagtctccg 14880 actacttcga tcttgatcgt cctagtcctt atatgctttt ggtagcacaa gtcaaagaga 14940 atctgcacat tcctatgaca caagagcaac acgagctatt tgggatcgag aagctgaatg 15000 ttcctcgttc ccaaattccc gcagtcactc acgttgatta ctcagctcgt attcagacag 15060 ttcacaaaga aacgaatcct cgttactacg agttaattcg tcattttgag gcacgaactg 15120 gttgtgctgt cttggtcaat acttcgttta atgtccgcgg cgaaccaatt gtttgtactc 15180 ccgaagacgc ttatcgatgc tttatgagaa ctgaaatgga ctatttggtt atggagaatt 15240 tcttgttggt caaatctgaa cagccacggg gaaatagtga tgagtcatgg caaaaagaat 15300 tcgagttaga ttaacttatg agtgaatttt tcccacaaaa aagtggtaaa ttaaagatgg 15360 aacagataaa agaacttgac aaaaaaggat tgcgtgagtt tggactgatt ggcggttcta 15420 tagtggcggt tttattcggc tttttactgc cagttatacg ccatcattcc ttatcagtta 15480 tcccttgggt tgttgctgga tttctctgga tttgggcaat aatcgcacct acgactttaa 15540 gttttattta ccaaatatgg atgaggattg gacttgtttt aggatggata caaacacgaa 15600 ttattttggg agttttattt tatataatga tcacaccaat aggattcata agacggctgt 15660 tgaatcaaga tccaatgacg cgaatcttcg agccagagtt gccaacttat cgccaattga 15720 gtaagtcaag aactacacaa agtatggaga aaccattcta atgctaaaag acacttggga 15780 ttttattaaa gacattgccg gatttattaa agaacaaaaa aactatttgt tgattcccct 15840 aattatcacc ctggtatcct tgggggcgct gattgtcttt gctcaatctt ctgcgatcgc 15900 acctttcatt tacactcttt tttaaattgc catattatga gtaacttcaa gggttcggta 15960 aagatagcat tgatgggaat attgattttt tgtgggctaa tctttggcgt agcatttgtt 16020 gaaattgggt tacgtattgc cgggatcgaa cacatagcat tccatagcat tgatgaacac 16080 agggggtggg tagggcgacc tcatgtttcc gggtggtata gaaccgaagg tgaagctcac 16140 atccaaatga atagtgatgg ctttcgagat cgagaacaca tcaaggtcaa accagaaaat 16200 accttcagga tagcgctgtt gggagattcc tttgtagagt ccatgcaagt accgttggag 16260 caaaatttgg cagcagttat agaaggagaa ateagtagtt gtatagcttt agctggacga 16320 aaggcggaag tgattaattt tggagtgact ggttatggaa cagaccaaga actaattact 16380 ctacgggaga aagtttggga ctattcacct gatatagtag tgctagattt ttatactggc 16440 aacgacattg ttgataactc ccgtgcgctg agtcagaaat tctatcctaa tgaactaggt 16500 tcactaaagc cgttttttat acttagagat ggtaatctgg tggttgatgc ttcgtttatc 16560 aatacggata attatcgctc aaagctgaca tggtggggca aaacttatat gaaaataaaa 16620 gaccactcac ggattttaca ggttttaaac atggtacggg atgctcttaa caactctagt 16680 agagggtttt cttctcaagc tatagaggaa ccgttattta gtgatggaaa acaggataca 16740 aaattgagcg ggttttttga tatctacaaa ccacctactg accctgaatg gcaacaggca 16800 tggcaagtca cagagaaact gattagctca atgcaacacg aggtgactgc gaagaaagca 16860 gattttttag ttgtcacttt tggcggtccc tttcaacgag aacctttagt gcgtcaaaaa 16920 gaaatgcaag aattgggtct gactgattgg ttttacccag agaagcgaat tacacgtttg 16980 99tgaggatg aggggttcag tgtactcaat ctcagcccaa atttgcaggt ttattctgag 17040 cagaacaatg cttgcctata tgggtttgat gatactcaag gctgtgtagg gcattggaat 17100 gctttaggac atcaggtagc aggaaaaatg attgcatcga agatttgtca acagcagatg 17160 agagaaagta tattgcctca taagcacgac ccttcaagcc aaagctcacc tattacccaa 17220 tcagtgatcc aataaagaac tgggcatcac ttatgatgtt tactaatttc agttccgttg 17280 atgttaatgc gtaactttta ttactagttg taaagctgag atatgacaaa taccgaaaga 17340 ggaktagcag aaataacatc aacaggatat aagtcagagc ttagatcgga ggcacgagtt 17400 agcctccaac tggcaattcc cttagtcctt gtcgaaatat gcggaacgag tattaatgtg 17460 gtggatgtag tcatgatggg cttacttggt actcaagttt tggctgctgg tgccttgggt 17520 gcgatcgctt ttttatctgt atcgaatact tgttataata tgcttttgtc gggggtagca 17580 aaggcatctg aggcttttgg ggcaaacaaa atagatcagg ttagtcgtat tgcttctggg 17640 caaatatggc tggcactcac cttgtctttg cctgcaatgc ttttgctttg gtatatggat 17700 actatattgg tgctatttgg tcaagttgaa agcaacacat taattgcaaa aacgtattta 17760 cactcaattg tgtggggatt tccggcggca gttggtattt tgatattaag aggcattgcc 17820 tctgctgtga acgtccccca attggtaact gtgacgatgc tagtagggct ggtcttgaat 17880 gccccggcca attatgtatt aatgttcggt aaatttggtc ttcctgaact tggtttagct 17940 ggaataggct gggcaagtac tttggttttt tggattagtt ttctagtggg ggttgtcttg 18000 ctgattttct ccccaaaagt tagagattat aaacttttcc gctacttgca tcagtttgat 18060 cgacagacgg ttgtggaaat ttttcaaact ggatggccta tgggttttct actgggagtg 18120 gaatcagCag tattgagcct caccgcttgg ttaacaggct atttgggaac agtaacatta 18180 gcagctcatg agatcgcgat ccaaacagca gaactggcga cagtgatacc actcggaatc 18240 gggaatgttg ccgtcacgag agtaggtcag actataggag aaaaaaaccc tttgggtgct 18300 agaagggcag cattgattgg gattatgatt ggtggcattt atgccagtct tgtggcagtc 18360 attttctggt tgtttccata tcagattgcg ggactttatt taaaaataaa cgatccagag 18420 agtatggaag cagttaagac agcaactaat tttctcttct tggcgggatt attccaattt 18480 tttcatagcg ttcaaataat tgttgttggg gttttaatag ggttgcagga tacgtttatc 18S40 ccattgttaa tgaatttggt aggctggggt cttggcttgg cagtaagcta ttacatggga 18600 atcattttat gttggggagg tatgggtatc tggttaggtc tggttttgag tccactcctg 18660 tccggactta ttttaatggt tcgtttttat caagagattg ccaataggat tgccaatagt 18720 gatgatgggc aagagagtat atctattgac aacgtCgaag aactctcctg acgaacagac 18780 tgaattgcct tggtcttgac acttcgttaa cctaagcatg agagtatagg ctatactctg 18840 ccgtggttaa ctgagtgttg tccCggatcg aggacgcagc ctggctgagc aacaaaaaag 18900 actggaatct tgacctgtca atggttttaa ctgctagttt gcggctggtg tcagcagctt 18960 cgccatttct gcgcctaaga cttgacctag ccataatatt ttagtattat gatgagcgat 19020 cttaatcaaa ggcaaaaaat ttacaattaa tctattgtta cattaatttt gctcctcatt 19080 ctgtttaaat tttcagtgac attgtaatct aactcaaaat gaaaacaaac aaacatatag 19140 ctatgtgggc ttgCcctaga agtcgttcta ctgtaattac ccgtgctttt gagaacttag 19200 atgggtgtgt tgtttatgat gagcctctag aggctccgaa tgtcttgatg acaacttaca 19260 cgatgagtaa cagtcgtacg ttagcagaag aagacttaaa gcaattaata ctgcaaaata 19320 atgtagaaac agacctcaag aaagttatag aacaattgac tggagattta ccggacggaa 19380 aattattctc atttcaaaaa atgataacag gtgactatag atctgaattt ggaatagatt 19440 gggcaaaaaa gctaactaac ttctttttaa taaggcatcc ccaagatatt attttttctt 19500 tcgatatagc ggagagaaag acaggtatca cagaaccatt cacacaacaa aatcttggca 19560 tgaaaacact ttatgaagtt Ctccaacaaa ttgaagttat tacagggcaa acacctttag 19620 ttattcactc agatgatata attaaaaacc ctccttctgc tttgaaatgg gtgtgtaaaa 19680 acttagggct tgcatttgat gaaaagatgc tgacatggaa agcaaatcta gaagactcca 19740 atttaaagta tacaaaatta tatgctaatt ctgcgtctgg cagttcagaa ccttggtttg 19800 aaactttaag atcgaccaaa acatttctcg cctatgaaaa gaaggagaaa aaattaccag 19860 ctcggttaat acctctacta gatgaatcta ttccttacta tgaaaaactc ttacagcatt 19920 gtcatatttt tgaatggtca gaacactgag tttgatcgta accgctcaga ggggggatag 19980 aagcgcgatt agggagatcc aaaaaataaa atatctagcc gtctaacctc tttattttca 20040 tcgattcttc ttaccgttcc ctattccctc ccttcaccag ttcgtttttg ggtaggtgea 20100 agatctgagc ctcccaccta gggccgatct ggcagtgcgc gatcgccact agcccatgga 20160 aaactagcac tttttgggga acagccaaaa cctttattga gtaagaattt gaaaaagtgc 20220 aagttaagag gcaatgacta aaaatttttt tctactcttt tcaggataga attccagttt 20280 ctagagccgt tgtaaccgta catatcttga tagtacgtat cgatgaggta ctcattttcg 20340 tggagcatta accagctttt taactccgct aatttctgct ctcctttttc tattaattct 20400 tgctcatcca aatcatccct gtccaactcc tccctgtcca actcccacat agttttgttg 20460 gtatcttcga caatcaagta gtctccactt tttagaccgt tttcgtgaaa atattcaact 20520 actcccaccg cattagcatg ggcatcttct acgatcaacc agggatgagc aagcccagaa 20580 agcagttccg acgacattat tgcacccata ttgttacaat ccccctctaa aaaatgaacg 20640 cgagagtcag tttttgcttt ctcgtcgagt agggaaagat cgatatcgat acagtagaca 20700 caaccttcta tttggaacag ttctaagtga tcggctagcc aaatcgcgct gccaccgctt 20760 aatgctccta tttcgattat tgttttcggg cgaagctcat acaggagcat tgaataaaga 20820 gctatttcgg tgcacccttt caggaagggt atccctttcc aagtgaacaa atcgcggttt 20880 gccaagagcg ctctccaagc tggcactgga atagcacatt tatcttctct ttcagaaatt 20940 ttggcaaacc gattaggttt gaaaggtgca actttatagg cggcttcttg aacaaatttt 21000 tggaagctca tctaattttc ctcttaggtg ttagaacatt tgtaaaatct tggcgatttt 21060 ttgttttctt tcttgaatat agcaaccgcc aaggcggttt gagcataaac tggatgtagt 21120 ccccgtgttt tacggttgag acttaggtaa agcggctttg tttgtactct cccattattc 21180 aaatagccgt agtttatgat cggtatccaa ttcgctattg ttttttctgc catatcccca 21240 acctaagatg cgacgatatt cacccataat gccactgtca attaaatcat cctcgttgac 21300 tgcaacattg gtatgagatt gcggcgcaac atagagcgca tccgcaggac aatatgcttc 21360 acagatgaaa caagtttgac agtcttcctg tcgggcgatc gcaggcggtt ggttgggaac 21420 tgcatcaaag acattggtag ggcatacttg gacgcaaaca ttacaattaa tacagagttt 21480 atggctgaca agctcgatca tcatactgct cctgctacaa ctttaatact ggggctgtgg 21540 tttaagtggt taatactggt ggtgtagcgc tcgcatcctt cacccaatcc cgtctcaccc 21600 aaagcctttc taagccgccc gtggcttggt aataaagctg atttggatcg gtttcaggat 21660 agtctatgcg aatatgttcg ctacgcgttt ccttgcgatg taaagcgcta aaatatgccc 21720 atcgtgctac agacacaaga gcagccgctc gacgagaaaa ttccagatcg cgcactgtat 21780 cttgtttcgg gttcccttgt acttgctgcc acagcatttc taatttggcg agggaatcca 21840 aaagtccctg ctcacagcgc aagtaattct tctctaatgg gaacatctcg gcttgtacac 21900 cgcggacaac tgcctcgcta tcgaatgttt cggaaccagg gtactgggaa cgtaatccgg 21960 cttgacctgc tggacgcaca acccgttcat ggacatgagc gcccaaactc ttggcaaagg 22020 cggctgcacc ttcccctgcc cattgtcctg tagagattgc ccaagcagca ttaggaccat 22080 cacccccaga agctatcoca gctaaaaact cccgcgatgc tgcatctccg gcggcataca 22140 gtccaggaac ttttgtacea caactatcat tcacaatccg aattccacct gtaccacgga 22200 ctgtaccttc taaaaccagt gttacaggta ctcgttctgt ataagggtca atgccagctt 22260 ttttataggg tagaaaggcg atgaagtgag acttttcaac caatgcttgg atttcaggtg 22320 tggctcgatc caaacgagca taaacgggac ctttcaggag ggcattgggc aggaacgatg 22380 gatcgcgacg accattgata tagccaccaa gatcgttacc tgcctcatcg gtgtaactag 22440 cccagtaaaa gggagcagcc cttgtcactg tggcattgaa agcggtcgag atggtatagt 22S00 gactggaagc ttccatactg gagagttcgc cgccagcttc caccgccatc agcagtccat 22560 cgcctgtatt ggtattgcaa cctaaagctt tacttaggaa tgcacaaccg ccattcgcta 22620 gaactactgc accagcgcga acggtatagg tgcgatgatt ttgcctetgt acacctctag 22680 ctccagccac ggagccgtcc tgggctaata acagttctag agccggactt tggtcgaaaa 22740 tttgcacacc cacacgcaac aggttcttgc gaagtacccg catetattcc ggaccataat 22800 aactctggcg cacggattcc ccattttctt tggggaaacg atagccccaa tcttccacta 22860 agggcaaact cagccaagct ttttcaatta cacgttcaat ccaacgtaag ttagcgaggt 22920 tatttccttt gctgtaacat tcggatacat ctttctccca attctctgga gaaggtgcca 22980 tgacgctatt gccactggca gcagctgcac cgctcgtacc tagaaaacct ttatcaacaa 23040 tgatgacttt gacaccttgg gctccagccg cccatgctgc ccatgcggcg gcaggaccac 23100 caccaattac cagcacgtca gcaijttaatt gtagttcagt gccgctatag gctgtaagca 23160 attgcttttc ctccttgttt aaagtcaagt tcatactttt aattatcttc tgeagtcggt 23220 cgaatcaaaa tttcatttac atttacatga tcgggttgtg tcactgcata aattatagct 23280 cttgcaatat cctcactttg taaaggtgtt attgtactaa gttgttcttt actaagctgt 23340 ttcgtgatcg ggtcagaaat taagtcatta aatggcgtat cgactaaacc tggctcaatg 23400 atggtaacgc gaatgttgtc taaagatacc tcctggcgta atgcttctga aagagcattg 23460 acgcctgatt tggcagcact ataaacgacc gcaccggact gcgctatcct gccatcgaca 23S20 gaagatatat tgactatatg accggatttt tgggccttca gaagaggcaa aactgcgtgg 23580 atagcatata aaactcccag aacactcaca tcgaatgctc gcctccagtc tgcgggattt 23640 ccagtatcaa ttgcaccaaa cacaccaatt cctgcattat tcaccaaaat atctacatgt 23700 cctagctcaa ccttggtctt ttggactaga tgatttactt gagattcgtc tgtaatatct 23760 gtaacaatag gcaatgcttg accaccactg gcttcaatec gttttgctag tgcatgcaaa 23820 agctcagcac gtcttgcggc gatcgcaact tttgccccct ccgcagctaa agcaaatgct 23880 gtagcctctc caatcccaga ggaagctcca gtaataatcg ccacttttcc atccaattta 23 940 cctgccatca gtcactcctt agttttcgtt ttgctggtgc aatatgtaat aagtgcgttt 24000 tgtacttgat tttgttcttt ggtgattttt atataggagc gcataaagtg cttagtgatc 24060 actttatttt ttagtgccat tcaacttaaa ttaacaaacc ccataagtaa cacctagttg 24120 ctttagccat cgacgatagg caagtgtgca tctatctgat ggtacgtgga tttcgtgtga 24180 aaacaattgt gtatttatct gctttggagt taacagtggt aaacgtaccg gctgttgtgc, 24240 atgtaagatc cgaatatctt gttctattgt ttcgtcatat tcagttagca tctttgactc 24300 taacgtttca tacccgttcc acattatcaa catacgcaat acactatttt cctcatcaat 24360 cggtgtgatc gtcattaaat ccacaatcct catttcaggg gattctgaaa cgcagtattg 24420 acataaagga tgactaagcc tgaaccaatt aacccaagag tcatcttcga tatggctgac 24480 aatccttgat gtctggaatt gatacttaco catagtaagg ccatctttat ctaatttcac 24540 ctcaaattct tccacttttg tacaattgcg atcacctaac caaccgtcat ggataaaagg 24600 aaaatgagac acgtctaagg aattatccat cacacgaaac gcactagctt taatcaagta 24660 agacttggta taagtcttgt gataattcgg atcatcccat tcaggaaatg aaggtatatc 24720 attaacagga tcgcccaagc acacccacac taagccatag cgctcctggg agtgatatgt 24780 cctggcttca gcactCgccg gtggtaccat gccagggtga gctgggatcc gtatgcattt 24840 accagcctca ttgtatctcc atccgtgata cggacaaact aaagtattat tcgtaatttc 24900 tcccatagac agaggaacac ctcggtgggg gcagtagtca agccatacct gtatgggtga 24960 attttgttca taactgcgcc ataataccaa cttcactccc aacaaacgag atctggtgat 25020 actCccaggt ttacagtctt ctacattggc gactacgtgc cagttattga ttaagattgg 25080 gtcggtagtt gtcataattg tctcctagtt ttgccagcca gcgaggcgta agtcagaatt 25140 taagtttatg cttgtgtttg agcctgcgat cgctaaatta tccttttcaa ggcatccacc 25200 aacagtggtt tgatgttgtt ttttgtaaaa atcagagtta gcatcctgta atcggtaatt 25260 gaagtgttgg cagctgcggt atgccataca gttggtgtat aaaacattgc tgcccctcct 25320 ggaagtgaaa gacatatttc tgcatttagt gaattggcag aagatgaatc taatgagtgt 25380 tcccattggt ggctacttgg tataactcgc attgtaccca tagtattatc tgtatcctgt 25440 aagtatatag ttatgaatac catggcttga ttggctactg gaaccaacaa ccgaagcgcg 25500 tcgtcattta actcgttttt tgacatggat gcaagtgcgt tcaatacttc aactacatat 25560 ccatggtctt gatgccaagc aatgtatcct gtaccCgcac gaattatggc tagatcggtg 25620 atcaatagga agatatcaga cccaattaga gcctgtactg gtcccatcac agttggaagc 25680 tctaaaagcc tctgaattat cttttgatac ctaactggat ctgggatagt atgctcagac 25740 caccactcat agtcacccgc caatactccc ccacgttttt gttcggtaat aagttctact 25800 tcatgccgta tttcttcaat taacgctttt ggtacagctt cttcaactgt gaaataacca 25860 tcatttgtgt aagcttgttt ttgttccgct gtgagcatct ctcttattct cttgcaattc 25920 aaaggattta gtggatcgtc tggacataat taaggtcaat actgctgtaa ctatcaatgg 25980 ttagtaggaa ttatcctata gctgttcttt ctctggatag aagaaaggtt gtgagaagct 26040 cgctccgact tcatttcagc caatttttct gcagaccaat actgaaaata tcccaatctt 26100 aataattcat cactagcctc ttgtaactgg ctgaatgact gtactgatgc taaaacatac 26160 ttagggtgag ttatgattac gttattcaca ttctccgcgt catcaccaac atattgtttg 26220 tctggatgcg atcctaaagc taccaaatcg tattctggta atacataatt cgccttggta 26280 atgtaccttt ccaacctctg tgcatctagg ttttgagggt cgcagccaaa aatcaccatt 26340 tcaaegtcat tattccatgt tcttatctgt tccattagaa gctctggcag ttcaggtcca 26400 tgaaaccaac gaacactaac acggttattt aaccaagctg ccttcgcgta aggacagggt 26460 ggaaaatttc ctgttagagg attgggaatg ctgacaacat tgataatcca atcctctatt 26520 tcteggcgaa attgttcgat atttatcata actgttgatt tttcctcctt tgtagtaatt 26580 agtagttaaa ggatttagtg gatattaatc taggtcatag tataaccata tattaggctc 26640 gatgtatatt cccatattgt tgggatagtc aattttgaca ggtactaagc ctttgggaat 26700 aatatagtca ccagtttctg gaaaacgcat cccaaetcta tcttcccaac cgtcaatagt 26760 atcattaatt gttgtggatt taaaacagat ccctgcaatt ttagccccat gtttgacatt 26820 aactcgtaac caagggtcaa atataagacc atttttatct cgccaggtaa tataccgctc 26880 tatgggtata agtgggtaaa gatattttag gcttggacgt gcagccatga tcaaagaatt 26940 aagaccgtgg tattgagcaa gttctttcat gtatccaatc agatactgac tcaagttttt 27000 gccttgatac tctggtagga ttgaaatcga tactacacat aacgcattag gcaggcggtt 27060 ctgttctcgg tcttcaagcc acttggctaa agcccagtca caaccttcgt ccggtaactc 27120 atcaaaacgg ctttcataag ttaaagggat acagtttcct tgcgctatca taagctgtgt 27180 ggtagcttct actaacccaa actggaattc tggataaatt tcaaatagag ctaaggaagc 27240 tggatctgcc cagacatcat gtatcaaaaa ttttgggtat gcttgatcaa agacactcat 27300 cgtcctttcc acaaaatcag aagtttcttt tggggttaca aagctatact ctaaattatg 27360 ctgtacaatt Cgaatggtca ttggttattg gctaatcctt aaatttatac tggaagtcaa 27420 atgagatctc actatcgtta ttatctggaa gtacttgcac tgtcaattca ttaccgactt 27480 tcccattccc aggcataatt aataagttag ggtgaggtgg aatgccgtcg tactgtcgga 27540 cgcggcgaaa aatgctcgaa ttctcgccac catgtttatt caagaggact tcaactggtg 27600 tgatgacaaa agtcattcct gacccaaggt ggcgcgatcg ccgcttttga tttgctggag 27660 tggaaacact aacaaataag gcacaccctc ctagagaata agaccagtta gcagactgcg 27720 gatcggcaga ccaatggcag ggacaagaca ccgcatcaag gctatgtaac gcattcaaaa 27780 aatcaaatgc ttgacctgca tattcctcta ctgtaagaac tgttggttca ggtgggaaaa 27840 agatgacaag tgtcagaaga tccgcatttt cgtgctgaag caattcgttt tcattaactt 27900 catcaatgta tttgtagata ccctcaagcg tatgctcaac caagatcggg tcagttaaag 27960 atgagactat caggtatcta atcattccct tctgttcccc gatagttccc cagaagcaag 28020 ggaaggcaga atcgctgatt gtttcaacaa atgttgagta gctagtgcgt acccaagcag 28080 gaaggcactc ctctagaaga gaggattcca tctggctttt gttccagatt ggtgtaactc 28140 cgtcaggaca taaattcttg attaccatag ctgagttgaa aagtgagctt atttatacaa 28200 aaacgatgga agtgacacct gatggatggg acttcaaccc cctacacata attattatca 28260 ttactatgtg gcaggtcctt ctatatctta ttttttggaa gtccctgaaa attattcaac 28320 aagatcgaga cgttgttgtt gccagaattt gtgacagcca ggtcaagctt gctgtcgccg 28380 ttgaaatccg caattgctat agattcagga ttagtaccga ctggaaagtt agtagctatg 28440 ccaaaagacc cattaccatt tcctggtaag accgagacgt tattgctact ataatttgta 28500 acagccaggt caagtttact gtcgccattc acatctctaa tcgctacaga gtagggatta 28560 gtaccggctg gaaagttagt ggctgcgcca aaagacccat taccatttcc cagtaagacc 28620 gagacgttat tgctgctagt atttgcaaca gccaggtcaa gcttgctgtc gccatttaca 28680 tccccagttg ctacaaatat gggattagta ccgactggaa agttagtggc tgcgccaaaa 28740 gacccattac catttcccag taagaccgag acgttattgc tgacccaatt tgtaatagca 28800 aggtcgagct tactgtcgct attaaaatcc gcaatcgcta cggaaatcga ataagtatcg 28860 acagggaagc tgctggctgc gccaaaagac ccattaccat ttcccagtaa aaccaagacc 28920 ttattgtcga accaatttgt aaaagcaagg tcaagctcac tatcgttatt cacatctcca 28980 atggctacag aataagggtt agtaccaact gaaaagttag tggctgcgcc aaaagaccca 29040 ttaccatttc ctagtaagac cgagacgtta ttgctactaa aatttgcaac agccaggtca 29100 agcttgctgt cgccatttac atccccagtc actacaaaga cgggattagt accgactgga 29160 aagttagtgg ctgcgccaaa agacccatta ccatttccca gtaagaccga gacgttattg 29220 tcgaaccaat ttgtaacagc caggtcgagc ttactatcgc tattgaaatc cccaactgct 29280 acagagtcag catcaagacc agttgggaag ttaatagcag tagcataact actcctgtgg 29340 gcaaatctca ctcctacgga caaattaacc ggaacactaa attgcccaga aagcttttca 29400 ttcttcagat aatagtcagt tatatttgct aatgcaacag gagttataca taaaaatgta 29460 ctaacagata atatccccgo tataattagt aaagtgagcc ttttcacgag ttgtatagtt 29520 caaatgtatt aacaatgttt gtagccatac accatcgtgt atgaagaaag gtattgatcg 29580 caaaatatct atccttgatc tagcctatca cctaagttaa gccatattga gttctattta 29640 gattttcttt ataaatcagc tataatctat tgtttgaaaa ttgtgaattt gttttccacg 29700 tatttgagta gttgttctag gctttcctcg acggtgagtt cggatgtttc cacccataaa 29760 tctgggctat tgggtggttc ataaggggcg ctgattcccg taaatccatc tatttcccca 29820 ctgcgtgctt ttagataaag acctttcgga tcacgctgct cacaaagttc cagtggagtt 29880 gcaatgtata cttcatgaaa tagatctcca gctagtctac gcacctgttc tcggtcattc 29940 ctgtagggtg agatgaaggc agtgatcact aggcatcctg actccgcaaa gagtttggca 30000 acctcaccca aacgacggat attttctgag cgatcactag cagaaaatcc taaatcggaa 30060 cacagtccat gacgaacact atcaccatct aaaacaaagg tagaccatcc tttctcgaac 30120 aaagtctgct ctaattttaa agccaatgtt gttttaecag ccccggacag tccagtaaac 30180 catagaatcc cgcttttatg accattcttt agataacgat catatggaga tataagatgt 30240 tttgtatagt gaatattagt tgatttcata ttgctggagt ttagactaaa cagaagagcg 30300 atcgctccat gcctgagatt ttagtcagta tttccactcc tgtcaaacca ccaaaaacac 30360 ggggtaacct ggaaaattcc cctggggatc agctgaaaac tgctgtttaa cctgcattat 30420 tcatgaaggc aaaaacagga aaaacaaaac ctaacattta taccccaatt tatggcggaa 30480 ctaacttaat aagtaaaaag taaattaaac ctaattaaaa tccctgattt taaccccaaa 30540 atcaatattt taaacctcaa aacttctctt aatcccccat ttagacacac ctatcctatc 30600 aaggcttaat tttaagaaaa aattatttca aactcgctcg ccaaacgctc cataatcaaa 30660 ttaatttcag acgaaaaagg acagtaatat ggtagctcta ccaacaccct tcttgcggaa 30720 actgtcacct tcgctgctat tttgataatc gtttccctta acctaggaac ctgggcttta 30780 gccagttttg ttccctgtgc tgcttgccga attcccaaca ttaaaatgta agctgcttga 30840 gataaaaata accgaaactg attgacaata aatttctcac agctgagtct atctgatttt 30900 atccccagtt ttaattcctt aattctatgc tctgaagtag ctcctctttg aacataaaat 30960 ttatcgtata aatcctgagc ttctgtttcc aagctagtaa ttataaatct aggaCtgggt 31020 cctttttcta gccattctgc tttcataatt actcgccgag gttctgacca actccgagct 31080 gcgtaataca catcatcaaa taaacgaact ttttctcctg tgcgacaata ttccagtctg 31140 gctcggtcaa gaaggtaatt aatttttcgt tttaagacat cattattgct gaatccaaaa 31200 acatatccaa ccccgctttt ttcacaaacc tcaatgattt ctggtaacga gaaacccccg 31260 tctcccctca gaacaattct aatttcaggt aaggctcttt tgattcgcaa aaataaccat 31320 tttagaatgc cagctactcc tttaccagag tgagaatttc ccgcccttag ttgtagaact 31380 aatggataac cactggaagc ttcattaatc agaactggaa agtagatatc atgcctatgg 31440 taaccattaa ataagctcag ttgttgatga ccatgagtta gagcatccca cgcatctatg 31500 tccaggacaa Cctcttttga tCcccgagga Caggattcta ggaatttatc aacaaataac 31560 cgacgaattt gtttgatatc tttttgagtc acctgatttt ctaaacgact catagttggt 31620 tgactagcta ataagttttc tcctactgtg ggaacttgat tacaaactag cttaaaaatt 31680 ggatcttggc gcaatttatt actatcgttg ctatcttcat agccagcaat tatttgataa 31740 attcgttggc taattaattg agaaagagaa tgtttgactt tagtttggtc ccgattatcc 31800 gtcaaacaat ctgccatatc ttgacaaatt tttacctttt cttctacttg tcgtgccaga 31860 ataattccgc catcactact taaactcata tcagaaaaag tcagatctaa agttttttta 31920 tcgaagaaat ttaaagataa tcttgaggaa gatttagtca tatatagtgg ataggtttaa 31980 tttttaaaat cctgatttat tatagctgtt tttattcctt tttttcagtt tataactaaa 32040 gttagttatt atttaatttg gtgacggata ggaattacag agtgttggga tgacaaaatt 32100 gccgtagctg ttgcagtata accctttcag cgatttttat tctactctga tgaataatcc 32160 aggataggct tgccatcact ttctgggtag acaatgCcag gcgcgattgt ctccccaccc 32220 tgattaacgt tagattttat cacccccagt tgagtttttg gtgcaatttc cctcaccata 32280 tctatacctc ccattcactt tggtattgac tcaatcggtt caatttacta taacatgact 32340 tatgtggggg tgtgtgcata ccctcactta aaattaatgg atttgaatct cctcgcactg 32400 ctgcaacttg aaaaactctg agagtcagtt gagagctaac tctaccagga ggagagtttt 32460 taaaaacccc cttcccgagc gatcgcataa tttatggtat acaagaatag tgggtgaaaa 32520 actaactggc gatcgctctt ttcatttaag agacacccct tagttttttt tgcagtctca 32580 tgaatttaaa cgatatctaa ttattttcaa cctatctttg ccctgtaaca atgtatgcta 32640 ccctttgacc aatattagta gcatgatctg ccattctctc taaacactga attgctaatg 32700 ttaatagtaa aatgggctcc actaccccgg gaacatcttt ctgctgcgcc aaattacgat 32760 ataacttttt gtaagcatca tctactgtat catctaataa tttaatcctt ctaccactaa 32620 tctcgtctaa atccgctaaa gctactaggc tggtagccaa catagattgg gcatgatcgg 32880 acataatggc aacctccccc aaagtaggat gggggggata gggaaatatt ttcattgcta 32940 tttctgccaa atctttggca tagtccccaa tacgttccaa gtctctaact aattgcatga 33000 atgagcttaa acaccgagat tcttggtctg tgggagcttg aetgetcata atcgtggcac 33060 aatcgacttc tatttgtctg tagaagcgat caattttttt gtctaatctc cgtatttgct 33120 cagctgctgt taaatcccga ttgaatagag cttggtgact cagacggaat gactgctcta 33180 ctaaagcacc catacgcaaa acatctcgtt ccagtctttt aatggcacgt ataggttgag 33240 gtttttcaaa aattgtatat ttcacaacag ctttcatatt tttaatctcg ggtttaatat 33300 atttctagct attatagtct tgattcagaa atatccgcca tcatgttgaa ccacctgggg 33360 aagatgaatt tgtatccaag caccaccggt atcaggatgg ttcatggccc tgattttgcc 33420 accatgagct ataattattt ggcggacaat ggataaccct aaaccactac cagtaatttc 33480 tactgtttca ttctcagagc gggactcgcg gtgtctagct ttgtcccccc gataaaatct 33540 ttgaaagaca tggggtagat ccatgggagc aaatccaacc ccggaatcaa taatgttaat 33600 ttctaaaatc tgatttgata cttggtttaa tattgtatct gcttctggat caaccccatt 33660 aatagacttc tccccacaaa ctggattcat ttcaatgaaa atagtaccgt tcaggttgct 33720 gtatttaata cagttatcta acagattaag aaacacttga taaattctgg acttatcagc 337B0 acatatatag accttttccg ggccggagta agaaatacta agatgctgat tagcggctag 33840 gggctctaaa ttctcccaga ctgaaaaaat tagggagcgg acttctagca tttccaaatt 33900 cagttgtatg gaggaggtta tttccatctg ggtcaggtct aaccaatttt ggactaaatt 33960 aattagtctg tcaacctcct gcatcaagcg gatgacccaa cggtttagag ggggatctaa 34020 gcgagtttgc agggtttctg cgaccagacg aatggaagtc agaggtgttc tcagttcatg 34080 ggccaggtct gaaaaagagc ggtcacgttg ctgatgaatg tctacaaatt gttggtgact 34140 ttctagaaac acacccactt gtccccccgg taggggaaaa ctgttagctg ctaaagacaa 34200 tggctttaat cctaaaatac cctgaccatg atctcgggaa gggtgaaaaa tccactcttg 34260 catttgcggt ttttgccaat cccgggtttg ctcaattaac tgatccagct cataggatct 34320 cactaattcc agtagcaggc gcacttgacc cggttgccat ctttgtaaat acagcatttc 34380 ccgcgcgcac tgattacacc atagtagttg gttttcttca tctacttgta aatatcccaa 34440 aggcgcagca tccagcaact gttcataagc tttgagtgac aagcgtaagt tttgttgctc 34500 atctctaacg gtagatattt tacgatgtaa tccagctaat aggggtaata atatcttttc 34560 agcgtgaggg tttaagggtt gggttaactg ctccaaatga ctgttaagtt gaaattgttg 34620 ccaaagccaa aaaccaaaac cgactgccaa acccagaaga aatcccaata agaacatttg 34680 atcgtaagtg tgctatttga ccggaattaa agggggagga tccaagcacg gtctttacag 34740 gacggctttt tctaattgtt aaattataat tataatcggt agggactgct ttgggaaaat 34800 gcgatcgccc aggtatctgt aaccatttct gtaccacagg ttagactgga tcaggtaact 34860 gatacacttc ttgctgaatt ttatgtccaa tcaaaatgac aactcccaaa atgataactc 34920 ccgtgacaag agccaaaaac ccgaatccag cagatggttt aaaataaaaa gaccacgacc 34980 acctaaagga ataggaaaac caaaåacaga atagcccaca tatagaaatc aaccaaatct 35040 atagccaaaa cccctaactg tgacaatata ttctggatgg ctagggtcta actctaattt 35100 ttccctcagc catcgaatgt gaacatccac cgttttactg tcaccaacaa aatcaggaec 35160 ccaaacctgg tctaataact gttcccgtga ccacaccctg cgagcataac tcataaatag 35220 ttctagtaac cggaattctt tcggtgacaa gctcacctcc ctccctctca ctaacacccg 35280 acattcctga ggatttaaac tgatatcctt atattttaaa gtgggtatca agggcaaatt 35340 agaaaaccgc tgacgacgta acagggcgcg acacctagcc accatttccc gtacgctaaa 35400 aggcttagtt aggtaatcat ccgcccctac ctctaaaccc agcacccggt cagtttcact 35460 acctttcgca ctcagaatta aaatcggtat ggaattaccc tggtgacgta acaaacgaca 35520 aatatctaat ccgttgatCt gtggcaacat caagtctagc acaagcaggt cgaaggataa 35580 ctcaccaggt tgggtctcta aattcctgat taattccaca gcacaacgac catccttagc 35640 agtcacaact tcataacctt caccctctaa ggctactaca agcatctctc ggatcagttc 35700 ttcgtcttcc actattaaaa cgcgactaac tggttcaata tccgatttag tgaagtatct 35760 agggtaattc agtagtatac attgataaca aaaatttgta agaatgtact ggtctgggtt 35820 tcccactagt atatgatcct cactcattga tgccacatat tggggaacac ggaattcttg 35880 tattcaatac aacaatttgc ttaaatttat aattcaaata ggtgttttat agaaaatttt 35940 gtcgaatatt tccacatttg tggcttttag ttcaggcaaa acgagagaag tctaaagtgg 36000 gtggaatatc ctgaattctt ccaggaccta tagcccgtag tgcttctggt aaactaatat 36060 ccccagtata tagggcttta cccacaatta ctcctgtaac cceetgatgt tctaaagata 36120 ataaggttaa taggtcagta acagaaccca cacccccaga ggcaatcacg ggtatggaSa 36180 tagcagatac caagtctctt aatgctcgca agtttggtcc ctgaagcgta ccatcacggt 36240 ttatatccgt ataaataata gctgccgcac ccaattcctg catttgggtt gctagttggg 36300 gggccaaaat ttgagaagtt tctaaccaac ccctggtagc aactagacca ttccgcgcat 36360 caatcccaat tataatttgc tgggggaatt gttcacacag tccttgaacc agatctggtt 36420 gctctactgc tacagttccc agaattgccc actgtacccc aagattaaat aactgtataa 36480 cgctggagct atcacgtatt cctccgccaa cttcaatagg tatggaaata goattggtaa 36540 tagcttctat agtagataaa ttaactattt taccagtttt tgctccatct aaatctacta 36600 aatgtagtct tgttgctcct tggtctgccc acattttagc ggtttccaca gggttatggc 36660 tgtaaacctg ggattgtgca tagtcacctt tgtagagtct tacacaacgc ccctctaata 36720 gatctategc tgggataact tccatgacta attagtgaat aggttaattt cagttgagct 36780 aaatggagaa ggagggattc gaaccctcgg atggacctta cgattccate aacagattag 36840 caatctgccg ctttcgacca ctcagccacc tctccaggtt tgttataaat tatgatgggt 36900 caatcctaac agacaatttt tggcttgtca agagattttt tgcaagtgga ggaggaaatc 36960 cgtcagggat ttcaatcctg gtcaactttt ttttgatttt gaatataaag ttaagtttaa 37020 caatttctag tggcgctcct ccaacagtag atataaaata tgagttggtc cacaatgaag 37080 gacgtcttga ttttaatagt caaatccctc caaatccatt ataatcccat gaatgctctt 37140 tcaattccta cctggattat ccatatttct agtgtcattg aatgggtagt tgccatttcc 37200 ctcatctgga aatatggcga actgacccaa aaccatagtt ggaggggatt tgccttaggt 37260 atgatacccg ccttaattag cgccctatcc gcttgtacct ggcattattt cgataatccc 37320 cagtccctag aatggttagt caccctccag gctactacta cgttaatagg taattttact 37380 ctttgggcag cagcagtctg ggtttggegt tctactcgac cgaatgaggt tctcagtatc 37440 tcaaataagg agtagaccgt tatgatgtca aaagaaactc tctttgctct ctccctgttc 37500 ccctatttgg gaatgttgtg gtttctcagt cgcagtcccc aaatgccccc ttaagggctc 37560 tatggattct atggcacttt agtatttgtt ggtgttacca ttccag 37606
<210 2 <211> 1320 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400>2 atgatcccag ctaaaaaagt ttatttttta ttgagtttag caatagttat ttcacccttt 60 ttatccatga ttgtgggtat ttacgaaaat attaaattta gggtattatt tgatttggtg 120 gtcagggcac taatggtggt tgactgcttc aatatcaaaa aacatcgggt caaaattagt 180 cgtcaattac ctctacgttt atctattgga cgtgagaatt tagtaatatt gaaggtagag 240 tctgggaatg tcaatagtgc tattcaaatt cgtgattact atcccacaga atttcccgta 300 tccacatcta acctgatagt taaccttccc cctaatcata ctcaggaagt aaagtacacc 360 attcgaccta atcaacgggg agaattttgg tggggaaata ttcaagttcg acagctggga 420 aattggtctc tagggtggga caattggcaa attccccaaa aaactgtggc taaggtgtat 480 cctgatttgt taggactcag atecctcgct attcgtttaa ccctacaatc ttctggatct 540 atcactaaat tgcgtcaacg gggaatggga acggaatttg ccgaactccg taattactgc 600 atgggggatg atctacggtt aattgattgg aaagctacag ctagacgtgc ttatggaaat 660 ctgagtcccc tagtaagagt tttagagcct caacaggaac aaactctgct tatattatta 720 gatcgtggta gactaatgac agctaatgta caagggttaa aacgatatga ttggggttta 780 aataccacct tgtctttggc attagcagga ttacataggg gcgatcgcgt aggagtaggg 840 gtatttgact cccagctgca tacctggata cctccagagc gaggacaaaa tcatctcaat 900 cggcttatag acagacttac acctattgaa ccagtgttag tggagtctga ttatttaaat 960 gccattacct atgtagtaaa acaacagact cgtagatctc tagtagtgtt aattactgat 1020 ttagtcgatg ttactgcttc ccatgaacta ctagtagcgc tgtgtaaatt agtgcctcga 1080 tatctacctt tttgtgtaac actcagggat cctgggattg ataaaatagc tcataatttt 1140 agtcaagact baacacaggc ttataatcga gcagtttctt tggacttgat atcacaaaga 1200 gaaattgctt ttgctcagtt gaaacaacag ggagttttgg tgttggatgc accagcaaat 1260 caaatttccg agcagttggt agaaaggtac CCacaaatca aagccaaaaa tcagatttga 1320
<210 3 <211> 439 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400>3
Met Ile Pro Ala Lys Lys Val Tyr Phe Leu Leu Ser Leu Ala Ile Val 15 10 15
Ile Ser Pro Phe Leu Ser Met Ile Val Gly Ile Tyr Glu Asn Ile Lys 20 25 30
Phe Arg Val Leu Phe Asp Leu Val Val Arg Ala Leu Met Val Val Asp 35 40 45
Cys Phe Asn Ile Lys Lys His Arg Val Lys Ile Ser Arg Gin Leu Pro 50 55 60
Leu Arg Leu Ser Ile Gly Arg Glu Asn Leu Val Ile Leu Lys Val Glu 65 70 75 80
Ser Gly Asn Val Asn Ser Ala Ile Gin Ile Arg Asp Tyr Tyr Pro Thr 85 90 95
Glu Phe Pro Val Ser Thr Ser Asn Leu Ile Val Asn Leu Pro Pro Asn 100 105 110
His Thr Gin Glu Val Lys Tyr Thr Ile Arg Pro Asn Gin Arg Gly Glu 115 120 125
Phe Trp Trp Gly Asn Ile Gin Val Arg Gin Leu Gly Asn Trp Ser Leu 130 135 140
Gly Trp Asp Asn Trp Gin Ile Pro Gin Lys Thr Val Ala Lys Val Tyr 145 ISO 155 160
Pro Asp Leu Leu Gly Leu Arg Ser Leu Ala Ile Arg Leu Thr Leu Gin 165 170 175
Ser Ser Gly Ser Ile Thr Lys Leu Arg Gin Arg Gly Met Gly Thr Glu 180 185 190
Phe Ala Glu Leu Arg Asn Tyr Cys Met Gly Asp Asp Leu Arg Leu Ile 195 200 205
Asp Trp Lys Ala Thr Ala Arg Arg Ala Tyr Gly Asn Leu Ser Pro Leu 210 215 220
Val Arg Val Leu Glu Pro Gin Gin Glu Gin Thr Leu Leu Ile Leu Leu 225 230 235 240
Asp Arg Gly Arg Leu Met Thr Ala Asn Val Gin Gly Leu Lys Arg Tyr 245 250 255
Asp Trp Gly Leu Asn Thr Thr Leu Ser Leu Ala Leu Ala Gly Leu His 260 265 270
Arg Gly Asp Arg Val Gly Val Gly Val Phe Asp Ser Gin Leu His Thr 275 280 285
Trp Ile Pro' Pro Glu Arg Gly Gin Asn His Leu Asn Arg Leu Ile Asp 290 295 300
Arg Leu Thr Pro Ile Glu Pro Val Leu Val Glu Ser Asp Tyr Leu Asn 305 310 315 320
Ala Ile Thr Tyr Val Val Lys Gin Gin Thr Arg Arg Ser Leu Val Val 325 330 335
Leu Ile Thr Asp Leu Val Asp Val Thr Ala Ser His Glu Leu Leu Val 340 345 350
Ala Leu Cys Lys Leu Val Pro Arg Tyr Leu Pro Phe Cys Val Thr Leu 355 360 365
Arg Asp Pro Gly Ile Asp Lys Ile Ala His Asn Phe Ser Gin Asp Leu 370 375 380
Thr Gin Ala Tyr Asn Arg Ala Val Ser Leu Asp Leu Ile Ser Gin Arg 385 390 395 400
Glu Ile Ala Phe Ala Gin Leu Lys Gin Gin Gly Val Leu Val Leu Asp 405 410 415
Ala Pro Ala Asn Gin Ile Ser Glu Gin Leu Val Glu Arg Tyr Leu Gin 420 425 430
Ile Lys Ala Lys Asn Gin Ile 435
<210 4 <211> 759 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 4 atgatagata caatatcagt actattaaga gagtggactg taatttccct tacaggttta 60 gccttctggc tttgggaaat tcgctctccc ttccatcaaa ttgaatacaa agctaaattc 120 ttcaaggaat tgggatgggc gggaatatca ttcgtcttta gaaatgttta tgcatatgtt 180 tctgtggcaa ttataaaact attgagttct ctatttatgg gagagtcagc aaattttgca 240 ggagtaatgt atgtgcccct ctggctgagg atcatcactg catatatatt acaggactta 300 actgactatc tattacacag gacaatgcat agtaatcagt ttctttggtt gacgcacaaa 360 tggcatcatt caacaaagca atcatggtgg ctgagtggaa acaaagatag ctttaccggc 420 ggacttttat atactgttac agctttgtgg tttccactgc tggacattcc ctcagaggtt 480 atgtctgtag tggcagtaca tcaagtgatt cataacaatt ggatacacct caatgtaaag S40 tggaactcct ggttaggaat aattgaatgg atttatgtta cgccccgtat tcacactttg 600 catcatcttg atacaggggg aagaaatttg agttctatgt ttactttcat cgaccgatta 660 tttggaacct atgtgtttcc agaaaacttt gatatagaaa aatctaaaaa tagattggat 720 gatcaatcag taacggtgaa gacaattttg ggtttttaa 759
<210 5 <211> 252 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 5
Met Ile Asp Thr Ile Ser Val Leu Leu Arg Glu Trp Thr Val Ile Ser 15 10 15
Leu Thr Gly Leu Ala Phe Trp Leu Trp Glu Ile Arg Ser Pro Phe His 20 25 30
Gin Ile Glu Tyr Lys Ala Lys Phe Phe Lys Glu Leu Gly Trp Ala Gly 35 40 45
Ile Ser Phe Val Phe Arg Asn Val Tyr Ala Tyr Val Ser Val Ala ile 50 55 60
Ile Lys Leu Leu Ser Ser Leu Phe Met Gly Glu Ser Ala Asn Phe Ala 65 70 75 80
Gly Val Met Tyr Val Pro Leu Trp Leu Arg Ile Ile Thr Ala Tyr Ile 85 90 95
Leu Gin Asp Leu Thr Asp Tyr Leu Leu His Arg Thr Met His Ser Asn 100 105 110
Gin Phe Leu Trp Leu Thr His Lys Trp His His Ser Thr Lys Gin Ser 115 120 125
Trp Trp Leu Ser Gly Asn Lys Asp Ser Phe Thr Gly Gly Leu Leu Tyr 130 135 140
Thr Val Thr Ala Leu Trp Phe Pro Leu Leu Asp Ile Pro Ser Glu Val 145 150 155 160
Met Ser Val Val Ala Val His Gin Val Ile His Asn Asn Trp Ile His 165 170 175
Leu Asn Val Lys Trp Asn Ser Trp Leu Gly Ile Ile Glu Trp Ile Tyr 180 185 190
Val Thr Pro Arg Ile His Thr Leu His His Leu Asp Thr Gly Gly Arg 195 200 205
Asn Leu Ser Ser Met Phe Thr Phe Ile Asp Arg Leu Phe Gly Thr Tyr 210 215 220
Val Phe Pro Glu Asn Phe Asp Ile Glu Lys Ser Lys Asn Arg Leu Asp 225 230 235 240
Asp Gin Ser Val Thr Val Lys Thr Ile Leu Gly Phe 245 250
<210 6 <211> 396 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 6 tcacccceaa cttattgcag aaaaactttt ttctcttagg taataaatta gtagtttaat 60 tgaaaagcat agcatctctt ttgacttgga ataacaaaat gtcttacgat gtagtctagc 120 taaatagtga cgcaaacgac tgttttctcc ctcaactcta gtcattgatg ttttactaat 180 aatttggtct ccatcgggaa taaattttgg gtaaacttta tagccatccg taatccaaaa 240 ataggatttc caatgctcta tctttttcca taatttggca aatgttttgg cacttctatc 300 tcccactaca tattgaataa ttcccgaacg tttgttatet acaactgtcc agacccatat 360 cttgtttttt tttaccaata aatgtttcca actcat 396
<210> 7 <211>131 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 7
Met Ser Trp Lys His Leu Leu Val Lys Lys Asn Lys Ile Trp Val Trp 1 5 10 15
Thr Val Val Asp Asn Lys Arg Ser Gly Ile Ile Gin Tyr Val Val Gly 20 25 30
Asp Arg Ser Ala Lys Thr Phe Ala Lys Leu Trp Lys Lys Ile Glu His 35 40 45
Trp Lys Ser Tyr Phe Trp Ile Thr Asp Gly Tyr Lys Val Tyr Pro Lys 50 55 60
Phe Ile Pro Asp Gly Asp Gin Ile Ile Ser Lys Thr Ser Met Thr Arg
65 70 75 BO
Val Glu Gly Glu Asn Ser Arg Leu Arg His Tyr Leu Ala Arg Leu His 85 90 95
Arg Lys Thr Phe Cys Tyr Ser Lys Ser Lys Glu Met Leu Cys Phe Ser 100 105 110
Ile Lys Leu Leu Ile Tyr Tyr Leu Arg Glu Lys Ser Phe Ser Ala Ile 115 120 125
Ser Trp Gly 130
<210 8 <211> 360 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 8 ttatctacaa ctgtccagac ccatatcttg ttttttttta ccaataaatg tttccaactc 60 atccagttga caaacttcag gtgtttggga åttattatta ctatctgata actgacgacc 120 tagctttttg acccaacgaa tgactgtatt gtgatttact ttagtcattc tttcaattgc 180 cctaaatcea ttcccattta catacatggt taaacatgct tcctttactt cttgggaata 240 acctctagga gaataagatt caataaattg acgaccacaa ttcttgcatt gataattttg 300 ttttcccctt ctctggccat tttttctaat attattggaa tcacagtttg aacagttcat 360
<210>9 <211>119 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 9
Met Asn Cys Ser Asn Cys Asp Ser Asn Asn Ile Arg Lys Asn Gly Gin 1 5 10 15
Arg Arg Gly Lys Gin Asn Tyr Gin Cys Lys Asn Cys Gly Arg Gin Phe 20 25 30
Ile Glu Ser Tyr Ser Pro Arg Gly Tyr Ser Gin Glu Val Lys Glu Ala 35 40 45
Cys Leu Thr Met Tyr Val Asn Gly Asn Gly Phe Arg Ala Ile Glu Arg 50 55 60
Met Thr Lys Val Asn His Asn Thr Val Ile Arg Trp Val Lys Lys Leu 65 70 75 80
Gly Arg Gin Leu Ser Asp ser Asn Asn Asn Ser Gin Thr Pro Glu Val 85 90 95
Cys Gin Leu Asp Glu Leu Glu Thr Phe Ile Gly Lys Lys Lys Gin Asp 100 105 110
Met Gly Leu Asp Ser Cys Arg 115
<210 10 <211> 354 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 10 ttatgacctc attttcattt ctagacgttc agcaacgggc attaactcac gtatcagatc 60 aaagtttcct acgttccgtc tcatccagtc taataagaat ttttctcctt catctagctt 120 acctttatca tcaacaaaaa ccatctgctc gcaccaatct acaaatccgg aattagtcat. 180 . ctcatagact aaaatgatgg gaggaaagtg tgcgaatccc attttttcaa tgacttccat 240 acaaaccagc ttaaatactt gttcgtttgt caattcatta gacataaaga attttccttt 300 aatcaattct gtttctaatc ctaccacaga gtaataactc ttggtctgga acat 354 <210> 11 <211>117
<212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 11
Met Phe Gin Thr Lys Ser Tyr Tyr Ser Val Val Gly Leu Glu Thr Glu 15 10 15
Leu Ile Lys Gly Lys Phe Phe Met Ser Asn Glu Leu Thr Asn Glu Gin 20 25 30
Val Phe Lys Leu Val Cys Met Glu Val Ile Glu Lys Met Gly Phe Ala 35 40 45
His Phe Pro Pro Ile Ile Leu Val Tyr Glu Met Thr Asn Ser Gly Phe 50 55 60
Val Asp Trp Cys Glu Gin Met Val Phe Val Asp Asp Lys Gly Lys Leu 65 70 75 80
Asp Glu Gly Glu Lys Phe Leu Leu Asp Trp Met Arg Arg Asn Val Gly 85 90 95
Asn Phe Asp Leu Ile Arg Glu Leu Met Pro Val Ala Glu Arg Leu Glu 100 105 110
Met Lys Met Arg Ser 115
<210> 12 <211> 957 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 12 tcataactta ttacttgacg gagttgcagg ggcatacctt aacttgacct tgggagcgat 60 agaagaaagg aaggcttcag tgacgggtct ttgactaatc ccagtttcca cttcaactaa 120 aacagcatca caaatgtcga atagtgattg agaatatcta ttcatattca tgaaagtcag 180 agcagattcc atcggagaca tggatgaatt aaaggcagcg ttttcagcgt atcgacctgt 240 aaatatattc ccgtgggaat cttttaacgc tacccctgca aaatttttcg tgtagggagc 300 ataactttga ttggcagcgg atagagcagc aagcacaaca tcatcggtag aataggtctc 360 cagatcatga aatactgttt gcattaatcc acctgtgagt cctagatccg ctggtccaaa 420 tggctcgggt agaaaatgtg ggagtttatt tgaggtataa gtttgctcag gctgtgattc 480 attagacttc acaagaagaa caaaattttg atttacagtt gccatctcgt ataaaaattg 540 tcggcagtat ccacatggtg cttcgtggat tgctaatgct tgtaaaccgg tttctccgtg 600 caaccacgca tttatggtgg cggattgttc tgcgtgaact gagaaactaa gtgcctgtcc 660 tacaaattcc atgtcggcac caaaataaag agttccagaa cccagttgat tcttagattg 720 tggtttacca agagcgatcg cccctacata aaactgcgat attggtaccc tagcataagt 780 tgcggctacg ggtagtaatt gaatcattaa cgtactaata ttagtaccaa gtcgatcaat 840 ccaagatgcg acaacacttg agtcaattac ageatgttgg gcaagaattg tccttaactc 900 tgattgaatg gaacgtggaa ccttggcaat cgcctgttct aatgctacat gggtcat 957
<210> 13 <211>318 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 13
Met Thr His Val Ala Leu Glu Gin Ala Ile Ala Lys Val Pro Arg Ser 15 10 15
Ile Gin Ser Glu Leu Arg Thr Ile Leu Ala Gin His Ala Val Ile Asp 20 25 30
Ser Ser Val Val Ala Ser Trp Ile Asp Arg Leu Gly Thr Asn Ile ser 35 40 45
Thr Leu Met Ile Gin Leu Leu Pro Val Ala Ala Thr Tyr Ala Arg Val 50 55 60
Pro Ile Ser Gin Phe Tyr Val Gly Ala Ile Ala Leu Gly Lys Pro Gin 65 70 75 80
Ser Lys Asn Gin Leu Gly Ser Gly Thr Leu Tyr Phe Gly Ala Asp Met 85 90 95
Glu Phe Val Gly Gin Ala Leu Ser Phe Ser Val His Ala Glu Gin Ser 100 105 110
Ala Thr Ile Asn Ala Trp Leu His Gly Glu Thr Gly Leu Gin Ala Leu 115 120 125
Ala Ile His Glu Ala Pro Cys Gly Tyr Cys Arg Gin Phe Leu Tyr Glu 130 135 140
Met Ala Thr Val Asn Gin Asn Phe Val Leu Leu Val Lys Ser Asn Glu 145 150 155 160
Ser Gin Pro Glu Gin Thr Tyr Thr Ser Asn Lys Leu Pro His Phe Leu 165 170 175
Pro Glu Pro Phe Gly Pro Ala Asp Leu Gly Leu Thr Gly Gly Leu Met 180 185 190
Gin Thr Val Phe His Asp Leu Glu Thr Tyr Ser Thr Asp Asp Val Val 195 200 205
Leu Ala Ala Leu Ser Ala Ala Asn Gin Ser Tyr Ala Pro Tyr Thr Lys 210 215 220
Asn Phe Ala Gly Val Ala Leu Lys Asp Ser His Gly Asn Ile Phe Thr 225 230 235 240
Gly Arg Tyr Ala Glu Asn Ala Ala Phe Asn Ser Ser Met Ser Pro Met 245 250 255
Glu Ser Ala Leu Thr Phe Met Asn Met Asn Arg Tyr Ser Gin Ser Leu 260 265 270
Phe Asp Ile Cys Asp Ala Val Leu Val Glu Val Glu Thr Gly Ile Ser 275 280 285
Gin Arg Pro Val Thr Glu Ala Phe Leu Ser Ser Ile Ala Pro Lys Val 290 295 300
Lys Leu Arg Tyr Ala Pro Ala Thr Pro Ser Ser Asn Lys Leu 305 310 315
<210 14 <211> 3738 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 14 ttaatgcttg agtatgtttt cctcctgctt acaaggcaaa gctttccttt tttgtagcaa 60 atcccaaact gctttgagag atttaattgc ttggtctatc tcctcttcgg tattggcggc 120 tgtaatcgaa aaccttaaag cacttttatt taaaggtacg attggaaaaa tagcaggagt 180 aattaaaata ccatattccc aaaggagttg acacacatca atoatgtgtt gagcatctcc 240 cactaacacg cctacgatgg gaacgtaacc atagttatcc acttcgaatc caatggctct 300 tgcttgtgta accaatttgt gagttaggtg ataaatttgt tttcttaact gctccccctc 360 ctgacgattc acctgtaatc cggctaaggc acttgccaaa ctcgcaacag gagaaggacc 420 agaaaatatg gcagtccaag cgttgcggaa gttggttttg atccggcgat cgccacaagt 480 taagaatgct gcgtaagaag aataggcttt ggacaaacca gctacataga tgatattatc 540 ctctgcaaac cgcaggtcaa aataattcac catcccgttt cctttgtaac cgtaaggcat 600 atcgctgctg ggattttcgc ccaaaatgcc aaaaccatga gcatcatcca tgtaaattaa 660 ggcattgtac tcttttgcca gatgcacgta agctggcaga tcgggaaaat ctgccgacat 720 ggaatacacg ccatcaatga caataatctt tacttgttca ggcggatatt ttgctagttt 780 ttcggctaaa tcgttcaaat cattatgtcg atattggatg aactgggctc ctttgtgctg 840 agccagacag cacgcttcat aaatacaacg atgtgcagct atgtcaccaa agatgacacc 900 attattccca gttaatagtg gtaaaattcc tatctgaagc agtgttacag ctggaaatac 960 taaaacatca ggtacgccta aaagtttgga caattcttcc tccaattcct cataaattgc 1020 tggggaagca acaagccgag tccagcttgg atgtgtgccc catttatcca aagctggtgg 1080 aattgcttcc ttaacttttg gatgcaagtc aagacctaaa tagttgcaag aagcaaagtc 1140 tatcacccaa tgtccgtcaa ttagcacctt gcgaccttgt tgttctgtga cgaetcttgt 1200 gacttgagga attttttgtt ggttaactac gttttccaga gtgttgattt cgttggctga 1260 gtcaacaggt ggagctagat cagattgttt ctcttgtacc acttggtttt ggaaataagt 1320 gatgatggca gttggagtgt tcttttgtaa aaagaacgCt ccagacagat tgatccctaa 1380 acgttcctct aggagcgttt gcagttctaa taaatctaaa gaatctaatc ccatatccag 1440 cagtttttgt tgtggagcgt aggctgcctg acgttgggaa cccattactt ttaagatgca 1500 ttctttaacg agatccgcta cagttttgtt ttccttagtt gcagatgttg cttttggtac 1560 caatgaacca attgctgagt taatatacgg tcctttgcga tcaccaggcg agtgcaaagc 1620 actgtcgcgc aggttatatt caatcaaaat acccatgccg agattatctg tatcttccgg 1680 acgataatta gcaataattc ccctaatttc ggctcctccc gacacatgga aacccacaat 1740 tggatccaga agctgtcgtt gctcattgtg tagctttaaa tactccatca tcggcatttg 1800 ggaataattg acataatttc gacagcgagt tacacccacc acgctctcaa tgccgccttt 1860 cagggtacag tagtaaagca taaagtcccg caattcattt cctaaccccc gcgcctgaaa 1920 ctcaggtaga atatttagtg cgagcagttg aataactgac ccttggggag tatgtaacgt 1980 cggcacttgc gcatatttta cattctctaa tgcctcagtg ctggtaattg tttgggaata 2040 aatcgcacca ataatttgat cttctataat cagcactaaa ttaccttgcg ggtttagctc 2100 aagtcttcgc cgaatttcat gagtagatgc ccgtaaattt tctggccaac acttgacctc 2160 caagtcaact aaggcaggta aatctgacaa ataggcatga ctaattttgt aaggtctttt 2220 ctcgaagtaa ttaagcgtaa tgcgagtaaa aggaaatgtt tttgggtatc ttttagaaag 2280 ctctagtttt ggaaatagac ctacttgtgc agcagacatg agaaaaacct cagcttccac 2340 aagatactgc tgagaaaatc cctgaaacgc atcgaaatgt aagttttcgc ttttgtctaa 2400 aaactgatag actacccttg gttccaaaca atggacctcc aaaatcatta aaccgtgttt 2460 attgaccact tgagaccatc Cttctaagtg ttccaccaaa ctttgcacca taacatgagg 2520 aggaataagc tctccttgat catcgacaca gactgattgg taaggfcaagt gagcacgttc 2580 tttcaattcg tttcttttct gaggaggaat aaagagacga tcatggtcga ggaacgaacg 2640 gatgtgcagg atattttcgg gatcatgaat gccatgagct tctaaagaac gcaccatttg 2700 tCctgggttc ccaatatctc cctgtaaaac taagtgggga aggctagcaa gggtgcgtgt 2760 ggtagctttt aaagaagctt cgttataatc tacacctata agacgcaggg gatactgttc 2820 gagtgctttt cccctagcag acttaaattg aatggtttcc cagactcgtt tcaggagagt 2880 tccatcgcca caccccatgt cagtaatgta tttgggttgt tcttctaatg gcaactgaCt 2940 gaatactgag aggatacttt cttctaaatc ggcaaaatat ttctggtgtt gaaatccact 3000 cccgatcacg ttaagggtgc gatcaatgtg cctttcgtga ccggaagcat ctctttggaa 3060 tacggagaga caattgccaa acaatacatc atgaatgcgg gacaacatag gagtgtagga 3120 cgccactatg gctgtattca aggctcgctc tcccataaat cgaccaagCt cggttatggt 3180 caaacgacct gctgtaaggt cagcccagcc aaggtggaga aataacttac ccaactcttc 3240 ttgcactgtt gagcttaatg aggagagcaa aggtttgtcc tccgaatctg caagcaagtt 3300 gtgtttgtgc agtgccagca ggagtgggat gaccagtaat ccatctaaaa aatctgccat 3360 taggggaCtg Cccaggttcc acaattggca agaacgctca atccatcttc ccagcaaatt 3420 tccttgtttc ccttctaaat aagactgaat tggtaggttg tacaattgaa gaatgtcttc 3480 cgaaattttg ttgtgaatcg ctgcttctgc ggttagagag tatttaagct ccttatttcg 3540 ggaaagccaa tgtaaagact cgagcatcct caaagcaact tgaaaatgtc cgctgttagc 3600 tcccagatgt tccaccattt ggtttaaaga gagaggactt tcatcggcga gtaattcaaa 3660 aacacctttt tctcgacacg caagaataac gggaaccgcc acaaagccgt gagtataacg 3720 attaatcttt tgtaacat 3738 <210 15 <211> 1245
<212> PRT <213> Cylindrospermopsis raciborskii T3 <400 15
Met Leu Gin Lys Ile Asn Arg Tyr Thr His Gly Phe Val Ala Val Pro 1 5 10 15
Val lie Leu Ala Cys Arg Glu Lys Gly Val Phe Glu Leu Leu Ala Asp 20 25 30
Glu Ser Pro Leu ser Leu Asn Gin Met Val Glu His Leu Gly Ala Asn 35 40 45
Ser Gly His Phe Gin Val Ala Leu Arg Met Leu Glu Ser Leu His Trp 50 55 60
Leu Ser Arg Asn Lys Glu Leu Lys Tyr Ser Leu Thr Ala Glu Ala Ala 65 70 75 80 lie His Asn Lys lie Ser Glu Asp He Leu Gin Leu Tyr Asn Leu Pro 85 90 95 lie Gin Ser Tyr Leu Glu Gly Lys Gin Gly Asn Leu Leu Gly Arg Trp 100 105 110
He Glu Arg Ser Cys Gin Leu Trp Asn Leu Asp Asn Pro Leu Met Ala 115 120 125
Asp Phe Leu Asp Gly Leu Leu Val He Pro Leu Leu Leu Ala Leu His 130 135 140
Lys His Asn Leu Leu Ala Asp Ser Glu Asp Lys Pro Leu Leu Ser Ser 145 150 155 160
Leu Ser Ser Thr Val Gin Glu Glu Leu Gly Lys Leu Phe Leu His Leu 165 170 175
Gly Trp Ala Asp Leu Thr Ala Gly Arg Leu Thr lie Thr Glu Leu Gly 180 185 190
Arg Phe Met Gly Glu Arg Ala Leu Asn Thr Ala He Val Ala Ser Tyr 195 200 205
Thr Pro Met Leu Ser Arg He His Asp Val Leu Phe Gly Asn Cys Leu 210 215 220
Ser Val Phe Gin Arg Asp Ala Ser Gly His Glu Arg His He Asp Arg 225 230 235 240
Thr Leu Asn Val He Gly Ser Gly Phe Gin His Gin Lys Tyr Phe Ala 245 250 255
Asp Leu Glu Glu Ser He Leu Ser Val Phe Asn Gin Leu Pro Leu Glu 260 265 270
Glu Gin Pro Lys Tyr lie Thr Asp Met Gly Cys Gly Asp Gly Thr Leu 275 280 285
Leu Lys Arg Val Trp Glu Thr lie Gin Phe Lys Ser Ala Arg Gly Lys 290 295 300
Ala Leu Glu Gin Tyr Pro Leu Arg Leu lie Gly Val Asp Tyr Asn Glu 305 310 315 320
Ala Ser Leu Lys Ala Thr Thr Arg Thr Leu Ala Ser Leu Pro His Leu 325 330 335
Val Leu Gin Gly Asp lie Gly Asn Pro Glu Gin Met Val Arg Ser Leu 340 345 350
Glu Ala His Gly He His Asp Fro Glu Asn He Leu His lie Arg Ser 355 360 365
Phe Leu Asp His Asp Arg Leu Phe He Pro Pro Gin Lys Arg Asn Glu 370 375 380
Leu Lys Glu Arg Ala His Leu Pro Tyr Gin Ser Val Cys Val Asp Asp 385 390 395 400
Gin Gly Glu Leu Ile Pro Pro His Val Met Val Gin Ser Leu Val Glu 405 410 415
His Leu Glu Arg Trp Ser Gin Val Val Asn Lys His Gly Leu Met Ile 420 425 430
Leu Glu Val His Cys Leu Glu Pro Arg Val Val Tyr Gin Phe Leu Asp 435 440 445
Lys Ser Glu Asn Leu His Phe Asp Ala Phe Gin Gly Phe Ser Gin Gin 450 455 460
Tyr Leu Val Glu Ala Glu Val Phe Leu Met Ser Ala Ala Gin Val Gly 465 470 475 480
Leu Phe Pro Lys Leu Glu Leu Ser Lys Arg Tyr Pro Lys Thr Phe Pro 485 490 495
Phe Thr Arg Ile Thr Leu Asn Tyr Phe Glu Lys Arg Pro Tyr Lys Ile 500 505 510
Ser His Ala Tyr Leu Ser Asp Leu Pro Ala Leu Val Asp Leu Glu Val 515 520 525
Lys Cys Trp Pro Glu Asn Leu Arg Ala Ser Thr His Glu Ile Arg Arg 530 535 540
Arg Leu Glu Leu Asn Pro Gin Gly Asn Leu Val Leu Ile Ile Glu Asp 545 550 555 560
Gin Ile Ile Gly Ala Ile Tyr Ser Gin Thr Ile Thr Ser Thr Glu Ala 565 570 575
Leu Glu Asn Val Lys Tyr Ala Gin Val Pro Thr Leu His Thr Pro Gin 580 S85 590
Gly Ser Val Ile Gin Leu Leu Ala Leu Asn Ile Leu Pro Glu Phe Gin 595 600 605
Ala Arg Gly Leu Gly Asn Glu Leu Arg Asp Phe Met Leu Tyr Tyr Cys 610 615 620
Thr Leu Lys Gly Gly Ile Glu Ser Val Val Gly Val Thr Arg Cys Arg 625 630 635 640
Asn Tyr Val Asn Tyr Ser Gin Met Pro Met Met Glu Tyr Leu Lys Leu 645 650 655
His Asn Glu Gin Arg Gin Leu Leu Asp Pro Ile Val Gly Phe His Val 660 665 670
Ser Gly Gly Ala Glu Ile Arg Gly Ile Ile Ala Asn Tyr Arg Pro Glu 675 680 685
Asp Thr Asp Asn Leu Gly Met Gly Ile Leu Ile Glu Tyr Asn Leu Arg 690 695 700
Asp Ser Ala Leu His Ser Pro Gly Asp Arg Lys Gly Pro Tyr Ile Asn 705 710 715 720
Ser Ala Ile Gly Ser Leu Val Pro Lys Ala Thr Ser Ala Thr Lys Glu 725 730 735
Asn Lys Thr Val Ala Asp Leu Val Lys Glu Cys Ile Leu Lys Val Met 740 745 750
Gly Ser Gin Arg Gin Ala Ala Tyr Ala Pro Gin Gin Lys Leu Leu Asp 755 760 765
Met Gly Leu Asp Ser Leu Asp Leu Leu Glu Leu Gin Thr Leu Leu Glu 770 775 780
Glu Arg Leu Gly Ile Asn Leu Ser Gly Thr Phe Phe Leu Gin Lys Asn 785 790 795 800
Thr Pro Thr Ala Ile Ile Thr Tyr Phe Gin Asn Gin Val Val Gin Glu 805 810 815
Lys Gin Ser Asp Leu Ala Pro Pro Val Asp Ser Ala Asn Glu Ile Asn 820 825 830
Thr Leu Glu Asn Val Val Asn Gin Gin Lys Ile Pro Gin Val Thr Arg 835 840 845
Val Val Thr Glu Gin Gin Gly Arg Lys Val Leu Ile Asp Gly His Trp 850 855 860
Val Ile Asp Phe Ala Ser Cys Asn Tyr Leu Gly Leu Asp Leu His Pro 865 870 875 880
Lys Val Lys Glu Ala Ile Pro Pro Ala Leu Asp Lys Trp Gly Thr His 885 890 895
Pro Ser Trp Thr Arg Leu Val Ala Ser Pro Ala Ile Tyr Glu Glu Leu 900 905 910
Glu Glu Glu Leu Ser Lys Leu Leu Gly Val Pro Asp Val Leu Val Phe 915 920 925
Pro Ala Val Thr Leu Leu Gin Ile Gly Ile Leu Pro Leu Leu Thr Gly 930 935 940
Asn Asn Gly Val Ile Phe Gly Asp Ile Ala Ala His Arg Cys Ile Tyr 945 950 955 960
Glu Ala Cys Cys Leu Ala Gin His Lys Gly Ala Gin Phe Ile Gin Tyr 965 970 975
Arg His Asn Asp Leu Asn Asp Leu Ala Glu Lys Leu Ala Lys Tyr Pro 980 985 990
Pro Glu Gin Val Lys Ile Ile Val Ile Asp Gly Val Tyr Ser Met Sei 995 1000 1005
Ala Asp Phe Pro Asp Leu Pro Ala Tyr Val His Leu Ala Lys Glu 1010 1015 1020
Tyr Asn Ala Leu Ile Tyr Met Asp Asp Ala His Gly Phe Gly Ile 1025 1030 1035
Leu Gly Glu Asn Pro Ser Ser Asp Met Pro Tyr Gly Tyr Lys Gly 1040 1045 1050
Asn Gly Met val Asn Tyr Phe Asp Leu Arg Phe Ala Glu Asp Asn 1055 1060 1065
Ile Ile Tyr Val Ala Gly Leu Ser Lys Ala Tyr Ser Ser Tyr Ala 1070 1075 1080
Ala Phe Leu Thr Cys Gly Asp Arg Arg Ile Lys Thr Asn Phe Arg 1085 1090 1095
Asn Ala Trp Thr Ala Ile Phe Ser Gly Pro Ser Pro Val Ala Ser 1100 1105 1110
Leu Ala Ser Ala Leu Ala Gly Leu Gin Val Asn Arg Gin Glu Gly 1115 1120 1125
Glu Gin Leu Arg Lys Gin Ile Tyr His Leu Thr His Lys Leu Val 1130 1135 1140
Thr Gin Ala Arg Ala Ile Gly Phe Glu Val Asp Asn Tyr Gly Tyr 1145 1150 1155
Val Pro Ile Val Gly Val Leu Val Gly Asp Ala Gin His Met Ile 1160 1165 1170
Asp Val Cys Gin Leu Leu Trp Glu Tyr Gly Ile Leu Ile Thr Pro 1175 1180 1185
Ala Ile Phe Pro Ile Val Pro Leu Asn Lys Ser Ala Leu Arg Phe 1190 1195 1200
Ser Ile Thr Ala Ala Asn Thr Glu Glu Glu Ile Asp Gin Ala Ile 1205 1210 1215
Lys Ser Leu Lys Ala Val Trp Asp Leu Leu Gin Lys Arg Lys Ala 1220 1225 1230
Leu Pro Cys Lys Gin Glu Glu Asn Ile Leu Lys His 1235 1240 1245 <210> 16 <211> 387
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 16 atgttgaaag atttcaacca gtttttaatc agaacactag cattcgtatt cgcatttggt 60 attttcttaa ccactggagt tggcattgct aaagctgact acctagttaa aggtggaaag 120 attaccaatg ttcaaaatac ttcttctaac ggtgataatt atgccgttag tatcagcggt 180 gggtttggtc cttgcgcaga tagagtgatt atcctaccaa cttcaggagt gataaatcga 240 gacattcata tgcgtggcta tgaagccgca ttaactgcac tatccaatgg ctttttagta 300 gatatttacg actatactgg ctcttcttgc agcaatggtg gccaactaac tattaccaac 360 caattaggta agctaatcag caattag 387
<210> 17 <211> 128 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 17
Met Leu Lys Asp Phe Asn Gin Phe Leu Ile Arg Thr Leu Ala Phe Val 15 10 15
Phe Ala Phe Gly Ile Phe Leu Thr Thr Gly Val Gly Ile Ala Lys Ala 20 25 30
Asp Tyr Leu Val Lys Gly Gly Lys Ile Thr Asn Val Gin Asn Thr Ser 35 40 45
Ser Asn Gly Asp Asn Tyr Ala Val Ser Ile Ser Gly Gly Phe Gly Pro 50 55 60
Cys Ala Asp Arg Val Ile Ile Leu Pro Thr Ser Gly Val Ile Asn Arg 65 70 75 80
Asp Ile His Met Arg Gly Tyr Glu Ala Ala Leu Thr Ala Leu Ser Asn 85 90 95
Gly Phe Leu Val Asp Ile Tyr Asp Tyr Thr Gly Ser Ser Cys Ser Asn 100 105 110
Gly Gly Gin Leu Thr Ile Thr Asn Gin Leu Gly Lys Leu Ile Ser Asn 115 120 125
<210> 18 <211> 1416 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 18 atggaaacaa cctcaaaaaa atttaagtca gatctgatat tagaagcacg agcaagccta 60 aagttgggaa tccccttagt catttcacaa atgtgcgaaa cgggtattta tacagcgaat 120 gcagtcatga tgggtttact tggtacgcaa gttttggccg ccggtgcttt gggcgcgctc 180 gcttttttga ccttattatt tgcctgccat ggtattctct cagtaggagg atcactagca 240 gccgaagctt ttggggcaaa taaaatagat gaagttagtc gtattgcttc cgggcaaata 300 tggctagcag ttaccttgtc tttacctgca atgcttctge tttggcatgg cgatactatc 360 ttgctgctat tcggtcaaga ggaaagcaat gtgttattga caaaaacgta tttacactca 420 attttatggg gctttcccgc tgcgcttagt attttgacat taagaggcat tgcctctgct 480 ctcaacgttc cccgattgat aactattact atgctcactc agctgatatt gaataccgcc 540 gccgattatg tgttaatatt cggtaaattt ggtcttcctc aacttggttt ggctggaata 600 ggctgggcaa ctgctctggg tttttgggtt agttttacat tggggcttat cttgctgatt 660 ttctccctga aagttagaga ttataaactt ttccgctact tgcatcagtt tgataaacag 720 atctttgtca aaatttttca aactggatgg cccatggggt ttcaatgggg ggcggaaacg 780 gcactattta acgtcaccgc ttgggtagca gggtatttag gaacggtaac attagcagcc 840 catgatattg gcttccaaac ggcagaactg gcgatggtta taccactcgg agtcggcaat 900 gtcgctatga caagagtagg tcagagtata ggagaaaaaa accctttggg tgcaagaagg 960 gtagcatcga ttggaattac aatagttggc atttatgcca gtattgtagc acttgttttc 1020 tggttgtttc catatcaaat tgccggaatt tatttaaata taaacaatcc cgagaatatc 1080 gaagcaatta agaaagcaac tacttttatc cccttggcgg gactattcca aatgttttac 1140 agtattcaaa taattattgt tggggctttg gtcggtctgc gggatacatt tgttccagta 1200 tcaatgaact taattgtctg gggtcttgga ttggcaggaa gctatttcat ggcaatcatt 1260 ttaggatggg gggggatcgg gatttggttg gctatggttt tgagtccact cctctcggca 1320 gttattttaa ctgttcgttt ttatcgagtg attgacaatc ttcttgccaa cagtgatgat 1380 atgttacaga atgcgtctgt tactactcta ggctga 1416
<210 19 <211> 471 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 19
Met Glu Thr Thr Ser Lys Lys Phe Lys Ser Asp Leu Ile Leu Glu Ala 1 5 10 15
Arg Ala Ser Leu Lys Leu Gly Ile Pro Leu Val Ile Ser Gin Met Cys 20 25 30
Glu Thr Gly Ile Tyr Thr Ala Asn Ala Val Met Met Gly Leu Leu Gly 35 40 45
Thr Gin val Leu Ala Ala Gly Ala Leu Gly Ala Leu Ala Phe Leu Thr 50 55 60
Leu Leu Phe Ala Cys His Gly Ile Leu Ser Val Gly Gly Ser Leu Ala 65 70 75 80
Ala Glu Ala Phe Gly Ala Asn Lys Ile Asp Glu Val Ser Arg Ile Ala 85 90 95
Ser Gly Gin Ile Trp Leu Ala Val Thr Leu Ser Leu Pro Ala Met Leu 100 105 110
Leu Leu Trp His Gly Asp Thr Ile Leu Leu Leu Phe Gly Gin Glu Glu 115 120 125
Ser Asn Val Leu Leu Thr Lys Thr Tyr Leu His Ser Ile Leu Trp Gly 130 135 140
Phe Pro Ala Ala Leu Ser Ile Leu Thr Leu Arg Gly Ile Ala Ser Ala 145 150 155 160
Leu Asn Val Pro Arg Leu Ile Thr Ile Thr Met Leu Thr Gin Leu Ile 165 170 175
Leu Asn Thr Ala Ala Asp Tyr Val Leu Ile Phe Gly Lys Phe Gly Leu 180 185 190
Pro Gin Leu Gly Leu Ala Gly Ile Gly Trp Ala Thr Ala Leu Gly Phe 195 200 205
Trp Val Ser Phe Thr Leu Gly Leu Ile Leu Leu Ile Phe Ser Leu Lys 210 215 220
Val Arg Asp Tyr Lys Leu Phe Arg Tyr Leu His Gin Phe Asp Lys Gin 225 230 235 240
Ile Phe Val Lys Ile Phe Gin Thr Gly Trp Pro Met Gly Phe Gin Trp 245 250 255
Gly Ala Glu Thr Ala Leu Phe Asn Val Thr Ala Trp Val Ala Gly Tyr 260 265 270
Leu Gly Thr Val Thr Leu Ala Ala His Asp ile Gly Phe Gin Thr Ala 275 280 285
Glu Leu Ala Met Val Ile Pro Leu Gly Val Gly Asn Val Ala Met Thr 290 295 300
Arg Val Gly Gin Ser Ile Gly Glu Lys Asn Pro Leu Gly Ala Arg Arg 305 310 315 320
Val Ala Ser Ile Gly Ile Thr Ile Val Gly Ile Tyr Ala Ser Ile Val 325 330 335
Ala Leu Val Phe Trp Leu Phe Pro Tyr Gin Ile Ala Gly Ile Tyr Leu 340 345 350
Asn Ile Asn Asn Pro Glu Asn Ile Glu Ala Ile Lys Lys Ala Thr Thr 355 360 365
Phe Ile Pro Leu Ala Gly Leu Phe Gin Met Phe Tyr Ser Ile Gin Ile 370 375 380
Ile Ile Val Gly Ala Leu Val Gly Leu Arg Asp Thr Phe Val Pro Val 385 390 395 400
Ser Met Asn Leu Ile Val Trp Gly Leu Gly Leu Ala Gly Ser Tyr Phe 405 410 415
Met Ala Ile Ile Leu Gly Trp Gly Gly Ile Gly ile Trp Leu Ala Met 420 425 430
Val Leu Ser Pro Leu Leu Ser Ala Val Ile Leu Thr Val Arg Phe Tyr 435 440 445
Arg Val Ile Asp Asn Leu Leu Ala Asn Ser Asp Asp Met Leu Gin Asn 450 455 460
Ala Ser Val Thr Thr Leu Gly 465 470 <210 20 <211> 1134
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 20 atgaccaatc aaaataacca agaattagag aacgatttac caatcgccaa gcagccttgt 60 ccggtcaatt cttataatga gtgggacaca cttgaggagg tcattgttgg tagtgttgaa 120
ggtgcaatgt taccggccct agaaccaatc aacaaatgga cattcccttt tgaagaattg ISO gaatctgccc aaaagatact ctctgagagg ggaggagttc cttatccacc agagatgatt 240 acattagcac acaaagaact aaatgaattt attcacattc ttgaagcaga aggggtcaaa 300 gttcgtcgag ttaaacctgt agatttctct gtccccttct ccacaccagc ttggcaagta 360 ggaagtggtt tttgtgccgc caatcctcgc gatgtttttt tggtgattgg gaatgagatt 420 attgaagcac caatggcaga tcgcaaccgc tattttgaaa cttgggcgta tcgagagatg 480 ctcaaggaat attttcaggc aggagctaag tggactgcag cgccgaagcc acaattattc 540 gacgcacagt atgacttcaa tttccagttt cctcaactgg gggagccgcc gcgtttcgtc 600 gttacagagt ttgaaccgac ttttgatgcg gcagattttg tgcgctgtgg acgagatatt 660 tttggtcaaa aaagtcatgt gactaatggt ttgggcatag aatggttaca acgtcacttg 720 gaagacgaat accgtattca tattattgaa ccgcattgtc cggaagcact gcacatcgat 780 accaccttaa tgcctcttgc acctggcaaa atactagtaa atccagaatt tgtagatgtt 840 aataaattgc caaaaatcct gaaaagctgg gacattttgg ttgcacctta ccccaaccat 900 atacctcaaa accagctgag actggtcagt gaatgggcag gtttgaatgt actgatgtta 960 gatgaagagc gagtcattgt agaaaaaaac caggagcaga tgattaaagc actgaaagat 1020 tggggattta agcctattgt ttgccatttc gaaagctact atccattttt aggatcattt 1080 cactgtgcaa cattagacgt tcgccgacgc ggaactcttc agtcctattt ttaa 1134 <210> 21 <211> 377
<212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 21
Met Thr Asn Gin Asn Asn Gin Glu Leu Glu Asn Asp Leu Pro Ile Ala 15 10 15
Lys Gin Pro Cys Pro Val Asn Ser Tyr Asn Glu Trp Asp Thr Leu Glu 20 25 30
Glu Val Ile Val Gly Ser Val Glu Gly Ala Met Leu Pro Ala Leu Glu 35 40 45
Pro Ile Asn Lys Trp Thr Phe Pro Phe Glu Glu Leu Glu Ser Ala Gin 50 55 60
Lys Ile Leu Ser Glu Arg Gly Gly Val Pro Tyr Pro Pro Glu Met Ile 65 70 75 80
Thr Leu Ala His Lys Glu Leu Asn Glu Phe Ile His Ile Leu Glu Ala 85 90 , 95
Glu Gly Val Lys Val Arg Arg Val Lys Pro Val Asp Phe Ser Val Pro 100 105 110
Phe Ser Thr Pro Ala Trp Gin Val Gly Ser Gly Phe Cys Ala Ala Asn 115 120 125
Pro Arg Asp Val Phe Leu Val Ile Gly Asn Glu Ile Ile Glu Ala Pro 130 135 140
Met Ala Asp Arg Asn Arg Tyr Phe Glu Thr Trp Ala Tyr Arg Glu Met 145 150 155 160
Leu Lys Glu Tyr Phe Gin Ala Gly Ala Lys Trp Thr Ala Ala Pro Lys 165 170 175 pro Gin Leu Phe Asp Ala Gin Tyr Asp Phe Asn phe Gin Phe Pro Gin 180 185 190
Leu Gly Glu Pro Pro Arg Phe Val Val Thr Glu Phe Glu Pro Thr Phe 195 200 205
Asp Ala Ala Asp Phe Val Arg Cys Gly Arg Asp Ile Phe Gly Gin Lys 210 215 220
Ser His Val Thr Asn Gly Leu Gly Ile Glu Trp Leu Gin Arg His Leu 225 230 235 240
Glu Asp Glu Tyr Arg ile His ile Ile Glu Ser His Cys Pro Glu Ala 245 250 255
Leu His Ile Asp Thr Thr Leu Met Pro Leu Ala Pro Gly Lys Ile Leu 260 265 270
Val Asn Pro Glu Phe Val Asp Val Asn Lys Leu Pro Lys Ile Leu Lys 275 280 285
Ser Trp Asp Ile Leu val Ala Pro Tyr Pro Asn His Ile Pro Gin Asn 290 295 300
Gin Leu Arg Leu Val Ser Glu Trp Ala Gly Leu Asn Val Leu Met Leu 305 310 315 320
Asp Glu Glu Arg Val Ile Val Glu Lys Asn Gin Glu Gin Met Ile Lys 325 330 335
Ala Leu Lys Asp Trp Gly Phe Lys Pro Ile Val Cys His Phe Glu Ser 340 345 350
Tyr Tyr Pro Phe Leu Gly Ser Phe His Cys Ala Thr Leu Asp Val Arg 355 360 365
Arg Arg Gly Thr Leu Gin Ser Tyr phe 370 375 <210 22 <211> 1005
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 22 atgacaactg ctgacctaat cttaattaac aactggtacg tagtcgcaaa ggtggaagat 60 tgtaaaccag gaagtatcac cacggctctt ttattgggag ttaagttggt actatggcgc 120 agtcgtgaac agaattcccc catacagata tggcaagact actgccctca ccgaggtgtg 180 gctctgtcta tgggagaaat tgttaataat actttggttt gtccgtatca cggatggaga 240 tataatcaag caggtaaatg cgtacatatc ccggctcacc ctgacatgac acccccagca 300 agtgcccaag ccaagatcta tcattgccag gagcgatacg gattagtatg ggtgtgctta 360 ggtgatcctg tcaatgatat accttcatta cccgaatggg acgatccgaa ttatcataat 420 acttgtacta aatcttattt tattcaagct agtgcgtttc gtgtaatgga taatttcata 480 gatgtatctc attttccttt tgtccacgac ggtgggttag gtgatcgcaa ccacgcaeaa 540 attgaagaat ttgaggtaaa agtagacaaa gatggcatta gcataggtaa ccttaaactc 600 cagatgccaa ggtttaacag cagtaacgaa gatgactcat ggactcttta ccaaaggatt 660 agtcatccct tgtgtcaata ctatattact gaatcctctg aaattcggac tgcggatttg 720 atgctggtaa caccgattga tgaagacaac agcttagtgc gaatgttagt aacgtggaac 780 cgctccgaaa tattagagtc aacggtacta gaggaatttg acgaaacaat agaacaagat 840 attccgatta tacactctca acagccagcg cgtttaccac tgttaccttc aaagcagata 900 aacatgcaat ggttgtcaca ggaaatacat gtaccgtcag atcgatgcac agttgcctat 960 cgtcgatggc taaaggaact gggcgttacc tatggtgttt gttaa 1005 <210> 23 <211> 334
<212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 23
Met Thr Thr Ala Asp Leu Ile Leu ile Asn Asn Trp lyr Val Val Ala 1 5 10 15
Lys Val Glu Asp Cys Lys Pro Gly Ser ile Thr Thr Ala Leu Leu Leu 20 25 30
Gly Val Lys Leu Val Leu Trp Arg Ser Arg Glu Gin Asn Ser Pro Ile 35 40 45
Gin Ile Trp Gin Asp Tyr Cys Pro His Arg Gly Val Ala Leu Ser Met 50 55 60
Gly Glu Ile Val Asn Asn Thr Leu Val Cys Pro Tyr His Gly Trp Arg 65 70 75 80
Tyr Asn Gin Ala Gly Lys Cys Val His Ile Pro Ala His Pro Asp Met 85 90 95
Thr Pro Pro Ala Ser Ala Gin Ala Lys Ile Tyr His Cys Gin Glu Arg 100 105 110
Tyr Gly Leu Val Trp Val Cys Leu Gly Asp Pro Val Asn Asp Ile Pro 115 120 125
Ser Leu Pro Glu Trp Asp Asp Pro Asn Tyr His Asn Thr Cys Thr Lys 130 135 140
Ser Tyr Phe Ile Gin Ala Ser Ala Phe Arg Val Met Asp Asn Phe Ile 145 150 155 160
Asp Val Ser His Phe Pro Phe Val His Asp Gly Gly Leu Gly Asp Arg 165 170 175
Asn His Ala Gin Ile Glu Glu Phe Glu Val Lys Val Asp Lys Asp Gly 180 185 190
Ile Ser Ile Gly Asn Leu Lys Leu Gin Met Pro Arg Phe Asn Ser Ser 195 200 205
Asn Glu Asp Asp Ser Trp Thr Leu Tyr Gin Arg ile Ser His Pro Leu 210 215 220
Cys Gin Tyr Tyr Ile Thr Glu Ser Ser Glu Ile Arg Thr Ala Asp Leu 225 230 235 240
Met Leu Val Thr Pro Ile Asp Glu Asp Asn Ser Leu Val Arg Met Leu 245 250 255
Val Thr Trp Asn Arg Ser Glu Ile Leu Glu Ser Thr Val Leu Glu Glu 260 265 270
Phe Asp Glu Thr Ile Glu Gin Asp Ile Pro Ile Ile His Ser Gin Gin 275 280 285
Pro Ala Arg Leu Pro Leu Leu Pro Ser Lys Gin Ile Asn Met Gin Trp 290 295 300
Leu Ser Gin Glu Ile His Val Pro Ser Asp Arg Cys Thr Val Ala Tyr 305 310 315 320
Arg Arg Trp Leu Lys Glu Leu Gly Val Thr Tyr Gly Val Cys 325 330
<210> 24 <211> 1839 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 24 atgcagatct taggaatttc agcttactac cacgatagtg ctgccgcgat ggttatcgat 60 ggcgaaattg ttgctgcagc tcaggaagaa cgtttctcaa gacgaaagca cgatgctggg 120 tttccgactg gagcgattac ttactgtcta aaacaagtag gaaccaagtt acaatatatc 180 gatcaaattg ttttttacga caagccatta gtcaaatttg agcggttgct agaaacatat 240 ttagcatatg ccccaaaggg atttggctcg tttattactg ctatgcccgt ttggctcaaa 300 gaaaagcttt acctaaaaac acttttaaaa aaagaattgg cgcttttggg ggagtgeaaa 360 gcttctcaat tgcctcctct actgtttacc tcacatcacc aagcccatgc ggccgctgct 420 ttttttccca gtccttttoa gcgtgctgcc gttctgtgct tagatggtgt aggagagtgg 480 gcaactactt ctgtctggtt gggagaagga aataaactca caccacaatg ggaaattgat 540 tttccccatt ccctcggttt gctttactca gcgtttacct actacactgg gttcaaagtt 600 aactcaggtg agtacaaact catgggttta gcaccctacg gggaacccaa atatgtggac 660 caaattctca agcatttgtt ggatctcaaa gaagatggta cttttaggtt gaatatggac 720 tacttcaact acacggtggg gctaaccatg accaatcata agttccatag tatgtttgga 780 ggaccaccac gccaggcgga aggaaaaatc tcccaaagag acatggatct ggcaagttcg 840 atccaaaagg tgactgaaga agtcatactg cgtctggcta gaactatcaa aaaagaactg 900 ggtgtagagt atctatgttt agcaggtggt gtcggtctca attgcgtggc taacggacga 960 attctccgag aaagtgattt caaagatatt tggattcaac ccgcagcagg agatgccggt 1020 agtgcagtgg gagcagcttt agcgatttgg catgaatacc ataagaaacc tcgcacttca 1080 acagcaggcg atcgcatgaa aggttcttat ctgggaccta gctttagcga ggcggagatt 1140 ctccagtttc ttaattctgt taacataccc taccatcgat gcgttgataa cgaacttatg 1200 gctcgtcttg cagaaatttt agaccaggga aatgttgtag gctggttttc tggacgaatg 1260 gagtttggtc cgcgtgcttt gggtggccgt tcgattattg gcgattcacg cagtccaaaa 1320 atgcaatcgg tcatgaacct gaaaattaaa tatcgtgagt ccttccgtcc atttgctcct 1380 tcagtcttgg ctgaacgagt ctccgactac ttcgatcttg atcgtcctag tccttatatg 1440 cttttggtag cacaagtcaa agagaatctg cacattccta tgacacaaga gcaacacgag 1500 ctatttggga tcgagaagct gaatgttcct cgttcccaaa ttcccgcagt cactcacgtt 1560 gattactcag ctcgtattca gacagttcac aaagaaacga atcctcgtta ctacgagtta 1620 attcgtcatt ttgaggcacg aactggttgt gctgtcttgg tcaatacttc gtttaatgtc 1680 cgcggcgaac caattgtttg tactcccgaa gacgcttatc gatgctttat gagaactgaa 1740 atggactatt tggttatgga gaatttcttg ttggtcaaat ctgaacagcc acggggaaat 1800 agtgatgagt catggcaaaa agaattcgag ttagattaa 1839
<210> 25 <211> 612 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 25
Met Gin Ile Leu Gly Ile Ser Ala Tyr Tyr His Asp Ser Ala Ala Ala 15 10 15
Met Val Ile Asp Gly Glu Ile Val Ala Ala Ala Gin Glu Glu Arg Phe 20 25 30
Ser Arg Arg Lys His Asp Ala Gly Phe Pro Thr Gly Ala Ile Thr Tyr 35 40 45
Cys Leu Lys Gin val Gly Thr Lys Leu Gin Tyr Ile Asp Gin Ile Val 50 55 60
Phe Tyr Asp Lys Pro Leu Val Lys Phe Glu Arg Leu Leu Glu Thr Tyr 65 70 75 80
Leu Ala Tyr Ala Pro Lys Gly Phe Gly Ser Phe Ile Thr Ala Met Pro 85 90 95
Val Trp Leu Lys Glu Lys Leu Tyr Leu Lys Thr Leu Leu Lys Lys Glu 100 105 110
Leu Ala Leu Leu Gly Glu Cys Lys Ala Ser Gin Leu Pro Pro Leu Leu 115 120 125
Phe Thr Ser His His Gin Ala His Ala Ala Ala Ala Phe Phe Pro Ser 130 135 140
Pro Phe Gin Arg Ala Ala Val Leu Cys Leu Asp Gly Val Gly Glu Trp 145 150 155 160
Ala Thr Thr Ser Val Trp Leu Gly Glu Gly Asn Lys Leu Thr Pro Gin 165 170 175
Trp Glu Ile Asp Phe Pro His Ser Leu Gly Leu Leu Tyr Ser Ala Phe 180 185 190
Thr Tyr Tyr Thr Gly Phe Lys Val Asn Ser Gly Glu Tyr Lys Leu Met 195 200 205
Gly Leu Ala Pro Tyr Gly Glu Pro Lys Tyr Val Asp Gin Ile Leu Lys 210 215 220
His Leu Leu Asp Leu Lys Glu Asp Gly Thr Phe Arg Leu Asn Met Asp 225 230 235 240
Tyr Phe Asn Tyr Thr Val Gly Leu Thr Met Thr Asn His Lye Phe His 245 250 255
Ser Met Phe Gly Gly Pro Pro Arg Gin Ala Glu Gly Lys Ile Ser Gin 260 265 270
Arg Asp Met Asp Leu Ala Ser Ser Ile Gin Lys Val Thr Glu Glu Val 275 280 285
Ile Leu Arg Leu Ala Arg Thr Ile Lys Lys Glu Leu Gly Val Glu Tyr 290 295 300
Leu Cys Leu Ala Gly Gly Val Gly Leu Asn Cys Val Ala Asn Gly Arg 305 310 315 320
Ile Leu Arg Glu Ser Asp Phe Lys Asp Ile Trp Ile Gin Pro Ala Ala 325 330 335
Gly Asp Ala Gly Ser Ala Val Gly Ala Ala Leu Ala Ile Trp His Glu 340 345 350
Tyr His Lys Lys Pro Arg Thr Ser Thr Ala Gly Asp Arg Met Lys Gly 355 360 365
Ser Tyr Leu Gly Pro Ser Phe Ser Glu Ala Glu Ile Leu Gin Phe Leu 370 375 380
Asn Ser Val Asn Ile Pro Tyr His Arg Cys Val Asp Asn Glu Leu Met 385 390 395 400
Ala Arg Leu Ala Glu Ile Leu Asp Gin Gly Asn Val Val Gly Trp Phe 405 410 415
Ser Gly Arg Met Glu Phe Gly Pro Arg Ala Leu Gly Gly Arg Ser Ile 420 425 430
Ile Gly Asp Ser Arg Ser Pro Lys Met Gin Ser Val Met Asn Leu Lys 435 440 445
Ile Lys Tyr Arg Glu Ser Phe Arg Pro Phe Ala Pro Ser Val Leu Ala 450 455 460
Glu Arg Val Ser Asp Tyr Phe Asp Leu Asp Arg Pro Ser Pro Tyr Met 465 470 475 480
Leu Leu Val Ala Gin Val Lys Glu Asn Leu His Ile Pro Met Thr Gin 485 490 495
Glu Gin His Glu Leu Phe Gly Ile Glu Lys Leu Asn Val Pro Arg Ser 500 505 510
Gin Ile Pro Ala Val Thr His Val Asp Tyr Ser Ala Arg Ile Gin Thr 515 520 525
Val His Lys Glu Thr Asn Pro Arg Tyr Tyr Glu Leu Ile Arg His Phe 530 535 540
Glu Ala Arg Thr Gly Cys Ala Val Leu Val Asn Thr Ser Phe Asn Val 545 550 555 560
Arg Gly Glu Pro Ile Val Cys Thr Pro Glu Asp Ala Tyr Arg Cys Phe 565 570 575
Met Arg Thr Glu Met Asp Tyr Leu Val Met Glu Asn Phe Leu Leu Val 580 585 590
Lys Ser Glu Gin Pro Arg Gly Asn Ser Asp Glu Ser Trp Gin Lys Glu 595 600 605
Phe Glu Leu Asp 610 <210> 26 <211> 444
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400 26 atgagtgaat ttttcccaca aaaaagtggt aaattaaaga tggaacagat aaaagaactt 60 gacaaaaaag gattgcgtga gtttggactg attggcggtt ctatagtggc ggttttattc 120 ggctttttac tgccagttat acgccatcat tccttatcag ttatcccttg ggttgttgct 180 ggatttctct ggatttgggc aataatcgca cctacgactt taagttttat ttaccaaata 240 tggatgagga ttggacttgt tttaggatgg atacaaacac gaattatttt gggagtttta 300 ttttatataa tgatcacacc aataggattc ataagacggc tgttgaatca agatccaatg 360 acgcgaatct tcgagccaga gttgccaact tatcgccaat tgagtaagtc aagaactaca 420 caaagtatgg agaaaccatt ctaa 444
<210> 27 <211> 147 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 27
Met Ser Glu Phe Phe Pro Gin Lys Ser Gly Lys Leu Lys Met Glu Gin 1 5 10 15
Ile Lys Glu Leu Asp Lys Lys Gly Leu Arg Glu Phe Gly Leu Ile Gly 20 25 30
Gly Ser Ile val Ala Val Leu Phe Gly Phe Leu Leu Pro Val Ile Arg 35 40 45
His His Ser Leu Ser Val Ile Pro Trp Val Val Ala Gly Phe Leu Trp 50 55 60
Ile Trp Ala Ile Ile Ala Pro Thr Thr Leu Ser Phe Ile Tyr Gin Ile 65 70 75 80
Trp Met Arg Ile Gly Leu Val Leu Gly Trp Ile Gin Thr Arg Ile Ile 85 90 95
Leu Gly Val Leu Phe Tyr Ile Met Ile Thr Pro Ile Gly Phe Ile Arg 100 105 110
Arg Leu Leu Asn Gin Asp Pro Met Thr Arg Ile Phe Glu Pro Glu Leu 115 120 125
Pro Thr Tyr Arg Gin Leu Ser Lys Ser Arg Thr Thr Gin Ser Met Glu 130 135 140
Lys Pro Phe 145
<210 28 <211>165 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 28 atgctaaaag acacttggga ttttattaaa gacattgccg gatttattaa agaacaaaaa 60 aactatttgt tgattcccct aattatcacc ctggtatcct tgggggcgct gattgtcttt 120 gctcaatctt ctgcgatcgc acctttcatt tacactcttt tttaa 165
<210> 29 <211> 54 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 29
Met Leu Lys Asp Thr Trp Asp Phe Ile Lys Asp Ile Ala Gly Phe Ile 15 10 15
Lys Glu Gin Lys Asn Tyr Leu Leu Ile Pro Leu Ile Ile Thr Leu Val 20 25 30
Ser Leu Gly Ala Leu Ile Val Phe Ala Gin Ser Ser Ala Ile Ala Pro 35 40 45
Phe Ile Tyr Thr Leu Phe 50
<210 30 <211> 1299 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 30 atgagtaact tcaagggttc ggtaaagata gcattgatgg gaatattgat tttttgtggg 60 ctaatctttg gcgtagcatt tgttgaaatt gggttacgta ttgccgggat cgaacacata 120 gcattccata gcattgatga acacaggggg tgggtagggc gacctcatgt ttccgggtgg 180 tatagaaccg aaggtgaagc tcacatccaa atgaatagtg atggctttcg agatcgagaa 240 cacatcaagg tcaaaccaga aaataccttc aggatagcgc tgttgggaga ttcctttgta 300 gagtccatgc aagtaccgtt ggagcaaaat ttggcagcag ttatagaagg agaaatcagt 360 agttgtatag ctttagctgg acgaaaggcg gaagtgatta attttggagt gactggttat 420 ggaacagacc aagaactaat tactctacgg gagaaagttt gggactatte acctgatata 480 gtagtgctag atttttatac tggcaacgac attgttgata actcccgtgc gctgagtcag 540 aaattctatc ctaatgaact aggttcacta aagccgtttt ttatacttag agatggtaat 600 ctggtggttg atgcttcgtt tatcaatacg gataattatc gctcaaagct gacatggtgg 660 ggcaaaactt atatgaaaat aaaagaccac tcacggattt tacaggtttt aaacatggta 720 cgggatgctc ttaacaactc tagtagaggg ttttcttctc aagctataga ggaaccgtta 780 tttagtgatg gaaaacagga tacaaaattg agcgggtttt ttgatatcta caaaccacct 840 actgaccctg aatggcaaca ggcatggcaa gtcacagaga aactgattag ctcaatgcaa 900 cacgaggtga ctgcgaagaa agcagatttt ttagttgtta cttttggcgg tccctttcaa 960 cgagaacctt tagtgcgtca aaaagaaatg caagaattgg gtctgactga ttggttttac 1020 ccagagaagc gaattacacg tttgggtgag gatgaggggt tcagtgtact caatetcagc 1080 ccaaatttgc aggtttattc tgagcagaac aatgcttgcc tatatgggtt tgatgatact 1140 caaggctgtg tagggcattg gaatgcttta ggacatcagg tagcaggaaa aatgattgca 1200 tcgaagattt gtcaacagca gatgagagaa agtatattgc ctcataagca cgacccttca 1260 agccaaagct cacctattac ccaatcagtg atccaataa 1299
<210 31 <211> 432 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 31
Met Ser Asn Phe Lys Gly Ser Val Lys Ile Ala Leu Met Gly Ile Leu 15 10 15
Ile Phe Cys Gly Leu Ile Phe Gly Val Ala Phe Val Glu Ile Gly Leu 20 25 30
Arg Ile Ala Gly Ile Glu His Ile Ala Phe His Ser Ile Asp Glu His 35 40 45
Arg Gly Trp Val Gly Arg Pro His Val Ser Gly Trp Tyr Arg Thr Glu 50 55 60
Gly Glu Ala His Ile Gin Met Asn Ser Asp Gly Phe Arg Asp Arg Glu 65 70 75 80
His Ile Lys Val Lys Pro Glu Asn Thr Phe Arg Ile Ala Leu Leu Gly 85 90 95
Asp Ser Phe Val Glu Ser Met Gin Val Pro Leu Glu Gin Asn Leu Ala 100 105 110
Ala Val Ile Glu Gly Glu Ile Ser Ser Cys Ile Ala Leu Ala Gly Arg 115 120 125
Lys Ala Glu Val Ile Asn Phé Gly Val Thr Gly Tyr Gly Thr Asp Gin 130 135 140
Glu Leu Ile Thr Leu Arg Glu Lys Val Trp Asp Tyr Ser Pro Asp Ile 145 150 155 150
Val Val Leu Asp Phe Tyr Thr Gly Asn Asp ile Val Asp Asn Ser Arg 165 170 175
Ala Leu Ser Gin Lys Phe Tyr Pro Asn Glu Leu Gly Ser Leu Lys Pro 180 185 190
Phe Phe Ile Leu Arg Asp Gly Asn Leu Val Val Asp Ala Ser Phe Ile 195 200 , 205
Asn Thr Asp Αεγ. Tyr Arg Ser Lys Leu Thr Trp Trp Gly Lys Thr Tyr 210 215 220
Met Lys Ile Lys Asp His Ser Arg Ile Leu Gin Val Leu Asn Met Val 225 230 235 240
Arg Asp Ala Leu Asn Asn Ser Ser Arg Gly Phe Ser Ser Gin Ala Ile 245 250 255
Glu Glu Pro Leu Phe Ser Asp Gly Lys Gin Asp Thr Lys Leu Ser Gly 260 265 270
Phe Phe Asp Ile Tyr Lys Pro Pro Thr Asp Pro Glu Trp Gin Gin Ala 275 280 285
Trp Gin Val Thr Glu Lys Leu Ile Ser Ser Met Gin His Glu Val Thr 290 295 300
Ala Lys Lys Ala Asp Phe Leu val Val Thr Phe Gly Gly Pro Phe Gin 305 310 315 320
Arg Glu Pro Leu Val Arg Gin Lys Glu Met Gin Glu Leu Gly Leu Thr 325 330 335
Asp Trp Phe Tyr Pro Glu Lys Arg Ile Thr Arg Leu Gly Glu Asp Glu 340 345 350
Gly Phe Ser val Leu Asn Leu Ser Pro Asn Leu Gin Val Tyr Ser Glu 355 360 365
Gin Asn Asn Ala Cys Leu Tyr Gly Phe Asp Asp Thr Gin Gly Cys Val 370 375 380
Gly His Trp Asn Ala Leu Gly His Gin Val Ala Gly Lys Met Ile Ala 385 390 395 400
Ser Lys Ile Cys Gin Gin Gin Met Arg Glu Ser ile Leu Pro His Lys 405 410 415
His Asp Pro Ser Ser Gin Ser Ser Pro Ile Thr Gin Ser Val Ile Gin 420 425 430
<210 32 <211> 1449 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 32 atgacaaata ccgaaagagg attagcagaa ataacatcaa caggatataa.gtcagagctt 60 agatcggagg cacgagttag cctccaactg gcaattccct tagtccttgt cgaaatatgc 120 ggaacgagta ttaatgtggt ggatgtagtc atgatgggct tacttggtac tcaagttttg 180 gctgctggtg ccttgggtgc gatcgctttt ttatctgtat cgaatacttg ttataatatg 240 cttttgtcgg gggtagcaaa ggcatctgag gettttgggg caaacaaaat agatcaggtt 300 agtcgtattg cttctgggca aatatggctg gcactcacct tgtctttgcc tgcaatgctt 360 ttgctttggt atatggatac tatattggtg ctatttggtc aagttgaaag caacacatta 420 attgcaaaaa cgtatttaca ctcaattgtg tggggatttc cggcggcagt tggtattttg 480 atattaagag gcattgcctc tgctgtgaac gtcccccaat tggtaactgt gacgatgcta 540 gtagggctgg tcttgaatgc cccggccaat tatgtattaa tgttcggtaa atttggtctt 600 cctgaacttg gtttagctgg aataggctgg gcaagtactt tggttttttg gattagtttt 660 ctagtggggg ttgtcttgct gattttctcc ccaaaagtta gagattataa acttttccgc 720 tacttgcatc agtttgaccg acagacggtt gtggaaattt ttcaaactgg atggcctatg 780 ggttttctac tgggagtgga atcagtagta ttgagcctca ccgcttggtt aacaggctat 840 ttgggaacag taacattagc agctcatgag atcgcgatcc aaacagcaga actggcgata 900 gtgataccac tcggaatcgg gaatgttgcc gtcacgagag taggtcagac tataggagaa 960 aaaaaccctt tgggtgctag aagggcagca ttgattggga ttatgattgg tggcatttat 1020 gccagtcttg tggcagtcat tttctggttg tttccatatc agattgcggg actttattta 1080 aaaataaacg atccagagag tatggaagca gttaagacag caactaattt tctcttcttg 1140 gcgggattat tccaattttt tcatagcgtt caaataattg ttgttggggt tttaataggg 1200 ttgcaggata cgtttatccc attgttaatg aatttggtag gctggggtct tggcttggca 1260 gtaagctatt acatgggaat cattttatgt tggggaggta tgggtatctg gttaggtctg 1320 gttttgagtc cactcctgtc cggacttatt ttaatggttc gtttttatca agagattgcc 1380 aataggattg ccaatagtga tgatgggcaa gagagtatat ctattgacaa cgttgaagaa 1440 ctctcctga 1449
<210 33 <211> 482 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 33
Met Thr Asn Thr Glu Arg Gly Leu Ala Glu Ile Thr Ser Thr Gly lyr 15 10 15
Lys Ser Glu Leu Arg Ser Glu Ala Arg Val Ser Leu Gin Leu Ala Ile 20 25 30
Pro Leu Val Leu Val Glu Ile Cys Gly Thr Ser Ile Asn Val Val Asp 35 40 45
Val Val Met Met Gly Leu Leu Gly Thr Gin Val Leu Ala Ala Gly Ala 50 55 60
Leu Gly Ala Ile Ala Phe Leu Ser Val Ser Asn Thr Cys Tyr Asn Met 65 70 75 80
Leu Leu Ser Gly Val Ala Lys Ala Ser Glu Ala Phe Gly Ala Asn Lys 85 90 95
Ile Asp Gin Val Ser Arg Ile Ala Ser Gly Gin Ile Trp Leu Ala Leu 10O 105 110
Thr Leu Ser Leu Pro Ala Met Leu Leu Leu Trp Tyr Met Asp Thr Ile 115 120 125
Leu Val Leu Phe Gly Gin Val Glu Ser Asn Thr Leu Ile Ala Lys Thr 130 135 140
Tyr Leu His Ser Ile Val Trp Gly Phe Pro Ala Ala Val Gly Ile Leu 145 150 155 160
Ile Leu Arg Gly Ile Ala Ser Ala Val Asn Val Pro Gin Leu Val Thr 165 170 175
Val Thr Met Leu Val Gly Leu Val Leu Asn Ala Pro Ala Asn Tyr Val 180 185 190
Leu Met Phe Gly Lys Phe Gly Leu Pro Glu Leu Gly Leu Ala Gly Ile 195 200 205
Gly Trp Ala Ser Thr Leu Val Phe Trp Ile Ser Phe Leu Val Gly Val 210 215 220
Val Leu Leu Ile Phe Ser Pro Lys Val Arg Asp Tyr Lys Leu Phe Arg 225 230 235 240
Tyr Leu His Gin Phe Asp Arg Gin Thr Val Val Glu Ile Phe Gin Thr 245 250 255
Gly Trp Pro Met Gly Phe Leu Leu Gly Val Glu Ser Val Val Leu Ser 260 265 270
Leu Thr Ala Trp Leu Thr Gly Tyr Leu Gly Thr Val Thr Leu Ala Ala 275 280 285
His Glu Ile Ala Ile Gin Thr Ala Glu Leu Ala Ile Val Ile Pro Leu 290 295 300
Gly Ile Gly Asn Val Ala Val Thr Arg Val Gly Gin. Thr Ile Gly Glu 305 310 315 320
Lys Asn Pro Leu Gly Ala Arg Arg Ala Ala Leu Ile Gly Ile Met Ile 325 330 335
Gly Gly Ile Tyr Ala Ser Leu Val Ala Val Ile Phe Trp Leu Phe Pro 340 345 350
Tyr Gin Ile Ala Gly Leu Tyr Leu Lys Ile Asn Asp Pro Glu Ser Met 355 360 365
Glu Ala Val Lys Thr Ala Thr Asn Phe Leu Phe Leu Ala Gly Leu Phe 370 375 380
Gin Phe Phe His Ser Val Gin Ile Ile Val Val Gly Val Leu Ile Gly 385 390 395 400
Leu Gin Asp Thr Phe Ile Pro Leu Leu Met Asn Leu Val Gly Trp Gly 405 410 415
Leu Gly Leu Ala Val Ser Tyr Tyr Met Gly Ile Ile Leu Cys Trp Gly 420 425 430
Gly Met Gly Ile Trp Leu Gly Leu Val Leu Ser Pro Leu Leu Ser Gly 435 440 445
Leu Ile Leu Met Val Arg Phe Tyr Gin Glu Ile Ala Asn Arg Ile Ala 450 455 460
Asn Ser Asp Asp Gly Gin Glu Ser Ile Ser Ile Asp Asn Val Glu Glu 465 470 475 480
Leu Ser
<210 34 <211> 831 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 34 atgaaaacaa acaaacatat agctatgtgg gcttgtccta gaagtcgttc tactgtaatt 60 acccgtgctt ttgagaactt agatgggtgt gttgtttatg atgagcctct agaggctccg 120 aatgtcttga tgacaactta cacgatgagt aacagtcgta cgttagcaga agaagactta 180 aagcaattaa tactgcaaaa taatgtagaa acagacctca agaaagttat agaacaattg 240 actggagatt taccggacgg aaaattattc tcatttcaaa aaatgataac aggtgactat 300 agatctgaat ttggaataga ttgggcaaaa aagctaacta acttcttttt aataaggcat 360 ccccaagata ttattttttc tttcgatata gcggagagaa agacaggtat cacagaacca 420 ttcacacaac aaaatcttgg catgaaaaca ctttatgaag ttttccaaca aattgaagtt 480 attacagggc aaacaccttt agttattcac tcagatgata taattaaaaa ccctccttct 540 gctttgaaat ggctgtgtaa aaacttaggg cttgcatttg atgaaaagat gctgacatgg 600 aaagcaaatc tagaagactc caatttaaag tatacaaaat tatatgctaa ttctgcgtct 660 ggcagttcag aaccttggtt tgaaacttta agatcgacca aaacatttct cgcctatgaa 720 aagaaggaga aaaaattacc agctcggtta atacctctac tagatgaatc tattccttac 780 tatgaaaaac tcttacagca ttgtcatatt tttgaatggt cagaacactg a 831
<210> 35 <211> 276 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 35
Met Lys Thr Asn Lys His Ile Ala Met Trp Ala Cys Pro Arg Ser Arg 15 10 15
Ser Thr Val Ile Thr Arg Ala Phe Glu Asn Leu Asp Gly Cys Val Val 20 25 30
Tyr Asp Glu Pro Leu Glu Ala Pro Asn Val Leu Met Thr Thr Tyr Thr 35 40 45
Met Ser Asn Ser Arg Thr Leu Ala Glu Glu Asp Leu Lys Gin Leu Ile 50 55 60
Leu Gin Asn Asn Val Glu Thr Asp Leu Lys Lys Val lie Glu Gin Leu 65 ' 70 75 80
Thr Gly Asp Leu Pro Asp Gly Lys Leu Phe Ser Phe Gin Lys Met He 85 90 95
Thr Gly Asp Tyr Arg Ser Glu Phe Gly lie Asp Trp Ala Lys Lys Leu 100 105 110
Thr Asn Phe Phe Leu Ile Arg His Pro Gin Asp He He Phe Ser Phe 115 120 125
Asp He Ala Glu Arg Lys Thr Gly He Thr Glu Pro Phe Thr Gin Gin 130 135 140
Asn Leu Gly Met Lys Thr Leu Tyr Glu Val Phe Gin Gin He Glu Val 145 150 155 160 lie Thr Gly Gin Thr Pro Leu Val He His Ser Asp Asp He He Lys 165 170 175
Asn Pro Pro Ser Ala Leu Lys Trp Leu Cys Lys Asn Leu Gly Leu Ala 180 185 190
Phe Asp Glu Lys Met Leu Thr Trp Lys Ala Asn Leu Glu Asp Ser Asn 195 200 205
Leu Lys Tyr Thr Lys Leu Tyr Ala Asn Ser Ala Ser Gly Ser Ser Glu 210 215 220
Pro Trp Phe Glu Thr Leu Arg Ser Thr Lys Thr Phe Leu Ala Tyr Glu 225 230 235 240
Lys Lys Glu Lys Lys Leu Pro Ala Arg Leu He Pro Leu Leu Asp Glu 245 250 255
Ser lie Pro Tyr Tyr Glu Lys Leu Leu Gin His Cys His He Phe Glu 260 265 270
Trp Ser Glu His 275
<210 36 <211> 774 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 36 ctaaaaattt ttttctactc ttttcaggat agaattccag tttctagagc cgttgtaacc 60 gtacatatct tgatagtacg tatcgatgag gtactcattt tcgtggagca ttaaccagct 120 ttttaactcc getaatttct gctctccttt ttctattaat tcttgctcat ccaaatcatc 180 cctgtccaac tcctccctgt ccaactccca catagttttg ttggtatctt cgacaatcaa 240 gtagtctcca ctttttagac cgttttcgtg aaaatattca actactccca ccgcattagc 300 atgggcatct tctacgatca accagggatg agcaagccca gaaagcagtt ccgacgacat 360 tattgcaccc atattgttac aatccccctc taaaaaatga acgcgagagt cagtttttgc 420 tttctegtcg agtagggaaa gatcgatatc gatacagtag acacaacctt ctatttggaa 480 cagttctaag tgatcggcta gccaaatcgc gctgccaccg cttaatgctc ctatttcgat 540 tattgttttc gggcgaagct catacaggag cattgaataa agagctattt cggtgcaccc 600 tttcaggaag ggtatccctt tccaagtgaa caaatcgcgg tttgccaaga gcgctctcca 660 agctggcact ggaatagcac atttatcttc tctttcagaa attttggcaa accgattagg 720 tttgaaaggt gcaactttat aggcggcttc ttgaacaaat ttttggaagc teat 774
<210> 37 <211> 257 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 37
Met Ser Phe Gin Lys Phe Val Gin Glu Ala Ala Tyr Lys Val Ala Pro 15 10 15
Phe Lys Pro Asn Arg Phe Ala Lys He Ser Glu Arg Glu Asp Lys Cys 20 25 30
Ala Ile Pro Val Pro Ala Trp Arg Ala Leu Leu Ala Asn Arg Asp Leu 35 40 45
Phe Thr Trp Lys Gly lie Pro Phe Leu Lys Gly Cys Thr Glu lie Ala 50 55 60
Leu Tyr Ser Met Leu Leu Tyr Glu Leu Arg Pro Lys Thr lie lie Glu 65 70 75 80 lie Gly Ala Leu Ser Gly Gly Ser Ala lie Trp Leu Ala Asp His Leu 85 90 95
Glu Leu Phe Gin Ile Glu Gly Cys Val Tyr Cys Ile Asp He Asp Leu 100 105 110
Ser Leu Leu Asp Glu Lys Ala Lys Thr Asp Ser Arg Val His Phe Leu 115 120 125
Glu Gly Asp Cys Asn Asn Met Gly Ala lie Met Ser Ser Glu Leu Leu 130 135 140
Ser Gly Leu Ala His Pro Trp Leu lie Val Glu Asp Ala His Ala Asn 145 150 155 160
Ala Val Gly Val Val Glu Tyr Phe His Glu Asn Gly Leu Lys Ser Gly 165 170 175
Asp Tyr Leu He Val Glu Asp Thr Asn Lys Thr Met Trp Glu Leu Asp 180 185 190
Arg Glu Glu Leu Asp Arg Asp Asp Leu Asp Glu Gin Glu Leu lie Glu 195 200 205
Lys Gly Glu Gin Lys Leu Ala Glu Leu Lys Ser Trp Leu Met Leu His 210 215 220
Glu Asn Glu Tyr Leu lie Asp Thr Tyr Tyr Gin Asp Met Tyr Gly Tyr 225 230 235 240
Asn Gly Ser Arg Asn Trp Asn Ser lie Leu Lys Arg Val Glu Lys Asn 245 250 255
Phe
<210 38 <211> 327 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 38 ttattcaaat agccgtagtt tatgatcggt atccaattcg ctattgtttt ttctgccata 60 tccccaacct aagatgcgac gatattcacc cataatgcca ctgtcaatta aatcatcctc 120 gttgactgca acattggtat gagattgcgg cgcaacatag agcgcatccg caggacaata 180 tgcttcacag atgaaacaag tttgacagtc ttcctgtcgg gcgatcgcag gcggttggtt 240 gggaactgca tcaaagacat tggtagggca tacttggacg caaacattac aattaataca 300 gagtttatgg ctgacaagct cgatcat 327
<210> 39 <211> 108 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 39
Met lie Glu Leu Val Ser His Lys Leu Cys lie Asn Cys Asn Val Cys 15 10 15
Val Gin Val Cys Pro Thr Asn Val Phe Asp Ala Val Pro Asn Gin Pro 20 25 30
Pro Ala lie Ala Arg Gin Glu Asp Cys Gin Thr Cys Phe lie Cys Glu 35 40 45
Ala Tyr Cys Pro Ala Asp Ala Leu Tyr Val Ala Pro Gin Ser His Thr 50 55 60
Asn Val Ala Val Asn Glu Asp Asp Leu He Asp Ser Gly lie Met Gly 65 70 75 80
Glu Tyr Arg Arg Ile Leu Gly Trp Gly Tyr Gly Arg Lys Asn Asn Ser 85 50 95
Glu Leu Asp Thr Asp His Lys Leu Arg Leu Phe Glu 100 105
<210> 40 <211> 1653 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 40 ttaagtggtt aatactggtg gtgtagcgct cgcatccttc acccaatccc gtctcaccca 60 aagoctttct aagccgcccg tggcttggta ataaagctga tttggatcgg tttcaggata 120 gtctatgcga atatgttcgc tacgcgtttc cttgcgatgt aaagcgctaa aatatgccca 180 tcgtgctaca gacacaagag cagccgctcg acgagaaaat tccagatcgc gcactgtatc 240 ttgtttcggg ttcccttgta cttgctgcca cagcatttct aatttggcga gggaatccaa 300 aagtccctgc tcacagcgca agtaattctt ctcCaatggg aacatctcgg cttgtacacc 360 gcggacaact gcctcgctat cgaatgtttc ggaaccaggg tactgggaac gtaatccggc 420 ttgacctgct ggacgcacaa cccgttcatg gacatgagcg cccaaactct tggcaaaggc 480 ggctgcacct tcccctgccc attgtcctgt agagattgcc caagcagcat taggaccatc 540 acccccagaa gctatcccag ctaaaaactc ccgcgatgct gcatctccgg cggcatacag 600 tccaggaact tttgtaccac aactatcatt cacaatccga attccacctg taccacggac 660 tgtaccttct aaaaccagtg ttacaggtac tcgttctgta taagggtcaa tgccagcttt 720 tttatagggt agaaaggcga tgaagtgaga cttttcaacc aatgcttgga tttcaggtgt 780 ggctcgatcc aaacgagcat aaacgggacc tttcaggagg gcattgggca ggaacgatgg 840 atcgcgacga ccattgatat agccaccaag atcgttacct gcctcatcgg tgtaactagc 900 ccagtaaaag ggagcagccc ttgtcactgt ggcattgaaa gcggtcgaga tggtatagtg 960 actggaagct tccatactgg agagttcgcc gccagcttcc accgccatca gcagtccatc 1020 gcctgtattg gtattgcaac ctaaagcttt acttaggaat gcacaaccgc cattcgctag 1080 aactactgca ccagcgcgaa cggtataggt gcgatgattt tgcctctgta cacctctagc 1140 tccagccacg gagccgtcct gggctaataa cagttctaga gccggacttt ggtcgaaaat 1200 ttgcacaccc acacgcaaca ggttcttgcg aagtacccgc atatattccg gaccataata 1260 actctggcgc acggattccc cattttcttt ggggaaacga tagccccaat cttccactaa 1320 gggcaaactc agccaagctt tttcaattac acgttcaatc caacgtaagt tagcgaggtt 1380 atttcctttg ctgtaacatt cggatacatc tttctcccaa ttctctggag aaggtgccat 1440 gacgctattg ccactggcag cagctgcacc gctcgtacct agaaaacctt tatcaacaat 1500 gatgactttg acaccttggg ctccagccgc ccatgctgcc catgcggcgg caggaccacc · 1560 accaattacc agcacgtcag cagttaattg tagttcagtg ccgctatagg ctgtaagcaa 1620 ttgcttttcc tccttgttta aagtcaagtt cat 1653
<210 41 <211>550 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 41
Met Asn Leu Thr Leu Asn Lys Glu Glu Lys Gin Leu Leu Thr Ala Tyr 15 10 15
Ser Gly Thr Glu Leu Gin Leu Thr Ala Asp Val Leu Val Ile Gly Gly 20 25 30
Gly Pro Ala Ala Ala Trp Ala Ala Trp Ala Ala Gly Ala Gin Gly Val 35 40 45
Lys Val Ile Ile Val Asp Lys Gly Phe Leu Gly Thr Ser Gly Ala Ala 50 55 60
Ala Ala Ser Gly Asn Ser Val Met Ala Pro Ser Pro Glu Asn Trp Glu 65 70 75 80
Lys Asp Val Ser Glu Cys Tyr Ser Lys Gly Asn Asn Leu Ala Asn Leu 85 90 95
Arg Trp Ile Glu Arg Val Ile Glu Lys Ala Trp Leu Ser Leu Pro Leu 100 105 110
Val Glu Asp Trp Gly Tyr Arg Phe Pro Lys Glu Asn. Gly Glu Ser Val 115 120 · 125
Arg Gin Ser Tyr Tyr Gly Pro Glu Tyr Met Arg Val Leu Arg Lys Asn 130 135 140
Leu Leu Arg Val Gly Val Gin Ile Phe Asp Gin Ser Pro Ala Leu Glu 145 150 155 160
Leu Leu Leu Ala Gin Asp Gly Ser Val Ala Gly Ala Arg Gly Val Gin 165 170 175
Arg Gin Asn His Arg Thr Tyr. Thr Val Arg Ala Gly Ala Val Val Leu 180 185 190
Ala Asn Gly Gly Cys Ala Phe Leu Ser Lys Ala Leu Gly Cys Asn Thr 195 200 205
Asn Thr Gly Asp Gly Leu Leu Met Ala Val Glu Ala Gly Gly Glu Leu 210 215 220
Ser Ser Met Glu Ala Ser Ser His Tyr Thr Ile Ser Thr Ala Phe Asn 225 230 235 240
Ala Thr Val Thr Arg Ala Ala Pro Phe Tyr Trp Ala Ser Tyr Thr Asp 245 250 255
Glu Ala Gly Asn Asp Leu Gly Gly Tyr Ile Asn Gly Arg Arg Asp Pro 260 265 270
Ser Phe Leu Pro Asn Ala Leu Leu Lys Gly Pro Val Tyr Ala Arg Leu 275 280 285
Asp Arg Ala Thr Pro Glu Ile Gin Ala Leu Val Glu Lys Ser His Phe 290 295 300
Ile Ala Phe Leu Pro Tyr Lys Lys Ala Gly Ile Asp Pro Tyr Thr Glu 305 310 315 320
Arg Val Pro Val Thr Leu Val Leu Glu Gly Thr Val Arg Gly Thr Gly 325 330 335
Gly Ile Arg Ile Val- Asn Asp Ser Cys Gly Thr Lys Val Pro Gly Leu 340 345 350
Tyr Ala Ala Gly Asp Ala Ala Ser Arg Glu Phe Leu Ala Gly Ile Ala 355 360 365
Ser Gly Gly Asp Gly Pro Asn Ala Ala Trp Ala Ile Ser Thr Gly Gin 370 375 380
Trp Ala Gly Glu Gly Ala Ala Ala Phe Ala Lys Ser Leu Gly Ala His 385 390 395 400
Val His Glu Arg Val Val Arg Pro Ala Gly Gin Ala Gly Leu Arg Ser 405 410 415
Gin Tyr Pro Gly Ser Glu Thr Phe Asp Ser Glu Ala Val Val Arg Gly 420 425 430
Val Gin Ala Glu Met Phe Pro Leu Glu Lys Asn Tyr Leu Arg Cys Glu 435 440 445
Gin Gly Leu Leu Asp Ser Leu Ala Lys Leu Glu Met Leu Trp Gin Gin 450 455 460
Val Gin Gly Asn Pro Lys Gin Asp Thr Val Arg Asp Leu Glu Phe Ser 465 470 475 480
Arg Arg Ala Ala Ala Leu Val Ser Val Ala Arg Trp Ala Tyr Phe Ser 485 490 495
Ala Leu His Arg Lys Glu Thr Arg Ser Glu His Ile Arg Ile Asp Tyr 500 505 510
Pro Glu Thr Asp Pro Asn Gin Leu Tyr Tyr Gin Ala Thr Gly Gly Leu 515 520 525
Glu Arg Leu Trp Val Arg Arg Asp Trp Val Lys Asp Ala Ser Ala Thr 530 535 540
Pro Pro Val Leu Thr Thr 545 550
<210 42 <211> 750 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 42 ttaattatct tctgcagtcg gtcgaatcaa aatttcattt acatttacat gatcgggttg 60 tgtcactgca taaattatag ctcttgcaat atcctcactt tgtaaaggtg ttattgtact 120 aagttgttct ttactaagct gtttcgtgat cgggtcagaa attaagtcat taaatggcgt 180 atcgactaaa cctggctcaa tgatggtaac gcgaatgttg tctaaagata cctcctggcg 240 taatgcttct gaaagagcat tgacgcctga tttggcagca ctataaacga ccgcaccgga 300 ctgcgctatc ctgccatcga cagaagaCat attgactata tgaccggatt tttgggcctt 360 cagaagaggc aaaactgcgt ggatagcata taaaactccc agaacattca catcgaatgc 420 tcgcctccag tctgcgggat ttccagtatc aattgcacca aacacaccaa ttcctgcatt 480 attcaccaaa atatctacat gtcctagctc aaccttggtc ttttggacta gatgatttac 540 ttgagattcg tctgtaatat ctgtaacaat aggcaatgct tgaccaccac tggcttcaat 600 ccgttttgct agtgcatgca aaagctcagc acgtcttgcg gcgatcgcaa cttttgcccc 660 ctccgcagct aaagcaaatg ctgtagcctc tccaatccca gaggaagctc cagtaataat 720 cgccactttt ccatccaatt tacctgccat 750
<210 43 <211> 249 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 43
Met Ala Gly Lys Leu Asp Gly Lys Val Ala Ile Ile Thr Gly Ala Ser 15 10 15
Ser Gly Ile Gly Glu Ala Thr Ala Phe Ala Leu Ala Ala Glu Gly Ala 20 25 30
Lys Val Ala Ile Ala Ala Arg Arg Ala Glu Leu Leu His Ala Leu Ala 35 40 45
Lys Arg Ile Glu Ala Ser Gly Gly Gin Ala Leu Pro Ile Val Thr Asp 50 55 60
Ile Thr Asp Glu Ser Gin Val Asn His Leu Val Gin Lys Thr Lys Val 65 70 75 80
Glu Leu Gly His Val Asp Ile Leu Val Asn Asn Ala Gly Ile Gly Val 85 90 95
Phe Gly Ala Ile Asp Thr Gly Asn Pro Ala Asp Trp Arg Arg Ala Phe 100 105 110
Asp Val Asn Val Leu Gly Val Leu Tyr Ala Ile His Ala Val Leu Pro 115 120 125
Leu Leu Lys Ala Gin Lys Ser Gly His Ile Val Asn Ile Ser Ser Val 130 135 140
Asp Gly Arg Ile Ala Gin Ser Gly Ala Val Val Tyr Ser Ala Ala Lys 145 150 155 160
Ser Gly Val Asn Ala Leu Ser Glu Ala Leu Arg Gin Glu Val Ser Leu 165 170 175
Asp Asn Ile Arg Val Thr Ile Ile Glu Pro Gly Leu Val Asp Thr Pro 180 185 190
Phe Asn Asp Leu Ile Ser Asp Pro Ile Thr Lys Gin Leu Ser Lys Glu 195 200 205
Gin Leu Ser Thr Ile Thr Pro Leu Gin Ser Glu Asp Ile Ala Arg Ala 210 215 220
Ile Ile Tyr Ala Val Thr Gin Pro Asp His Val Asn Val Asn Glu Ile 225 230 235 240
Leu Ile Arg Pro Thr Ala Glu Asp Asn 245
<210> 44 <211> 1005 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 44 ttaacaaacc ccataagtaa cacctagttg ctttagccat cgacgatagg caagtgtgca 60 tctatctgat ggtacgtgga tttcgtgtga aaacaattgt gtatttatct gctttggagt 120 taacagtggt aaacgtaccg gctgttgtgc atgtaagatc cgaatatctt gttctattgt 180 ttcgtcatat tcagttagca tctttgactc taacgtttca tacccgttcc acattatcaa 240 catacgcaat acactatttt cctcatcaat cggtgtgatc gtcattaaat ccacaatcct 300 catttcaggg gattctgaaa cgcagtattg acataaagga tgactaagcc tgaaccaatt 360 aacccaagag tcatcttcga tatggctgac aatccttgat gtctggaatt gatacttacc 420 catagtaagg ccatctttat ctaatttcac ctcaaattct tccacttttg tataattgcg 480 atcacctaac caaccgtcat ggataaaagg aaaatgagac acgtctaagg aattatccat 540 cacacgaaac gcactagctt taatcaagta agacttggta taagtcttgt gataattcgg 600 atcatcccat tcaggaaatg aaggtatatc attaacagga tcgcccaagc acacccacac 660 taagccatag cgctcctggg agtgatatgt cctggcttca gcacttgccg gtggtaccat 720 gccagggtga gctgggatct gtatgcattt accagcctca ttgtatctcc atccgtgata 780 cggacaaact aaagtattat tcgtaatttc tcccatagac agaggaacac ctcggtgggg 840 gcagtagtca agccatacct gtatgggtga attttgttca taactgcgcc ataataccaa 900 cttcactccc aacaaacgag atctggtgat acttccaggt ttacagtctt ctacattggc 960 gactacgtgc cagttattga ttaagattgg gtcggtagtt gtcat 1005
<210 45 <211> 334 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 45
Met Thr Thr Thr Asp Pro Ile Leu Ile Asn Asn Trp His Val Val Ala 15 10 15
Asn Val Glu Asp Cys Lys Pro Gly Ser Ile Thr Arg Ser Arg Leu Leu 20 25 30
Gly Val Lys Leu Val Leu Trp Arg Ser Tyr Glu Gin Asn Ser Pro Ile 35 40 45
Gin Val Trp Leu Asp Tyr Cys Pro His Arg Gly Val Pro Leu Ser Met 50 55 60
Gly Glu Ile Thr Asn Asn Thr Leu Val Cys Pro Tyr His Gly Trp Arg 65 70 75 80
Tyr Asn Glu Ala Gly Lys Cys Ile Gin Ile Pro Ala His Pro Gly Met 85 90 95
Val Pro Pro Ala Ser Ala Glu Ala Arg Thr Tyr His Ser Gin Glu Arg 100 105 110
Tyr Gly Leu Val Trp Val Cys Leu Gly Asp Pro Val Asn Asp Ile Pro 115 120 125
Ser Phe Pro Glu Trp Asp Asp Pro Asn Tyr His Lys Thr Tyr Thr Lys 130 135 140
Ser Tyr Leu Ile Lys Ala Ser Ala Phe Arg Val Met Asp Asn Ser Leu 145 150 155 160
Asp Val Ser His Phe Pro Phe Ile His Asp Gly Trp Leu Gly Asp Arg 165 170 175
Asn Tyr Thr Lys Val Glu Glu Phe Glu Val Lys Leu Asp Lys Asp Gly 180 185 190
Leu Thr Met Gly Lys Tyr Gin Phe Gin Thr Ser Arg Ile Val Ser His 195 200 205
Ile Glu Asp Asp Ser Trp Val Asn Trp Phe Arg Leu Ser His Pro Leu 210 215 220
Cys Gin Tyr Cys Val Ser Glu Ser Pro Glu Mat Arg Ile Val Asp Leu 225 230 235 240
Met Thr Ile Thr Pro Ile Asp Glu Glu Asn Ser Val Leu Arg Met Leu 245 250 255
Ile Met Trp Asn Gly Tyr Glu Thr Leu Glu Ser Lys Met Leu Thr Glu 260 265 270
Tyr Asp Glu Thr Ile Glu Gin Asp Ile Arg Ile Leu His Ala Gin Gin 275 280 285
Pro Val Arg Leu Pro Leu Leu Thr Pro Lys Gin Ile Asn Thr Gin Leu 290 295 300
Phe Ser His Glu Ile His Val Pro Ser Asp Arg Cys Thr Leu Ala Tyr 305 310 315 320
Arg Arg Trp Leu Lys Gin Leu Gly Val Thr Tyr Gly Val Cys 325 330
<210 46 <211> 726 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 46 ctaaattatc cttttcaagg catccaccaa cagtggtttg atgttgtttt ttgtaaaaat 60 cagagttagc atcctgtaat cggtaattga agtgttggca gctgcggtat gccatacagt 120 tggtgtataa aacattgctg cccctcctgg aagtgaaaga catatttctg catttagtga 180 attggcagaa gatgaatcta atgagtgttc ccattggtgg ctacttggta taactcgcat 240 tgtacccata gtattatctg tatcctgtaa gtatatagtt atgaatacca tggcttgatt 300 ggctactgga accaacaacc gaagcgcgtc gtcatttaac tcgttttttg acatggatgc 360 aagtgcgttc aatacttcaa ctacatatcc atggtcttga tgccaagcaa tgtatcctgt 420 acctgcacga attatggcta gatcggtgat caataggaag atatcagacc caattagagc 480 ctgtactggt cccatcacag ttggaagctc taaaagcctc tgaattatct tttgatacct 540 aactggatct gggatagtat gctcagacca ccactcatag tcacccggca atactccccc 600 acgtttttgt tcggtaataa gttctacttc atgccgtatt tcttcaatta acgcttttgg 660 tacagcttct tcaactgtga aataaccatc atttgtgtaa gcttgttttt gttccgctgt 720 gageat 126
<210> 47 <211> 241 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 47 Mét Leu Thr Ala Glu Gin Lys Gin Ala Tyr Thr Asn Asp Gly Tyr Phe 15 10 15
Thr Val Glu Glu Ala Val Pro Lys Ala Leu Ile Glu Glu Ile Arg His 20 25 30
Glu Val Glu Leu Ile Thr Glu Gin Lys Arg Gly Gly Val Leu Ala Gly 35 40 45
Asp Tyr Glu Trp Trp Ser Glu His Thr Ile Pro Asp Pro Val Arg Tyr 50 55 60
Gin Lys Ile Ile Gin Arg Leu Leu Glu Leu Pro Thr Val Met Gly Pro 65 70 75 80
Val Gin Ala Leu Ile Gly Ser Asp Ile Phe Leu Leu Ile Thr Asp Leu 85 90 95
Ala Ile Ile Arg Ala Gly Thr Gly Tyr Ile Ala Trp His Gin Asp His 100 105 110
Gly Tyr Val Val Glu Val Leu Asn Ala Leu Ala Ser Met Ser Lys Asn 115 120 125
Glu Leu Asn Asp Asp Ala Leu Arg Leu Leu Val Pro Val Ala Asn Gin 130 135 140
Ala Met Val Phe Ile Thr Ile Tyr Leu Gin Asp Thr Asp Asn Thr Met 145 150 155 160
Gly Thr Met Arg Val lie Pro Ser Ser His Gin Trp Glu His Ser Leu 165 170 175
Asp Ser Ser Ser Ala Asn Ser Leu Asn Ala Glu lie Cys Leu Ser Leu 180 185 190
Pro Gly Gly Ala Ala Met Phe Tyr Thr Pro Thr Val Trp His Thr Ala 195 200 205
Ala Ala Asn Thr Ser Ile Thr Asp Tyr Arg Met Leu Thr Leu lie Phe 210 215 220
Thr Lys Asn Asn Ile Lys Pro Leu Leu Val Asp Ala Leu Lys Arg lie 225 230 235 240 lie
<210 48 <211> 576 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 48 tcaatggtta gtaggaatta tcctatagct gttctttctc tggatagaag aaaggttgtg 60 agaagctcgc tccgacttca tttcagccaa tttttctgca gaccaatact gaaaatatcc 120 caatcttaat aattcatcac tagcctcttg taactggctg aatgactgta ctgatgctaa 180 aacatactta gggtgagtta tgattacgtt attcacattc tccgcgtcat caccaacata 240 ttgtttgtct ggatgcgatc ctaaagctac caaatcgtat tctggtaata cataattcgc 300 cttggtaatg tacctttcca acctctgtgc atctaggttt tgagggtcgc agccaaaaat 360 caccatttca aagtcattat tccatgttct tatctgttcc attagaagct ctggcagttc 420 aggtccatga aaccaacgaa cactaacacg gttatttaac caagctgcct tcgcgtaagg 480 acagggtgga aaatttcctg ttagaggatt gggaatgctg acaacattga taatccaatc 540 ctctatttct tggcgaaatt gttcgatatt tatcat 576
<210> 49 <211> 191 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 49
Met lie Asn lie Glu Gin Phe Arg Gin Glu lie Glu Asp Trp lie lie 15 10 15
Asn Val Val Ser lie Pro Asn Pro Leu Thr Gly Asn Phe Pro Pro Cys 20 25 30
Pro Tyr Ala Lys Ala Ala Trp Leu Asn Asn Arg Val Ser Val Arg Trp 35 40 45
Phe His Gly Pro Glu Leu Pro Glu Leu Leu Met Glu Gin He Arg Thr 50 55 60
Trp Asn Asn Asp Phe Glu Met Val He Phe Gly Cys Asp Pro Gin Asn 65 70 75 80
Leu Asp Ala Gin Arg Leu Glu Arg Tyr He Thr Lys Ala Asn Tyr Val 85 90 95
Leu Pro Glu Tyr Asp Leu Val Ala Leu Gly Ser His Pro Asp Lys Gin 100 105 110
Tyr Val Gly Asp Asp Ala Glu Asn Val Asn Asn Val lie He Thr His 115 120 125
Pro Lys Tyr Val Leu Ala Ser Val Gin Ser Phe Ser Gin Leu Gin Glu 130 135 140
Ala Ser Asp Glu Leu Leu Arg Leu Gly Tyr Phe Gin Tyr Trp Ser Ala 145 150 155 160
Glu Lys Leu Ala Glu Met Lys Ser Glu Arg Ala Ser His Asn Leu Ser 165 170 175
Ser lie Gin Arg Lys Asn Ser Tyr Arg He lie Pro Thr Asn His 180 185 190 <210> 50 <211> 777
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 50 ttaatctagg tcatagtata accatatatt aggctcgatg tatattccca tattgttggg 60 atagtcaatt ttgacaggta ctaagccttt gggaataata tagtcaccag tttctggaaa 120 acgcatccca actctatctt cccaaccgtc aatagtatca ttaattgttg tggatttaaa 180 acagatccct gcaattttag ccccatgttt gacattaact cgtaaccaag ggtcaaatat 240 aagaccattt ttatctcgcc aggtaatata ccgctctatg ggtataagtg ggtaaagata 300 tttbaggctt ggacgtgcag ccatgatcaa agaattaaga ccgtggtatt gagcaagttc 360 tttcatgtat ccaatcagat actgactcaa gtttttgcct tgatactctg gtaggattga 420 aatcgatact acacataacg cattaggcag gcggttctgt tctcggtctt caagccactt 480 ggctaaagcc cagtcacaac cttcgtccgg taactcatca aaacggcttt cataagttaa 540 agggatacag tttccttgcg ctatcataag ctgtgtggta gcttctacta acccaaactg 600 gaattctgga taaatttcaa atagagctaa ggaagctgga tctgcccaga catcatgtat 660 caaaaatttt gggtatgctt gatcaaagac actcatcgtc ctttccacaa aatcagaagt 720 ttcttttggg gttacaaagc tatactctaa attatgctgt acaatttgaa tggtcat 777
<210> 51 <211> 258 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 51
Met Thr Ile.Gin Ile Val Gin His Asn Leu Glu Tyr Ser Phe Val Thr 15 10 15
Pro Lys Glu Thr Ser Asp Phe Val Glu Arg Thr Met Ser Val Phe Asp 20 25 30
Gin Ala Tyr Pro Lys Phe Leu Ile His Asp Val Trp Ala Asp Pro Ala 35 40 45
Ser Leu Ala Leu Phe Glu Ile Tyr Pro Glu Phe Gin Phe Gly Leu Val 50 55 60
Glu Ala Thr Thr Gin Leu Met ile Ala Gin Gly Asn Cys ile Pro Leu 65 70 75 80
Thr Tyr Glu Ser Arg Phe Asp Glu Leu pro Asp Glu Gly Cys Asp Trp 85 90 95
Ala Leu Ala Lys Trp Leu Glu Asp Arg Glu Gin Asn Arg Leu Pro Asn 100 105 110
Ala Leu Cys Val Val Ser Ile Ser Ile Leu Pro Glu Tyr Gin Gly Lys 115 120 125
Asn Leu Ser Gin Tyr Leu Ile Gly Tyr Met Lys Glu Leu Ala Gin Tyr 130 135 140
His Gly Leu Asn Ser Leu Ile Met Ala Ala Arg Pro Ser Leu Lys Tyr 145 150 155 160
Leu Tyr Pro Leu Ile Pro Ile Glu Arg Tyr Ile Thr Trp Arg Asp Lys 165 170 175
Asn Gly Leu Ile Phe Asp Pro Trp Leu Arg Val Asn Val Lys His Gly 180 185 190
Ala Lys Ile Ala Gly Ile Cys Phe Lys Ser Thr Thr Ile Asn Asp Thr 195 200 205
Ile Asp Gly Trp Glu Asp Arg Val Gly Met Arg Phe Pro Glu Thr Gly 210 215 220
Asp Tyr Ile Ile Pro Lys Gly Leu Val Pro Val Lys Ile Asp Tyr Pro 225 230 235 240
Asn Asn Met Gly Ile Tyr Ile Glu Pro Asn Ile Trp Leu Tyr Tyr Asp 245 250 255
Leu Asp <210> 52 <211> 777
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 52
ctaatcctta aatttatact ggaagtcaaa tgagatctca ctatcgttat tatctggaag SO tacttgcact gtcaattcat taccgacttt cccattccca ggcataatta ataagttagg 120 gtgaggtgga atgccgtcgt actgtcggac gcggcgaaaa atgctcgaat tctcgccacc 180 atgtttattc aagaggactt caactggtgt gatgacaaaa gtcattcctg acccaaggtg 240 gcgcgatcgc cgcttttgat ttgctggagt ggaaacacta acaaataagg cacaccctcc 300 tagagaataa gaccagttag cagactgcgg atcggcagac caatggcagg gacaagacac 360 cgcatcaagg ctatgtaacg cattcaaaaa atcaaatgct tgacctgcat attcctctac 420 tgtaagaacC gtCggttcag gtgggaaaaa gatgacaagt gtcagaagat ccgcattttc 480 gtgctgaagc aattcgtttt cattaacttc atcaatgtat ttgtagatac cctcaagcgt 540 atgctcaacc aagatcgggt cagttaaaga tgagactetc aggtatctaa tcattccctt 600 ctgttccccg atagttcccc agaagcaagg gaaggcagaa tcgctgattg tttcaacaaa 660 tgttgagtag ctagtgcgta cccaagcagg aaggcactcc tctagaagag aggattccat 720 ctggcttttg ttccagattg gtgcaactcc gtcaggacat aaattctcga ttaccac 777
<210> 53 <211> 258 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 53
Met Val Ile Lys Asn Leu Cys Pro Asp Gly Val Thr Pro Ile Trp Asn 15 10 15
Lys Ser Gin Met Glu Ser Ser Leu Leu Glu Glu Cys Leu Pro Ala Trp 20 25 30
Val Arg Thr ser Tyr Ser Thr Phe Val Glu Thr Ile Ser Asp Ser Ala 35 40 45
Phe Pro Cys Phe Trp Gly Thr Ile Gly Glu Gin Lys Gly Met Ile Arg 50 55 60
Tyr Leu Ile Val Ser Ser Leu Thr Asp Pro Ile Leu Val Glu His Thr 65 70 75 80
Leu Glu Gly Ile Tyr Lys Tyr Ile Asp Glu Val Asn Glu Asn Glu Leu 85 90 95
Leu Gin His Glu Asn Ala Asp Leu Leu Thr Leu Val Ile Phe Phe Pro 100 105 110
Pro Glu Pro Thr Val Leu Thr Val Glu Glu Tyr Ala Gly Gin Ala Phe 115 120 125
Asp phe Leu Asn Ala Leu His ser Leu Asp Ala Val Ser Cys Pro Cys 130 135 140
His Trp Ser Ala Asp Pro Gin Ser Ala Asn Trp Ser Tyr Ser Leu Gly 145 150 155 160
Gly Cys Ala Leu Phe Val Ser Val Ser Thr Pro Ala Asn Gin Lys Arg 165 170 175
Arg Ser Arg His Leu Gly Ser Gly Met Thr Phe Val Ile Thr Pro Val 180 185 190
Glu Val Leu Leu Asn Lys His Gly Gly Glu Asn Ser Ser Ile Phe Arg 195 200 205
Arg Val Arg Gin Tyr Asp Gly Ile Pro Pro His Pro Asn Leu Leu Ile 210 215 220
Met Pro Gly Asn Gly Lys Val Gly Asn Glu Leu Thr Val Gin Val Leu 225 230 235 240
Pro Asp Asn Asn Asp Ser Glu Ile Ser Phe Asp Phe Gin Tyr Lys Phe 245 250 255
Lys Asp
<210> 54 <211> 1227 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 54 ctatatctta ttttttggaa gtccctgaaa attattcaac aagatcgaga cgttgttgtt 60 gccagaattt gtgacagcca ggtcaagctt gctgtcgccg ttgaaatccg caattgctat 120 agattcagga ttagtaccga ctggaaagtt agtagctatg ccaaaagacc cattaccatt 180 tcctggtaag accgagacgt tattgctact ataatttgta acagccaggt caagtttact 240 gtcgccattc acatctctaa tcgctacaga gtagggatta gtaccggctg gaaagttagt 300 ggctgcgcca aaagacccat taccatttcc cagtaagacc gagacgttat tgctgctagt 360 atttgcaaca gccaggtcaa gcttgctgtc gccatttaca tccccagttg ctacaaatat 420 gggattagta ccgactggaa agttagtggc tgcgccaaaa gacccattac catttcccag 480 taagaccgag acgttattgc tgacccaatt tgtaatagca aggtcgagct tactgtcgct 540 attaaaatcc gcaatcgcta cggaaatcga ataagtatcg acagggaagc tgctggctgc 600 gccaaaagac ccattaccat ttcccagtaa aaccaagacc ttattgtcga accaatttgt 660 aaaagcaagg tcaagctcac tatcgttatt cacatctcca atggctacag aataagggtt 720 agtaccaact gaaaagttag tggctgcgcc aaaagaccca ttaccatttc ctagtaagac 780 cgagacgtta ttgctactaa aatttgcaac agccaggtca agcttgctgt cgccatttac 840 atccccagtc actacaaaga cgggattagt accgactgga aagttagtgg ctgcgccaaa 900 agacccatta ccatttccca gtaagaccga gacgttattg tegaaccaat ttgtaacagc 960 caggtcgagc ttactatcgc tattgaaatc cccaactgct acagagtcag catcaagacc 1020 agttgggaag ttaatagcag tagcataact actcctgtgg gcaaatctca ctcctacgga 1080 caaattaacc ggaacactaa attgcccaga aagcttttca ttcttcagat aatagtcagt 1140 tatatttgct aatgcaacag gagttataca taaaaatgta ctaacagata atatccccgc 1200 tataattagt aaagtgagcc ttttcac 1227
<210> 55 <211> 408 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 55
Met Lys Arg Leu Thr Leu Leu Ile Ile Ala Gly Ile Leu Ser Val Ser 1 5 10 15
Thr Phe Leu Cys ile Thr Pro Val Ala Leu Ala Asn Ile Thr Asp Tyr 20 25 30
Tyr Leu Lys Asn Glu Lys Leu Ser Gly Gin Phe Ser Val Pro Val Asn 35 40 45
Leu Ser Val Gly Val Arg Phe Ala His Arg Ser Ser Tyr Ala Thr Ala 50 55 60
Ile Asn Phe Pro Thr Gly Leu Asp Ala Asp Ser Val Ala val Gly Asp 65 70 75 80
Phe Asn Ser Asp Ser Lys Leu Asp Leu Ala Val Thr Asn Trp Phe Asp 85 90 95
Asn Asn val Ser val Leu Leu Gly Asn Gly Asn Gly Ser Phe Gly Ala 100 105 110
Ala Thr Asn Phe Pro Val Gly Thr Asn Pro Val Phe Val Val Thr Gly 115 120 125
Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val Ala Asn Phe Ser 130 135 140
Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly Ser Phe Gly 145 ISO 155 160
Ala Ala Thr Asn Phe Ser Val Gly Thr Asn Pro Tyr Ser Val Ala lie 165 170 175
Gly Asp Val Asn Asn Asp Ser Glu Leu Asp Leu Ala Phe Thr Asn Trp 180 185 190
Phe Asp Asn Lys Val Leu Val Leu Leu Gly Asn Gly Asn Gly Ser Phe 195 200 205
Gly Ala Ala Ser Ser Phe Pro Val Asp Thr Tyr Ser He Ser Val Ala 210 215 220 lie Ala Asp Phe Asn Ser Asp Ser Lys Leu Asp Leu Ala lie Thr Asn 225 230 235 240
Trp Val Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly Ser 245 250 255
Phe Gly Ala Ala Thr Asn Phe Pro Val Gly Thr Asn Pro He Phe Val 260 265 270
Ala Thr Gly Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val Ala 275 280 285
Asn Thr Ser Ser Asn Asn Val Ser Val Leu Leu Gly Asn Gly Asn Gly 290 295 300
Ser Phe Gly Ala Ala Thr Asn Phe Pro Ala Gly Thr Asn Pro Tyr Ser 305 310 315 320
Val Ala He Arg Asp Val Asn Gly Asp Ser Lys Leu Asp Leu Ala Val 325 330 335
Thr Asn Tyr Ser Ser Asn Asn Val Ser Val Leu Pro Gly Asn Gly Asn 340 345 350
Gly Ser Phe Gly He Ala Thr Asn Phe Pro Val Gly Thr Asn Pro Glu 355 360 365
Ser lie Ala lie Ala Asp Phe Asn Gly Asp Ser Lys Leu Asp Leu Ala 370 375 380
Val Thr Asn Ser Gly Asn Asn Asn Val Ser lie Leu Leu Asn Asn Phe 385 390 395 400
Gin Gly Leu Pro Lys Asn Lys lie 405
<210> 56 <211> 603 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 56 etattgtttg aaaattgtga atttgttttc cacgtatttg agtagttgtt ctaggctttc 60 ctcgacggtg agttcggatg tttccaccca taaatctggg ctattgggtg gttcataagg 120 ggcgctgatt cccgtaaatc catctatttc cccactgcgt gcttttagat aaagaccttt 180 cggatcacgc tgctcacaaa.gttccagtgg agttgcaatg tatacttcat gaaatagatc 240 tccagctagt ctacgcacct gttctcggtc attcctgtag ggtgagatga aggcagtgat 300 cactaggcat cctgactccg caaagagttt ggcaacctca cccaaacgac ggatattttc 360 tgagcgatca ctagcagaaa atcctaaatc ggaacacagt ccatgacgaa cactatcacc 420 atctaaaaca aaggtagacc atcctttctc gaacaaagtc tgctctaatt ttaaagccaa 480 tgttgtttta ccagccccgg acagtccagt aaaccataga atcccgcttt tatgaccatt 540 ctttagataa cgatcatatg gagatataag atgttttgta tagtgaatat tagttgattt 600 cat 603
<210> 57 <211> 200 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400 57
Met Lys Ser Thr Asn Ile His Tyr Thr Lys His Leu Ile Ser Pro Tyr 1 5 10 15
Asp Arg Tyr Leu Lys Asn Gly His Lys Ser Gly Ile Leu Trp Phe Thr 20 25 30
Gly Leu Ser Gly Ala Gly Lys Thr Thr Leu Ala Leu Lys Leu Glu Gin 35 40 45
Thr Leu Phe Glu Lys Gly Trp Ser Thr Phe Val Leu Asp Gly Asp Ser 50 55 60
Val Arg His Gly Leu Cys Ser Asp Leu Gly Phe Ser Ala Ser Asp Arg 65 70 75 80
Ser Glu Asn Ile Arg Arg Leu Gly Glu Val Ala Lys Leu Phe Ala Glu 85 90 95
Ser Gly Cys Leu Val Ile Thr Ala Phe Ile Ser Pro Tyr Arg Asn Asp 100 105 110
Arg Glu Gin Val Arg Arg Leu Ala Gly Asp Leu Phe His Glu Val Tyr 115 120 125
Ile Ala Thr Pro Leu Glu Leu Cys Glu Gin Arg Asp Pro Lys Gly Leu 130 135 140
Tyr Leu Lys Ala Arg Ser Gly Glu Ile Asp Gly Phe Thr Gly Ile Ser 145 ISO 155 160
Ala Pro Tyr Glu Pro Pro Asn Ser Pro Asp Leu Trp Val Glu Thr Ser 165 170 175
Glu Leu Thr Val Glu Glu Ser Leu Glu Gin Leu Leu Lys Tyr Val Glu 180 185 190
Asn Lys Phe Thr Ile Phe Lys Gin 195 200
<210 58 <211> 1350 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 58 ttaagaaaaa attatttcaa actcgctcgc caaacgctcc ataatcaaat taatttcaga 60 cgaaaaagga cagtaatatg gtagctctac caacaccctt cttgcggaaa ctgtcacctt 120 cgctgctatt ttgataatcg tttcccttaa cctaggaacc tgggctttag ccagttttgt 180 tccctgtgct gcttgccgaa ttcccaacat taaaatgtaa gctgcttgag ataaaaataa 240 ccgaaactga ttgacaataa atttctcaca gctgagtcta tctgatttta tccccagttt 300 taattcctta attctatgct ctgaagtagc tcctctttga acataaaatt tatcgtataa 360 atcctgagct tctgtttcca agctagtaat tataaatcta ggattgggtc ctttttctag 420 ccattctgct ttcataatta ctcgccgagg ttctgaccea ctccgagctg cgtaatacac 480 atcatcaaat aaacgaactt tttctcctgt gcgacaatat tccagtctgg ctcggtcaag 540 aaggtaatta atttttcgtt ttaagacatc attattgctg aatccaaaaa catatccaac 600 cccgcttttt tcacaaacct caatgatttc tggtaacgag aaacccccgt ctcccctcag 660 aacaattcta atttcaggta aggctctttt gattcgcaaa aataaccatt ttagaatgcc 720 agctactcct ttaccagagt gagaatttcc cgcccttagt tgtagaacta atggataacc 780 actggaagct tcattaatca gaactggaaa gtagatatca tgcctatggt aaccattaaa 840 taagctcagt tgttgatgac catgagttag agcatcccac gcatctatgt ccaggacaat 900 ctcttttgat tcccgaggat aggattctag gaatttatca acaaataacc gacgaatttg 960 tttgatatct ttttgagtca cctgattttc taaacgactc atagttggtt gactagctaa 1020 taagttttct cctactgtgg gaacttgatt acaaactagc ttaaaaattg gatcttggcg 1080 caatttatta ctatcgttgc tatcttcata gccagcaatt atttgataaa ttcgttggct 1140 aattaattga gaaagagaat gtttgacttt agtttggtcc cgattatccg tcaaacaatc 1200 tgccatatct tgacaaattt ttaccttttc ttctacttgt cgtgccagaa taattccgcc 1260 atcactactt aaactcatat cagaaaaagt cagatctaaa gtttttttat cgaagaaatt 1320 taaagataat cttgaggaag atttagtcat 1350
<210 59 <211> 449 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 59
Met Thr tys Ser Ser Ser Arg Leu Ser Leu Asn Phe Phe Asp Lys Lys 15 10 15
Thr Leu Asp Leu Thr Phe Ser Asp Met Ser Leu Ser Ser Asp Gly Gly 20 25 30
Ile Ile Leu Ala Arg Gin Val Glu Glu Lys Val Lys Ile Cys Gin Asp 35 40 45
Met Ala Asp Cys Leu Thr Asp Asn Arg Asp Gin Thr Lys Val Lys His 50 55 60
Ser Leu Ser Gin Leu Ile Ser Gin Arg Ile Tyr Gin Ile Ile Ala Gly 65 70 75 80
Tyr Glu Asp Ser Asn Asp Ser Asn Lys Leu Arg Gin Asp Pro Ile Phe 85 90 95
Lys Leu Val Cys Asn Gin val Pro Thr Val Gly Glu Asn Leu Leu Ala 100 105 110
Ser Gin Pro Thr Met Ser Arg Leu Glu Asn Gin Val Thr Gin Lys Asp 115 120 125
Ile Lys Gin Ile Arg Arg Leu Phe Val Asp Lys Phe Leu Glu Ser Tyr 130 135 140
Pro Arg Glu Ser Lys Glu Ile Val Leu Asp Ile Asp Ala Trp Asp Ala 145 150 155 160
Leu Thr His Gly His Gin Gin Leu Ser Leu Phe Asn Gly Tyr His Arg 165 170 175
His Asp Ile Tyf Phe Pro Val Leu Ile Asn Glu Ala Ser Ser Gly Tyf 180 185 190
Pro Leu Val Leu Gin Leu Arg Ala Gly Asn Ser His Ser Gly Lys Gly 195 200 205
Val Ala Gly Ile Leu Lys Trp Leu Phe Leu Arg Ile Lys Arg Ala Leu 210 215 220
Pro Glu Ile Arg Ile Val Leu Arg Gly Asp Gly Gly Phe Ser Leu Pro 225 230 235 240
Glu Ile Ile Glu Val Cys Glu Lys Ser Gly Val Gly Tyr Val Phe Gly 245 250 255
Phe Ser Asn Asn Asp Val Leu Lys Arg Lys Ile Asn Tyr Leu Leu Asp 260 265 270
Arg Ala Arg Leu Glu Tyr cys Arg Thr Gly Glu Lys Val Arg Leu Phe 275 280 285
Asp Asp Val Tyr Tyr Ala Ala Arg Ser Trp Ser Glu Pro Arg Arg Val 290 295 300
Ile Met Lys Ala Glu Trp Leu Glu Lys Gly Pro Asn Pro Arg Phe Ile 305 310 315 320
Ile Thr Ser Leu Glu Thr Glu Ala Gin Asp Leu Tyr Asp Lys Phe Tyr 325 330 335
Val Gin Arg Gly Ala Thr Ser Glu His Arg Ile Lys Glu Leu Lys Leu 340 345 350
Gly Ile Lys Ser Asp Arg Leu Ser Cys Glu Lys Phe ile val Asn Gin 355 360 365
Phe Arg Leu Phe Leu Ser Gin Ala Ala Tyr Ile Leu Met Leu Gly Ile 370 375 380
Arg Gin Ala Ala Gin Gly Thr Lys Leu Ala Lys Ala Gin Val Pro Arg 385 390 395 400
Leu Arg Glu Thr Ile Ile Lys Ile Ala Ala Lys Val Thr Val Ser Ala 405 410 415
Arg Arg Val Leu Val Glu Leu Pro Tyr Tyr Cys Pro Phe Ser Ser Glu 420 425 430
Ile Asn Leu Ile Met Glu Arg Leu Ala Ser Glu Phe Glu Ile Ile Phe 435 440 445
Ser
<210 60 <211> 666 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 60 ctatctttgc cctgtaacaa tgtatgctac cctttgacca atattagtag catgatctgc 60 cattctctct aaacactgaa ttgctaatgt taatagtaaa atgggctcca ctaccccggg 120 aacatctttc tgctgcgcca aattacgata taactttttg taagcatcat ctactgtatc 180 atctaataat ttaatccttc taccactaat ctcgtctaaa tccgctaaag ctactaggct 240 ggtagccaac atagattggg catgatcgga cataatggca acctccccca aagtaggatg 300
Srøgggatag ggaaatattt tcattgctat ttctgccaaa tctttggcat agtccccaat 360 acgttccaag tctctaacta attgcatgaa tgagcttaaa caccgagatt cttggtctgt 420 gggagcttga ctgctcataa ttgtggcaca atcgacttct atttgtctgt agaagcgatc 480 aatttttttg tctaatctcc gtatttgctc agctgctgtt aaatcccgat tgaatagagc 540 ttggtgactc agacggaatg actgctctac taaagcaccc atacgcaaaa catctcgttc 600 cagtctttta atggcacgta taggttgagg tttttcaaaa attgtatatt tcacaacagc 660 tttcat 666 <210> 61 <211> 221
<212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 61
Met Lys Ala Val Val Lys Tyr Thr Ile Phe Glu Lys Pro Gin Pro Ile 15 10 15
Arg Ala Ile Lys Arg Leu Glu Arg Asp Val Leu Arg Met Gly Ala Leu 20 25 30
Val Glu Gin Ser Phe Arg Leu Ser His Gin Ala Leu Phe Asn Arg Asp 35 40 45
Leu Thr Ala Ala Glu Gin Ile Arg Arg Leu Asp Lys Lys Ile Asp Arg 50 55 60
Phe Tyr Arg Gin Ile Glu Val Asp Cys Ala Thr Ile Met Ser Ser Gin 65 70 75 80
Ala Pro Thr Asp Gin Glu Ser Arg Cys Leu Ser Ser Phe Met Gin Leu 85 90 95
Val Arg Asp Leu Glu Arg Ile Gly Asp Tyr Ala Lys Asp Leu Ala Glu 100 105 110
Ile Ala Met Lys Ile Phe Pro Tyr Pro Pro His Pro Thr Leu Gly Glu 115 120 125
Val Ala Ile Met Ser Asp His Ala Gin Ser Met Leu Ala Thr Ser Leu 130 135 140
Val Ala Leu Ala Asp Leu Asp Glu Ile Ser Gly Arg Arg ile Lys Leu 145 150 155 160
Leu Asp Asp Thr Val Asp Asp Ala Tyr Lys Lys Leu Tyr Arg Asn Leu 165 170 175
Ala Gin Gin Lys Asp Val Pro Gly Val Val Glu Pro Ile Leu Leu Leu 180 185 190
Thr Leu Ala Ile Gin cys Leu Glu Arg Met Ala Asp His Ala Thr Asn 195 200 205
Ile Gly Gin Arg Val Ala Tyr Ile Val Thr Gly Gin Arg 210 215 220 <210 62 <211> 1353
<212> DNA <213> Cylindrospermopsis raciborskii T3 <400 62 tcagaaatat ccgccatcat gttgaaccac ctggggaaga tgaatttgta tccaagcacc 60 accggtatca ggatggttca tggccctgat tttgccacca tgagctataa ttatttggcg 120 gacaatggat aaccctaaac cactaccagt aatttctact gtttcattct cagagcggga 180 ctcgcggtgt ctagctttgt ccccccgata aaatctttga aagacatggg gtagatccat 240 gggagcaaat ccaaccccgg aatcaataat gttaatttct aaaatctgat ttgatacttg 300 gtttaatatt gtatctgctt ctggatcaac cccattaata gacttctccc cacaaactgg 360 attcatttca atgaaaatag taccgttcag gttgctgtat ttaatacagt tatctaacag 420 attaagaaac acttgataaa ttctggactt atcagcacat atatagacct tttccgggcc 480 ggagtaagaa atactaagat gctgattagc ggctaggggc tctaaattct cccagactga 540 aaaaattagg gagcggactt ctagcatttc caaattcagt tgtatggagg aggttatttc 600 catctgggtc aggtctaacc aattttggac taaattaatt agtctgtcaa cctcctgcat 660 caagcggatg acccaacggt ttagaggggg atctaagcga gtttgcaggg tttctgcgac ' 720 cagacgaatg gaagtcagag gtgttctcag ttcatgggcc aggtctgaaa aagagcggtc 780 acgttgctga tgaatgtcta caaattgttg gtgactttct agaaacacac ccacttgtcc 840 ccccggtagg ggaaaactgt tagctgctaa agacaatggc tttaatccta aaataccctg 900 accatgatct cgggaagggt gaaaaatcca ctcttgcatt tgcggttttt gccaatcccg 960 ggtttgctca attaactgat ccagctcata ggatctcact aattccagta gcaggcgcac 1020 ttgacccggt tgccatcttt gtaaatacag catttcccgc gcgcactgat tacaccatag 1080 tagttggttt tcttcatcta cttgtaaata tcccaaaggc gcagcatcca gcaactgttc 1140 ataagctttg agtgacaagc gtaagttttg ttgctcatct ctaacggtag atattttacg 1200 atgtaatcca gctaataggg gtaataatat cttttcagcg tgagggttta agggttgggt 1260 taactgctcc aaatgactgt taagttgaaa ttgttgccaa agccaaaaac caaaaccgac 1320 tgccaaaccc agaagaaatc ccaataagaa cat 1353
<210 63 <211> 450 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 63
Met Phe Lea Leu Gly Phe Leu Leu Gly Leu Ala Val Gly Phe Gly Phe 15 10 15
Trp Leu Trp Gin Gin Phe Gin Leu Asn Ser His Leu Glu Gin Leu Thr 20 25 30
Gin Pro Leu Asn Pro His Ala Glu Lys Ile Leu Leu Pro Leu Leu Ala 35 40 45
Gly Leu His Arg Lys Ile Ser Thr Val Arg Asp Glu Gin Gin Asn Leu 50 55 60
Arg Leu Ser Leu Lys Ala Tyr Glu Gin Leu Leu Asp Ala Ala Pro Leu 65 70 75 80
Gly Tyr Leu Gin Val Asp Glu Glu Asn Gin Leu Leu Trp Cys Asn Gin 85 90 95
Cys Ala Arg Glu Met Leu Tyr Leu Gin Arg Trp Gin Pro Gly Gin Val 100 105 110
Arg Leu Leu Leu Glu Leu Val Arg Ser Tyr Glu Leu Asp Gin Leu Ile 115 120 125
Glu Gin Thr Arg Asp Trp Gin Lys Pro Gin Met Gin Glu Trp Ile Phe 130 135 140
His Pro Ser Arg Asp His Gly Gin Gly Ile Leu Gly Leu Lys Pro Leu 145 150 155 160
Ser Leu Ala Ala Asn Ser Phe Pro Leu Pro Gly Gly Gin Val Gly Val 165 170 175 phe Leu Glu Ser His Gin Gin Phe Val Asp Ile His Gin Gin Arg Asp 180 185 190
Arg Ser Phe Ser Asp Leu Ala His Glu Leu Arg Thr Pro Leu Thr Ser 195 200 205
Ile Arg Leu Val Ala Glu Thr Leu Gin Thr Arg Leu Asp Pro Pro Leu 210 215 220
Asn Arg Trp Val Ile Arg Leu Met Gin Glu Val Asp Arg Leu Ile Asn 225 230 235 240
Leu Val Gin Asn Trp Leu Asp Leu Thr Gin Met Glu Ile Thr Ser Ser 245 250 255
Ile Gin Leu Asn Leu Glu Met Leu Glu Val Arg Ser Leu Ile Phe Ser 260 265 270
Val Trp Glu Asn Leu Glu Pro Leu Ala Ala Asn Gin His Leu Ser Ile 275 280 285
Ser Tyr Ser Gly Pro Glu Lys Val Tyr Ile Cys Ala Asp Lys Ser Arg 290 295 300
Ile Tyr Gin Val Phe Leu Asn Leu Leu Asp Asn Cys Ile Lys Tyr Ser 305 310 315 320
Asn Leu Asn Gly Thr Ile Phe Ile Glu Met Asn Pro Val Cys Gly Glu 325 330 335
Lys Ser Ile Asn Gly Val Asp Pro Glu Ala Asp Thr Ile Leu Asn Gin 340 345 350
Val Ser Asn Gin Ile Leu Glu Ile Asn Ile Ile Asp Ser Gly Val Gly 355 360 365
Phe Ala Pro Met Asp Leu Pro His Val Phe Gin Arg Phe Tyr Arg Gly 370 375 380 .
Asp Lys Ala Arg His Arg Glu Ser Arg Ser .Glu Asn Glu Thr Val Glu 385 390 395 400
Ile Thr Gly Ser Gly Leu Gly Leu Ser Ile Val Arg Gin Ile Ile Ile 405 410 415
Ala His Gly Gly Lys Ile Arg Ala Met Asn His Pro Asp Thr Gly Gly 420 425 430
Ala Trp Ile Gin Ile His Leu Pro Gin Val Val Gin His Asp Gly Gly 435 440 445
Tyr Phe 450
<210 64 <211> 819 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400 64 tcaaccaaat ctatagccaa aacccctaac tgtgacaata tattctggat ggctagggtc 60 taactctaat ttttccctca gccatcgaat gtgaacatcc accgttttac tgtcaccaac 120 aaaatcagga ccccaaacct ggtctaataa ctgttcccgt gaccacaccc tgcgagcata 180 actcataaat agttctagta accggaattc tttcggtgac aagctcacct ccctccctct 240 cactaacacc cgacattcct gaggatttaa actgatatcc ttatatttta aagtgggtat 300 caagggcaaa ttagaaaacc gctgacgacg taacagggcg cgacacctag ccaccatttc 360 ccgtacgcta aaaggcttag ttaggtaatc atccgcccct acctctaaac ccagcacccg 420 gtcagtttca ctacctttcg cactcagaat taaaatcggt atggaattac cctggtgacg 480 taacaaacga caaatatcta atccgttgat ttgtggcaao atcaagtcta gcacaagcag 540 gtcgaaggat aactcaccag gttgggtctc taaattcctg attaattcca cagcacaacg 600 accatcctta gcagtcacaa cttcataacc ttcaccctct aaggctacta caagcatctc 660 tcggatcagt tcttcgtctt ccactattaa aacgcgacta actggttcaa tatccgattt 720 agtgaagtat ctagggtaat tcagtagtat acattgataa caaaaatttg taagaatgta 780 ctggtctggg tttcccacta gtatatgatc ctcactcat 819 <210> 65
<211> 272 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 65
Met Ser Glu Asp His Ile Leu Val Gly Asn Pro Asp Gin Tyr Ile Leu 1 S 10 15
Thr Asn Phe Cys Tyr Gin Cys Ile Leu Leu Asn Tyr Pro Arg Tyr Phe 20 25 30
Thr Lys Ser Asp Ile Glu Pro Val Ser Arg Val Leu Ile Val Glu Asp 35 40 45
Glu Glu Leu Ile Arg Glu Met Leu Val Val Ala Leu Glu Gly Glu Gly 50 55 60
Tyr Glu Val Val Thr Ala Lys Asp Gly Arg Cys Ala Val Glu Leu Ile 65 70 75 80
Arg Asn Leu Glu Thr Gin PrO Gly Glu Leu Ser Phe Asp Leu Leu Val 85 90 95
Leu Asp Leu Met Leu Pro Gin Ile Asn Gly Leu Asp Ile Cys Arg Leu 100 105 110
Leu Arg His Gin Gly Asn Ser Ile Pro Ile Leu Ile Leu Ser Ala Lys 115 120 125
Gly Ser Glu Thr Asp Arg Val Leu Gly Leu Glu Val Gly Ala Asp Asp 130 135 140
Tyr Leu Thr Lys Pro Phe Ser Val Arg Glu Met Val Ala Arg Cys Arg 145 150 155 160
Ala Leu Leu Arg Arg Gin Arg Phe Ser Asn Leu Pro Leu Ile Pro Thr 165 170 175
Leu Lys Tyr Lys Asp Ile Ser Leu Asn Pro Gin Glu Cys Arg Val Leu 180 185 190
Val Arg Gly Arg Glu Val Ser Leu Ser Pro Lys Glu Phe Arg Leu Leu 195 200 205
Glu Leu Phe Met Ser Tyr Ala Arg Arg Val Trp Ser Arg Glu Gin Leu 210 215 220
Leu Asp Gin Val Trp Gly Pro Asp Phe Val Gly Asp Ser Lys Thr Val 225 230 235 240
Asp Val His Ile Arg Trp Leu Arg Glu Lys Leu Glu Leu Asp Pro Ser 245 250 255
His Pro Glu Tyr Ile Val Thr Val Arg Gly Phe Gly Tyr Arg Phe Gly 260 265 270
<210> 66 <211> 774 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 66 tcaggcaaaa cgagagaagt ctaaagtggg tggaatatcc tgaattct'tc caggacctat 60 agcccgtagt gcttctggta aactaatatc cccagtatat agggctttac ccacaattac 120 tcctgtaacc ccctgatgtt ctaaagataa taaggttaat aggtcagtaa cagaacccac 180 acccccagag gcaatcacgg gtatggaaat agcagatacc aagtctctta atgctcgcaa 240 gtttggtccc tgaagcgtac catcacggtt tatatccgta taaataatag ctgccgcacc 300 caattcctgc atttgggttg ctagttgggg ggccaaaatt tgagaagttt ctaaccaacc 360 cctggtagca actagaccat tccgcgcatc aatcccaatt ataatttgct gggggaattg 420 ttcacacagt ccttgaacca gatctggttg ctctactgct acagttccca gaattgccca 480 ctgtacccca agattaaata actgtataac gctggagcta tcacgtattc ctccgccaac 540 ttcaataggt atggaaatag cattggtaat agcttctata gtagataaat taactatttt 600 accagttttt gctccatcta aatctactaa atgtagtctt gttgctcctt ggtctgccca 660 cattttagcg gtttccacag ggttatggct gtaaacctgg gattgtgcat agtcaccttt 720 gtagagtctt acacaacgcc cctctaatag atctattgct gggataactt ccat 774
<210 67 <211> 257 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 67
Met Glu Val Ile Pro Ala Ile Asp Leu Leu Glu Gly Arg Cys Val Arg i S 10 15
Leu Tyr Lys Gly Asp Tyr Ala Glh Ser Gin Val Tyr Ser His Asn Pro 20 25 30
Val Glu Thr Ala Lys Met Trp Ala Asp Gin Gly Ala Thr Arg Leu His 35 40 45
Leu Val Asp Leu Asp Gly Ala Lys Thr Gly Lys Ile Val Asn Leu Ser 50 55 60
Thr Ile Glu Ala Ile Thr Asn Ala Ile Ser Ile Pro Ile Glu Val Gly 65 70 75 80
Gly Gly Ile Arg Asp Ser Ser Ser Val Ile Gin Leu Phe Asn Leu Gly 85 90 95
Val Gin Trp Ala ile Leu Gly Thr Val Ala Val Glu Gin Pro Asp Leu 100 105 110
Val Gin Gly Leu Cys Glu Gin Phe Pro Gin Gin Ile Ile Ile Gly Ile 115 120 125
Asp Ala Arg Asn Gly Leu Val Ala Thr Arg Gly Trp Leu Glu Thr Ser 130 135 140
Gin Ile Leu Ala Pro Gin Leu Ala Thr Gin Met Gin Glu Leu Gly Ala 145 150 155 160
Ala Ala Ile Ile Tyr Thr Asp Ile Asn Arg Asp Gly Thr Leu Gin Gly 165 170 175
Pro Asn Leu Arg Ala Leu Arg Asp Leu Val Ser Ala Ile Ser Ile Pro 180 185 190
Val Ile Ala Ser Gly Gly Val Gly Ser Val Thr Asp Leu Leu Thr Leu 195 200 205
Leu Ser Leu Glu His Gin Gly Val Thr Gly Val Ile Val Gly Lys Ala 210 215 220
Leu Tyr Thr Gly Asp Ile Ser Leu Pro Glu Ala Leu Arg Ala Ile Gly 225 230 235 240
Pro Gly Arg Ile Gin Asp Ile Pro Pro Thr Leu Asp Phe Ser Arg Phe 245 250 255
Ala
<210> 68 <211> 396 <212> DNA <213> Cylindrospermopsis raciborskii T3 <400> 68 atgagttggt ccacaatgaa ggacgtcttg attttaatag tcaaatccct ccaaatccat 60 tataatccca tgaatgctct ttcaattcct acctggatta tccatatttc tagtgtcatt 120 gaatgggtag ttgccatttc cctcatctgg aaatatggcg aactgaccca aaaccatagt 180 tggaggggat ttgccttagg tatgataccc gccttaatta gcgccctatc cgcttgtacc 240 tggcattatt tcgataatcc ccagtcccta gaatggttag tcaccctcca ggctactact 300 acgttaatag gtaattttac tctttgggca gcagcagtct gggtttggcg ttctactcga 360 ccgaatgagg ttctcagtat ctcaaataag gagtag 396
<210> 69 <211>131 <212> PRT <213> Cylindrospermopsis raciborskii T3 <400> 69
Met Ser Trp Ser Thr Met Lys Asp Val Leu Ile Leu Ile Val Lys Ser 15 10 15
Leu Gin Ile His Tyr Asn Pro Met Asn Ala Leu Ser Ile Pro Thr Trp 20 25 30
Ile Ile His Ile Ser Ser Val Ile Glu Trp Val Val Ala Ile Ser Leu 35 40 45
Ile Trp Lys Tyr Gly Glu Leu Thr Gin Asn His Ser Trp Arg Gly Phe 50 55 60
Ala Leu Gly Met Ile Pro Ala Leu Ile Ser Ala Leu Ser Ala Cys Thr 65 70 75 80
Trp His Tyr Phe Asp Asn Pro Gin Ser Leu Glu Trp Leu Val Thr Leu 85 90 95
Gin Ala Thr Thr Thr Leu Ile Gly Asn Phe Thr Leu Trp Ala Ala Ala 100 105 110
Val Trp Val Trp Arg Ser Thr Arg Pro Asn Glu Val Leu Ser Ile Ser 115 120 125
Asn Lys Glu 130 <210 70 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 70 ttaattgctt ggtctatctc 20 <210> 71 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 71 caataccgaa gaggagatag 20 <210> 72 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 72 taggcgtgtt agtgggagat 20 <210> 73 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 73 tgtgtaacca atttgtgagt 20 <210> 74 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 74 ttagccggat tacaggtgaa 20 <210> 75 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 75 ctggactcgg cttgttgctt 20 <210> 76 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 76 cagcgagtta cacccaccac 20 <210> 77 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 77 ctcgcactaa atattctacc 20 <210> 78 <211> 19
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 78 aaaacctcag cttccacaa 19 <210> 79 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 79
atgattttgg aggtccattg tt 22 <210> 80 <211> 42156 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 80 gtttttactg caaaagcata ttcatattat attctaatag ggttggtgga atattcaagg 60 ggaggttaga aaatgcgatc gctcttatga atgaggttgt ctatccgaat atcaaatatt 120 ggtggttgaa aaaagacctt atatgcggac acagattccc atgatgaaaa tatatcattg 1ΘΟ tcaagtcaat tagtcaaccc cccaatagac atctccgaaa aagaatcaaa gtgtgataaa 240 atttgcagta cagcaggata taaaatagtt tttcctctat acttctgagt gtaggcttgc 300 gtccgccccc gggcgcacgt ttgcggtttg ctaaggagtt aaacacggtg cgttaatatg 360 tatcagcaac ctgagataac agctcgttga atgcttagcg gttaagtcca gtcattgctc 420 gtagcagtcg ctcttgattc aggatgcggt ctaagttcaa cattaatgtc accctacttg 480 tctgcttgat tattatccct tattttccaa caactctaat gaaagtacct ataacagcaa 540 acgaagatgc agctacatta cttcagcgtg ttggactgtc cctaaaggaa gcacaccaac 600 aacttgaggc aatgcaaegc cgagcgcacg aaccgatcgc aattgtgggg ctggggctgc 660 ggtttccggg agctgattca ccacagacat tctggaaact acttcagaat ggtgttgata 720 tggtcaccga aatccctagc gatcgctggg cagttgatga atactatgat ccccaacctg 780 ggtgtccagg caaaatgtat attcgtgaag ccgcttttgt tgatgcagtg gataaattcg 840 atgcctcgtt ttttgatatt tcgccacgtg aagcggccaa tatagatccc cagcatagaa 900 tgttgctgga ggtagcttgg gaggcactcg aaagggctgg cattgctccc agccaattga 960 tggatagcca aacgggggta tttgtcggga tgagcgaaaa tgactattat gctcacctag 1020 aaaatacagg ggatcatcat aatgtctatg cggcaacggg caatagcaat tactatgctc 1080 cggggcgttt atcctatcta ttggggcttc aaggacctaa catggtcgtt gatagtgcct 1140 gttcctcctc cttagtggct gtacatcttg cctgtaatag tttgcggatg ggagaatgtg 1200 atctggcact ggctggtggc gttcagctta tgttaatccc agaccctatg attgggactg 1260 cccagttaaa tgcctttgcg accgatggtc gtagtaaaac atttgacgct gccgcegat g 1320 gctatggacg cggcgaaggt tgtggcatga ttgtacttaa aagaataagt gaegegateg 1380 tggcagacga tccaatttta gccgtaatcc ggggtagtgc agtcaatcat ggcgggcgta 1440 gcagtggttt aactgcccct aataagctgt ctcaagaagc cttactgcgt caggcactac 1500 aaaacgccaa ggttcagccg gaagcagtca gttatatcga agcccatggc acagggacac 1560 aactgggcga cccgattgag gtgggagcat taacgaccgt ctttggatct tctcgttcag 1620 aacccttgtg gattggctct gtcaaaacta atatcggaca cctagaacca gccgctggta 1680 ttgcggggtt aataaaagtc attttatcat tacaagaaaa acagattcct cccagtctcc 1740 attCCcaaaa ccctaatccc ttcattgatt gggaatcttc gccagttcaa gtgccgacac 1800 agtgtgtacc ctggactggg aaagagcgcg tcgctggagt tagctcgttt ggtatgagcg 1860 gtacaaactg tcatctagtt gtcgcagaag cacctgtccg ccaaaacgaa aaatctgaaa 1920 atgcaccgga gcgtccttgt cacattctga ccctttcagc caaaaccgaa gcggcactca 1980 acgcattggt agcccgttac atggcatttc tcagggaagc gcccgccata tccctagctg 2040 atctttgtta tagtgccaat gtcgggcgta atctttttgc ccatcgctta agttttatct 2100 ccgagaacat cgcgcagtta tcagaacaat tagaacactg cccacagcag gctacaatgc 2160 caacgcaaca taatgtgata ctagataatc aactcagccc tcaaatcgct tttctgttta 2220 ctggacaagg ttcgcagtac atcaacatgg ggcgtgagct ttacgaaact cagcccacct 2280 tccgtcggat tatggacgaa tgtgacgaca ttctgcatcc attgttgggt gaatcaattc 2340 tgaacatact ctacacttcc cctagcaaac ttaatcaaac cgtttatacc caacctgccc 2400 tttttgcttt tgaatatgcc ctagcaaaac tatggatatc atggggtatt gagcctgatg 2460 tcgtactggg tcacagcgtg ggtgaatatg tagccgcttg tctggcgggt gtctttagtt 2520 tagaagatgg gttaaaactc attgcatctc gtggatgttt gatgcaagcc ttaccgccgg 2580 ggaaaatgct tagtatcaga agcaatgaga tcggagtgaa agcgctcatc gcgccttata 2640 gtgcagaagt atcaattgca gcaatcaatg gacagcaaag cgtggtgatc tccggcaaag 2700 ctgaaattat agataattta gcagcagagt ttgcatcgga aggcatcaaa acacacctaa 2760 ttacagtctc ccacgctttc cactcgccaa tgatgacccc catgctgaaa gcattccgag 2820 acgttgccag caccatcagc tataggtcac ccagtttatc actgatttct aacggtacag 2880 ggcaattggc aacaaaggag gttgctacac ctgattattg ggtgcgtcat gtccattcta 2940 ccgtccgttt tgccgatggt attgccacat tggcagaaca gaatactgac atcctcctag 3000 aagtaggacc caaaccaata ttgttgggta tggcaaagca gatttatagt gaaaacggtt 3060 cagctagtca tccgctcatg ctacccagtt tgcgtgaaga tggcaacgat cggcagcaga 3120 tgctttctac ttgtggacaa cttgtagtta atggagtcaa gattgactgg gcgggttttg 3180 acaaggatta ttcacgacac aaaatattgt tgcccaccta tccgtttcag agagaacgat 3240 attggattga aagctccgtc aaaaagcccc aaaaacagga gctgcgccca atgttggata 3300 agatgatccg gctaccatca gagaacaaag tggtgtttga aaccgagttt ggcgtgcgac 3360 agatgcctca tatctccgat catcagatat acggtgaagt cattgtaccg ggggcagtat 3420 tagcttcctt aatcttcaat gcagcgcagg ttttataccc agactatcag catgaattaa 3480 ctgatattgc tttttatcag ccaattatct ttcatgacga cgatacggtg atcgtgcagg 3540 cgattttcag ccctgataag tcacaggaga atcaaagcca tcaaacattt ccacccatga 3600 gcttccagat tattagcttc atgccggatg gtcccttaga gaacaaaccg aaagtccatg 3660 tcacagggtg tctgagaatg ttgcgcgatg cccaaccgcc aacactctcc ccgaccgaaa 3720 tacgtcagcg ctgtccacat accgtaaatg gtcatgactg gtacaatagc ttagtcaaac 3780 aaaaatttga aatgggtcct tcctttaggt gggtacagca actttggcat ggggaaaatg 3840 aagcattgac ccgtcttcac ataccagatg tggtcggctc tgtatcagga catcaacttc 3900 acggcatatt gctcgatggt tcactttcaa ccaccgctgt catggagtac gagtacggag 3960 actccgcgac cagagttcct ttgCcatttg cttctctgca actgtacaaa cccgtcacgg 4020 gaacagagtg gtggtgctac gcgaggaaga ttggggaatt caaatatgac ttccagatta 4080 tgaatgaaat cggggaaacc ttggtgaaag caattggctt tgtacttcgt gaagcctctc 4140 ccgaaaaatt cctcagaaca acatacgtac acaactggct Cgtagacatt gaatggcaag 4200 otcaatcaac ttccctagtc ccttctgatg gcactatctc tggcagttgt ttggttttat 4260 cagatcagca tggaacaggg gctgcattgg cacaaaggct agacaatgct ggagtgccag 4320 tgaccatgat ctatgctgat ctgatactgg acaattacga attaatattc cgtactttgc 4380 cagatttaca acaagtcgtc catttatggg ggttggatca aaaagaggat tgtcacccca 4440 tgaagcaagc agaggataac tgtacatcgg tgctatatct tgtgcaagca ttactcaata 4500 cctactcaac cccgccatcc ctgcttattg tcacctgtga tgcacaagcg gtggttgaac 4560 aagatcgagt aaatggcttc gcccaatcgt ctttgttggg acttgccaaa gttatcatgc 4620 Cagaacaccc agaattgtcc tgtgtttaca tggatgtgga agccggatat ttacagcaag 4680 atgtggcgaa cacgatattt acacagctaa aaagaggcca tctatcaaag gacggagaag 4740 agagtcagtt ggcttggcgc aatggacaag catacgtagc acgtcttagt caatataaac 4800 ccaaatccga acaactggtt gagatccgca gcgatcgcag ctatttgatc actggtggac 4860 ggggcggtgt cggcttacaa atcgcacggt ggttagtgga aaagggggct aaacatctcg 4920 ttttgttggg gcgcagtcag accagttccg aagtcagtct ggtgttggat gagctagaat 4980 cagccggggc gcaaatcatt gtggctcaag ctgatattag cgatgagaag gtattagcgc 5040 agattctgac caatctaacc gtacctctgt gtggtgtaat ccacgccgca ggagtgcttg 5100 atgatgcgag tctactccaa caaactccag ccaagctcaa aaaagttcta ttgccaaaag 5160 cagagggggc ttggattctg cataatttga ccctggagca gcgactagac ttctttgttc 5220 tcttttcttc tgccagttct ctattaggtg cgccagggca ggccaactat tcagcagcca 5280 atgctttcct agatggttta gctgcctatc ggcgagggcg aggactcccc tgtttgtcta 5340 tccgctgggg ggcatgggat caagtcggta tggc.tgcacg acaagggcta ctggacaagt 5400 taccgcaaag aggtgaagag gccatcccgt tacagaaagg cttagacctc ttcggcgaat 5460 tactgaacga gccagccgct caaattggtg tgatcccaat tcaatggact cgcttcttgg 5520 atcatcaaaa aggtaatttg cctttttatg agaagttttc taagtceagc cggaaagcgc 5580 agagttacga ttcgatggca gtcagtcaca cagaagatat tcagaggaaa ctgaagcaag 5640 ctgctgtgca agatcgacca aaattattag aagtgcatct tcgctctcaa gtcgctcaac 5700 tgttaggaat aaacgtggca gagctaccaa atgaagaagg aattggtttt gttacattag 5760 gtcttgactc gctcacctct attgaactgc gtaacagttt acaacgcaca ttagattgtt 5820 cattacctgt cacctttgct tttgactacc caactataga aatagcggtt aagtacctaa 5880 cacaagttgt aattgcaccg atggaaagca cagcatcgca gcaaacagac tctttatcag 5940 caatgttcac agatacttcg tccatcggga gaattcttga caacgaaaca gatgtgttag 6000 acagcgaaat gcaaagtgat gaagatgaat ctttgtctac acttatacaa aaattatcaa 6060 cacatttgga ttaggagtga tcaataaCta tacattgcgg acgtgageat acaagtaaag 6120 gaaaaatgaa tgaacgcttt gtcagaaaat caggtaactt ctatagtcaa gaaggcattg 6180 aacaaaatag aggagttaca agccgaactt gaccgtttaa aatacgcgca acgggaacca 6240 atcgccatca ttggaatggg ctgtcgcttt cctggtgcag acacacctga agctttttgg 6300 aaattattgc acaatggggt tgatgctatc caagagattc caaaaagccg ttgggatatt 6360 gacgactatt atgatcccac accagcaaca cccggcaaaa tgtatacacg ttttggtggt 6420 tttctcgacc aaatagcagc cttcgaccct gagttctttc gcatttctac tcgtgaggca 6480 atcagcttag accctcaaca gagattgctt ctggaagtga gttgggaagc cttagaacgg 6540 gctgggctga caggcaataa actgactaca caaacaggtg tctttgttgg catcagtgaa 6600 agtgattatc gtgatttgat tatgcgtaat ggttctgacc tagatgtata ttctggttca 6660 ggtaactgcc atagtacagc cagcgggcgt ttatcttatt atttgggact tactggaccc 6720 aatttgtccc ttgataccgc ctgttcgtcc tctttggttt gtgtggcatt ggctgtcaag 6780 agcctacgtc aacaggagtg tgatttggca ttggcgggtg gtgtacagat acaagtgata 6840 ccagatggct ttatcaaagc ctgtcaatcc cgtatgttgt cgcctgatgg acggtgcaaa 6900 acatttgatt tccaggcaga tggttatgcc cgtgctgagg ggtgtgggat ggtagttctc 6960 aaacgcctat ccgatgcaat tgctgacaat gataatatcc tggccttgat tcgtggtgcc 7020 gcagtcaatc atgatggcta cacgagtgga ttaaccgttc ccagtggtcc ctcacaacgg 7080 gcggtgatcc aacaggcatt agcggatgct ggaatacacc cggatcaaat tagctatatt 7140 gaggcacatg gcacaggtac atccttaggc gatcctattg aaatgggtgc gattgggcaa 7200 gtctttggtc aacgctcaca gatgcttttc gtcggttcgg tcaagacgaa tattggtcat 7260 actgaggctg ctgctggtat tgctggtctc atcaaggttg tactctcaat gcagcacggt 7320 gaaatcccag caaacttaca cttcgaccag ccaagtcctt atattaactg ggatcaatta 7380 ccagtcagta tcccaacaga aacaatacct tggtctacta gcgatcgctt tgcaggagtc 7440 agtagctttg gctttagtgg cacaaactct catatcgtac tagaggcagc cccaaacata 7500 gagcaaccta ctgatgatat taatcaaacg ccgcatattt tgaccttagc tgcaaaaaca 7560 cccgcagccc tgcaagaact ggctcggcgt tatgcgactc agatagagac ctctcccgat 7620 gttcctctgg cggacatttg tttcacagca cacatagggc gtaaacattt taaacatagg 7680 tttgcggtag tcacggaatc taaagagcaa ctgcgtttgc aattggatgc atttgcacaa 7740 tcagggggtg tggggcgaga agtcaaatcg ctaccaaaga tagcctttct ttttacaggt 7800 caaggctcac agtatgtggg aatgggtcgt caactttacg aaaaccaacc taccttccga 7860 aaagcactcg cccattgtga tgacatcttg cgtgctggtg catatttcga ccgatcacta 7920 ctttcgattc tctacccaga gggaaaatca gaagccattc accaaaccgc ttatactcag 7980 cccgcgcttt ttgctcttga gtatgcgatc gctcagttgt ggcactcctg gggtatcaaa 8040 ccagatatcg tgatggggca tagtgtaggt gaatacgtcg ccgcttgtgt ggcgggcata 8100 ttttctttag aggatgggct gaaactaatt gctactcgtg gtcgtctgat gcaatcccta 8160 cctcaagacg gaacgatggt ttcttctttg gcaagtgaag ctcgtatcca ggaagctatt 8220 acaccttacc gagatgatgt gtcaatcgca gcgataaatg ggacagaaag cgtggttatc 8280 tctggcaaac gcacctctgt gatggcaatt gctgaacaac tcgccaccgt tggcatcaag 8340 acacgccaac tgacggtttc ccatgccttc cattcaccac ttatgacacc catcttggat 8400 gagttccgcc aggtggcagc cagtatcacc tatcaccagc ccaagttgct acttgtctcc 8460 aacgtctccg ggaaagtggc cggccctgaa atcaccagac cagattactg ggtacgccat 8520 gtccgtgagg cagtgcgctt tgccgatgga gtgaggacgc tgaatgaaca aggtgtcaat 8580 atctttctgg aaatcggttc taccgctacc ctgttgggca tggcactgcg agtaaatgag 8640 gaagattcaa atgcctcaaa aggaacttcg tcttgctacc tgcccagttt acgggaaagc 8700 cagaaggatt gtcagcagat gttcactagt ctgggtgagt tgtacgtaca tggatatgat 8760 attgattggg gtgcatttaa tcggggatat caaggacgca aggtgatatt gccaacctat 8820 ccgtttcagc gacaacgtta ttggcttccc gaccctaagt tggcacaaag ttccgattta 8880 gatacctttc aagctcagag cagcgcatca tcacaaaatc ctagcgctgt gtccacttta 8940 ctgatggaat atttgcaagc aggtgatgtc caatctttag ttgggctttt ggatgatgaa 9000 cggaaactct ctgctgctga acgaattgca ctacccagta ttttggagtt tttggtagag 9060 gaacaacagc gacaaataag ctcaaccaca actcctcaaa cagttttaca aaaaataagt 9120 caaacttccc atgaggacag atatgaaata ttgaagaacc tgatcaaatc tgaaatcgaa 9180 acgattatca aaagtgttcc ctccgatgaa caaatgtttC ctgacttagg aattgattcc 9240 ttgatggcga tcgaaetgcg taataagctc cgttctgcta tagggttgga actgccagtg 9300 gcaatagtat ttgaccatcc cacgattaag cagttaacta acttcgtact ggacagaatt 9360 gtgccgcagg cagaccaaaa ggacgttccc accgaatcct tgtttgcttc taaacaggag 9420 atatcagttg aggagcagtc ttttgcaatt accaagctgg gcttatcccc tgcttcccac 9480 tccctgcatc ttcctccatg gacggttaga cctgcggtaa tggcagatgt aacaaaacta 9540 agccaacCtg aaagagaggc ctatggctgg atcggagaag gagcgatcgc cccgccccat 9600 ctcattgccg atcgcatcaa tttactcaac agtggtgata tgccttggtt ctgggtaatg 9660 gagcgatcag gagagttggg cgcgtggcag gtgctacaac cgacatctgt tgatccatat 9720 acttatggaa gCtgggatga agtaactgac caaggtaaac tgcaagcaac cttcgaccca 9780 agtggacgca atgtgtatat tgtcgcgggt gggtctagca acctccccac ggtagccagc 9840 cacctCatga cgcttcagac tttattgatg ctgcgggaaa ctggtcgtga cacaatcttt 9900 gtctgtctgg caatgccagg ttatgccaaa taccacagtc aaacaggaaa atcgccggaa 9960 gagtatattg cgctgactga cgaggatggt atcccaatgg acgagtttat tgcactttct 10020 gtctacgact ggcctgttac cccatcgttt cgtgttctgc gagacggtta tccacctgat 10080 cgagattctg gtggtcacgc agttagtacg gttttceage tcaatgattt cgatggagcg 10140 atcgaagaaa catatcgtcg tattatccgc catgccgatg tccttggtct cgaaagaggc 10200 taaatttcag gcgttggtga atagaaccca cattccgcag ataaggtctt atgaataaaa 10260 aacaggtaga cacattgtta atacacgctc atctttttac catgcagggc aatggcctgg 10320 gatatattgc cgatggggca attgcggttc agggtagcca gatcgtagca gtggattcga 10380 cagaggcttt gctgagtcat tttgaaggaa ataaaacaat taatgcggta aattgtgcag 10440 tgttgcctgg actaaetgat gctcatatac atacgacttg tgctattctg cgtggagtgg 10500 cacaggatgt aaccaattgg ctaatggacg cgacaattcc ttatgcactt cagatgacac 10560 ccgcagtaaa tatagccgga acgcgcttga gtgtactcga agggctgaaa gcaggaacaa 10620 ccacattcgg cgattctgag actccttacc cgctctgggg agagtttttc gatgaaattg 10680 gggtacgtgc tattctatcc cctgccttta acgcctttcc actagaatgg tcggcatgga 10740 aggagggaga cctctatccc ttcgatatga aggcaggacg acgtggtatg gaagaggctg 10800 tggattttgc ttgtgcatgg aatggagccg cagagggacg tatcaccact atgttgggac 10860 tacaggcggc ggatatgcta ccactggaga tcctacacgc agctaaagag attgcccaac 10920 gggaaggctt aatgctgcat attcatgtgg cccagggaga tcgagaaaca aaacaaattg 10980 tcaaacgata tggtaagcgt ccgatcgcat ttctagctga aattggctac ttggacgaac 11040 agtttgctggc agttcacctc accgatgcca cagatgaaga agtgatacaa gtagccaaaa 11100 gtggtgctgg catggcactc tgttcgggcg ctattggcat cattgacggt cttgttccgc 11160 ccgctcatgt ttttcgacaa gcaggcggtt ccgttgcact cggttctgat caagcctgtg 11220 gcaacaactg ttgtaacatc ttcaatgaaa tgaagctgac cgccttattc aacaaaataa 11280 aatatcatga tccaaccatt atgccggctt gggaagtcct gcgtatggct accatcgaag 11340 gagcgcaggc gattggttta gatcacaaga ttggctctct tcaagtgggc aaagaagccg 11400 acctgatctt aatagacctc agttccccta acctctcgcc caccctgctc aaccctattc 11460 gtaaccttgt acctaacttg gtgtatgctg cttcaggaca tgaagttaaa agcgtcatgg 11520 tggcgggaaa acttttagtg gaagactacc aagtcctcac ggtagatgag tccgctattc 11580 tcgctgaagc gcaagtacaa gctcaacaac tctgccaacg tgtgaccgct gaccccattc 11640 acaaaaagat ggtgttaatg gaagcgatgg ctaagggtaa attatagata caggcttatc 11700 tgcaacaaca tttctgaatc aaacctggag gggcaaacca atgaccatat atgaaaataa 11760 gttgagtagt tatcaaaaaa atcaagatgc cataatatct gcaaaagaac tcgaagaatg 11820 gcatttaatt ggacttctag accattcaat agatgcggta atagtaccga attattttct 11880 tgagcaagag tgtatgacaa tttcagagag aataaaaaag agtaaatatt ttagcgctta 11940 tcccggtcat ccatcagtaa gtagcttggg acaagagttg tatgaatgcg aaagtgagct 12000 tgaattagca aagtatcaag aagacgcacc cacactgatt aaagaaatgc ggaggctggt 12060 acatccgtac ataagtccaa ttgatagact tagggttgaa gttgatgata tttggagtta 12120 tggctgtaat ttagcaaaac ttggtgataa aaaactgttt gcgggtatcg ttagagagtt 12180 taaagaagat aaccctggcg caccacattg tgacgtaatg gcatggggtt ttctcgaata 12240 ttataaagat aaaccaaata tcataaatca aatcgcagca aatgtatatt taaaaacgtc 12300 tgcatcagga ggagaaatag tgctttggga tgaatggcca actcaaagcg aatatatagc 12360 atacaaaaca gatgatccag ctagtttcgg tcttgatagc aaaaagatcg cacaaccaaa 12420 acttgagatc caaccgaacc agggagattt aattctattc aattccatga gaattcatgc 12480 ggtgaaaaag atagaaactg gtgtacgtat gacatgggga tgtttgattg gatactctgg 12540 aactgataaa ccgcttgtta tttggactta atgtagcgtt tccatttgag tcaaggcacg 12600 agaagcttct aaagctggaa tagatacact atcattctca actacactct caaatgtcct 12660 aggtaactgt gccccaaaca tcagcattcc aatggcgttg aacaaaaaga aagccaacca 12720 caagatatgg ttactctcaa atttaacagc agctacatcc gcaggtaaåa atcctacacc 12780 aaacgcgatt aagttaacat tgcggagagt atgcccttga gccaaaccca agaagtaccc 12840 acatagtatg caacatactg aattgcatac taggacaagt accaaccagg gaataaaaat 12900 atcaaCattc tcaataatttr. ctgcgtggtt ggttaacaac ccaaaaacat cafccgggaaa 12960 tagccaacac gctccgccga aaaccagact cactagcaga gceattccca cagaaacttt 13020 tgccagaggt gctaactgtt ctgtggctcc tttcccttta aaatttcctg ccagagtttc 13080 tgtacagaat cccaatcctt caacaatgta gatgctcaaa gcccatatct gtaagagcaa 13140 ggcattttga gcgtagataa ttgtccccat ttgtgcccct tcgtagttaa acgttaagtt 13200 ggtaaacata caaactaaat tgctgacaaa gatgtttcca ttgagagtta aggtggagcg 13260 tatagctttt atgtcccaaa tttttccagc taattctttt acctcttgcc acgggatttc 13320 tttgcagaca aaaaacaatc ccaccaatag ggtgagatat tgacttgcag cagaagctac 13380 tcctgccccc atgctcgacc agtctaagtg gataataaac aagtagtcga gtgcgatatt 13440 ggcagcattg cccacaaccg acaacaacac aactaagcca tttttttccc gtcccagaaa 13500 ceagccaagc aggacaaagt tgagcaaaat ggcaggcgct ccccaaotct gggtgtfcaaa 13560 atacgcttga gctgaagact tcacctctgg gccgacatct agtatagaaa accccaacac 13620 ccctaacggg tactgtaaca gtatgatcgc cacccccagc accagagcaa ttaaaccatt 13680 aagcagtccc gccaacagta cgccctctcg gtcatctcgt ccgactgctt gtgctgttaa 13740 cgcagtggta cccattcgta aaaacgataa aacaaagtag agaaagttaa gcaggtttcc 13800 agcaagggct actccagcta ggtagtggat ttccgagaga tgacctaaga acatgatact 13860 gactaaatta ctcagtggta ctataatatt cgataggacg ttggtaaaag ctagtcggaa 13920 gtagcggggt ataaagtcat actggcttgg aaatgtcagg ctcataagat taatttgaca 13980 gtagagttgt tggaaaataa gggataataa tcaagcagac aagtagggtg acattaatgt 14040 tgaacttaga ccgcatcctg aatcaagagc gactgctacg agaaatgact ggacttaacc 14100 gccaagcatt caacgagctg ttatctcagt ttgctgatac ctatgaacgc accgtgttea 14160 actccttagc aaaccgcaaa cgtgcgcccg ggggcggacg caagcctaca ctcagaagta 14220 tagaggaaaa actattttat atcctgctgt actgcaaatg ttatccgacg tttgacttgc 14280 tgagtgtgtt gttcaacttt gaccgctcct gtgctcatga ttgggtacat cgactactgt 14340 ctgtgctaga aaccacttta ggagaaaagc aagttttgcc agcacgcaaa ctcaggagca 14400 tggaggaatt caccaaaagg tttccagatg tgaaggaggt gattgtggat ggtacggagc 14460 gtccagtcca gcgtcctcaa aaccgagaac gccaaaaaga gtattactct ggcaagaaaa 14520 agcggcatac atgcaagcag attacagtca gcacaaggga gaaacgagtg attattcgga 14580 cggaaaccag agcaggtaaa gtgcatgaca aacggctact ccatgaatca gagatagtgc 14640 aatacattcc tgatgaagta gcaatagagg gagatttggg ttttcatggg ttggagaaag 14700 aatttgtcaa tgtccattta ccacacaaga aaccgaaagg tatcgaagca aggaggcatg 14760 gcggcgggat gggtcagttt ttataagaga gttttgacaa tataaataaa agacttttga 14820 caaccagact tggcattact tagtttcagt ctttcatctc aagtttacgt tattctgagg 14880 cgaacatgaa tcttataaca acaaaaaaac aggtagatac attagtgata cacgctcatc 14940 tttttaccat gcagggaaat ggtgtgggat atattgcaga tggggcactt gcggttgagg 15000 gtagccgtat tgtagcagtC gattcgacgg aggcgttgct gagtcatttt gagggcagaa 15060 aggttattga gtccgcgaat tgtgccgtct tgrcctgggct gattaatgct cacgtagaca 15120 caagtttggt gctgatgcgt ggggcggcgc aagatgtaac taattggcta atggacgcga 15180 ccatgcctta ttttgctcac atgacacccg tggcgagtat ggctgcaaca cgcttaaggg 15240 tggtagaaga gttgaaagca ggcacaacaa cattctgtga caataaaatt åttagccccc 15300 tgtggggcga atttttcgat gaaattggtg tacgggctag tttagctcct atgttcgatg 15360 cactcccact ggagatgcca ccgcttcaag acggggagct ttatcccttc gatatcaagg 15420 cgggacggcg ggcgatggca gaggctgtgg attttgcctg tgggtggaat ggggcagcag 15480 aggggcgtat cactaccatg ttaggaatgt attcgccaga tatgatgccg cttgagatgc 15540 tacgcgcagc caaagagatt gctcaacggg aaggcttaat gctgcatttt catgtagcgc 15600 agggagatcg ggaaacagag caaatcgtta aacgatatgg taagcgtccg atcgcatttc 15660 tagctgagat tggctacttg gacgaacagt tgctggcagt tcacctcacc gatgccaccg 15720 atgaagaggt gatacaagta gccaaaagtg gcgctggcat ggtactctgt tcgggaatga 15780 ttggeactat tgacggtatc gtgccgcccg ctcatgtgtt tcggcaagca ggcggacccg 15840 ttgcgctagg cagcagctac aataatattt tccatgagat gaagctgacc gccttattca 15900 acaaaataaa ataCcacgat ccaaccatta tgccggcttg ggaagtcctg cgtatggcta 15960 ccatcgaagg agcgcgggcg attggtttag atcacaagat tggctctctt gaagttggca 16020 aagaagccga cctgatctta atagacctca gcacccctaa cctctcaccc actctgctta 16080 accccattcg taaccttgta cctaatttcg tgtacgctgc ttcaggacat gaagttaaaa 16140 gtgtcatggt ggcgggaaaa ctgttattgg aagactacca agtcctcaca gtagatgagt 16200 ctgctatcat tgctgaagca caattgcaag cccaacagat ttctcaaCgc gtagcatctg 16260 accctatcca caaaaaaatg gtgctgatgg cggcgatggc aaggggccaa ttgtaggaat 16320 ggtcttgagt tatctagtaa gctaagttgc caactaacaa ttaaaaatac gaagcaggtg 16380 ataaggcaga attacagcag gttgtctttc ggatcgctcg ttggatcttt gtaccctccc 16440 tagtcatggc gatcgccctc atcgtcttcg cccaacccgt gatgagcctg ttcggtgcag 16500 agtttgctgt ggctcattgg tagccgatac catccctcca actgacttgt catgatagtc 16560 atggtgcgac tttcccttcg gtactgataa actgggattg aatccctttc agagtcatca 16620 tgatagattt gggaagtcta aatgtggtcg agaagaaagt gcttttccca tgttgagaat 16680 agtcacatta acatcagcat caaaacgcct aattctagat tttacctatg gtttcagcca 16740 aggtaaagga actgagtcta aattacacgc cgtcatgaga taatatgatt attaattttc 16800 tgtatagccc agttaattat acttgattgt aggctatttt tagcctcttc taatgaagaa 16860 tccagactaa tccttatgta cgggaatatg ttatgcaaga aaaacgaatc gcaatgtggt 16920 ctgtgccacg aagtttgggt acagtgctgc tacaagcctg gtcgagtcgg ccagataccg 16980 tagtctttga tgaacttctc tcctttccct atctctttat caaagggaaa gatatgggct 17040 ttacttggac agaccttgat tctagccaaa tgccccacgc agattggcga tccgtcatcg 17100 atctgttaaa ggctcccctg cctgaaggga aatcaatcat cgatctgtta aaggctcccc 17160 tgcctgaagg gaaatcaatt tgctatcaga agcatcaagc gtatcattta atcgaagaga 17220 ccatggggat tgagtggata ttgcccttca gcaactgctt tctgattcgc caacccaaag 17280 aaatgctctt atcttttcgt aagattgtgc cacattttac ctttgaagaa acaggctgga 17340 tcgaattaaa acggctgttt gactatgtac atcaaacgag cggagtaatc ccgcctgtca 17400 tagatgcaca cgacttgctg aacgatccgc ggagaatgct ctccaagctt tgtcaggttg 17460 taggggttga gtttaccgag acaatgctca gttggccccc catggaggtc gagttgaacg 17520 aaaaactagc cccttggtac agcaccgtag caagttctac gcattttcac tcgtatcaga 17580 ataaaaatga gtcgttgccg ctatatcttg tcgatatttg taaacgctgc gatgaaatat 17640 atcaggaatt atatcaattt cgactttatt agagagtatt ggtaatgaaa attttgaatt 17700 agtgaagaaa tagaagttga gaatatagac catctaggga tagagactta tgctggacgg 17760 attcaacaac atcaggacaa ttacccacgt cagagtgatt ttagctttgc tgtttacgga 17820 caattatgga tttatggcat ggaactatag gctgatttag ctctaagctt aattagtctt 17880 aaaqctcata aacgcctctt tttcaagcgt ggctttcagg ctctatccct tatgaaacaa 17940 gctgtttgac cactttgtca cccggtaagg agaaaaacct taaacccaag cagaaaaaat 18000 tagcccgtaa aaaaaaggga agtaaatcaa ggaaatatag ggtaatatat ttttcacaag 18060 tttatcaatt gtaatctact tgattcagta aattaattaa ggtgttgaag agatgcaaac 18120 aagaattgta aatagctgga atgagtggga tgaactaaag gagatggttg tcgggattgc 18180 agatggtgct tattttgaac caactgagcc aggtaaccgc cctgctttac gcgataagaa 18240 cattgccaaa atgttctctt ttcccagggg tccgaaaaag caagaggtaa cagagaaagc 18300 taatgaggag ttgaatgggc tggtagcgct tctagaatca cagggcgtaa ctgtacgccg 18360 cccagagaaa caCaactttg gcctgtctgt gaagacacca ttctttgagg tagagaatca 18420 atattgtgcg gtctgcccac gtgatgttat gatcaccttt gggaacgaaa ttctcgaagc 18480 aactatgtca cggcggtcac gcttctttga gtatttaccc tatcgcaaac tagtctaCga 18540 atattggcat aaagatccag atatgatctg gaatgctgcg cctaaaccga ctatgcaaaa 18600 tgccatgtac cgcgaagatt tctgggagtg tccgatggaa gatcgatttg agagtatgca 18660 tgattttgag ttctgcgtca cccaggatga ggtgatttfct gacgcagcag actgtagccg 18720 ctttggccgt gatatttttg tgcaggagtc aatgacgact aatcgtgcag ggattcgctg 18780 gctcaaacgg catttagagc cgcgtcgctt ccgcgtgcat gatattcact tcccactaga 18840 tattttccca tcccacattg attgtacttt tgtcccctta gcacctgggg ttgtgttagt 18900 gaatccagat cgccccatca aagagggtga agagaaactc ttcatggata acggttggca 18960 attcatcgaa gcacccctcc ccacttccac cgacgatgag atgcctatgt tctgccagtc 19020 cagtaagtgg ttggcgatga atgtgttaag catttccccc aagaaggtca tctgtgaaga 19080 gcaagagcat ccgcttcatg agttgctaga taaacacggc tttgaggtct atccaattcc 19140 ctttcgcaat gtctttgagt ttggcggttc gctccattgt gccacctggg atatccatcg 19200 cacgggaacc tgtgaggatt acttcccCaa actaaactat acgccggtaa ctgcatcaac 19260 caatggcgtt tctcgcttca tcatttagta ggttttatag ttatgcaaaa gagagaaagc 19320 ccacagatac tatttgatgg gaatggaaca caatctgagt ttccagatag ttgcattcac 19380 cacttgttcg aggatcaagc cgcaaagcga ccggatgcga tcgctctcat tgacggtgag 19440 caatccctta cctacgggga actaaatgta cgcgctaacc acctagccca gcatctcttg 19500 tccctaggct gtcaacccga tgacctcctc gccatctgca tcgagcgttc ggcagaactc 19560 tttattggtt tgttgggtat cctaaaagcc ggatgtgctt atgtgccttt ggatgtaggc 19620 tatcctggcg atcgcataga gtatatgttg cgggactcgg atgcgcgtat tttactaacc 19680 tcaacggacg tcgctaagaa acttgcctta accatacctg cattgcaaga gtgccaaacc 19740 gtctatttag atcaagagat atttgagtat gattttcatt ttttagcgat agctaaacta 19800 ttacataacc aatacttgag attattacat ttttattttt ataccttgat tcagcaatgc 19860 caggcaactt cggtttccca agggattcag acacaggttc tccccaataa tctcgcttac 19920 tgcatttaca cctctggctc taccggaaat cccaaaggga tcttgatgga acatcgctca 19980 ctggtgaata tgctttggtg gcatcagcaa acgcggcctt cggttcaggg tgttaggacg 20040 ctgcaatttt gtgcagtcag ctttgacttt tcctgccatg aaattttttc taccctctgt 20100 cttggcggga tattggtctt ggtgccagag gcagtgcgcc aaaatccctt tgcattggct 20160 gagttcatca gtcaacagaa aattgaaaaa ttgtttcttc ccgttatagc attactacag 20220 ttggccgaag ctgtaaatgg gaataaaagc acctccctcg cgctttgcga agttatcact 20280 accggggagc agatgcagat cacacctgct gtcgccaacc tctttcagaa aaccggggcg 20340 atgttgcata atcactacgg ggcaacagaa tttcaagatg ccaccactca taccctcaag 20400 ggcaatccag agggctggcc aacactggtg ccagtgggtc gtccactgca caatgttcaa 20460 gtgtatattc Cggatgaggc acagcaacct gtacctcttg gtggagaggg tgaattctgt 20520 attggtggta ttggactggc tcgtggctat cacaatttgc ctgacctaac gaatgaaaaa 20580 tttattccca atccatttgg ggctaafcgag aacgctaaaa aactctaccg cacaggggac 20640 ttggcacgct acctacccga cggcacgatt gagcatttag gacggataga ccaccaggtt 20700 aagatccgag gtttccgcgt ggaattgggg gaaattgagt ccgtgcfcggc aagtcaccaa 20760 gctgtgcgtg aacgtgccgt tgtggcacgg gagattgcag gtcatacaca gttggtaggg 20820 tatatcatag caaaggatac acttaatctc agtttcgaca aacttgaacc tatcctgcgt 20880 caatattcgg aagcggtgct gccagaatac atgataccca ctcggttcat caatatcagt 20940 aatatgccgt tgactcccag tggtaaactt gaccgcaggg cattacctga tcccaaaggc 21000 gatcgccctg cattgtctac cccacttgtc aagcctcgta cccagacaga gaaacgttta 21060 gcagagattt ggggcagtta tcttgctgta gatattgtgg gaacccacga caatttcttt 21120 gatctaggcg gtacgtcact gctattgact caagcgcaca aattcctgtg cgagaccttt 21180 aatattaatt tgtccgctgt ctcactcttt caatatccca caattcagac attggcacaa 21240 tatattgatt gccaaggaga cacaacctca agcgaCacag catccaggca caagaaagta 21300 cgtaaaaagc agtccggtga cagcaacgat attgccatca tcagtgtggc aggtcgcttt 21360 ccgggtgctg aaacgattga gcagttcCgg cataatctct gtaatggtgt tgaatccatc 21420 acccttttta gtgatgatga gctagagcag actttgcctg agttatttaa taatcccgct 21480 tatgtcaaag caggtgcggt gctagaaggc gttgaattat ttgatgctac cttttttggc 21540 tacagcccca aagaagctgc ggtgacagac cctcagcaac ggattttgct agagtgtgcc 21600 tgggaagcat ttgaacgggc tggctacaac cccgaaacct atccagaacc agttggtgtt 21660 tatgctggtt caagcctgag tacctatctg cttaacaata ttggctctgc tttaggcata 21720 attaccgagc aaccctttat tgaaacggat atggagcagt ttcaggctaa aattggcaat 21780 gaccggagct atcttgctac acgcatctct tacaagctga atctcaaggg tccaagcgtc 21840 aatgtgcaga ccgcctgctc aacctcgtta gttgcggttc acatggcctg tcagagtctc 21900 attagtggag agtgtcaaat ggctttagcc ggtggtattt ctgtggttgt accacagaag 21960 gggggctatc tctacgaaga aggcatggtt cgttcccagg atggtcattg tcgcgccttt 22020 gatgccgaag cccaagggac tatatttggc aatggcggcg gcttggtttt gcttaaacgg 22080 ttgcaggatg cactggacga taacgacaac attatggcag tcatcaaagc cacagccaCc 22140 aacaacgacg gtgcgctcaa gatgggctac acagcaccga gcgtggatgg gcaagctgat 22200 gtaattagcg aggcgattgc tatcgctgac atagatgcaa gcaccattgg ctatgtagaa 22260 gctcatggca cagccaccea attgggtgat ccgattgaag tagcagggtt agcaagggca 22320 tttcagcgta gtacggacag cgtccttggt aaacaacaat gcgctattgg atcagttaaa 22380 actaatattg gccacttaga tgaggcggca ggcattgccg gactgataaa ggctgctcta 22440 gctctacaat atggacagat tccaccgagc ttgcactatg ccaatcctaa tccacggatt 22500 gattttgacg caaccccatt ttttgtcaac acagaactac gcgaatggtc aaggaatggt 22560 tatcctcggc gggcgggggt gagttctttt ggtgtgggtg gaactaacag ccatattgtg 22620 ctggaggagt cgcctgtaaa gcaacccaca ttgttctctt ctttgccaga acgcagtcat 22680 catctgctga cgctttctgc ccatacacaa gaggctfctgc atgagttggt gcaacgctac 22740 atccaacata acgagacaca ccttgatatt aacttaggcg acctctgttt cacagccaat 22800 acgggacgca agcattttga gcatcgccta gcggttgtag ccgaatcaat ccctggctta 22860 caggcacaac tggaaactgc acagactgcg atttcagcac agaaaaaaaa tgccccgccg 22920 acgatcgcat tcctgtttac aggtcaaggc tcacaataca ttaacatggg gcgcaccctc 22980 tacgatactg aatcaacatt ccgtgcagcc cttgaccgat gtgaaaccat tctccaaaat 23040 ttagggatcg agtccattct ctccgttatt tttggttcat ctgagcatgg actctcatta 23100 gatgacacag cctataccca gcccgcactc tttgccatcg aatacgcgct ctatcaatta 23160 tggaagtcgt ggggcatcca gccctcagtg gtgataggtc atagtgtagg tgaatatgtg 23220 tccgcttgtg tggcgggagt ctttagctta gaggatgggt tgaaactgat tgcagaacga 23280 ggacgactga tacaggcact tcctcgtgat gggagcatgg tttccgtgat ggcaagcgag 23340 aagcgtattg cagatatcat tttaccttat gggggacagg tagggatcgc cgcgattaat 23400 ggcccacaaa gtgttgtaat ttctgggcaa cagcaagcga ttgatgctat ttgtgccatc 23460 ttggaaactg agggcatcaa aagcaagaag ctaaacgtct cccatgcctt ccactcgccg 23520 ctagtggaag caatgttaga ctctttcttg caggttgcac aagaggtcac ttactcgcaa 23580 cctcaaatca agcttatctc taatgtaacg ggaacattgg caagccatga atcttgtccc 23640 gatgaacttc cgatcaccac cgcagagtat tgggtacgtc atgtgcgaca gcccgtccgg 23700 tttgcggcgg gaatggagag ccttgagggt caaggggtaa acgtatttat agaaatcggt 23760 cctaaacctg ttcttttagg catgggacgc gactgcttgc ctgaacaaga gggactttgg 23820 ttgcctagtt tgcgcccaaa acaggatgat tggcaacagg tgttaagtag tttgcgtgat 23880 ctatacttag caggtgtaac cgtagattgg agcagtttcg atcaggggta tgctcgtcgc 23940 cgtgtgccac taccgactta tccttggcag cgagagcggc attgggtaga gccaattatt 24000 cgtcaacggc aatcagtatt acaagccaca aataccacca agctaactcg taacgccagc 24060 gtggcgcagc atcctctgct tggtcaacgg ctgcatttgt cgcggactca agagatttac 24120 tttcaaacct tcatccactc cgacttccca atatgggttg ctgatcataa agtatttgga 24180 aatgtcatca ttccgggtgt cgcctatttt gagatggcac tggcagcagg gaaggcactt 24240 aaaccagaca gtatattttg gctcgaagat gtatccatcg cccaagcact gattattccc 24300 gatgaagggc aaactgtgca aatagtatta agcccacagg aagagtcagc ttattttttt 24360 gaaatcctct ctttagaaaa agaaaactct tgggtgcttc atgcctctgg taagctagtc 24420 gcccaagagc aagtgctaga aaccgagcca attgacttga ttgcgttaca ggcacattgt 24480 tccgaagaag tgtcagtaga tgtgctatat caggaagaaa tggcgcgccg gctggatatg 24540 ggtccaatga tgcgtggggt gaagcagctt tggcgttatc cgctctcctt tgccaaaagt 24600 catgatgcga tcgcactcgc caaggtcagc ttgccagaaa tcttgcttca tgagtccaat 24660 gcctaccaat tccatcctgt aatcttggat gcggggctgc aaatgataac ggtctcttat 24720 cctgaagcaa accaaggcca gacttatgta cctgttggta tagagggtct acaagtctat 24780 ggtcgtccca gttcagaact ttggtgtcgc gcccaatatc ggcctccttt ggatacagat 24840 caaaggcagg gtattgattt gctgccaaag aaattgattg cagacttgca tctatttgat 24900 acccagggtc gtgtggttgc catcatgttt ggtgtgcaat ctgtccttgt gggacgggaa 24960 gcaatgttgc gatcgcaaga tacttggcga aattggcttt atcaagtcct gtggaaacct 25020 caagcctgtt ttggactttt accgaattac ctgccaaccc cagataagat tcggaaacgc 25080 ctggaaacaa agttagcgac attgatcatc gaagctaatt tggcgactta tgcgatcgcc 25140 tatacccaac tggaaaggtt aagtctagct tacgttgtgg cggctttccg acaaatgggc 25200 tggctgtttc aacccggtga gcgtttttcc accgcccaga aggtatcagc gttaggaatc 25260 gttgatcaac atcggcaact attcgctcgt ttgctcgaca ttctagccga agcagacata 25320 ctccgcagcg aaaacttgat gacgatatgg gaagtcattt catacccgga aacgattgat 25380 atacaggtac ttcttgacga cctcgaagcc aaagaagcag aagccgaagt cacactggtt 25440 tcecgttgca gtgcaaaatt ggccgaagta ttacaaggaa aatgtgaccc catacagttg 25500 ctctttcccg caggggacac aacaacgtta agcaaactct atcgtgaagc cccagttttg 25560 ggtgttacta atactctagt ccaagaagcg cttctttccg ccctggagca gttgccgccg 25620 gaacgtggtt ggcgaatttt agagattggt gctggaacag gtggaaccac agcctacttg 25680 ttaccgcatc tgcctgggga tcagacaaaa tatgtcttta ccgatattag tgcctttttt 25740 cttgccaaag cggaagagcg ttttaaagat tacccgtttg tacgttatca ggtattagat 25800 atcgaacaag caccacaggc gcaaggattt gaaccccaaa tatacgattt aatcgtagca 25860 gcggatgtct tgcatgctac tagtgacctg cgtcaaactc ttgtacatat ccggcaatta 25920 ttagcgccgg gcgggatgtt gatcctgatg gaagacagcg aacccgcacg ctgggctgat 25980 ttaacctttg gcttaacaga aggctggtgg aagtttacag accatgactt acgccccaac 26040 catccgctat tgtctcctga gcagtggcaa atcttgttgt cagaaatggg atttagtcaa 26100 acaaccgcct tatggccaaa aatagatagc ccccataaat tgccacggga ggcggtgatt 26160 gtggcgcgta atgaaccagc catcagaaaa ccccgaagat ggctgatctt ggctgacgag 26220 gagattggtg gactactagc caaacagcta cgtgaagaag gagaagattg tatactcctc 26280 ttgccagggg aaaagtacac agagagagat tcacaaacgt ttacaatcaa tccCggagat 26340 attgaagagt ggcaacagtt attgaaccga gtaccgaaca tacaagaaat tgtacattgt 26400 tggagtatgg tttccactga cttagataga gccactattt tcagttgcag cagtacgctg 26460 catttagttc aagcattagc aaactatcca aaaaaccctc gcttgtcact tgtcacccta 26520 ggcgcacaag ccgttaacga acatcatgtt caaaatgtag ttggagcagc cctctggggc 26580 atgggaaagg taattgcact cgaacaccca gagctacaag tagcacaaat ggatttagac 26640 ccgaatggga aggttaaggc gcaagtagaa gtgcttaggg atgaacttct cgoeagaaaa 26700 gaccctgcat cagcaatgtc tgtgcctgat ctgcaaacac gacctcatga aaagcaaata 26760 gcctttcgtg agcaaacacg ttatgtggca agactttcgc ccttagaccg ccccaatcct 26820 ggagagaaag gcacacaaga ggctcttacc ttccgtgatg atggcagcta tctgattgct 26880 ggtggtttag gcggactggg gttagtggtg gctcgttttc tggttacaaa tggggctaaa 26940 taccttgtgc tagtcggacg acgtggtgcg agggaggaac agcaagctca attaagcgaa 27000 ctagagcaac tcggagcttc cgtgaaagtt ttacaagccg atattgctga tgcagaacaa 27060 ctagcccaag cactttcagc agtaacctac ccaccattac ggggtgttat tcatgcggca 27120 ggtacattga acgatgggat tctacagcag caaagttggc aagcctttaa agaagtgatg 27180 aatcccaagg tagcaggtgc gtggaaccta catatactga caaaaaatca gcctttagac 27240 ttctttgtcc tgttctcctc cgccacctct ttgttaggta acgctggaca agccaatcac 27300 gccgccgcaa atgctttcct tgatgggtta gcctcctatc gtcgtcactt aggactaccg 27360 agcctctcga ttaattgggg gacatggagc gaagtgggaa ttgcggctcg acttgaacta 27420 gataagttgt ccagcaaaca gggagaggga accattacgc taggacaggg cttacaaatt 27480 cttgagcagt tgctcaaaga cgagaatggg gtgtatcaag tgggtgtcat gcctatcaac 27540 tggacacaat tcttagcaag gcaattgact ccgcagccgt tcttcagcga tgccatgaag 27600 agtattgaca cctctgtagg taaactaacc ttgcaggagc gggactcttg cccccaaggt 27660 tacgggcata atattcgaga gcaattagag aacgctccgc ccaaagaggg tctgactctc 27720 ttgcaggctc atgttcggga gcaggtttcc caagttttgg ggatagacac gaagacatta 27780 ttggcagaac aagacgtggg tttctttacc ctggggatgg attcgctgac ctctgtcgag 27840 ttaagaaaca ggttacaagc cagtttgggc tgctctcttt cttccacttt ggcttttgac 27900 tatccaacac aacaggctct tgtgaattat cttgccaatg aattgctggg aacccctgag 27960 cagctacaag agcctgaatc tgatgaagaa gatcagatat cgtcaatgga tgacatcgtg 28020 cagttgctgt ccgcgaaact agagatggaa atttaagccc atggatgaaa aactaagaac 28080 atacgaacga ttaatcaagc aatcctatca caagatagag gctctggaag ctgaagttaa 28140 caggttgaag caaacccaat gtgaacctat cgccatcgtc ggcatgggct gtcgttttcc 28200 tggtgcgaat agtccagaag cgttttggca gttgttgtgt gatggggttg atgctattcg 28260 tgagatacca aaaaatcgat gggttgttga tgcctacata gatgaaaatt tggaccgcgc 28320 agacaagaca tcaatgcgat ttggcgggtt tgtcgagcaa cttgagaagt ttgatgccca 28380 attctttggc atatcaccgc gagaagcggt ttctcttgac cctcagcaac gtttgttatt 28440 agaagtaagt tgggaagcac tggaaaatgc agcggtgata ccaccttcgg caacgggcgt 28500 attcgtcggt attagtaacc ttgattatcg tgaaacgctc ttgaagcaag gagcaattgg 28560 tacttatttt gcttcgggta atgcccatag cacagccagt ggtcgcttgt cttactttct 28620 cggtctgaca ggcccctgtc tctcgataga cacagcttgt tcttcgtcgt tggtcgctgt 28680 acatcagtca ctgataagtc tgcgtcagcg agaatgtgac ttagcgttgg ttgggggagt 28740 ccatcggctg atagccccag aggaaagtgt ctcgttagca aaagcccata tgttatctcc 28800 cgatggtcgt tgcaaagtct ttgatgcgtc ggcaaacggg tatgtccgag ccgaaggatg 28860 tggcatgata gtcctcaaac gattatcgga cgcgcaagct gatggggata aaatcttggc 28920 gttgattcgc gggtcagcca taaatcaaga cggtcgcacg agtggcttga ccgttccaaa 28980 tggtccccaa caagccgacg tgattcgcca agccctcgcc aatagtggca taagaccaga 29040 acaagttaac tatgtagaag ctcatggcac agggacttcc ctaggagacc cgattgaggt 29100 cggcgcgttg ggaacgatct ttaatcaacg ctcccaacct ttaattattg gttcagttaa 29160 aacaaatatt gggcatctag aagcagcagc agggattgct ggactgatta aagtcgtcct 29220 tgccatgcag catggagaaa ttccacctaa tttacacttt caccagccca atcctcgcat 29280 taactgggat aaattgccaa tcaggatccc cacagaacga acagcttggc ctactggcga 29340 tcgcatcgca gggataagtt ctttcggctt tagtggcact aattctcatg tcgtgttaga 29400 ggaagcccca aaaatagagc cgtctacttt agagattcat tcaaagcagt atgtttttac 29460 cttatcagca gcgacacctc aagcactaca agaacttact cagcgttatg taacttatct 29520 cactgaacac ttacaagaga gtctggcgga tatttgcttt acagccaaca cagggcgcaa 29580 acactttaga catcgctttg cagtagtagc agagtctaaa acccagttgc gccaacaatt 29640 ggaaacgttt gcccaatcgg gagaggggca ggggaagagg acatctctct caaaaatagc 29700 ttttctcttt acaggtcaag gctcacagta tgtggggatg gggcaagaac tttatgagag 29760 ccaacccacc ttccggcaaa ccattgaccg atgtgatgag attcttcgtt cactgttggg 29820 caaatcaatc ctctcaatac tctatcccag ccaacaaatg ggattggaaa cgccatccca 29880 aattgatgaa accgcctata ctcaacccac tcttttttct cttgaatatg cactggcgca 29940 gttgtggcgc tcctggggta ttgagcctga tgtggtgatg gggcatagtg tgggagaata 30000 tgtggccgct tgtgtggcgg gtgtcttttc tttagaggat ggactcaaac taattgctga 30060 aagaggccgt ctgatgcaag aattgcctcc cgatggggcg atggtttcag ttatggccaa 30120 taaatcgcgc atagagcaag caattcaatc tgtcagccga gaggtttcta ttgcggccat 30180 caatggacct gagagtgtgg ttatctctgg taaaagggag atattacaac agattaccga 30240 acatctggtt gccgaaggca ttaagacacg ccaactgaag gtctctcatg cctttcactc 30300 accattgatg gagccaatat taggtcagtt ccgccgagtt gccaatacca tcacctatcg 30360 gccaccgcaa attaaccttg tctcaaatgt cacaggcgga caggtgtata aagaaatcgc 30420 tactcccgat tattgggtga gacatctgca agagactgtc cgttttgcgg atggggttaa 30480 ggtgttacat gaacagaatg tcaatttcat gctcgaaatt ggtcccaaac ccacactgct 30540 gggcatggtt gagttacaaa gttctgagaa tccattttct atgccaatga Cgatgccoag 30600 tttgcgtcag aategtagcg actggcagca gatgttggag agcttgagtc aactctatgt 30660 tcatggtgtt gagattgact ggatcggttt taataaagac tatgtgcgac ataaagttgt 30720 cctgccgaca tacccatggc agaaggagcg ttactgggta gaattggatc aacagaagca 30780 cgccgctaaa aatctacatc ctctactgga caggtgcatg aagctgcctc gtcataaega 30840 aacaattttt gagaaagaat ttagtctaga gacattgccc tttctcgctg actatcgcat 30900 ttatggttca gttgtgtcgc caggtgcaag ttatctatca atgatactaa gtattgccga 30960 gtcgtatgca aatggtcatt tgaatggagg gaatagtgca aagcaaacca cttatttact 31020 aaaggatgtc acattcccag tacctcttgt gatctctgat gaggcaaatt acatggtgca 31080 agttgcttgt tctctctctt gtgctgcgcc acacaatcgt ggcgacgaga cgcagtttga 31140 attgttcagt tttgctgaga atgtacctga aagtagcagt ataaafgctg attttcagac 31200 acccattatt catgcaaaag ggcaatttaa gcttgaagat acagcacctc ctaaagtgga 31260 gctagaagaa ctacaagcgg gttgtcccca agaaattgat ctcaaccttt tctatcaaac 31320 attcacagac aaaggttttg tttttggatc tcgttttcgc tggttagaac aaatctgggt 31380 gggcgatgga gaagcattgg cgcgtctgcg acaaccggaa agtattgaat cgtttaaagg 31440 atatgtgatt catcccggtt tgttggatgc ctgtacacaa gtcccatttg caatttcgtc 31500 tgacgatgaa aataggcaat cagaaacgac aatgcccttt gcgctgaatg aattacgttg 31560 ttatcagcct gcaaacggac aaatgtggtg ggttcatgca acagaaaaag atagatatac 31620 atgggatgtt tctctgtttg atgagagcgg gcaagttatt gcggaattta taggtttaga 31680 agttcgtgct gctatgcccg aaggcttact aagggcagac ttttggcata actggctcta 31740 tacagtgaat tggcgatcgc aacctctaca aatcccagag gtgctggata ttaataagac 31800 aggtgcagaa acatggcttc tttttgcaca accagaggga ataggagcgg acttagccga 31860 atatttgcag agccaaggaa agcactgtgt tttbgtagtg cctgggagtg agtatacagt 31920 gaccgagcaa cacattggac gcactggaca tcttgatgtg acgaaactga caaaaattgt 31980 cacgatcaat cctgcttctc ctcatgacta taaatatttt ttagaaactc tgacggacat 32040 tagattacct tgtgaacata tactctattt atggaatcgt tatgatttaa caaatacttc 32100 Caatcatcgg acagaattga ctgtaccaga tatagtctta aacttatgta ctagtcttae 32160 ttatttggta caagccctta gccacatggg tttttccccg aaattatggc taattacaca 32220 aaatagtcaa gcggttggta gtgacttagc gaatttagaa atcgaacaat ccccattatg 32280 ggcattgggt cgaagcatcc gcgccgaaca ccctgaattt gattgccgtt gtttagattt 32340 tgacacgctc tcaaatatcg caccactctt gttgaaagag atgcaagcta tagactatga 32400 atctcaaatt gcttaccgac aaggaacgcg ctatgttgca cgactaattc gtaatcaatc 32460 agaatgtcac gcaccgattc aaacaggaat ccgtcctgat ggcagctatt tgattacagg 32520 tggattaggc ggtctaggat tgcaggtagc actcgccctt gcggacgctg gagcaagaca 32580 cttgatcctc aatagtcgcc gtggtacggt ctccaaagaa gcccagttaa ttattgaccg 32640 actacgccaa gaggatgtta gggttgattt gattgcggca gatgtctctg atgcggcaga 32700 tagcgaaega ctcttagtag aaagtcagcg caagacctct cttcgaggga ttgtccatgt 32760 tgcgggagtc ttggatgatg gcatcctgct ccaacaaaat caagagcgtt ttgaaaaagt 32820 gatggcggct aaggtacgcg gagcttggca tctggaccaa cagagccaaa ccctcgattt 32880 agatttcttt gttgcgttct catctgttgc gtcgctcata gaagaaccag gacaagccaa 32940 ttacgccgca gcgaatgcgt ttttggattc attaatgtat tatcgtcaca taaagggaCc 33000 taatagcttg agtatcaact ggggggcttg ggcagaagcc ggcatggcag ccaatttatc 33060 atgggaacaa cggggaatcg cggcaatttc tccaaagcaa gggaggcata ttctcgtcca 33120 acttattcaa aaacttaaCc agcatacaat cccccaagtt gctgtacaac cgaccaattg 33180 ggctgaatat ctatcccatg atggcgtgaa tatgccattc tatgaatatt ttacacacca 33240 cttgcgtaac gaaaaagaag ccaaattgcg gcaaacagca ggcagcacct cagaggaagt 33300 cagtctgcgg caacagcttc aaacactctc agagåaagac cgggatgccc ttttgatgga 33360 acatcttcaa aaaactgcga tcagagttct cggtttggca tctaatcaaa aaattgatcc 33420 ctatcaggga ttgatgaata tgggactaga ctctttgatg gcggttgaat ttcggaatca 33480 cttgatacgt agtttagaac gccctctgcc agccactctg ctctttaatt gcccaacact 33540 tgattcattg catgattacc tagtcgcaaa aatgtttgat gatgcccctc agaaggcaga 33600 gcaaatggca caaccaacaa cactgacagc acacagcata tcaatagaat ccaaaataga 33660 tgataacgaa agcgtggatg acattgcaca aatgctggca caagcactca atatcgcctt 33720 tgagtagcaa tgggcagccc ttaacctttc aaggtgacta atcaatagac ctcttgcaca 33780 attgtttctg tggtacaata agtggtttta ggttttatgt atatttgggt gttgttgcga 33840 CagcCacgct cgccgaaggc atcacaaatt caaagatagg cgtgtgattc taacttttag 33900 cttaacgggt gacaaggcgg ctaaagagct tgtttcataa gggatagagc ctgaaagccc 33960 cgttgaaaaa agaggcgttt atgaggcttg agattgatta aatccagagc taaatcagcc 34020 cataattcca taccataaat ccatagttgt ccgtagagac caaagctaaa atcactttga 34080 cgtgggtact tgtcctgatg ttgttgaatc ccacattcag catgagtaaa tatactcaaa 34140 atatttttcc cagcaggtta agtgttctaa tcctaagtct gatatcttat ttttgataag 34200 ggacttaccg cgtaatagtt aaatttttgt acagcctaat tttacttggt ttaaggctct 34260 tttttgctct tttggtgaat tattcaggat aatcaaagat gagtcagccc aattatggca 34320 Ctttgatgaa aaatgcgttg aacgaaataa atagcetacg atcgcaacta gctgcggtag 34380 aagcccaaaa aaatgagtct attgccattg ttggtatgag ttgccgtttt ccaggcggtg 34440 caactactcc agagcgtttt tgggtattac tgcgcgaggg tatatcagcc attacagaaa 34500 tccctgctga tcgctgggat gttgataaat attatgatgc tgaccccaca tcgtccggta 34560 aaatgcatac tcgttacggc ggttttctga atgaagttga tacatttgag ccatcattct 34620 ttaatattgc tgcccgtgaa gccgttagca tggatccaca gcaacgcttg ctacttgaag 34680 tcagttggga agctctggaa tccggtaata ttgttcctgc aactcttttt gatagttcca 34740 ctggtgtatt tatcggtatt ggtggtagca actacaaatc tttaatgatc gaaaacagga 34800 gtcggatcgg gaaaaccgat ttgtatgagt taagtggcac tgatgtgagt gttgctgccg 34860 gcaggatatc ctatgtcctg ggtttgatgg gtcccagttt tgtgattgat acagcttgtt 34920 catcttcttt ggtctcagtt catcaagcct gtcagagtct gcgtcagaga gaatgtgatc 349B0 tagcactagc tggtggagtc ggtttacCca Ctgatccaga tgagatgatt ggtctttctc 35040 aaggggggat gctggcacct gatggtagtt gtaaaacatt tgatgccaat gcaaatggct 35100 atgtgcgagg cgaaggttgt gggatgattg ttctaaaacg tctctcggat gcaacagccg 35160 atggggataa tattcttgcc atcattcgtg ggtctatggt taatcatgat ggtcatagca 35220 gtggtttaac tgctccaaga ggccccgcac aagtctctgt cattaagcaa gccttagata 35280 gagcaggtat tgcaccggat gccgtaagtt atttagaagc ccatggtaca ggcacacccc 35340 ttggtgatcc tatcgagatg gattcattga acgaagtgtt tggtcggaga acagaaccac 35400 tttgggtcgg ctcagttaag acaaatattg gtcatttaga agccgcgtcc ggtattgcag 35460 ggctgattaa ggttgtcttg etgctaaaaa acaagcagat tcctccCcac ttgcatttca 35520 agacaccaaa tccatatatt gatCggaaaa atctcccggt cgaaattccg accacccttc 35580 atgcttggga tgacaagaca ttgaaggaca gaaagcgaat tgcaggggtt agttctttta 35640 gtttcagtgg tactaacgcc cacattgtat'tatctgaagc cccatctagc gaactaatta 35700 gtaatcatgc ggcagtggaa agaccatggc acttgttaac ccttagtgct aagaatgagg 35760 aagcgttggc taacttggtt gggctttatc agtcatttat ttctactact gatgcaagtc 35820 ttgccgatat atgctacact gctaatacgg cacgaaccca tttttctcat cgccttgctc 35880 tatcggctac ttcacacatc caaatagagg ctcttttagc cgcttataag gaagggtcgg 35940 tgagtttgag catcaatcaa ggttgtgtcc tttccaacag tcgtgcgccg aaggtcgctt 36000 ttctctttac aggtcaaggt tcgcaatatg tgcaaatggc tggagaactt tatgagaccc 36060 agcctacttt ccgtaattgc ttagatcgct gtgccgaaat cttgcaatcc atcttttcat 36120 cgagaaacag cccttgggga aacccactgc tttcggtatt atatccaaac catgagtcaa 36180 aggaaattga ccagacggct tatacccaac ctgccctttt tgctgtagaa tatgccctag 36240 cacagatgtg gcggtcgtgg ggaatcgagc cagatatcgt aatgggtcat agcataggtg 36300 aatatgtggc agcttgtgtg gcggggatct tttctctgga ggatggtctc aaacttgctg 36360 ccgaaagagg ccgtttgatg caggcgctac cacaaaatgg cgagatggtt gctatatcgg 36420 cctcccttga ggaagttaag ccggctatCc aatccgacca gcgagttgtg atagcggcgg 36480 taaatggacc acgaagtgtc gtcatttcgg gcgatcgcca agctgtgcaa gtcttcacca 36540 acaccctaga agatcaagga atccggtgca agagactgtc tgtttcacac gctttccact 36600 ctccattgat gaaaccaatg gagcaggagt tcgcacaggt ggccagggaa atcaactata 36660 gtcctccaaa aatagctctt gtcagtaatc taaccggcga cttgatttca cctgagtctt 36720 ccctggagga aggagtgatc gcttcccctg gttactgggt aaatcattta tgcaatcctg 36780 tcttgttcgc tgatggtatt gcaactatgc aagcgcagga tgtccaagtc ttccttgaag 36840 ttggaccaaa accgacctta tcaggactag tgcaacaata ttttgacgag gttgcccata 36900 gcgatcgccc tgtcaccatt cccaccttgc gccccaagca acccaactgg cagacactat 36960 tggagagttt gggacaactg tatgcgcttg gtgtccaggt aaattgggcg ggctttgata 37020 gagattacac cagacgcaaa gtaagcctac ccacctatgc ttggaagcgt caacgttatt 37080 ggctagagaa acagtccgct ccacgtttag aaacaacaca agctcgtccc gcaactgcca 37140 ttgtagagca tcttgaacaa ggcaatgtgc cgaaaatcgt ggacttgfcta gcggcgacgg 37200 atgtactttc aggcgaagca cggaaattgc tacccagcat cattgaacta ttggttgcaa 37260 aacatcgtga ggaagcgaca cagaagccca tctgcgattg gctttatgaa gtggtttggc 37320 aaccccagtt gctgacccta tctaccttac ctgctgtgga aacagagggt agacaatggc 37380 tcatcttcgc cgatgctagt ggacacggtg aagcacttgc ggctcaatta cgtcagcaag 37440 gggatataat tacgcttgtc tatgctggtc taaaatatca ctcggctaat aataaacaaa 37500 ataccggggg ggacatccca tattttcaga ttgatccgat ccaaagggag gattatgaaa 37560 ggttgtttgc tgctttgcct ccactgtatg gtattgttca tctttggagt ttagatatac 37620 ttagcttgga caaagtatct aacctaattg aaaatgtaca attaggtagt ggcacgctat 37680 taaatttaat acagacagtc ttgcaacttg aaacgcccac ccctagcttg tggctcgtga 37740 caaagaacgc gcaagctgtg cgtaaaaacg atagcctagt cggagtgctt cagtcaccct 37800 tatggggtat gggtaaggtg atagccttag aacaccctga actcaactgt gtatcaatcg 37860 accttgatgg tgaagggctt ccagatgaac aagccaagtt tctggcggct gaactccgcg 37920 ccgcctccga gttcagacat accaccattc cccacgaaag tcaagttgct tggcgtaata 37980 ggactcgcta tgtgtcacgg ttcaaaggtt atcagaagca tcccgcgacc tcatcaaaaa 38040 tgcctattcg accagatgcc acttatttga teacgggcgg ctttggtggt ttgggcttgc 38100 ttgtggctcg ttggatggtt gaacaggggg ctacccatct atttctgatg ggacgcagcc 38160 aacccaaacc agccgcccaa aaacaactgc aagagatagc cgcgctgggt gcaacagtga 38220 cggtggtgca agccgatgtt ggcatccgct cccaagtagc caatgtgttg gcacagattg 38280 ataaggcata tcctttggct ggtattattc atactgccgg tgtattagac gacggaatct 38340 tattgcagca aaattgggcg cgttttagca aggtgttcgc ccccaaacta gagggagctt 38400 ggcatctaca tacactgact gaagagatgc cgcttgattt ctttatttgt ttttcctcaa 38460 cagcaggatt gctgggcagt ggtggacaag ctaactatgc tgctgccaat gcctttttag 38520 atgcctttgc ccatcatcgg cgaatacaag gcttgccagc tctctcgatt aactgggacg 38580 cttggtctca agtgggaatg acggtacgtc tccaacaagc ttcttcacaa agcaccacag 38640 ttgggcaaga tattagcact ttggaaattt caccagaaca gggattgcaa atctttgcct 38700 atcttctgca acaaccatcc gcccaaatag cggccatttc taccgatggg cttcgcaaga 38760 tgtacgacac aagctcggcc ttttttgctt tacttgatct tgacaggtct tcctccacta 38820 cccaggagca atctacactt tctcatgaag ttggccttac cttactcgaa caattgcagc 38880 aagctcggcc aaaagagcga gagaaaatgt taCtgcgcca tctacagacc caagttgctg 38940 cggtcttgcg tagtcccgaa ctgcccgcag ttcatcaacc cttcactgac ttggggatgg 39000 attcgttgat gtcacttgaa ttgatgcggc gtttggaaga aagtctgggg attcagatgc 39060 ctgcaacgct tgcattcgat tatcctatgg tagaccgttt ggctaagttt atactgactc 39120 aaatatgtat aaattctgag ccagatacct cagcagttct cacaccagat ggaaatgggg 39180 aggaaaaaga cagtaataag gacagaagta ccagcacttc cgttgactca aatattactt 39240 ccatggcaga agatttattc gcactcgaat ccttactaaa taaaataaaa agagatcaat 39300 aatagagctg ttgggaaata aaagcatatt tccggatgac agaacttccc ccatcccgat 39360 tgaatttatg ctgcatctaa atagaagttc catagccctg cactgaccaa catcaattga 39420 tcatcaaaat cggtcacacg attcctatat gtgggataaa atttgcagta cagcaggata 39480 taaaatagtt tttcctctat acttctgagt gtaggcttgc gtccgccccc gggcgcacgt 39540 ttgcggtttg ctaaggagtt gaacacggtg cgttcatagg tatcagcaaa ctgagataac 39600 agctcgttga atgcttggcg gttaagtcca gtcattgctc gtagcagtcg ctcttgattc 39660 aggatgcggt ctaagttcaa cattaatgtc accctacttg tctgcttgat tattatccct 39720 tattttccaa caactctatt atagcttatc ttattttgga gtttaactac atgaaaatcg 39780 ctgtåaagac tcctactgag tgaaagtgaa cttctttccc acgtattcga gtagctgttg 39840 taagctggcc tcgatggaaa gttccgaagt ttccaccagt aaatctggtg ttctcggtgg 39900 ttcgtaggga gcgctaattc ccgtaaaaga ctcaatttct ccacggcgtg cttttgcata 39960 gagacccttg gggtcacgtt gttcacaaat ttccatcgga gttgcaatat atacttcatg 40020 aaacagatct ccggacagaa tacggatttg ctcccggtct ttcctgtaag gtgaaatgaa 40080 agcagtaatc actaaacaac ccgaatccgc aaaaagtttg gccacctcgc caatacgacg 40140 aatattttcc gcacgatcag cagcagaaaa tcccaagtca gcacataatc catgacggat 40200 attgtcacca tcaaggacaa aagtatacca acctttctgg aacaaaatcc gctctaattc 40260 tagagccaat gttgttttac ctgatcctga taatccagtg aaccatagaa ttccatttcg 40320 gtgaccattc tttaaacaac gatcaaatgg ggacacaaga tgttttgtat gttgaatatt 40380 gcttgatttc atatctatga taaatatgat aaaagtgatt ggccaaacag aactgctcac 40440 ccaataatat agttaaaggc tattttttca aaaactcctt ctaaattata gctcacaatt 40500 atgcctaaat actttaatac tgctggaccc tgtaaatccg aaatccacta tatgctctct 40560 cccacagctc gactaccgga tttgaaagca ctaattgacg gagaaaacta ctttataatt 40620 cacgcgccgc gacaagtcgg caaaactaca gctatgatag ccttagcacg agaattgact 40680 gatagtggaa aatataccgc agttattctt tccgttgaag tgggatcagt attctcccat 40740 aatccccagc aagcggagca ggttatttta gaagaatgga aacaggcaac caaattttat 40800 ttacccaaag aactacaacc atcctattgg ccagagcgtg aaacagactc aggaataggc 40860 aaaactttaa gtgagtggtc cgcacaatct ccaagacctc ttgtaatctt tttacatgaa 40920
atcgattccc taacagatga agctttaatc ctaattttaa gacaattacg ctcaggtttt 409BO ccccgtcgtc ctcggggatt tccccattcg gtggggttaa ttggtatgcg ggatgtgcgg 41040 gactataagg ttaaatctgg tggaagtgaa cgactgaata cgtcaagtcc tttcaatatc 41100 aaagcggaat ccttgacttt aagtaatttc actctgtcag aggtggaaga actttactta 41160 caacatacgc aagctacagg acaaattttt accccggaag caattaaaca agcattttat 41220 ttaaccgatg ggcaaccatg gttagtaaac gccctagctc gtcaagccac tcaggtgtta 41280 gtgaaagata ttactcaacc cattaccgct gaagtaatta accaagccaa agaagttctg 41340 attcagcgcc aggataccca tttggatagt ttggcagagc gcttacggga agatcgggtc 41400 aaagccatta ttcaacctat gttagctgga tcggacttac cagatacccc agaggatgat 41460 cgccgtttct tgctagattt aggcttggta aagcgcagtc ccttgggagg actaaccatt 41520 gccaatccea tttaccagga ggtgattcct cgtgttttgt cccagggtag tcaggatagt 41580 ctaccccaga ttcaacctac ttggttaaat actgataata ctttaaatcc tgacaaactc 41640 ttaaatgctt tcetagagtt ttggcgacaa catggggaac cattactcaa aagtgcgcct 41700 tatcatgaaa ttgctcccca tttagttttg atggcgtttt tacatcgggt agtgaatggt 41760 ggtggcactt tagaacggga atatgccgtt ggttctggaa gaatggatat ttgtttacgc 41820 tatggcaagg tagtgatggg catagagtta aaggtttggg ggggaaaatc ggatccgtta 41880 acgaagggtt tgacccaatt ggataaatat ctgggtgggt taggattaga tagaggttgg 41940 ttagtaattt ttgatcaccg tccgggatta ccacccatgg gtgagaggat tagtatggaa 42000 caggccatta gtccagaggg aagaaccatt acagtgattc gtagctagag cgttagatat 42060 cagatgattg aacctcaatt attgtgcaac gccacatttt ctttccaaag atgtatgtta 42120 aactctagta aactctaatt aggtcgagaa agagat 42156 <210> 81 <211> 5631
<212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 81 atgcggtcta agttcaacat taatgtcacc ctacttgtct gcttgattat tatcccttat 60 tttccaacaa ctctaatgaa agtacctata acagcaaacg aagatgcagc tacattactt 120 cagcgtgttg gactgtccct aaaggaagca caccaacaac ttgaggcaat gcaacgccga 180 gcgcacgaac cgatcgcaat tgtggggctg gggctgcggt ttccgggagc tgattcacca 240 cagacattct ggaaactact tcagaatggt gttgatatgg tcaccgaaat ccctagcgat 300 cgctgggcag ttgatgaata ctatgatccc caacctgggt gtccaggcaa aatgtatatt 360 cgtgaagccg cttttgttga tgcagtggat aaattcgatg cctcgttttt tgatatttcg 420 ccacgtgaag cggccaatat agatccccag catagaatgt tgctggaggt agcttgggag 480 gcactcgaaa gggctggcat tgctcccagc caattgatgg atagccaaac gggggtattt 540 gtcgggatga gcgaaaatga ctattatgct cacctagaaa atacagggga tcatcataat 600 gtctatgcgg caacgggcaa tagcaattac tatgctccgg ggcgtttatc ctatctattg 660 gggcttcaag gacctaacat ggtcgttgat agtgcctgtt cctcctcctt agtggctgta 720 catcttgcct gtaatagttt gcggatggga gaatgtgatc tggcactggc tggtggcgtt 780 cagcttatgt taatcccaga ccctatgatt gggactgccc agttaaatgc ctttgcgacc 840 gatggtcgta gtaaaacatt tgacgctgcc gccgatggct atggacgcgg cgaaggttgt 900 ggcatgattg tacttaaaag aataagtgac gcgatcgtgg cagacgatcc aattttagcc 960 gtaatccggg gtagtgeagt caatcatggc gggcgtagca gtggtttaac tgcccctaat 1020 aagctgtctc aagaagcctt actgcgtcag gcactacaaa acgccaaggt tcagccggaa 1080 gcagtcagtt atatcgaagc ccatggcaca gggacacaac tgggcgaccc gattgaggtg 1140 ggagcattaa cgaccgtctt tggatcttct cgttcagaac ccttgtggat tggctctgtc 1200 aaaactaata tcggacacct agaaccagcc gctggtattg cggggttaat aaaagtcatt 1260 ttatcattac aagaaaaaca gattcctccc agtctccatt ttcaaaaccc taatcccttc 1320 attgattggg aatcttcgcc agttcaagtg ccgacacagt gtgtaccctg gactgggaaa 1380 gagcgcgtcg ctggagttag ctcgtttggt atgagcggta caaactgtca tctagttgtc 1440 gcagaagcac ctgtccgcca aaacgaaaaa tctgaaaatg caccggagcg tccttgtcac 1500 attctgaccc tttcagccaa aaccgaagcg gcactcaacg cattggtagc ccgttacatg 1560 gcatttctca gggaagcgcc cgccatatcc ctagctgatc tttgttatag tgccaatgtc 1620 gggcgtaatc tttttgccca tcgcttaagt tttatctccg agaacatcgc gcagttatca 1680 gaacaattag aacactgccc acagcaggct acaatgccaa cgcaacataa tgtgatacta 1740 gataatcaac tcagccctca aatcgctttt ctgtttactg gacaaggttc gcagtacatc 1800 aacatggggc gtgagcttta cgaaactcag cccaccttcc gtcggattat ggacgaatgt 1860 gacgacattc tgcatceatt gttgggtgaa tcaattctga acatactcta cacttcccct 1920 agcaaactta atcaaaccgt ttatacccaa cctgcccttt ttgcttttga atatgcccta 1980 gcaaaactat ggatatcatg gggtattgag cctgatgtcg tactgggtca cagcgtgggt 2040 gaatatgtag ccgcttgtct ggcgggtgtc Cttagtttag aagatgggtt aaaactcatt 2100 gcatctcgtg gatgtttgat gcaaqcctta ccgccgggga aaatgcttag tatcagaagc 2160 aatgagatcg gagtgaaagc gctcatcgcg ccttatagtg cagaagtatc aattgcagca 2220 atcaatggac agcaaagcgt ggtgatctcc ggcaaagctg aaattataga taatttagca 2280 gcagagtttg catcggaagg catcaaaaca cacctaatta cagtctccca cgctttccac 2340 tcgccaatga tgacccccat gctgaaagca ttccgagacg ttgccagcac catcagctat 2400 aggtcaccca gtttatcact gatttctaac ggtacagggc aattggcaac aaaggaggtt 2460 gctacacctg attattgggt gcgtcatgtc cattctaccg tccgttttgc cgatggtatt 2520 gccacattgg cagaacagaa tactgacatc ctcctagaag taggacccaa accaatattg 2580 ttgggtatgg caaagcagat ttatagtgaa aacggttcag ctagtcatcc gctcatgcta 2640 cccagtttgc gtgaagatgg caacgattgg cagcagatgc tttctacttg tggacaactt 2700 gtagttaatg gagtcaagat tgactgggcg ggttttgaca aggattattc acgacacaaa 2760 atattgttgc ccacctatcc gtttcagaga gaacgatatt ggattgaaag ctccgtcaaa 2820 aagccccaaa aacaggagct gcgcccaatg ttggataaga tgatccggct accatcagag 2880 aacaaagtgg tgtttgaaac cgagtttggc gtgcgacaga tgcctcatat ctccgatcat 2940 cagatatacg gtgaagtcat tgtaccgggg gcagtattag cttccttaat cttcaatgca 3000 gcgcaggttt tatacccaga ctatcagcat gaattaactg atattgcttt ttatcagcca 3060 attatctttc atgacgacga tacggtgatc gtgcaggcga ttttcagccc tgataagtca 3120 caggagaatc aaagccatca aacatttcca cccatgagct tccagattat tagcttcatg 3180 ccggatggtc ccttagagaa caaaccgaaa gtccatgtca cagggtgtct gagaatgttg 3240 cgcgatgccc aaccgccaac actctccccg accgaaatac gtcagcgctg tccacatacc. 3300 gtaaatggtc atgactggta caatagctta gtcaaacaaa aatttgaaat gggtccttcc 3360 tttaggtggg tacagcaact ttggcatggg gaaaatgaag cattgacccg tcttcacata 3420 ccagatgtgg tcggctctgt atcaggacat caacttcacg gcatattgct cgatggttca 3480 ctttcaacca ccgctgtcat ggagtacgag tacggagact ccgcgaccag agttcctttg 3540 tcatttgctt ctctgcaact gtacaaaccc gtcacgggaa cagagtggtg gtgctacgcg 3600. aggaagattg gggaattcaa atatgacttc cagattatga atgaaatcgg ggaaaccttg 3660 gtgaaagcaa ttggctttgt acttcgtgaa gcctctcccg aaaaattcct cagaacaaca 3720 tacgtacaca actggcttgt agacattgaa tggcaagctc aatcaacttc cctagtccct 3780 tctgatggca ctatctctgg cagttgtttg gttttatcag atcagcatgg aacaggggct 3840 gcattggcac aaaggctaga caatgctgga gtgccagtga ccatgatcta tgctgatctg 3900 atactggaca attacgaatt aatattccgt actttgccag atttacaaca agtcgtctat 3960 ttatgggggt tggatcaaaa agaggattgt caccccatga agcaagcaga ggataactgt 4020 acatcggtgc tatatcttgt gcaagcatta ctcaatacct actcaacccc gccatccctg 4080 cttattgtca cctgtgatgc acaagcggtg gttgaacaag atcgagtaaa tggcttcgcc 4140 caatcgtctt tgtcgggact tgccaaagtt atcatgctag aacacccaga attgtcctgt 4200 gtttacatgg atgtggaagc cggatattta cagcaagatg tggcgaacac gatatttaca 4260 cagctaaaaa gaggccatct atcaaaggac ggagaagaga gtcagttggc ttggcgcaat 4320 ggacaagcat acgtagcacg tcttagtcaa tataaaccca aatccgaaca actggttgag 4380 atccgcagcg atcgcagcta tttgatcact ggtggacggg gcggtgtcgg cttacaaatc 4440 gcacggtggt tagtggaaaa gggggctaaa catctcgttt tgttggggcg cagtcagacc 4500 agttccgaag tcagtctggt gttggatgag ctagaatcag ccggggcgca aatcattgtg 4560 gctcaagctg atattagcga tgagaaggCa ttagcgcaga ttctgaccaa tctaaccgta 4620 cctctgtgtg gtgtaatcca cgccgcagga gtgcttgatg atgcgagtct actccaacaa 4680 actccagcca agctcaaaaa agttctattg ccaaaagcag agggggcttg gattctgcat 4740 aatttgaccc tggagcagcg actagacCtc tttgttctct tttcttctgc cagttctcta 4800 ttaggtgcgc cagggcaggc caactattca gcagccaatg ctttcctaga tggtttagct 4860 gcctatcggc gagggcgagg actcccctgt ttgtctatct gctggggggc atgggatcaa 4920 gtcggtatgg ctgcacgaca agggctactg gacaagttac cgcaaagagg tgaagaggcc 4980 atcccgttac agaaaggctt agacctcttc ggcgaattac tgaacgagcc agccgctcaa 5040 attggtgtga tcccaattca atggactegc ttcttggatc atcaaaaagg taatttgcct 5100 ttttatgaga agttttctaa gtctagccgg aaagcgcaga gttacgattc gatggcagtc 5160 agtcacacag aagatattca gaggaaactg aagcaagctg ctgtgcaaga Ccgaccaaaa 5220 ttattagaag tgcatcttcg ctctcaagtc gctcaactgt taggaataaa cgtggcagag 5280 ctaccaaatg aagaaggaat tggttttgtt acattaggtc ttgactcgct cacotctatt 5340 gaactgcgta acagtttaca acgcacatta gattgttcat tacctgtcac ctttgctttt 5400 gactacccaa ctatagaaat agcggttaag tacctaacac aagttgtaat tgcaccgatg 5460 gaaagcacag catcgcagca aacagactct ttatcagcaa tgttcacaga tacttcgtcc 5520 atcgggagaa ttcttgacaa cgaaacagat gtgttagaca gcgaaatgca aagtgatgaa 5580 gatgaatctt tgtctacact tatacaaaaa ttatcaacac atttggatta g 5631 <210 82 <211> 1876
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 82
Met Arg Ser Lys Phe Asn Ile Asn Val Thr Leu Leu Val Cys Leu Ile 15 10 15
Ile Ile Pro Tyr Phe Pro Thr Thr Leu Met Lys Val Pro Ile Thr Ala : 20 25 30
Asn Glu Asp Ala Ala Thr Leu Leu Gin Arg Val Gly Leu Ser Leu Lys 35 40 45
Glu Ala His Gin Gin Leu Glu Ala Met Gin Arg Arg Ala His Glu Pro SO 55 60
Ile Ala Ile Val Gly Leu Gly Leu Arg Phe Pro Gly Ala Asp Ser Pro 65 70 75 80
Gin Thr Phe Trp Lys Leu Leu Gin Asn Gly Val Asp Met Val Thr Glu 85 90 95
Ile Pro Ser Asp Arg Trp Ala Val Asp Glu Tyr Tyr Asp Pro Gin Pro 100 105 110
Gly Cys Pro Gly Lys Met Tyr Ile Arg Glu Ala Ala Phe Val Asp Ala 115 120 125
Val Asp Lys Phe Asp Ala Ser Phe Phe Asp Ile Ser Pro Arg Glu Ala 130 135 140
Ala Asn Ile Asp Pro Gin His Arg Met Leu Leu Glu Val Ala Trp Glu 145 150 155 160
Ala Leu Glu Arg Ala Gly Ile Ala Pro Ser Gin Leu Met Asp Ser Gin 165 170 175
Thr Gly Val Phe Val Gly Met Ser Glu Asn Asp Tyr Tyr Ala His Leu 180 185 190
Glu Asn Thr Gly Asp His His Asn Val Tyr Ala Ala Thr Gly‘Asn Ser 195 200 205
Asn Tyr Tyr Ala Pro Gly Arg Leu Ser Tyr Leu Leu Gly Leu Gin Gly 210 215 220
Pro Asn Met Val Val Asp Ser, Ala Cys Ser Ser Ser Leu Val Ala Val 225 230 235 240
His Leu Ala Cys Asn Ser Leu Arg Met Gly Glu Cys Asp Leu Ala Leu 245 250 255
Ala Gly Gly Val Gin Leu Met Leu Ile Pro Asp Pro Met Ile Gly Thr 260 265 270
Ala Gin Leu Asn Ala Phe Ala Thr Asp Gly Arg Ser Lys Thr Phe Asp 275 280 285
Ala Ala Ala Asp Gly Tyr Gly Arg Gly Glu Gly Cys Gly Met Ile Val 290 295 300
Leu Lys Arg Ile Ser Asp Ala Ile Val Ala Asp Asp Pro Ile Leu Ala 30S 310 315 320
Val Ile Arg Gly Ser Ala Val Asn His Gly Gly Arg Ser Ser Gly Leu 325 330 335
Thr Ala Pro Asn Lys Leu Ser Gin Glu Ala Leu Leu Arg Gin Ala Leu 340 345 350
Gin Asn Ala Lys Val Gin Pro Glu Ala Val Ser Tyr Ile Glu Ala His 355 360 365
Gly Thr Gly Thr Gin Leu Gly Asp Pro Ile Glu Val Gly Ala Leu Thr 370 375 380
Thr Val Phe Gly Ser Ser Arg Ser Glu Pro Leu Trp Ile Gly Ser Val 385 390 395 400
Lys Thr Asn Ile Gly His Leu Glu Pro Ala Ala Gly Ile Ala Gly Leu 405 410 415
Ile Lys Val Ile Leu Ser Leu Gin Glu Lys Gin Ile Pro Pro Ser Leu 420 425 430
His Phe Gin Asn Pro Asn Pro Phe Ile Asp Trp Glu Ser Ser Pro Val 435 440 445
Gin Val Pro Thr Gin Cys Val Pro Trp Thr Gly Lys Glu Arg Val Ala S450 455 460
Gly Val Ser Ser Phe Gly Met Ser Gly Thr Asn Cys His Leu Val Val 465 470 475 480
Ala Glu Ala Pro Val Arg Gin Asn Glu Lys Ser Glu Asn Ala Pro Glu 485 490 495
Arg Pro Cys His Ile Leu Thr Leu Ser Ala Lys Thr Glu Ala Ala Leu 500 505 510
Asn Ala Leu Val Ala Arg Tyr Met Ala Phe Leu Arg Glu Ala Pro Ala 515 520 525
Ile Ser Leu Ala Asp Leu Cys Tyr Ser Ala Asn Val Gly Arg Asn Leu 530 535 540
Phe Ala His Arg Leu Ser Phe Ile Ser Glu Asn Ile Ala Gin Leu Ser 545 550 555 560
Glu Gin Leu Glu His Cys Pro Gin Gin Ala Thr Met Pro Thr Gin His 565 570 575
Asn Val Ile Leu Asp Asn Gin Leu Ser Pro Gin Ile Ala Phe Leu Phe 580 585 590
Thr Gly Gin Gly Ser Gin Tyr Ile Asn Met Gly Arg Glu Leu Tyr Glu 595 600 605
Thr Gin Pro Thr Phe Arg Arg Ile Met Asp Glu Cys Asp Asp Ile Leu 610 615 620
His Pro Leu Leu Gly Glu Ser Ile Leu Asn Ile Leu Tyr Thr Ser Pro 625 630 635 640
Ser Lys Leu Asn Gin Thr Val Tyr Thr Gin Pro Ala Leu Phe Ala Phe 645 650 655
Glu Tyr Ala Leu Ala Lys Leu Trp Ile Ser Trp Gly Ile Glu Pro Asp 660 665 670
Val Val Leu Gly His Ser Val Gly Glu Tyr Val Ala Ala Cys Leu Ala 675 680 685
Gly Val Phe Ser Leu Glu Asp Gly Leu Lys Leu Ile Ala Ser Arg Gly 690 695 700
Cys Leu Met Gin Ala Leu Pro Pro Gly Lys Met Leu Ser Ile Arg Ser 705 710 715 720
Asn Glu Ile Gly Val Lys Ala Leu Ile Ala Pro Tyr Ser Ala Glu Val 725 730 735
Ser Ile Ala Ala Ile Asn Gly Gin Gin Ser Val Val Ile Ser Gly Lys 740 745 750
Ala Glu Ile Ile Asp Asn Leu Ala Ala Glu Phe Ala Ser Glu Gly Ile 755 760 765
Lys Thr His Leu Ile Thr Val Ser His Ala Phe His Ser Pro Met Met 770 775 780
Thr Pro Met Leu Lys Ala Phe Arg Asp Val Ala Ser Thr Ile Ser Tyr 785 790 795 800
Arg Ser Pro Ser Leu Ser Leu Ile Ser Asn Gly Thr Gly Gin Leu Ala 805 810 815
Thr Lys Glu Val Ala Thr Pro Asp Tyr Trp Val Arg His Val His Ser 820 825 830
Thr Val Arg phe Ala Asp Gly Ile Ala Thr Leu Ala Glu Gin Asn Thr 835 840 845
Asp Ile Leu Leu Glu Val Gly Pro Lys Pro Ile Leu Leu Gly Met Ala 850 855 860
Lys Gin Ile Tyr Ser Glu Asn Gly Ser Ala Ser His Pro Leu Met Leu 865 870 875 880
Pro Ser Leu Arg Glu Asp Gly Asn Asp Trp Gin Gin Met Leu Ser Thr 885 890 895
Cys Gly Gin Leu Val Val Asn Gly Val Lys Ile Asp Trp Ala Gly Phe 900 905 910
Asp Lys Asp Tyr Ser Arg His Lys Ile Leu Leu Pro Thr Tyr Pro Phe 915 920 925
Gin Arg Glu Arg Tyr Trp Ile Glu Ser Ser Val Lys Lys Pro Gin Lys 930 935 940
Gin Glu Leu Arg Pro Met Leu Asp Lys Met Ile Arg Leu Pro Ser Glu 945 950 955 960
Asn Lys Val Val Phe Glu Thr Glu Phe Gly Val Arg Gin Met Pro His 965 970 975
Ile Ser Asp His Gin Ile Tyr Gly Glu Val Ile Val Pro Gly Ala Val 980 985 990
Leu Ala Ser Leu Ile Phe Asn Ala Ala Gin Val Leu Tyr Pro Asp Tyr 995 1000 1005
Gin His Glu Leu Thr Asp Ile Ala Phe Tyr Gin Pro Ile Ile Phe 1010 1015 1020
His Asp Asp Asp Thr Val Ile Val Gin Ala Ile Phe Ser Pro Asp 1025 1030 1035
Lys Ser Gin Glu Asn Gin Ser His Gin Thr Phe Pro Pro Met Ser 1040 1045 1050
Phe Gin Ile Ile Ser Phe Met Pro Asp Gly Pro Leu Glu Asn Lys 1055 1060 1065
Pro Lys Val His Val Thr Gly Cys Leu Arg Met Leu Arg Asp Ala 1070 1075 1080
Gin Pro Pro Thr Leu Ser Pro Thr Glu Ile Arg Gin Arg Cys Pro 1085 1090 1095
His Thr Val Asn Gly His Asp Trp Tyr Asn Ser Leu Val Lys Gin 1100 1105 1110
Lys Phe Glu Met Gly Pro Ser Phe Arg Trp Val Gin Gin Leu Trp 1115 1120 1125
His Gly Glu Asn Glu Ala Leu Thr Arg Leu His Ile Pro Asp Val 1130 1135 1140
Val Gly Ser Val Ser Gly His Gin Leu His Gly Ile Leu Leu Asp 1145 1150 1155
Gly Ser Leu Ser Thr Thr Ala Val Met Glu Tyr Glu Tyr Gly Asp 1160 1165 1170
Ser Ala Thr Arg Val Pro Leu Ser Phe Ala Ser Leu Gin Leu Tyr 1175 1180 1185
Lys Pro Val Thr Gly Thr Glu Trp Trp Cys Tyr Ala Arg Lys ile 1190 1195 1200
Gly Glu Phe Lys Tyr Asp Phe Gin Ile Met Asn Glu Ile Gly Glu 1205 1210 1215
Thr Leu Val Lys Ala Ile Gly Phe Val Leu Arg Glu Ala Ser Pro 1220 1225 1230
Glu Lys Phe Leu Arg Thr Thr Tyr Val His Asn Trp Leu Val Asp 1235 1240 1245
Ile Glu Trp Gin Ala Gin Ser Thr Ser Leu Val Pro Ser Asp Gly 1250 1255 1260
Thr Ile Ser Gly Ser Cys Leu Val Leu Ser Asp Gin His Gly Thr 1265 1270 1275
Gly Ala Ala Leu Ala Gin Arg Leu Asp Asn Ala Gly Val Pro Val 1280 1285 1290
Thr Met ile Tyr Ala Asp Leu Ile Leu Asp Asn Tyr Glu Leu Ile 1295 1300 1305
Phe Arg Thr Leu Pro Asp Leu Gin Gin Val Val Tyr Leu Trp Gly 1310 1315 1320
Leu Asp Gin Lys Glu Asp Cys His Pro Met Lys Gin Ala Glu Asp 1325 1330 1335
Asn Cys Thr Ser Val Leu Tyr Leu Val Gin Ala Leu Leu Asn Thr 1340 1345 1350
Tyr Ser Thr Pro Pro Ser Leu Leu Ile Val Thr Cys Asp Ala Gin 1355 1360 1365
Ala Val Val Glu Gin Asp Arg Val Asn Gly Phe Ala Gin Ser Ser •1370 1375 1380
Leu Leu Gly Leu Ala Lys Val Ile Met Leu Glu His Pro Glu Leu 1385 1390 1395
Ser Cys Val Tyr Met Asp Val Glu Ala Gly Tyr Leu Gin Gin Asp 1400 1405 1410
Val Ala Asn Thr Ile Phe Thr Gin Leu Lys Arg Gly His Leu Ser 1415 1420 1425
Lys Asp Gly Glu Glu Ser Gin Leu Ala Trp Arg Asn Gly Gin Ala 1430 1435 1440
Tyr Val Ala Arg Leu Ser Gin Tyr Lys Pro Lys Ser Glu Gin Leu 1445 1450 1455
Val Glu Ile Arg Ser Asp Arg Ser Tyr Leu Ile Thr Gly Gly Arg 1460 1465 1470
Gly Gly Val Gly Leu Gin Ile Ala Arg Trp Leu Val Glu Lys Gly 1475 1480 1485
Ala Lys His Leu Val Leu Leu Gly Arg Ser Gin Thr Ser Ser Glu 1490 1495 1500
Val Ser Leu Val Leu Asp Glu Leu Glu Ser Ala Gly Ala Gin Ile 1505 1510 1515
Ile Val Ala Gin Ala Asp Ile Ser Asp Glu Lys Val Leu Ala Gin 1520 1525 1530
Ile Leu Thr Asn Leu Thr Val Pro Leu Cys Gly Val ile His Ala 1535 1540 1545
Ala Gly Val Leu Asp Asp Ala Ser Leu Leu Gin Gin Thr Pro Ala 1550 1555 1560
Lys Leu Lys Lys Val Leu Leu Pro Lys Ala Glu Gly Ala Trp Ile 1565 1570 1575
Leu His Asn Leu Thr Leu Glu Gin Arg Leu Asp Phe Phe Val Leu 1580 1585 1590
Phe Ser Ser Ala Ser Ser Leu Leu Gly Ala Pro Gly Gin Ala Asn 1595 1600 1605
Tyr Ser Ala Ala Asn Ala Phe Leu Asp Gly Leu Ala Ala Tyr Arg 1610 1615 1620
Arg Gly Arg Gly Leu Pro Cys Leu Ser Ile Cys Trp Gly Ala Trp 1625 1630 1635
Asp Gin Val Gly Met Ala Ala Arg Gin Gly Leu Leu Asp Lys Leu 1640 1645 1650
Pro Gin Arg Gly Glu Glu Ala Ile Pro Leu Gin Lys Gly Leu Asp 1655 1660 1665
Leu Phe Gly Glu Leu Leu Asn Glu Pro Ala Ala Gin Ile Gly Val 1670 1675 16B0
Ile Pro Ile Gin Trp Thr Arg Phe Leu Asp His Gin Lys Gly Asn 1685 1690 1695
Leu Pro Phe Tyr Glu Lys Phe Ser Lys Ser Ser Arg Lys Ala Gin 1700 1705 1710
Ser Tyr Asp Ser Met Ala Val Ser His Thr Glu Asp Ile Gin Arg 1715 1720 1725
Lys Leu Lys Gin Ala Ala Val Gin Asp Arg Pro Lys Leu Leu Glu 1730 1735 1740
Val His Leu Arg Ser Gin Val Ala Gin Leu Leu Gly Ile Asn Val 1745 1750 1755
Ala Glu Leu Pro Asn Glu Glu Gly Ile Gly Phe Val Thr Leu Gly 1760 1765 1770
Leu Asp Ser Leu Thr Ser Ile Glu Leu Arg Asn Ser Leu Gin Arg 1775 1780 1785
Thr Leu Asp Cys Ser Leu Pro Val Thr Phe Ala Phe Asp Tyr Pro 1790 1795 1800
Thr Ile Glu Ile Ala Val Lys Tyr Leu Thr Gin Val Val Ile Ala 1805 1810 1815
Pro Met Glu Ser Thr Ala Ser Gin Gin Thr Asp Ser Leu Ser Ala 1820 1825 1830
Met Phe Thr Asp Thr Ser Ser Ile Gly Arg Ile Leu Asp Asn Glu 1835 1840 1845
Thr Asp Val Leu Asp Ser Glu Met Gin Ser Asp Glu Asp Glu Ser 1850 1855 1860
Leu Ser Thr Leu Ile Gin Lys Leu Ser Thr His Leu Asp 1865 1870 1875
<210> 83 <211> 4074 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400 83 atgaacgctt tgtcagaaaa tcaggtaact tctatagtca agaaggcatt gaacaaaata 60 gaggagttac aagccgaact tgaccgttta aaatacgcgc aacgggaacc aatcgccatc 120 attggaatgg gctgtcgctt tcctggtgca gacacacctg aagctttttg gaaattattg 180 cacaatgggg ttgatgctat ccaagagatt ccaaaaagcc gttgggatat tgacgactat 240 tatgatccca caccagcaac acccggcaaa atgtatacac gttttggtgg ttttctcgac 300 caaatagcag ccttcgaccc tgagttcttt cgcatttcta ctcgtgaggc aatcagctta 360 gaccctcaac agagattgct tctggaagtg agttgggaag ccttagaacg ggctgggctg 420 acaggcaata aactgactac acaaacaggt gtctttgttg gcatcagtga aagtgattat 4B0 cgtgatttga ttatgcgtaa tggttctgac ctagatgtat attctggttc aggtaactgc 540 catagtacag ccagcgggcg tttatcttat tatttgggac ttactggacc caatttgtcc 600 cttgataccg cctgttcgtc ctctttggtt tgtgtggcat tggctgtcaa gagcctacgt 660 caacaggagt gtgatttggc attggcgggt ggtgtacaga tacaagtgat accagatggc 720 tttatcaaag cctgtcaatc ccgtatgttg tcgcctgatg gacggtgcaa aacatttgat 780 ttccaggcag atggttatgc ccgtgctgag gggtgtggga tggtagttct caaacgccta 840 tccgatgcaa ttgctgacaa tgataatatc ctggccttga ttcgtggtgc cgcagtcaat 900 catgatggct acacgagtgg attaaccgtt cccagtggtc cctcacaacg ggcggtgatc 960 caacaggcat tagcggatgc tggaatacac ccggatcaaa ttagctatat tgaggcacat 1020 ggcacaggta catccttagg cgatcctatt gaaatgggtg cgattgggca agtctttggt 1080 caacgctcac agatgctttt cgtcggttcg gtcaagacga atattggtca tactgaggct 1140 gctgctggta ttgctggtct catcaaggtt gtactctcaa tgcagcacgg tgaaatccca 1200 gcaaacttac acttcgacca gccaagtcct tatattaact gggatcaatt accagtcagt 1260 atcccaacag aaacaatacc ttggtctact agcgatcgct ttgcaggagt cagtagcttt 1320 ggctttagtg gcacaaactc tcatatcgta ctagaggcag ccccaaacat agagcaacct 1380 actgatgata ttaatcaaac gcegcatatt ttgaccttag ctgcaaaaac acccgcagcc 1440 ctgcaagaac tggctcggcg ttatgcgact cagatagaga cctctcccga tgttcctctg 1500 gcggacattt gtttcacagc acacataggg cgtaaacatt ttaaacatag gtttgcggta 1560 gtcacggaat ctaaagagca actgcgtttg caattggatg catttgcaca atcagggggt 1620 gtggggcgag aagtcaaatc gctaccaaag atagcctttc tttttacagg tcaaggctca 1680 cagtatgtgg gaatgggtcg tcaactttac gaaaaccaac ctaccttccg aaaagcactc 1740 gcccattgtg atgacatctt gcgtgctggt gcatatttcg accgatcact actttcgatt 1800 ctctacccag agggaaaatc agaagccatt caccaaaccg cttatactca gcccgcgctt 1860 tttgctcttg agtatgcgat cgctcagttg tggcactcct ggggtatcaa accagatatc 1920 gtgatggggc atagtgtagg tgaatacgtc gccgcttgtg tggcgggcat attttcttta 1980 gaggatgggc tgaaactaat tgctactcgt ggtcgtctga tgcaatccct acctcaagac 2040 ggaacgatgg tttcttcttt ggcaagtgaa gctcgtatcc aggaagctat tacaccttac 2100 cgagatgatg tgtcaatcgc agcgataaat gggacagaaa gcgtggttat ctctggcaaa 2160 cgcacctctg tgatggcaat tgctgaacaa ctcgccaccg ttggcatcaa gacacgccaa 2220 ctgacggttt cccatgcctt ccattcacca cttatgacac ccatcttgga tgagttccgc 2280 caggtggcag ccagtatcac ctatcaccag cccaagttgc tacttgtctc caacgtctcc 2340 gggaaagtgg ccggccctga aatcaccaga ccagattact gggtacgcca tgtccgtgag 2400 gcagtgcgct ttgccgatgg agtgaggacg ctgaatgaac aaggtgtcaa tatctttctg 2460 gaaatcggtt ctaccgctac cctgttgggc atggcactgc gagtaaatga ggaagattca 2520 aatgcctcaa aaggaacttc gtcttgctac ctgcccagtt tacgggaaag ccagaaggat 2580 tgtcagcaga tgttcactag tctgggtgag ttgtacgtac atggatatga tattgattgg 2640 ggtgcattta atcggggata tcaaggacgc aaggtgatat tgccaaccta tccgtttcag 2700 cgacaacgtt attggcttcc cgaccctaag ttggcacaaa gttccgattt agataccttt 2760 caagctcaga gcagcgcatc atcacaaaat cctagcgctg tgtccacttt actgatggaa 2820 tatttgcaag caggtgatgt ccaatcttta gttgggcttt tggatgatga acggaaactc 2880 tctgctgctg aacgaattgc actacccagt attttggagt ttttggtaga ggaacaacag 2940 cgacaaataa gctcaaccac aactcctcaa acagttttac aaaaaataag tcaaacttcc 3000 catgaggaca gatatgaaat attgaagaac ctgatcaaat ctgaaatcga aacgattatc 3060 aaaagtgttc cctccgatga acaaatgttt tctgacttag gaattgattc cttgatggcg 3120 atcgaactgc gtaataagct ccgttctgct atagggttgg aactgccagt ggcaatagta 3180 tttgaccatc ccacgattaa gcagttaact aacttcgtac tggacagaat tgtgccgcag 3240 gcagaccaaa aggacgttcc caccgaatcc ttgtttgctt ctaaacagga gatatcagtt 3300 gaggagcagt cttttgcaat taccaagctg ggcttatccc ctgcttccca ctccctgcat 3360 cttccCccat ggacggttag acctgcggta atggcagatg taacaaaact aagccaactt 3420 gaaagagagg cctatggctg gatcggagaa ggagcgatcg ccccgcccca tctcattgcc 3480 gatcgcatca atttactcaa cagtggtgat afcgccttggt tctgggtaat ggagcgatca 3540 ggagagttgg gcgcgtggca ggtgctacaa ccgacatctg ttgatccata tacttatgga 3600 agttgggatg aagtaactga ccaaggtaaa ctgcaagcaa ccttcgaccc aagtggacgc 3660 aatgtgtata ttgtcgcggg tgggtctagc aacctcccca cggtagccag ccacctcatg 3720 acgcttcaga ctttattgat gctgcgggaa actggtcgtg acacaatctt tgtctgtctg 3780 gcaatgccag gttatgccaa ataccacagt caaacaggaa aatcgccgga agagtatatt 3840 gcgctgactg acgaggatgg tatcccaatg gacgagttta ttgcactttc Cgtctacgac 3900 tggcctgtta ccccatcgtt tcgtgttctg cgagacggtt atccacctga tcgagattct 3960 ggtggtcacg cagttagtac ggttttccag ctcaatgatt tcgatggagc gatcgaagaa 4020 acatatcgtc gtattatccg ccatgccgat gtccttggtc tcgaaagagg ctaa 4074
<210 84 <211> 1357 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 84
Met Asn Ala Leu Ser Glu Asn Gin Val Thr Ser Ile Val Lys Lys Ala 1 . 5 10 15
Leu Asn Lys Ile Glu Glu Leu Gin Ala Glu Leu Asp Arg Leu Lys Tyr 20 25 30
Ala Gin Arg Glu Pro Ile Ala Ile Ile Gly Met Gly Cys Arg Phe Pro 35 40 45
Gly Ala Asp Thr Pro Glu Ala Phe Trp Lys Leu Leu His Asn Gly Val 50 55 60
Asp Ala Ile Gin Glu lie Pro Lys Ser Arg Trp Asp lie Asp Asp Tyr 65 70 75 80
Tyr Asp Pro Thr Pro Ala Thr Pro Gly Lys Met Tyr Thr Arg Phe Gly 85 90 95
Gly Phe Leu Asp Gin lie Ala Ala Phe Asp Pro Glu Phe Phe Arg He 100 105 110
Ser Thr Arg Glu Ala Ile Ser Leu Asp Pro Gin Gin Arg Leu Leu Leu 115 120 125
Glu Val Ser Trp Glu Ala Leu Glu Arg Ala Gly Leu Thr Gly Asn Lys 130 135 140
Leu Thr Thr Gin Thr Gly Val Phe Val Gly lie Ser Glu Ser Asp Tyr 145 150 155 160
Arg Asp Leu lie Met Arg Asn Gly Ser Asp Leu Asp Val Tyr Ser Gly 165 170 175
Ser Gly Asn Cys His Ser Thr Ala Ser Gly Arg Leu Ser Tyr Tyr Leu i 180 185 190
Gly Leu Thr Gly Pro Asn Leu Ser Leu Asp Thr Ala Cys Ser Ser Ser 195 200 205
Leu Val Cys Val Ala Leu Ala Val Lys Ser Leu Arg Gin Gin Glu Cys 210 215 220
Asp Leu Ala Leu Ala Gly Gly Val Gin lie Gin Val lie Pro Asp Gly 225 230 235 240
Phe lie Lys Ala Cys Gin Ser Arg Met Leu Ser Pro Asp Gly Arg Cys 245 250 255
Lys Thr Phe Asp Phe Gin Ala Asp Gly Tyr Ala Arg Ala Glu Gly Cys 260 265 270
Gly Met val Val Leu Lys Arg Leu Ser Asp Ala lie Ala Asp Asn Asp 275 280 285
Asn lie Leu Ala Leu lie Arg Gly Ala Ala Val Asn His Asp Gly Tyr 290 295 300
Thr Ser Gly Leu Thr Val Pro Ser Gly Pro Ser Gin Arg Ala Val lie 305 310 315 320
Gin Gin Ala Leu Ala Asp Ala Gly lie His Pro Asp Gin lie ser Tyr 325 330 335 lie Glu Ala His Gly Thr Gly Thr Ser Leu Gly Asp Pro He Glu Met 340 345 350
Gly Ala lie Gly Gin Val Phe Gly Gin Arg Ser Gin Met Leu Phe Val 355 360 365
Gly Ser Val Lys Thr Asn lie Gly His Thr Glu Ala Ala Ala Gly lie .370 375 380
Ala Gly Leu lie Lys Val Val Leu Ser Met Gin His Gly Glu He Pro 385 390 395 400
Ala Asn Leu His Phe Asp Gin Pro Ser Pro Tyr lie Asn Trp Asp Gin 405 410 415
Leu Pro Val Ser lie Pro Thr Glu Thr He Pro Trp Ser Thr Ser Asp 420 425 430
Arg Phe Ala Gly Val Ser Ser Phe Gly Phe Ser Gly Thr Asn Ser His 435 440 445
He Val Leu Glu Ala Ala Pro Asn He Glu Gin Pro Thr Asp Asp lie 450 455 460
Asn Gin Thr Pro His lie Leu Thr Leu Ala Ala Lys Thr Pro Ala Ala 465 470 475 480
Leu Gin Glu Leu Ala Arg Arg Tyr Ala Thr Gin He Glu Thr Ser Pro 485 490 495
Asp Val Pro Leu Ala Asp He Cys Phe Thr Ala His He Gly Arg Lys 500 505 510
His Phe Lys His Arg Phe Ala Val Val Thr Glu Ser Lys Giv Gin Leu 515 520 525
Arg Leu Gin Leu Asp Ala Phe Ala Gin Ser Gly Gly Val Gly Arg Glu 530 535 540
Val Lys Ser Leu Pro Lys Ile Ala Phe Leu Phe Thr Gly Gin Gly Ser 545 -550 555 560
Gin Tyr Val Gly Met Gly Arg Gin Leu Tyr Glu Asn Gin Pro Thr Phe 565 570 575
Arg Lys Ala Leu Ala His Cys Asp Asp Ile Leu Arg Ala Gly. Ala Tyr 580 585 590
Phe Asp Arg Ser Leu Leu Ser Ile Leu Tyr Pro Glu Gly Lys Ser Glu 595 600 605
Ala Ile His Gin Thr Ala Tyr Thr Gin Pro Ala Leu Phe Åla Leu Glu 610 615 620
Tyr Ala Ile Ala Gin Leu Trp His Ser Trp Gly Ile Lys Pro Asp Ile 625 630 635 640
Val Met Gly His Ser Val Gly Glu Tyr Val Ala Ala Cys Val Ala Gly 645 650 655
Ile Phe Ser Leu Glu Asp Gly Leu Lys Leu Ile Ala Thr Arg Gly Arg 660 665 670
Leu Met Gin Ser Leu Pro Gin Asp Gly Thr Met Val Ser Ser Leu Ala 675 680 685
Ser Glu Ala Arg Ile Gin Glu Ala Ile Thr Pro Tyr Arg Asp Asp Val 690 695 700
Ser Ile Ala Ala Ile Asn Gly Thr Glu Ser Val Val Ile Ser Gly Lys 705 710 715 720
Arg Thr Ser Val Met Ala Ile Ala Glu Gin Leu Ala Thr Val Gly Ile 725 730 735
Lys Thr Arg Gin Leu Thr Val Ser His Ala Phe His Ser Pro Leu Met 740 745 750
Thr Pro Ile Leu Asp Glu Phe Arg Gin Val Ala Ala Ser Ile Thr Tyr 755 760 765
His Gin Pro Lys Leu Leu Leu Val Ser Asn Val Ser Gly Lys Val Ala 770 775 780
Gly Pro Glu Ile Thr Arg Pro Asp Tyr Trp Val Arg His Val Arg Glu 785 790 795 800
Ala Val Arg Phe ALa Asp Gly Val Arg Thr Leu Asn Glu Gin Gly Val 805 810 815
Asn Ile Phe Leu Glu Ile Gly Ser Thr Ala Thr Leu Leu Gly Met Ala 820 825 830
Leu Arg Val Asn Glu Glu Asp Ser Asn Ala Ser Lys Gly Thr Ser Ser 835 840 845
Cys Tyr Leu Pro Ser Leu Arg Glu Ser Gin Lys Asp Cys Gin Gin Met 850 855 860
Phe Thr Ser Leu Gly Glu Leu Tyr Val His Gly Tyr Asp Ile Asp Trp 865 870 875 880
Gly Ala Phe Asn Arg Gly Tyr Gin Gly Arg Lys Val Ile Leu Pro Thr 885 890 895
Tyr Pro Phe Gin Arg Gin Arg Tyr Trp Leu Pro Asp Pro Lys Leu Ala 900 905 910
Gin Ser Ser Asp Leu Asp Thr Phe Gin Ala Gin Ser Ser Ala Ser Ser 915 920 925
Gin Asn Pro Ser Ala Val Ser Thr Leu Leu Met Glu Tyr Leu Gin Ala 930 935 940
Gly Asp Val Gin Ser Leu Val Gly Leu Leu Asp. Asp Glu Arg Lys Leu 945 950 955 960
Ser Ala Ala Glu Arg Ile Ala Leu Pro Ser Ile Leu Glu Phe Leu Val 965 970 975
Glu Glu Gin Gin Arg Gin Ile Ser Ser Thr Thr Thr Pro Gin Thr Val 980 985 990
Leu Gin Lys Ile Ser Gin Thr Ser His Glu Asp Arg Tyr Glu Ile Leu 995 1000 1005
Lys Asn Leu Ile Lys Ser Glu Ile Glu Thr Ile Ile Lys Ser Val 1010 1015 1020
Pro Ser Asp Glu Gin Met Phe Ser Asp Leu Gly Ile Asp Ser Leu 1025 1030 1035
Met Ala Ile Glu Leu Arg Asn Lys Leu Arg Ser Ala Ile Gly Leu 1040 1045 1050
Glu Leu Pro Val Ala Ile Val Phe Asp His Pro Thr Ile Lys Gin 1055 1060 1065
Leu Thr Asn Phe Val Leu Asp Arg Ile val Pro Gin Ala Asp Gin 1070 1075 1080
Lys Asp Val Pro Thr Glu Ser Leu Phe Ala Ser Lys Gin Glu Ile 1085 1090 1095
Ser Val Glu Glu Gin Ser Phe Ala Ile Thr Lys Leu Gly Leu Ser 1100 1105 1110
Pro Ala Ser His Ser Leu His Leu Pro Pro Trp Thr val Arg Pro 1115 1120 1125
Ala Val Met Ala Asp Val Thr Lys Leu Ser Gin Leu Glu Arg Glu 1130 1135 1140
Ala Tyr Gly Trp Ile Gly Glu Gly Ala Ile Ala Pro Pro His Leu 1145 1150 1155
Ile Ala Asp Arg Ile Asn Leu Leu Asn Ser Gly Asp Met Pro Trp 1160 1165 1170
Phe Trp Val Met Glu Arg Ser Gly Glu Leu Gly Ala Trp Gin Val 1175 1180 1185
Leu Gin Pro Thr Ser Val Asp Pro Tyr Thr Tyr Gly Ser Trp Asp 1190 1195 1200
Glu Val Thr Asp Gin Gly Lys Leu Gin Ala Thr Phe Asp Pro Ser 1205 1210 1215
Gly Arg Asn Val Tyr Ile Val Ala Gly Gly Ser Ser Asn Leu Pro 1220 1225 1230
Thr Val Ala Ser His Leu Met Thr Leu Gin Thr Leu Leu Met Leu 1235 1240 1245
Arg Glu Thr Gly Arg Asp Thr Ile Phe Val Cys Leu Ala Met Pro 1250 1255 1260
Gly Tyr Ala Lys Tyr His Ser Gin Thr Gly Lys Ser Pro Glu Glu 1265 1270 1275
Tyr Ile Ala Leu Thr Asp Glu Asp Gly Ile Pro Met Asp Glu Phe 1280 1285 1290
Ile Ala Leu Ser Val Tyr Asp Trp Pro Val Thr Pro Ser Phe Arg 1295 1300 1305
Val Leu Arg Asp Gly Tyr Pro Pro Asp Arg Asp Ser Gly Gly His 1310 1315 1320
Ala Val Ser Thr Val Phe Gin Leu Asn Asp Phe Asp Gly Ala Ile 1325 1330 1335
Glu Glu Thr Tyr Arg Arg Ile Ile Arg His Ala Asp Val Leu Gly 1340 1345 1350
Leu Glu Arg Gly 1355
<210 85 <211> 1437 <212> DNA <213> cylindrospermopsis raciborskii awt205 <400> 85 atgaataaaa aacaggtaga cacattgtta atacacgctc atctttttac catgcagggc 60 aatggcctgg gatatattgc cgatggggca attgcggttc agggtagcca gatcgtagca 120 gtggattcga cagaggcttt gctgagtcat tttgaaggaa ataaaacaat taatgcggta 180 aattgtgcag tgttgcctgg actaattgat gctcatatac atacgacttg tgctattctg 240 cgtggagtgg cacaggatgt aaccaattgg ctaatggacg cgacaattcc ttatgcactt 300 cagatgacac ccgcagtaaa tatagccgga acgcgcttga gtgtactcga agggctgaaa 360 gcaggaacaa ccacattcgg cgattctgag actccttacc cgctctgggg agagtttttc 420 gatgaaattg gggtacgtgc tattctatcc cctgccttta acgcctttcc actagaatgg 480 tcggcatgga aggagggaga cctctatccc ttcgatatga aggcaggacg acgtggtaCg 540 gaagaggctg tggattttgc ttgtgcatgg aatggagccg cagagggacg tatcaccact 600 atgttgggac tacaggcggc ggatatgcta ccactggaga tcctacacgc agctaaagag 660 attgcccaac gggaaggctt aatgctgcat attcatgtgg cccagggaga tcgagaaaca 720 aaacaaattg tcaaacgata tggtaagcgt ccgatcgcat ttctagctga aattggctac 780 ttggacgaac agttgctggc agttcacctc accgatgcca cagatgaaga agtgatacaa 840 gtagccaaaa gtggtgctgg catggcactc tgttcgggcg ctattggcat cattgacggt 900 cttgttccgc ccgctcatgt ttttcgacaa gcaggcggtt ccgttgcact cggttctgat 960 caagcctgtg gcaacaactg ttgtaacatc ttcaatgaaa tgaagctgac cgccttattc 1020 aacaaaataa aatatcatga tccaaccatt atgccggctt gggaagtcct gcgtatggct 1080 accatcgaag gagcgcaggc gattggttta gatcacaaga ttggctctct tcaagtgggc 1140 aaagaagccg acctgatctt aatagacctc agttccccta acctctcgcc caccctgctc 1200 aaccctattc gtaaccttgt acctaacttg gtgtatgctg cttcaggaca tgaagttaaa 1260 agcgtcatgg tggcgggaaa acttttagtg gaagactacc aagtcctcac ggtagatgag 1320 tccgctattc tcgctgaagc gcaagtacaa gctcaacaac tctgccaacg tgtgaccgct 1380 gaccccattc acaaaaagat ggtgttaatg gaagcgatgg ctaagggtaa attatag 1437 <210 86 <211> 478
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 86
Met Asn Lys Lys Gin Val Asp Thr Leu Léu Ile His Ala His Leu Phe 15 10 15 "Thr Met Gin Gly Asn Gly Leu Gly Tyr Ile Ala Asp Gly Ala Ile Ala 20 25 30
Val Gin Gly Ser Gin Ile Val Ala Val Asp Ser Thr Glu Ala Leu Leu 35 40 45
Ser His Phe Glu Gly Asn Lys Thr Ile Asn Ala Val Asn Cys Ala Val 50 55 60
Leu Pro Gly Leu Ile Asp Ala His Ile His Thr Thr Cys Ala Ile Leu 65 70 75 80
Arg Gly Val Ala Gin Asp Val Thr Asn Trp Leu Met Asp Ala Thr Ile 85 90 95
Pro Tyr Ala Leu Gin Met Thr Pro Ala Val Asn Ile Ala Gly Thr Arg 100 105 110
Leu Ser Val Leu Glu Gly Leu Lys Ala Gly Thr Thr Thr Phe Gly Asp 115 120 125
Ser Glu Thr Pro Tyr Pro Leu Trp Gly Glu Phe Phe Asp Glu Ile Gly 130 135 140
Val Arg Ala Ile Leu Ser Pro Ala Phe Asn Ala Phe Pro Leu Glu Trp 145 150 155 160
Ser Ala Trp Lys Glu Gly Asp Leu Tyr Pro Phe Asp Met Lys Ala Gly 165 170 175
Arg Arg Gly Met Glu Glu Ala Val Asp Phe Ala Cys Ala Trp Asn Gly 180 185 190
Ala Ala Glu Gly Arg Ile Thr Thr Met Leu Gly Leu Gin Ala Ala Asp 195 200 205
Met Leu Pro Leu Glu He Leu His Ala Ala Lys Glu lie Ala Gin Arg 210 215 220
Glu Gly Leu Met Leu His Ile His Val Ala Gin Gly Asp Arg Glu Thr 225 230 235 240
Lys Gin Ile Val Lys Arg Tyr Gly Lys Arg Pro He Ala Phe Leu Ala 245 250 255
Glu lie Gly Tyr Leu Asp Glu Gin Leu Leu Ala Val His Leu Thr Asp 260 265 270
Ala Thr Asp Glu Glu Val Ile Gin Val Ala Lys Ser Gly Ala Gly Met 275 280 285
Ala Leu Cys Ser Gly Ala He Gly He He Asp Gly Leu Val Pro Pro 290 295 300
Ala His Val Phe Arg Gin Ala Gly Gly Ser Val Ala Leu Gly Ser Asp 305 < 310 315 320
Gin Åla Cys Gly Asn Asn Cys Cys Asn lie Phe Asn Glu Met Lys Leu 325 330 335
Thr Ala Leu Phe Asn Lys lie Lys Tyr His Asp Pro Thr He Met Pro 340 345 350
Ala Trp Glu Val Leu Arg Met Ala Thr He Glu Gly Ala Gin Ala lie 355 360 365
Gly Leu Asp His Lys He Gly Ser Leu Gin Val Gly Lys Glu Ala Asp 370 375 380
Leu lie Leu lie Asp Leu Ser Ser Pro Asn Leu Ser Pro Thr Leu Leu 385 390 395 400
Asn Pro lie Arg Asn Leu Val Pro Asn Leu Val Tyr Ala Ala Ser Gly 405 410 415
His Glu Val Lys Ser Val Met Val Ala Gly Lys Leu Leu Val Glu Asp 420 425 430
Tyr Gin val Leu Thr Val Asp Glu Ser Ala lie Leu Ala Glu Ala Gin 435 440 445
Val Gin Ala Gin Gin Leu Cys Gin Arg Val Thr Ala Asp Pro He His 450 455 460
Lys Lys Met Val Leu Met Glu Ala Met Ala Lys Gly Lys Leu 465 470 475
<210 87 <211> 831 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400 87 atgaccatat atgaaaataa gttgagtagt tatcaaaaaa atcaagatgc cataatatct 60 gcaaaagaac tcgaagaatg gcatttaatt ggacttctag accattcaat agatgcggta 120 atagtaccga attattttct tgagcaagag tgtatgacaa tttcagagag aataaaaaag 180 agtaaatatt ttagcgctta tcccggtcat ccatcagtaa gtagcttggg acaagagttg 240 tatgaatgcg aaagtgagct tgaattagca aagtatcaag aagacgcacc cacattgatt 300 aaagaaatgc ggaggctggt acatccgtac ataagtccaa ttgatagact tagggttgaa 360 gttgatgata tttggagtta tggctgtaat ttagcaaaac ttggtgataa aaaactgttt 420 gcgggtatcg ttagagagtt taaagaagat aaccctggcg caccacattg tgacgtaatg 480 gcatggggtt ttctcgaata ttataaagat aaaccaaata tcataaatca aatcgcagca 540 aatgtatatt taaaaacgtc tgcatcagga ggagaaatag tgctttggga tgaatggcca 600 actcaaagcg aatatatagc atacaaaaca gatgatccag ctagtttcgg tcttgatagc 660 aaaaagatcg cacaaccaaa acttgagatc caaccgaacc agggagattt aattctattc 720 aattccatga gaattcatgc ggtgaaaaag atagaaactg gtgtacgtat gacatgggga 780 tgtttgattg gatactctgg aactgataaa ccgcttgtta tttggactta a 831 <210> 88 <211> 276
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 88
Met Thr Ile Tyr Glu Asn Lys Leu Ser Ser Tyr Gin Lys Asn Gin Asp 15 10 15
Ala Ile Ile Ser Ala Lys Glu Leu Glu Glu Trp His Leu Ile Gly Leu 20 25 30
Leu Asp His Ser Ile Asp Ala Val Ile Val Pro Asn Tyr Phe Leu Glu 35 40 45
Gin Glu Cys Met Thr Ile Ser Glu Arg Ile Lys Lys Ser Lys Tyr Phe 50 55 60 ser Ala Tyr Pro Gly His Pro Ser Val Ser Ser Leu Gly Gin Glu Leu 65 70 75 80
Tyr Glu Cys Glu Ser Glu Leu Glu Leu Ala Lys Tyr Gin Glu Asp Ala 85 90 95
Pro Thr Leu Ile Lys Glu Met Arg Arg Leu Val His Pro Tyr Ile Ser 100 105 110
Pro Ile Asp Arg Leu Arg Val Glu Val Asp Asp Ile Trp Ser Tyr Gly 115 120 ' 125
Cys Asn Leu Ala Lys Leu Gly Asp Lys Lys Leu Phe Ala Gly Ile Val 130 135 140
Arg Glu Phe Lys Glu Asp Asn Pro Gly Ala Pro His Cys Asp Val Met 145 150 155 160
Ala Trp Gly Phe Leu Glu Tyr Tyr Lys Asp Lys Pro Asn Ile Ile Asn 165 170 175
Gin Ile Ala Ala Asn Val Tyr Leu Lys Thr Ser Ala Ser Gly Gly Glu 180 185 190
Ile Val Leu Trp Asp Glu Trp pro Thr Gin Ser Glu Tyr Ile Ala Tyr 195. 200 205
Lys Thr Asp Asp Pro Ala Ser Phe Gly Leu Asp Ser Lys Lys Ile Ala 210 215 220
Gin Pro Lys Leu Glu Ile Gin Pro Asn Gin Gly Asp Leu Ile Leu Phe 225 230 235 240
Asn Ser Met Arg Ile His Ala Val Lys Lys Ile Glu Thr Gly Val Arg 245 250 255
Met Thr Trp Gly Cys Leu Ile Gly Tyr Ser Gly Thr Asp Lys Pro Leu 260 265 270
Val Ile Trp Thr 275
<210 89 <211>1398 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400 89 ttaatgtagc gtttccattt gagtcaaggc acgagaagct tctaaagctg gaatagatac 60 actatcattc tcaactacac tctcaaatgt cctaggtaac tgtgccccaa acatcagcat 120 tccaatggcg ttgaacaaaa agaaagccaa ccacaagata tggttactct caaatttaac 180 agcagctaca tccgcaggta aaaatcctac accaaacgcg attaagttaa cattgcggag 240 agtatgccct tgagccaaac ccaagaagta cccacatagt atgcaacata ctgaattgca 300 tactaggaca agtaccaacc agggaataaa aatatcaata ttctcaataa tttctgcgtg 360 gttggttaac aacccaaaaa catcatcggg aaatagccaa cacgctccgc cgaaaaccag 420 aotcactagc agagccattc ccacagaaac ttttgccaga ggtgctaact gttctgtggc 480 tcctttccct ttaaaatttc ctgccagagt ttctgtacag aatcccaatc cttcaacaat 540 gtagatgctc aaagcccata tctgtaagag caaggcattt tgagcgtaga taattgtccc 600 catttgtgcc ccttcgtagt taaacgttaa gttggtaaac atacaaacta aattgctgac 660 aaagatgttt ccattgagag ttaaggtgga gcgtatagct tttatgtecc aaatttttcc 720 agctaattct tttacctctt gccacgggat ttctttgcag acaaaaaaca atcccaccaa 780 tagggtgaga tattgacttg cagcagaagc tactcctgcc cccatgctcg accagtctaa 840 gtggataata aacaagtagt cgagtgcgat attggcagca ttgcccacaa ccgacaacaa 900 cacaactaag ccattttttt cccgtcccag aaaccagcca agcaggacaa agttgagcaa 960 aatggcaggc gctccccaac tctgggtgtt aaaatacgct tgagctgaag acttcacctc 1020 tgggccgaca tctagtatag aaaaccccaa cacccctaac gggtactgta acagtatgat 1080 cgccaccccc agcaccagag caattaaacc attaagcagt cccgccaaca g.tacgccctc 1140 tcggtcatct cgtccgactg cttgtgctgt taacgcagtg gtacccattc gtaaaaacga 1200 taaaacaaag tagagaaagt taagcaggtt tccagcaagg gctactccag ctaggtagtg 1260 gatttccgag agatgaccta agaacatgat actgactaaa ttactcagtg gtactataat 1320 attcgatagg acgttggtaa aagctagtcg gaagtagcgg ggtataaagt catactggct- 1380 tggaaatgtc aggctcat 1398
<210> 90 <211> 465 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 90
Met Ser Leu Thr Phe Pro Ser Gin Tyr Asp Phe Ile Pro Arg Tyr Phe 1 5 10 15
Arg Leu Ala Phe Thr Asn Val Leu Ser Asn Ile Ile Val Pro Leu Ser 20 25 30
Asn Leu Val Ser Ile Met- Phe Leu Gly His Leu Ser Glu Ile His Tyr 35 40 45
Leu Ala Gly Val Ala Leu Ala Gly Asn Leu Leu Asn Phe Leu Tyr Phe 50 55 60
Val Leu Ser Phe Leu Arg Met Gly Thr Thr Ala Leu Thr Ala Gin Ala 65 70 75 80
Val Gly Arg Asp Asp Arg Glu Gly Val Leu Leu Ala Gly Leu Leu Asn 85 90 95
Gly Leu Ile Ala Leu Val Leu Gly Val Ala Ile Ile Leu Leu Gin Tyr 100 105 110
Pro Leu Gly Val Leu Gly Phe Ser Ile Leu Asp Val Gly Pro Glu Val 115 120 125
Lys Ser Ser Ala Gin Ala Tyr Phe Asn Thr Gin Ser Trp Gly Ala Pro 130 135 140
Ala Ile Leu Leu Asn. Phe Val Leu Leu Gly Trp Phe Leu Gly Arg Glu 145 150 155 160
Lys Asn Gly Leu Val Val Leu Leu Ser Val Val Gly Asn Ala Ala Asn 165 170 175
Ile Ala Leu Asp Tyr Leu Phe Ile Ile His Leu Asp Trp Ser Ser Met 180 185 190
Gly Ala Gly Val Ala Ser Ala Ala Ser Gin Tyr Leu Thr Leu Leu Val 19S 200 205
Gly Leu Phe Phe Val Cys Lys Glu Ile Pro Trp Gin Glu Val Lys Glu 210 215 220
Leu Ala Gly Lys Ile Trp Asp Ile Lys Ala Ile Arg Ser Thr Leu Thr 225 230 235 240
Leu Asn Gly Asn Ile Phe Val Ser Asn Leu Val Cys Met Phe Thr Asn 245 250 255
Leu Thr Phe Asn Tyr Glu Gly Ala Gin. Met Gly Thr Ile Ile Tyr Ala 260 265 270
Gin Asn Ala Leu Leu Leu Gin Ile Trp Ala Leu Ser Ile Tyr Ile Val 275 280 285
Glu Gly Leu Gly Phe Cys Thr Glu Thr Leu Ala Gly Asn Phe Lys Gly 290 295 300
Lys Gly Ala Thr Glu Gin Leu Ala Pro Leu Ala Lys Val Ser Val Gly 305 310 315 320
Met Ala Leu Leu Val Ser Leu Val Phe Gly Gly Ala Cys Trp Leu Phe 325 330 335
Pro Asp Asp Val Phe Gly Leu Leu Thr Asn His Ala Glu Ile Ile Glu 340 345 350
Asn Ile Asp Ile Phe Ile Pro Trp Leu Val Leu Val Leu Val Cys Asn 355 360 365
Ser Val Cys Cys Ile Leu Cys Gly Tyr Phe Leu Gly Leu Ala Gin Gly 370 375 380
His Thr Leu Arg Asn Val Asn Leu ile Ala Phe Gly Val Gly Phe Leu 385 390 395 400
Pro Ala Asp Val Ala Ala Val Lys Phe Glu Ser Asn His Ile Leu Trp 405 410 415
Leu Ala Phe Phe Leu Phe Asn Ala lie Gly Met Leu Met Phe Gly Ala 420 425 430
Gin Leu Pro Arg Thr Phe Glu Ser Val Val Glu Asn Asp Ser Val Ser 435 440 445
Ile Pro Ala Leu Glu Ala Ser Arg Ala Leu Thr Gin Met Glu Thr Leu 450 455 460
His 465
<210> 91 <211> 750 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 91 atgttgaact tagaccgcat cctgaatcaa gagcgactgc tacgagaaat gactggactt 60 aaccgccaag cattcaacga gctgttatct cagtttgctg atacctatga acgcaccgtg 120 ttcaactcct tagcaaaccg caaacgtgcg cccgggggcg gacgcaagcc tacactcaga 180 agtatagagg aaaaactatt ttatatcctg ctgtactgca aatgttatcc gacgtttgac 240 ttgctgagtg tgttgttcaa ctttgaccgc tcctgtgctc atgattgggt acatcgacta 300 ctgtctgtgc tagaaaccac tttaggagaa aagcaagttt tgccagcacg caaactcagg 360 agcatggagg aattcaccaa aaggtttcca gatgtgaagg aggtgattgt ggatggtacg 420 gagcgtccag tccagcgtcc tcaaaaccga gaacgccaaa aagagtatta ctctggcaag 480 aaaaagcggc atacatgcaa gcagattaca gtcagcacaa gggagaaacg agtgattatt 540 cggacggaaa ccagagcagg taaagtgcat gacaaacggc tactccatga atcagagata 600 gtgcaataca ttcctgatga agtagcaata gagggagatt tgggttttca tgggttggag 660 aaagaatttg tcaatgtcca tttaccacac aagaaaccga aaggtatcga agcaaggagg 720 catggcggcg ggatgggtca gtttttataa 750
<210> 92 <211> 249 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 92
Met Leu Asn Leu Asp Arg Ile Leu Asn Gin Glu Arg Leu Leu Arg Glu 15 10 15
Met Thr Gly Leu Asn Arg Gin Ala Phe Asn Glu Leu Leu Ser Gin Phe 20 25 30
Ala Asp Thr Tyr Glu Arg Thr Val Phe Asn Ser Leu Ala Asn Arg Lys 35 40 45
Arg Ala Pro Gly Gly Gly Arg Lys Pro Thr Leu Arg Ser Ile Glu Glu 50 55 60
Lys Leu Phe Tyr Ile Leu Leu Tyr Cys Lys Cys Tyr Pro Thr Phe Asp 65 70 75 80
Leu Leu Ser Val Leu Phe Asn Phe Asp Arg Ser Cys Ala His Asp Trp 85 90 95
Val His Arg Leu Leu Ser Val Leu Glu Thr Thr Leu Gly Glu Lys Gin 100 105 110
Val Leu Pro Ala Arg Lys Leu Arg Ser Met Glu Glu Phe Thr Lys Arg 115 120 125
Phe Pro Asp Val Lys Glu Val lie Val Asp Gly Thr Glu Arg Pro Val 130 135 140
Gin Arg Pro Gin Asn Arg Glu Arg Gin Lys Glu Tyr Tyr Ser Gly Lys 145 150 155 160
Lys Lys Arg His Thr Cys Lys Gin He Thr Val Ser Thr Arg Glu Lys 165 170 175
Arg val lie lie Arg Thr Glu Thr Arg Ala Gly Lys Val His Asp Lys 180 185 190
Arg Leu Leu His Glu Ser Glu lie Val Gin Tyr lie Pro Asp Glu Val 195 200 205
Ala lie Glu Gly Asp Leu Gly Phe His Gly Leu Glu Lys Glu Phe Val 210 215 220
Asn Val His Leu Pro His Lys Lys Pro Lys Gly lie Glu Ala Arg Arg 225 230 235 240
His Gly Gly Gly Met Gly Gin Phe Leu 245
<210> 93 <211> 1431 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 93 atgaatctta taacaacaaa aaaacaggta gatacattag tgatacacgc tcatcttttt 60 accatgcagg gaaatggtgt gggatatatt gcagatgggg cacttgcggt tgagggtagc 120 cgtattgtag cagttgattc gacggaggcg ttgctgagtc attttgaggg cagaaaggtt 180 attgagtccg cgaattgtgc cgtcttgcct gggctgatta atgctcacgt agacacaagt 240 ttggtgctga tgcgtggggc ggcgcaagat gtaactaatt ggctaatgga cgcgaccatg 300 ccttattttg ctcacatgac acccgtggcg agtatggctg caacacgctt aagggtggta 360 gaagagttga aagcaggcac aacaacattc tgtgacaata aaattattag ccccctgtgg 420 ggcgaatttt tcgatgaaat tggtgtacgg gctagtttag ctcctatgtt cgatgcactc 480 ccactggaga tgccaccgct tcaagacggg gagctttatc ccttcgatat caaggcggga 540 cggcgggcga tggcagaggc tgtggatttt gcctgtgggt ggaatggggc agcagagggg 600 cgtatcacta ccatgttagg aatgtattcg ccagatatga tgccgcttga gatgctacgc 660 gcagccaaag agattgctca acgggaaggc ttaatgctgc attttcatgt agcgcaggga 720 gatcgggaaa cagagcaaat cgttaaacga tatggtaagc gtccgatcgc atttctagct 780 gagattggct acttggacga acagttgctg gcagttcacc tcaccgatgc caccgatgaa 840 gaggtgatac aagtagccaa aagtggcgct ggcatggtac tctgttcggg aatgattggc 900 actattgacg gtatcgtgec gcccgctcat gtgtttcggc aagcaggcgg acccgttgcg 960 ctaggcagca gctacaataa tattttccat gagatgaagc tgaccgcctt attcaacaaa 1020 ataaaatatc acgatccaac cattatgccg gcttgggaag tcctgcgtat ggctaccatc 1080 gaaggagegc gggcgattgg tttagatcac aagattggct ctcttgaagt tggcaaagaa 1140 gccgacctga tcttaataga cctcagcacc cctaacctct cacccactct gcttaacccc 1200 attcgtaacc ttgtacctaa tttcgtgtac gctgcttcag gacatgaagt taaaagtgtc 1260 atggtggcgg gaaaactgtt attggaagac taccaagtcc tcacagtaga tgagtctgct 1320 atcattgctg aagcacaatt gcaagcccaa cagatttctc aatgcgtagc atctgaccct 1380 atecacaaaa aaatggtgct gatggcggcg atggcaaggg gccaattgta g 1431
<210 94 <211> 476 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 94
Met Asn Leu Ile Thr Thr Lys Lys Gin Val Asp Thr Leu Val lie His 15 10 15
Ala His Leu Phe Thr Met Gin Gly Asn Gly Val Gly Tyr He Ala Asp 20 25 30
Gly Ala Leu Ala Val Glu Gly Ser Arg Ile Val Ala Val Asp Ser Thr 35 40 45
Glu Ala Leu Leu Ser His Phe Glu Gly Arg Lys Val lie Glu Ser Ala 50 55 60
Asn Cys Ala Val Leu Pro Gly Leu He Asn Ala His Val Asp Thr Ser 65 70 75 80
Leu Val Leu Met Arg Gly Ala Ala Gin Asp Val Thr Asn Trp Leu Met 85 90 95
Asp Ala Thr Met Pro Tyr Phe Ala His Met Thr Pro Val Ala Ser Met 100 105 110
Ala Ala Thr Arg Leu Arg Val Val Glu Glu Leu Lys Ala Gly Thr Thr 115 120 125
Thr Phe Cys Asp Asn Lys lie lie Ser Pro Leu Trp Gly Glu Phe Phe 130 135 140
Asp Glu lie Gly Val Arg Ala Ser Leu Ala Pro Met Phe Asp Ala Leu 145 150 155 160
Pro Leu Glu Met Pro Pro Leu Gin Asp Gly Glu Leu Tyr Pro Phe Asp 165 170 175 lie Lys Ala Gly Arg Arg Ala Met Ala Glu Ala Val Asp Phe Ala Cys 180 185 190
Gly Trp Asn Gly Ala Ala Glu Gly Arg He Thr Thr Met Leu Gly Met 195 200 205
Tyr Ser Pro Asp Met Met Pro Leu Glu Met Leu Arg Ala Ala Lys Glu 210 215 220 lie Ala Gin Arg Glu Gly Leu Met Leu His Phe His Val Ala Gin Gly 225 230 235 240
Asp Arg Glu Thr Glu Gin He Val Lys Arg Tyr Gly Lys Arg Pro lie 245 250 255
Ala Phe Leu Ala Glu lie Gly Tyr Leu Asp Glu Gin Leu Leu Ala Val 260 265 270
His Leu Thr Asp Ala Thr Asp Glu Glu Val He Gin Val Ala Lys Ser 275 280 285
Gly Ala Gly Met Val Leu Cys Ser Gly Met He Gly Thr lie Asp Gly 290 295 300 lie Val Pro Pro Ala His Val Phe Arg Gin Ala Gly Gly Pro Val Ala 305 310 315 320
Leu Gly Ser Ser Tyr Asn Asn lie Phe His Glu Met Lys Leu Thr Ala 325 330 335
Leu Phe Asn Lys lie Lys Tyr His Asp Pro Thr lie Met Pro Ala Trp 340 345 350
Glu Val Leu Arg Met Ala Thr lie Glu Gly Ala Arg Ala lie Gly Leu 355 360 365
Asp His Lys lie Gly Ser Leu Glu Val Gly Lys Glu Ala Asp Leu lie 370 375 380
Leu lie Asp Leu Ser Thr Pro Asn Leu Ser Pro Thr Leu Leu Asn Pro 385 390 395 400 lie Arg Asn Leu Val Pro Asn Phe Val Tyr Ala Ala Ser Gly His Glu 405 410 415
Val Lys Ser Val Met Val Ala Gly Lys Leu Leu Leu Glu Asp Tyr Gin 420 425 430
Val Leu Thr Val Asp Glu Ser Ala lie lie Ala Glu Ala- Gin Leu Gin 435 440 445
Ala Gin Gin lie Ser Gin Cys Val Ala Ser Asp Pro He His Lys Lys 450 455 460
Met Val Leu Met Ala Ala Met Ala Arg Gly Gin Leu 465 470 475 <210 95 <211> 780
<212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 95 atgcaagaaa aacgaatcgc aatgtggtct gtgccacgaa gtttgggtac agtgctgcta 60 caagcctggt cgagtcggcc agataccgta gtctttgatg aacttctctc ctttccctat 120 ctctttatca aagggaaaga tatgggcttt acttggacag accttgattc tagccaaatg 180 ccccacgcag attggcgatc cgtcatcgat ctgttaaagg ctcccctgcc tgaagggaaa 240 tcaatcatcg atctgttaaa ggctcccctg cctgaaggga aatcaatttg ctatcagaag 300 catcaagcgt atcatttaat cgaagagacc atggggattg agtggatatt gcccttcagc 360 aactgctttc tgattcgcca acccaaagaa atgctcttat cttttcgtaa gattgtgcca 420 cattttacct ttgaagaaac aggctggatc gaattaaaac ggctgtttga ctatgtacat 480 caaacgagcg gagtaatccc gcctgtcata gatgcacacg acttgctgaa cgatccgcgg 540 agaatgctct ccaagctttg tcaggttgta ggggttgagt ttaccgagac aatgctcagt 600 tggcccccca tggaggtcga gttgaacgaa aaactagccc cttggtacag caccgtagca 660 agttctacgc attttcactc gtatcagaat aaaaatgagt cgttgccgct atatcttgtc 720 gatatttgta aacgccgcga tgaaatatat caggaattat atcaatttcg actttattag 780
<210 96 <211> 259 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 96
Met Gin Glu Lys Arg Ile Ala Met Trp Ser Val Pro Arg Ser Leu Gly 1 5 10 15
Thr Val Leu Leu Gin Ala Trp Ser Ser Arg Pro Asp Thr Val Val Phe 20 25 30
Asp Glu Leu Leu Ser Phe Pro Tyr Leu Phe Ile Lys Gly Lys Asp Met 35 40 45
Gly Phe Thr Trp Thr Asp Leu Asp Ser Ser Gin Met Pro His Ala Asp 50 55 60
Trp Arg Ser Val Ile Asp Leu Leu Lys Ala Pro Leu Pro Glu Gly Lys 65 70 .75 80
Ser Ile Ile Asp Leu Leu Lys Ala Pro Leu Pro Glu Gly Lys Ser Ile 85 90 95
Cys Tyr Gin Lys His Gin Ala Tyr His Leu Ile Glu Glu Thr Met Gly 100 105 110
Ile Glu Trp Ile Leu Pro Phe Ser Asn Cys Phe Leu Ile Arg Gin Pro 115 120 125
Lys Glu Met Leu Leu Ser Phe Arg Lys Ile Val Pro His Phe Thr Phe 130 135 140
Glu Glu Thr Gly Trp Ile Glu Leu Lys Arg Leu Phe Asp Tyr Val His 145 150 155 160
Gin Thr Ser Gly Val Ile Pro Pro Val Ile Asp Ala His Asp Leu Leu 165 170 175
Asn Asp Pro Arg Arg Met Leu Ser Lys Leu Cys Gin val Val Gly val 180 185 190
Glu Phe Thr Glu Thr Met Leu Ser Trp Pro Pro Met Glu Val Glu Leu 195 200 205
Asn Glu Lys Leu Ala Pro Trp Tyr Ser Thr Val Ala Ser Ser Thr His 210 215 220
Phe His Ser Tyr Gin Asn Lys Asn Glu Ser Leu Pro Leu Tyr Leu Val 225 230 235 240
Asp Ile Cys Lys Arg Cys Asp Glu Ile Tyr Gin Glu Leu Tyr Gin Phe 245 250 255
Arg Leu Tyr
<210 97 <211>1176 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 97 atgcaaacaa gaattgtaaa tagctggaåt gagtgggatg aactaaagga gatggttgtc 60 gggattgcag atggtgctta ttttgaacca actgagccag gtaaccgccc tgctttacgc 120 gataagaaca ttgccaaaat gttctctttt cccaggggtc cgaaaaagca agaggtaaca 180 gagaaagcta atgaggagtt gaatgggctg gtagcgcttc tagaatcaca gggcgtaact 240 gtacgccgcc cagagaaaca taactttggc ctgtctgtga agacaccatt ctttgaggta 300 gagaatcaat attgtgcggt ctgcccacgt gatgttatga tcacctttgg gaacgaaatt 360 ctcgaagcaa ctatgtcacg gcggtcacgc ttctttgagt atttacccta tcgcaaacta 420 gtctatgaat attggcataa agatccagat atgatctgga atgctgcgcc taaaccgact 480 atgcaaaatg ccatgtaccg cgaagatttc tgggagtgtc cgatggaaga tcgatttgag 540 agtatgcatg attttgagtt ctgcgtcacc caggatgagg tgatttttga cgcagcagac 600 tgtagccgct ttggccgtga tatttttgtg caggagtcaa tgacgactaa tcgtgcaggg 660 attcgctggc tcaaacggca tttagagccg cgtcgcttcc gcgtgcatga cattcacttc 720 ccactagata ttttcccatc ccacattgat tgtacttttg tccccttagc acctggggtt 780 gtgttagtga atccagatcg ccccatcaaa gagggtgaag agaaactctt catggataac 840 ggttggcaat tcatcgaagc acccctcccc acttccaccg acgatgagat gcctatgttc 900 tgccagtcca gtaagtggtt ggcgatgaat gtgttaagca tttcccccaa gaaggtcatc 960 tgtgaagagc aagagcatcc gcttcatgag ttgctagata aacacggctt tgaggtctat 1020 ccaattccct ttcgcaatgt ctttgagttt ggcggttcgc tccattgtgc cacctgggat 1080 atccatcgca cgggaacctg tgaggattac ttccctaaac taaactatac gccggtaact 1140 gcatcaacca atggcgtttc tcgcttcatc atttag 1176
<210 98 <211> 391 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 98
Met Gin Thr Arg Ile Val Asn Ser Trp Asn Glu Trp Asp Glu Leu Lys 1 5 10 15
Glu Met Val Val Gly Ile Ala Asp Gly Ala Tyr Phe Glu Pro Thr Glu 20 25. 30
Pro Gly Asn Arg Pro Ala Leu Arg Asp Lys Asn Ile Ala Lys Met Phe 35 40 45
Ser Phe Pro Arg Gly Pro Lys Lys Gin Glu Val Thr Glu Lys Ala Asn 50 55 60
Glu Glu Leu Asn Gly Leu Val Ala Leu Leu Glu Ser Gin Gly Val Thr 65 70 75 80
Val Arg Arg Pro Glu Lys His Asn Phe Gly Leu Ser Val Lys Thr Pro 85 90 95
Phe Phe Glu Val Glu Asn Gin Tyr Cys Ala Val Cys Pro Arg Asp Val 100 105 110
Met Ile Thr Phe Gly Asn Glu Ile Leu Glu Ala Thr Met Ser Arg Arg 115 120 125
Ser Arg Phe Phe Glu Tyr Leu Pro Tyr Arg Lys Leu Val Tyr Glu Tyr 130 135 140
Trp His Lys Asp Pro Asp Met Ile Trp Asn Ala Ala Pro Lys Pro Thr 145 150 155 160
Met Gin Asn Ala Met Tyr Arg Glu Asp Phe Trp Glu Cys Pro Met Glu 165 170 175
Asp Arg Phe Glu Ser Met Hi's Asp Phe Glu Phe Cys Val Thr Gin Asp 180 185 190
Glu Val He Phe Asp Ala Ala Asp Cys Ser Arg Phe Gly Arg Asp lie 195 200 205
Phe Val Gin Glu Ser Met Thr Thr Asn Arg Ala Gly lie Arg Trp Leu 210 215 220
Lys Arg His Leu Glu Pro Arg Arg phe Arg Val His Asp lie His Phe 225 230 235 240
Pro Leu Asp lie Phe Pro Ser His He Asp Cys Thr Phe Val Pro Leu 245 250 255
Ala Pro Gly Val Val Leu Val Asn Pro Asp Arg Pro He Lys Glu Gly 260 265 270
Glu Glu Lys Leu Phe Met Asp Asn Gly Trp Gin Phe lie Glu Ala Pro 275 280 285
Leu Pro Thr Ser Thr Asp Asp Glu Met Pro Met Phe Cys Gin Ser Ser 290 295 300
Lys Trp Leu Ala Met Asn Val Leu Ser He Ser Pro Lys Lys Val lie 305 310 315 320
Cys Glu Glu Gin Glu His Pro Leu His Glu Leu Leu Asp Lys His Gly 325 330 335
Phe Glu Val Tyr Pro He Pro Phe Arg Asn Val Phe Glu Phe Gly Gly 340 345 350
Ser Leu His Cys Ala Thr Trp Asp lie His Arg Thr Gly Thr Cys Glu 355 360 365
Asp Tyr Phe Pro Lys Leu Asn Tyr Thr Pro Val Thr Ala Ser Thr Asn 370 375 380
Gly Val Ser Arg Phe He He 385 390
<210> 99 <211> 8754 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 99 atgcaaaaga gagaaagccc acagatacta tttgatggga atggaacaca atctgagttt 60 ccagatagtt gcattcacca cttgttcgag gatcaagccg caaagcgacc ggatgcgatc 120 gctctcattg acggtgagca atcccttacc tacggggaac taaatgtacg cgctaaccac 180 ctagcccagc atctcttgtc cctaggctgt caacccgatg acctcctcgc catctgcatc 240 gagcgttcgg cagaactctt tattggtttg ttgggtatcc taaaagccgg atgtgcttat 300 gtgcctttgg atgtaggcta tcctggcgat cgcatagagt atatgttgcg ggactcggat 360 gcgcgtattt tactaacctc aacggatgtc gctaagaaac ttgccttaac catacctgca 420 ttgcaagagt gccaaaccgt ctatttagat caagagatat ttgagtatga ttttcatttt 480 ttagcgatag ctaaactatt acataaccaa tacttgagat tattacattt ttatttttat 540 accttgattc agcaatgcca ggcaacttcg gtttcccaag ggattcagac acaggttctc 600 cccaataatc tcgcttactg catttacacc tctggctcta ccggaaatcc caaagggatc 660 ttgatggaac atcgctcact ggtgaatatg ctttggtggc atcagcaaac gcggccttcg 720 gttcagggtg ttaggacgct gcaattttgt gcagtcagct ttgacttttc ctgccatgaa 780 attttttcta ccctctgtct tggcgggata ttggtcttgg tgccagaggc agtgcgccaa 840 aatccctttg cattggctga gttcatcagt caacagaaaa ttgaaaaatt gtttcttccc 900 gttatagcat tactacagtt ggccgaagct gtaaatggga ataaaagcac ctccctcgcg 960 ctttgcgaag ttatcactac cggggagcag atgcagatca cacctgctgt cgccaacctc 1020 tttcagaaaa ecggggcgat gttgcataat cactacgggg caacagaatt tcaagatgcc 1080 accactcata occtcaaggg caatccagag ggctggccaa cactggtgcc agtgggtcgt 1140 ccactgcaca atgttcaagt gtatattctg gatgaggcac agcaacctgt acctcttggt 1200 ggagagggtg aattctgtat tggtggtatt ggactggctc gtggctatca caatttgcct 1260 gacctaacga atgaaaaatt tattcccaat ccatttgggg ctaatgagaa cgctåaaaaa 1320 ctctaccgca caggggactt ggcacgctac ctacccgacg gcacgattga gcatttagga 1380 cggatagacc accaggttaa gatccgaggt ttccgcgtgg aattggggga aattgagtcc 1440 gtgctggcaa gtcaccaagc tgtgcgtgaa tgtgccgttg tggcacggga gattgcaggt 1500 catacacagt tggtagggta tatcatagca aaggatacac ttaatctcag tttcgacaaa 1560 cttgaaccta tcctgcgtca atattcggaa gcggtgctgc cagaatacat gatacccact 1620 cggttcatca atatcagtaa tatgccgttg actcccagtg gtaaacttga ccgcagggca 1680 ttacctgatc ccaaaggcga tcgccctgca ttgtctaccc cacttgtcaa gcctcgtacc 1740 cagacagaga aacgtttagc agagatttgg ggcagttatc ttgctgtaga tattgtggga 1800 acccacgaca atttctttga tctaggcggt acgtcactgc Cattgactca agcgcacaaa 1860 ttcctgtgcg agacctttaa tattaatttg tccgctgtct cactctttca atatcccaca 1920 attcagacat tggcacaata tattgattgc caaggagaca caacctcaag cgatacagca 1980 tccaggcaca agaaagtacg taaaaagcag tccggtgaca gcaacgatat tgccatcatc 2040 agtgtggcag gtcgctttcc gggtgctgaa acgattgagc agttctggca taatctctgt 2100 aatggtgttg aatccatcac cctttttagt gatgatgagc tagagcagac tttgcctgag 2160 ttatttaata atcccgctta tgtcaaagca ggtgcggtgc tagaaggcgt tgaattattt 2220 gatgctacct tttttggcta cagccccaaa gaagctgcgg tgacagaccc tcagcaacgg 2280 attttgctag agtgtgcctg ggaagcattt gaacgggctg gctacaaccc cgaaacctat 2340 ccagaaccag ttggtgttta tgctggttca agcctgagta cctatctgct taacaatatt 2400 ggctctgctt taggcataat taccgagcaa ccctttattg aaacggatat ggagcagttt 2460 caggctaaaa ttggcaatga ccggagctat cttgctacac gcatctctta caagctgaat 2520 ctcaagggtc caagcgtcaa tgtgcagacc gcctgctcaa cctcgttagt tgcggttcac 2580 atggcctgtc agagtctcat tagtggagag tgtcaaatgg ctttagccgg tggtatttct 2640 gtggttgtac cacagaaggg gggctatctc tacgaagaag gcatggttcg ttcccaggat 2700 ggtcattgtc gcgcctttga tgccgaagcc caagggacta tatttggcaa tggcggcggc 2760 ttggttttgc ttaaacggtc gcaggatgca ctggacgata acgacaacat tatggcagtc 2820 atcaaagcca cagccatcaa caacgacggt gcgctcaaga tgggctacac agcaccgagc 2880 gtggatgggc aagctgatgt aattagcgag gcgattgcta tcgctgacat agatgcaagc 2940 accattggct atgtagaagc tcatggcaca gccacccaat tgggtgatcc gattgaagta 3000 gcagggttag caagggcatt tcagcgtagt acggacagcg tccttggtaa acaacaatgc 3060 gctattggat cagttaaaac taatattggc cacttagatg aggcggcagg cattgccgga 3120 ctgataaagg ctgctctagc tctacaatat ggacagattc caccgagctt gcactatgcc 3180 aatcctaatc cacggattga ttttgacgca accccatttt ttgtcaacac agaactacgc 3240 gaatggtcaa ggaatggtta tcctcggcgg gcgggggtga gttcttttgg tgtgggtgga 3300 actaacagcc atattgtgct ggaggagtcg cctgtaaagc aacccacatt gttctcttct 3360 ttgecagaac gcagtcatca tctgctgacg ctttctgccc atacacaaga ggctttgcat 3420 gagttggtgc aacgctacat ccaacataac gagacacacc ttgatattaa cttaggcgac 3480 CtctgtCtca cageeaatac gggacgcaag cattttgagc atcgcctagc ggttgtagcc 3540 gaatcaatcc ctggcttaca ggcacaactg gaaactgcac agactgcgat ttcagcacag 3600 aaaaaaaatg ccccgccgac gatcgcattc ctgtttacag gtcaaggctc acaatacatt 3660 aacatggggc gcaccctcta cgatactgaa tcaacattcc gtgcagccct tgaccgatgt 3720 gaaaccattc tccaaaattt agggatcgag tccattctct ccgttatttt tggttcatct 3780 gagcatggac tctcattaga tgacacagcc tatacccagc ccgcactctt tgccatcgaa 3840 tacgcgctct atcaattatg gaagtcgtgg ggcatccagc cctcagtggt gataggtcat 3900 agtgtaggtg aatatgtgtc cgcttgtgtg gcgggagtct ttagcttaga ggatgggttg 3960 aaactgattg cagaacgagg acgactgata caggcacttc ctogtgatgg gagcatggtt 4020 tccgtgatgg caagcgagaa gcgtattgca gatatcattt taccttatgg gggacaggta 4080 gggatcgccg cgattaatgg cccacaaagt gttgtaattt ctgggcaaca gcaagcgatt 4140 gatgctattt gtgccatctt ggaaactgag ggcatcaaaa gcaagaagct aaacgtctcc 4200 catgccttcc actcgccgcC agtggaagca atgttagact ctttcttgca ggttgcacaa 4260 gaggtcactt actcgcaacc tcaaatcaag cttatctcta atgtaacggg aacattggca 4320 agccatgaat cttgtcccga tgaacttccg atcaccaccg cagagtattg ggtacgtcat 4380 gtgcgacagc ccgtccggtt tgcggcggga atggagagcc ttgagggtca aggggtaaac 4440 gtatttatag aaatcggtcc taaacctgtt cttttaggca tgggacgcga ctgcttgcct 4500 gaacaagagg gactttggtt gcctagtttg cgcccaaaac aggatgattg gcaacaggtg 4560 ttaagtagtt tgcgtgatct atacttagca ggtgtaaccg tagattggag cagtttcgat 4620 caggggtatg ctcgtcgccg tgtgccacta ccgacttatc cttggcagcg agagcggcat 4680 tgggtagagc caattattcg tcaacggcaa tcagtattac aagccacaaa taccaccaag 4740 ctaactcgta acgccagcgt ggcgcagcat cctctgcttg gtcaacggct gcatttgtcg 4800 cggactcaag agatttactt tcaaaccttc atccactccg acttcccaat atgggttgct 4860 gatcataaag tatttggaaa tgtcatcatt ccgggtgtcg cctattttga gatggcactg 4920 gcagcaggga aggcacttaa accagacagt atattttggc tcgaagacgt atccatcgcc 4980 caagcactga ttattcccga tgaagggcaa actgtgcaaa tagtattaag cccacaggaa 5040 gagtcagctt atttttttga aatcctctct ttagaaaaag aaaactcttg ggegetteat 5100 gcctctggta agetagtege ccaagagcaa gtgctagaaa ccgagccaat tgacttgatt 5160 gcgttacagg cacattgttc egaagaagtg teagtagatg tgetatatea ggaagaaatg 5220 gcgcgccggc tggatatggg tccaatgatg cgtggggtga ageagetttg gegttateeg 5280 ctctcctttg ccaaaagtca tgatgegate gcactcgcca aggteagett gccagaaatc 5340 ttgcttcatg agtccaatgc ctaccaattc catcctgtaa tcttggatgc ggggctgcaa 5400 atgataaegg tctcttatcc tgaagcaaac caaggccaga cttatgtacc tgttggtata 5460 gagggtetae aagtetatgg tcgtcccagt teagaaettt ggtgtcgcgc ccaatatcgg 5520 cctcctttgg ataeagatea aaggeagggt attgatttgc tgccaaagaa attgattgca 5580 gaettgeate tatttgatac ccagggtcgt gtggttgcca tcatgtttgg tgtgcaatct 5640 gtccttgtgg gaegggaage aatgttgcga tegeaagata cttggcgaaa ttggctttat 5700 caagtcctgt ggaaacctca agcctgtttt ggaettttae cgaattacct gccaacccca 5760 gataagatte ggaaacgcct ggaaacaaag ttagegaeat tgatcatcga agctaatttg 5820 gcgacttatg cgatcgccta tacccaactg gaaaggttaa gtetagetta cgttgtggcg 5880 gctttccgac aaatgggctg gctgtttcaa cccggtgagc gtttttccac cgcceagaag 5940 gtateagegt taggaategt tgatcaacat cggcaactat tegetegttt gctcgacatt 6000 ctagccgaag cagacatact ccgcagcgaa aacttgatga cgatatggga agtcatttca 6060 tacccggaaa egattgatat aeaggtaett cttgacgacc tcgaagccaa agaageagaa 6120 gccgaagtca cactggtttc ccgttgcagt gcaaaattgg ccgaagtatt acaaggaaaa 6180 tgtgacccca taeagttget ctttcecgca ggggacacaa caacgttaag caaactctat 6240 cgtgaagccc cagttttggg tgttactaat actctagtcc aagaageget tctttccgcc 6300 ctggagcagt tgccgccgga acgtggttgg egaattttag agattggtgc tggaaeaggt 6360 ggaaccacag cctacttgtt accgcatetg cctggggatc agacaaaata tgtctttacc 6420 gatattagtg ccttttttct tgccaaagcg gaagagcgtt ttaaagatta cccgtttgta 6480 egttateagg tattagatat cgaacaagca ccacaggcgc aaggatttga accccaaata 6540 taegatttaa tegtageage ggatgtcttg catgctacta gtgacctgcg tcaaactctt 6600 gtacatatcc ggcaattatt agcgccgggc gggatgttga tcctgatgga agaeagegaa 6660 cccgcacgct gggctgattt aacctttggc ttaacagaag gctggtggaa gtttaeagae 6720 catgacttac gccccaacca teegetattg tctcctgagc agtggcaaat cttgttgtca 6780 gaaatgggat ttagtcaaac aaecgcctta tggccaaaaa tagatagccc ccataaattg 6840 ccacgggagg cggtgattgt ggcgcgtaat gaaccagcca tcagaaaacc ccgaagatgg 6900 ctgatcttgg ctgacgagga gattggtgga ctactagcca aaeagetaeg tgaagaagga 6960 gaagattgta tactcctctt gccaggggaa aagtacacag agagagatte acaaacgttt 7020 acaatcaatc ctggagatat tgaagagtgg caacagttat tgaaccgagt accgaacata 7080 caagaaattg tacattgttg gagtatggtt tccactgact tagatagagc cactattttc 7140 agttgcagca gtacgctgca tttagttcaa geattageaa actatccaaa aaaccctcgc 7200 ttgtcacttg tcaccctagg cgcacaagcc gttaaegaae ateatgttea aaatgtagtt 7260 ggagcagccc tctggggcat gggaaaggta attgcactcg aacacccaga gctacaagta 7320 gcacaaatgg atttagaccc gaatgggaag gttaaggege aagtagaagt gcttagggat 7380 gaaetteteg ccagaaaaga ccctgcatca gcaatgtctg tgeetgatet gcaaacacga 7440 cctcatgaaa agcaaatagc etttegtgag caaacacgtt atgtggcaag actttcgccc 7500 ttagaccgcc ccaatcctgg agagaaagge acacaagagg ctcttacctt ccgtgatgat 7560 ggeagetate tgattgctgg tggtttagge ggactggggt tagtggtggc tegttttetg 7620 gttacaaatg gggctaaata ccttgtgcta gteggaegae gtggtgcgag ggaggaacag 7680 caagctcaat taagegaaet agagcaactc ggagetteeg tgaaagtttt acaagccgat 7740 attgctgatg cagaacaact agcccaagca ettteageag taacctaccc accattacgg 7800 ggtgttattc atgcggcagg tacattgaac gatgggattc taeageagea aagttggcaa 7860 gcctttaaag aagtgatgaa teceaaggta geaggtgegt ggaacctaca tataetgaea 7920 aaaaatcagc etttagaott etttgtcctg ttctcctccg ccaectcttt gttaggtaac 7980 gctggacaag ccaatcaegc cgccgcaaat gctttccttg atgggttagc ctcctatcgt' 8040 cgtcacttag gactaccgag cctctcgatt aattggggga catggagcga agtgggaatt 8100 gcggctcgac ttgaactaga taagttgtcc agcaaacagg gagagggaac cattacgcta 8160 ggacagggct tacaaattct tgagcagttg ctcaaagacg agaatggggt gtatcaagtg 8220 ggtgtcatgc ctatcaactg gacacaattc ttagcaaggc aattgactce gcagccgttc 8280 ttcagcgatg ccatgaagag tattgacacc tctgtaggta aactaacctt geaggagegg 8340 gactcttgcc cccaaggtta cgggcataat attegagage aattagagaa cgctccgccc 8400 aaagagggtc tgactctctt geaggeteat gttcgggegc aggtttccca agttttgggg 8460 atagacacga agacattatt ggcagaacaa gacgtgggtt tctttaccet ggggatggat 8520 tcgctgacct ctgtcgagtt aagaaacagg ttacaagcca gtttgggctg ctctctttct 8580 tccactttgg cttttgacta tccaacacaa caggctcttg tgaattatct tgccaatgaa 8640 ttgctgggaa cccctgagca gctacaagag cctgaatctg atgaagaaga teagatateg 8700 tcaatggatg aeategtgea gttgctgtcc gcgaaactag agatggaaat ttaa 8754
<210> 100 <211> 2917 <212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 100
Met Gin Lys Arg Glu Ser Pro Gin Ile Leu Phe Asp Gly Asn Gly Thr 1 5 10 15
Gin Ser Glu Phe Pro Asp Ser Cys Ile His His Leu Phe Glu Asp Gin 20 25 30
Ala Ala Lys Arg Pro Asp Ala Ile Ala Leu Ile Asp Gly Glu Gin Ser 35 40 45
Leu Thr Tyr Gly Glu Leu Asn Val Arg Ala Asn His Leu Ala Gin His 50 55 60
Leu Leu Ser Leu Gly Cys Gin Pro Asp Asp Leu Leu Ala Ile Cys Ile 65 70 75 80
Glu Arg Ser Ala Glu Leu Phe Ile Gly Leu Leu Gly Ile Leu Lys Ala 85 90 95
Gly Cys Ala Tyr Val Pro Leu Asp Val Gly Tyr Pro Gly Asp Arg Ile 100 105 110
Glu Tyr Met Leu Arg Asp Ser Asp Ala Arg Ile Leu Leu Thr Ser Thr 115 120 , 125
Asp Val Ala Lys Lys Leu Ala Leu Thr Ile Pro Ala Leu Gin Glu Cys 130 135 140
Gin Thr Val Tyr Leu Asp Gin Glu Ile Phe Glu Tyr Asp Phe His Phe 145 150 155 160
Leu Ala Ile Ala Lys Leu Leu His Asn Gin Tyr Leu Arg Leu Leu His 165 170 175
Phe Tyr Phe Tyr Thr Leu Ile Gin Gin Cys Gin Ala Thr Ser Val Ser 180 185 190
Gin Gly Ile Gin Thr Gin Val Leu Pro Asn Asn Leu Ala Tyr Cys Ile 195 200 205
Tyr Thr Ser Gly Ser Thr Gly Asn Pro Lys Gly Ile Leu Met Glu His 210 215 220
Arg Ser Leu Val Asn Met Leu Trp Trp His Gin Gin Thr Arg Pro Ser 225 230 235 240
Val Gin Gly Val Arg Thr Leu Gin Phe Cys Ala Val Ser Phe Asp Phe 245 250 255
Ser Cys His Glu Ile Phe Ser Thr Leu Cys Leu Gly Gly Ile Leu Val 260 265 270
Leu Val Pro Glu Ala Val Arg Gin Asn Pro Phe Ala Leu Ala Glu Phe 275 280 285
Ile Ser Gin Gin Lys Ile Glu Lys Leu Phe Leu Pro Val Ile Ala Leu 290 295 300
Leu Gin Leu Ala Glu Ala Val Asn Gly Asn Lys Ser Thr Ser Leu Ala 305 310 315 320
Leu Cys Glu Val lie Thr Thr Gly Glu Gin Met Gin lie Thr Pro Ala 325 330 335
Val Ala Asn Leu Phe Gin Lys Thr Gly Ala Met Leu His Asn His Tyr 340 345 350
Gly Ala Thr Glu Phe Gin Asp Ala Thr Thr His Thr Leu Lys Gly Asn 355 360 365
Pro Glu Gly Trp Pro Thr Leu Val Pro Val Gly Arg Pro Leu His Asn 370 375 380
Val Gin Val Tyr lie Leu Asp Glu Ala Gin Gin Pro Val Pro Leu Gly 385 390 395 400
Gly Glu Gly Glu Phe Cys lie Gly Gly He Gly Leu Ala Arg Gly Tyr 405 410 415
His Asn Leu Pro Asp Leu Thr Asn Glu Lys Phe lie Pro Asn Pro Phe 420 425 430
Gly Ala Asn Glu Asn Ala Lys Lys Leu Tyr Arg Thr Gly Asp Leu Ala 435 440 445
Arg Tyr Leu Pro Asp Gly Thr He Glu His Leu Gly Arg lie Asp His 450 455 460
Gin Val Lys.lie Arg Gly Phe Arg Val Glu Leu Gly Glu Ile Glu Ser 465 470 475 480
Val Leu Ala Ser His Gin Ala Val Arg Glu Cys Ala Val Val Ala Arg 485 490 495
Glu He Ala Gly His Thr Gin Leu Val Gly Tyr lie lie Ala Lys Asp 500 505 510
Thr Leu Asn Leu Ser Phe Asp Lys Leu Glu Pro He Leu Arg Gin Tyr 515 520 525
Ser Glu Ala Val Leu Pro Glu Tyr Met lie Pro Thr Arg Phe lie Asn 530 535 540
He Ser Asn Met Pro Leu Thr Pro Ser Gly Lys Leu Asp Arg Arg Ala 545 550 555 560
Leu Pro Asp Pro Lys Gly Asp Arg Pro Ala Leu Ser Thr Pro Leu Val 565 570 575
Lys Pro Arg Thr Gin Thr Glu Lys Arg Leu Ala Glu He Trp Gly Ser 580 585 590
Tyr Leu Ala Val Asp He Val Gly Thr His Asp Asn Phe Phe Asp Leu 595 600 605
Gly Gly Thr Ser Leu Leu Leu Thr Gin Ala His Lys Phe Leu Cys Glu 610 615 620
Thr Phe Asn lie Asn Leu Ser Ala Val Ser Leu Phe Gin Tyr Pro Thr 625 630 635 640
He Gin Thr Leu Ala Gin Tyr lie Asp Cys Gin Gly Asp Thr Thr Ser 645 650 655
Ser Asp Thr Ala Ser Arg His Lys Lys Val Arg Lys Lys Gin Ser Gly 660 665 670
Asp Ser Asn Asp lie Ala He lie Ser Val Ala Gly Arg Phe Pro Gly 675 680 685
Ala Glu Thr He Glu Gin Phe Trp His Asn Leu Cys Asn Gly Val Glu 690 695 700
Ser He Thr Leu Phe Ser Asp Asp Glu Leu Glu Gin Thr Leu Pro Glu 705 710 715 720
Leu Phe Asn Asn Pro Ala Tyr val Lys Ala Gly Ala val Leu Glu Gly 725 730 735
Val Glu Leu Phe Asp Ala Thr Phe Phe Gly Tyr Ser Pro Lys Glu Ala 740 745 750
Ala Val Thr Asp Pro Gin Gin Arg lie Leu Leu Glu Cys Ala Trp Glu 755 760 765
Ala Phe Glu Arg Ala Gly Tyr Asn Pro Glu Thr Tyr Pro Glu Pro Val 770 775 780
Gly Val Tyr Ala Gly Ser Ser Leu Ser Thr Tyr Leu Leu Asn Asn Ile 785 790 795 800
Gly Ser Ala Leu Gly Ile Ile Thr Glu Gin Pro Phe ile Glu Thr Asp 805 810 815
Met Glu Gin Phe Gin Ala Lys Ile Gly Asn Asp Arg Ser Tyr Leu Ala 820 825 330
Thr Arg Ile Ser Tyr Lys Leu Asn Leu Lys Gly Pro Ser Val Asn Val 835 840 845
Gin Thr Ala Cys Ser Thr Ser Leu Val Ala Val His Met Ala Cys Gin 850 855 860
Ser Leu Ile Ser Gly Glu Cys Gin Met Ala Leu Ala Gly Gly Ile Ser 865 870 875 880
Val Val Val Pro Gin Lys Gly Gly Tyr Leu Tyr Glu Glu Gly Met Val i 885 890 895
Arg Ser Gin Asp Gly His Cys Arg Ala Phe Asp Ala Glu Ala Gin Gly 900 905 910
Thr Ile Phe Gly Asn Gly Gly Gly Leu Val Leu Leu Lys Arg Leu Gin 915 920 925
Asp Ala Leu Asp Asp Asn Asp Asn Ile Met Ala Val Ile Lys Ala Thr 930 935 940
Ala Ile Asn Asn Asp Gly Ala Leu Lys Met Gly Tyr Thr Ala Pro Ser 945 950 955 960
Val Asp Gly Gin Ala Asp Val Ile Ser Glu Ala Ile Ala Ile Ala Asp 965 970 975
Ile Asp Ala Ser Thr Ile Gly Tyr Val Glu Ala His Gly Thr Ala Thr 980 985 990
Gin Leu Gly Asp Pro Ile Glu Val Ala Gly Leu Ala Arg Ala Phe Gin 995 1000 1005
Arg Ser Thr Asp Ser Val Leu Gly Lys Gin Gin Cys Ala Ile Gly 1010 1015 1020
Ser Val Lys Thr Asn Ile Gly His Leu Asp Glu Ala Ala Gly Ile 1025 1030 1035
Ala Gly Leu Ile Lys Ala Ala Leu Ala Leu Gin Tyr Gly Gin Ile 1040 1045 1050
Pro Pro Ser Leu His Tyr Ala Asn Pro Asn Pro Arg ile Asp Phe 1055 1060 1065
Asp Ala Thr Pro Phe Phe Val Asn Thr Glu Leu Arg Glu Trp Ser 1070 1075 1080
Arg Asn Gly Tyr Pro Arg Arg Ala Gly Val Ser Ser Phe Gly Val 1085 1090 1095
Gly Gly Thr Asn Ser His Ile Val Leu Glu Glu Ser Pro Val Lys 1100 1105 1110
Gin Pro Thr Leu Phe Ser Ser Leu Pro Glu Arg Ser His His Leu 1115 1120 1125
Leu Thr Leu Ser Ala His Thr Gin Glu Ala Leu His Glu Leu Val 1130 1135 1140
Gin Arg Tyr Ile Gin His Asn Glu Thr His Leu Asp Ile Asn Leu 1145 1150 1155
Gly Asp Leu Cys Phe Thr Ala Asn Thr Gly Arg Lys His Phe Glu 1160 1165 1170
His Arg. Leu Ala Val Val Ala Glu Ser Ile Pro Gly Leu Gin Ala 1175 1180 1185
Gin Leu Glu Thr Ala Gin Thr Ala Ile Ser Ala Gin Lys Lys Asn 1190 1195 1200
Ala Pro Pro Thr Ile Ala Phe Leu Phe Thr Gly Gin Gly Ser Gin 1205 1210 1215
Tyr Ile Asn Met Gly Arg Thr Leu Tyr Asp Thr Glu Ser Thr Phe 1220 1225 1230
Arg Ala Ala Leu Asp Arg Cys Glu Thr Ile Leu Gin Asn Leu Gly 1235 1240 1245
Ile Glu Ser Ile Leu Ser Val Ile Phe Gly Ser Ser Glu His Gly 1250 1255 1260
Leu Ser Leu Asp Asp Thr Ala Tyr Thr Gin Pro Ala Leu Phe Ala 1265 1270 1275
Ile Glu Tyr Ala Leu Tyr Gin Leu Trp Lys Ser Trp Gly Ile Gin 1280 1285 1290
Pro Ser Val Val Ile Gly His Ser Val Gly Glu Tyr Val Ser Ala 1295 1300 1305
Cys Val Ala Gly Val Phe Ser Leu Glu Asp Gly Leu Lys Leu Ile 1310 1315 1320
Ala Glu Arg Gly Arg Leu Ile Gin Ala Leu Pro Arg Asp Gly Ser 1325 1330 1335
Met Val Ser Val Met Ala Ser Glu Lys Arg Ile Ala Asp Ile Ile 1340 1345 1350
Leu Pro Tyr Gly Gly Gin Val Gly Ile Ala Ala Ile Asn Gly Pro 1355 1360 1365
Gin Ser Val Val Ile Ser Gly Gin Gin Gin Ala Ile Asp Ala Ile 1370 1375 1380
Cys Ala Ile Leu Glu Thr Glu Gly Ile Lys Ser Lys Lys Leu Asn 1385 1390 1395
Val Ser His Ala Phe His Ser Pro Leu Val Glu Ala Met Leu Asp 1400 1405 1410
Ser Phe Leu Gin Val Ala Gin Glu Val Thr Tyr Ser Gin Pro Gin 1415 1420 1425
Ile Lys Leu Ile Ser Asn Val Thr Gly Thr Leu Ala Ser His Glu 1430 1435 1440
Ser Cys Pro Asp Glu Leu Pro Ile Thr Thr Ala Glu Tyr Trp Val 1445 1450 1455
Arg His Val Arg Gin Pro Val Arg Phe Ala Ala Gly Met Glu Ser 1460 1465 1470
Leu Glu Gly Gin Gly Val Asn Val Phe Ile Glu Ile Gly Pro Lys 1475 1480 1485
Pro Val Leu Leu Gly Met Gly Arg Asp Cys Leu Pro Glu Gin Glu 1490 1495 1500
Gly Leu Trp Leu Pro Ser Leu Arg Pro Lys Gin Asp Asp Trp Gin 1505 1510 1515
Gin Val Leu Ser Ser Leu Arg Asp Leu Tyr Leu Ala Gly Val Thr 1520 1525 1530
Val Asp Trp Ser Ser Phe Asp Gin Gly Tyr Ala Arg Arg Arg Val 1535 1540 1545
Pro Leu Pro Thr Tyr Pro Trp Gin Arg Glu Arg His Trp Val Glu 1550 1555 1560
Pro Ile Ile Arg Gin Arg Gin Ser Val Leu Gin Ala Thr Asn Thr 1565 1570 1575
Thr Lys Leu Thr Arg Asn Ala Ser Val Ala Gin His Pro Leu Leu 1580 1585 1590
Gly Gin Arg Leu His Leu Ser Arg Thr Gin Glu Ile Tyr Phe Gin 1595 1600 1605
Thr Phe Ile His Ser Asp Phe Pro Ile Trp Val Ala Asp His Lys 1610 1615 1620
Val Phe Gly Asn Val Ile Ile Pro Gly Val Ala Tyr Phe Glu Met 1625 1630 1635
Ala Leu Ala Ala Gly Lys Ala Leu Lys Pro Asp Ser Ile Phe Trp 1640 1645 1650
Leu Glu Asp Val Ser Ile Ala Gin Ala Leu Ile ile Pro Asp Glu 1655 1660 1665
Gly Gin Thr .Val Gin Ile Val Leu Ser Pro Gin Glu Glu Ser Ala 1670 1675 1680
Tyr Phe Phe Glu ile Leu Ser Leu Glu Lys Glu Asn Ser Trp Val 1685 1690 1695
Leu His Ala Ser Gly Lys Leu Val Ala Gin Glu Gin Val Leu Glu 1700 1705 1710
Thr Glu Pro Ile Asp Leu Ile Ala Leu Gin Ala His Cys Ser Glu 1715 1720 1725
Glu Val Ser Val Asp Val Leu Tyr Gin Glu Glu Met Ala Arg Arg 1730 1735 1740
Leu Asp Met Gly Pro Met Met Arg Gly Val Lys Gin Leu Trp Arg 1745 1750 1755
Tyr Pro Leu Ser Phe Ala Lys Ser His Asp Ala Ile Ala Leu Ala 1760 1765 1770
Lys Val Ser Leu Pro Glu Ile Leu Leu His Glu Ser Asn Ala Tyr 1775 1780 1785
Gin Phe His Pro Val Ile Leu Asp Ala Gly Leu Gin Met Ile Thr 1790 1795 1800
Val Ser Tyr Pro Glu Ala Asn Gin Gly Gin Thr Tyr Val Pro Val 1805 1810 1815
Gly Ile Glu Gly Leu Gin Val Tyr Gly Arg Pro Ser Ser Glu Leu 1820 1825 1830
Trp Cys Arg Ala Gin Tyr Arg Pro Pro Leu Asp Thr Asp Gin Arg 1835 1840 1845
Gin Gly Ile Asp Leu Leu Pro Lys Lys Leu Ile Ala Asp Leu His 1850 1855 1860
Leu Phe Asp Thr Gin Gly Arg Val Val Ala Ile Met Phe Gly Val 1865 1870 1875
Gin Ser Val Leu Val Gly Arg Glu Ala Met Leu Arg Ser Gin. Asp 1880 1885 1890
Thr Trp Arg Asn Trp Leu Tyr Gin Val Leu Trp Lys Pro Gin Ala 1895 1900 1905
Cys Phe Gly Leu Leu Pro Asn Tyr Leu Pro Thr Pro Asp Lys Ile 1910 1915 1920
Arg Lys Arg Leu Glu Thr Lys Leu Ala Thr Leu Ile Ile Glu Ala 1925 1930 1935
Asn Leu Ala Thr Tyr Ala Ile Ala Tyr Thr Gin Leu Glu Arg Leu 1940 1945 1950
Ser Leu Ala Tyr Val Val Ala Ala Phe Arg Gin Met Gly Trp Leu 1955 1960 1965
Phe Gin Pro Gly Glu Arg Phe Ser Thr Ala Gin Lys Val Ser Ala 1970 1975 1980
Leu Gly Ile Val Asp Gin His Arg Gin Leu Phe Ala Arg Leu Leu 1985 1990 1995
Asp Ile Leu Ala Glu Ala Asp Ile Leu Arg Ser Glu Asn Leu Met 2000 2005 2010
Thr Ile Trp Glu Val Ile Ser Tyr Pro Glu Thr Ile Asp Ile Gin 2015 2020 2025
Val Leu Leu Asp Asp Leu Glu Ala Lys Glu Ala Glu Ala Glu Val 2030 2035 2040
Thr Leu Val Ser Arg Cys Ser Ala Lys Leu Ala Glu Val Leu Gin 2045 2050 2055
Gly Lys Cys Asp Pro Ile Gin Leu Leu Phe Pro Ala Gly Asp Thr 2060 2065 2070
Thr Thr Leu Ser Lys Leu Tyr Arg Glu Ala Pro Val Leu Gly Val 2075 2080 2085
Thr Asn Thr Leu Val Gin Glu Ala Leu Leu Ser Ala Leu Glu Gin 2090 2095 2100
Leu Pro Pro Glu Arg Gly Trp Arg Ile Leu Glu Ile Gly Ala Gly 2105 2110 2115
Thr Gly Gly Thr Thr Ala Tyr Leu Leu Pro His Leu Pro Gly Asp 2120 2125 2130
Gin Thr Lys Tyr Val Phe Thr Asp Ile Ser Ala Phe Phe Leu Ala 2135 2140 2145
Lys Ala Glu Glu Arg Phe Lys Asp Tyr Pro Phe Val Arg Tyr Gin 2150 2155 2160
Val Leu Asp Ile Glu Gin Ala Pro Gin Ala Gin Gly Phe Glu Pro 2165 2170 2175
Gin Ile Tyr Asp Leu Ile Val Ala Ala Asp Val Leu Kis Ala Thr 2180 2185 2190
Ser Asp Leu Arg Gin Thr Leu Val His Ile Arg Gin Leu Leu Ala 2195 2200 2205
Pro Gly Gly Met Leu Ile Leu Met Glu Asp Ser Glu Pro Ala Arg 2210 2215 2220
Trp Ala Asp Leu Thr Phe Gly Leu Thr Glu Gly Trp Trp Lys Phe 2225 2230 2235
Thr Asp His Asp Leu Arg Pro Asn His Pro Leu Leu Ser Pro Glu 2240 2245 2250
Gin Trp Gin Ile Leu Leu Ser Glu Met Gly Phe Ser Gin Thr Thr 2255 2260 2265
Ala Leu Trp Pro Lys Ile Asp Ser Pro His Lys Leu Pro Arg Glu 2270 2275 2280
Ala Val Ile Val Ala Arg Asn Glu Pro Ala Ile Arg Lys Pro Arg 2285 2290 2295
Arg Trp Leu Ile Leu Ala Asp Glu Glu Ile Gly Gly Leu Leu Ala 2300 2305 2310
Lys Gin Leu Arg Glu Glu Gly Glu Asp Cys Ile Leu Leu Leu Pro 2315 2320 2325
Gly Glu Lys Tyr Thr Glu Arg Asp Ser Gin Thr Phe Thr Ile Asn 2330 2335 2340
Pro Gly Asp Ile Glu Glu Trp Gin Gin Leu Leu Asn Arg Val Pro 2345 2350 2355
Asn Ile Gin Glu Ile Val His Cys Trp Ser Met Val Ser Thr Asp 2360 2365 2370
Leu Asp Arg Ala Thr ile Phe Ser Cys Ser Ser Thr Leu His Leu 2375 2380 2385
Val Gin Ala Leu Ala Asn Tyr Pro Lys Asn Pro Arg Leu Ser Leu 2390 2395 2400
Val Thr Leu Gly Ala Gin Ala val Asn Glu His His Val Gin Asn 2405 2410 2415
Val Val Gly Ala Ala Leu Trp Gly Met Gly Lys Val Ile Ala Leu 2420 2425 2430
Glu His Pro Glu Leu Gin Val Ala Gin Met Asp Leu Asp Pro Asn 2435 2440 2445
Gly Lys Val Lys Ala Gin Val Glu Val Leu Arg Asp Glu Leu Leu 2450 2455 2460
Ala Arg Lys Asp Pro Ala Ser Ala Met Ser Val Pro Asp Leu Gin 2465 2470 2475
Thr Arg Pro His Glu Lys Gin Ile Ala Phe Arg Glu Gin Thr Arg 2480 2485 2490
Tyr Val Ala Arg Leu Ser Pro Leu Asp Arg Pro Asn Pro Gly Glu 2495 2500 2505
Lys Gly Thr Gin Glu Ala Leu Thr Phe Arg Asp Asp Gly Ser Tyr 2510 2515 2520
Leu Ile Ala Gly Gly Leu Gly Gly Leu Gly Leu Val Val Ala Arg 2525 2530 2535
Phe Leu val Thr Asn Gly Ala Lys Tyr Leu Val Leu Val Gly Arg 2540 2545 2550
Arg Gly Ala Arg Glu Glu Gin Gin Ala Gin Leu Ser Glu Leu Glu 2555 2560 2565
Gin Leu Gly Ala Ser Val Lys Val Leu Gin Ala Asp Ile Ala Asp 2570 2575 2580
Ala Glu Gin Leu Ala Gin Ala Leu Ser Ala Val Thr Tyr Pro Pro 2585 2590 2595
Leul Arg Gly Val Ile His Ala Ala Gly Thr Leu Asn Asp Gly Ile 2600 2605 2610
Leu Gin Gin Gin Ser Trp Gin Ala Phe Lys Glu Val Met Asn Pro 2615 2620 2625
Lys. Val Ala Gly Ala Trp Asn Leu His Ile Leu Thr Lys Asn Gin 2630 2635 2640
Pro Leu Asp Phe Phe Val Leu Phe Ser Ser Ala Thr Ser Leu Leu 2645 2650 2655
Gly Asn Ala Gly Gin Ala Asn His Ala Ala Ala Asn Ala Phe Leu 2660 2665 2670
Asp Gly Leu Ala Ser Tyr Arg Arg His Leu Gly Leu Pro Ser Leu 2675 2680 2685
Ser Ile Asn Trp Gly Thr Trp Ser Glu Val Gly Ile Ala Ala Arg 2690 2695 2700
Leu Glu Leu Asp Lys Leu Ser Ser Lys Gin Gly Glu Gly Thr Ile 2705 2710 2715
Thr Leu Gly Gin Gly Leu Gin Ile Leu Glu Gin Leu Leu Lys Asp 2720 2725 2730
Glu Asn Gly Val Tyr Gin Val Gly Val Met Pro Ile Asn Trp Thr 2735 2740 2745
Gin Phe Leu Ala Arg Gin Leu Thr Pro Gin Pro Phe Phe Ser Asp 2750 2755 2760
Ala Met Lys Ser Ile Asp Thr Ser Val Gly Lys Leu Thr Leu Gin 2765 2770 2775
Glu Arg Asp Ser Cys Pro Gin Gly Tyr Gly His Asn ile Arg Glu 2780 2785 2790
Gin Leu Glu Asn Ala Pro Pro Lys Glu Gly Leu Thr Leu Leu Gin 2795 2800 2805
Ala His Val Arg Glu Gin Val Ser Gin Val Leu Gly Ile Asp Thr 2810 2815 2820
Lys Thr Leu Leu Ala Glu Gin Asp Val Gly Phe Phe Thr Leu Gly 2825 2830 2835
Met Asp Ser Leu Thr Ser Val Glu Leu Arg Asn Arg Leu Gin Ala 2840 2845 2850
Ser Leu Gly Cys Ser Leu Ser Ser Thr Leu Ala Phe Asp Tyr Pro 2855 2860 2865
Thr Gin Gin Ala Leu Val Asn Tyr Leu Ala Asn Glu Leu Leu Gly 2870 2875 2880
Thr Pro Glu Gin Leu Gin Glu Pro Glu Ser Asp Glu Glu Asp Gin 2885 2890 2895
Ile Ser Ser Met Asp Asp Ile Val Gin Leu Leu Ser Ala Lys Leu 2900 2905 2910
Glu Met Glu Ile 2915
<210 101 <211> 5667 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400 101 atggatgaaa aactaagaac atacgaacga ttaatcaagc aatcctatca caagatagag 60 gctctggaag ctgaagttaa caggttgaag caaacccaat gtgaacctat cgccatcgtc 120 ggcatgggct gtcgttttcc tggtgcgaat agtccagaag cgttttggca gttgttgtgt 180 gatggggttg atgctattcg tgagatacca aaaaatcgat gggttgttga tgcctacata 240 gatgaaaatt tggaccgcgc agacaagaca tcaatgcgat ttggcgggtt tgtcgagcaa 300 cttgagaagt ttgatgccca attctCtggc atatcaccgc gagaagcggt ttctcttgac 360 cctcagcaac gtttgttatt agaagtaagt tgggaagcac tggaaaatgc agcggtgata 420 ccaccttcgg caacgggcgt attcgtcggt attagtaacc ttgattatcg tgaaacgctc 480 ttgaagcaag gagcaattgg Cacttatttt gcttcgggta atgcccatag cacagccagt 540 ggtcgcttgt cttactttct cggtctgaca ggcccctgtc tctcgataga tacagcttgt 600 tcttcgtcgt tggtcgctgt acatcagtca ctgataagtc tgcgtcagcg agaatgtgac 660 ttagcgttgg ttgggggagt ccatcggctg atagccccag aggaaagtgt ctcgttagca 720 aaagcccata tgttatctcc cgatggtcgt tgcaaagtct ttgatgcgtc tjgcaaacggg 780 tatgtccgag ccgaaggatg tggcatgata gtcctcaaac gattatcgga cgcgcaagct 840 gatggggata aaatcttggc gttgattcgc gggtcagcca taaatcaaga cggtcgcacg 900 agtggcttga ccgttccaaa tggtccccaa caagccgacg tgattcgcca agccctcgcc 960 aatagtggca taagaccaga acaagttaac tatgtagaag ctcatggcac agggacttcc 1020 ctaggagacc cgattgaggt cggcgcgttg ggaacgatct ttaatcaacg ctcccaacct 1080 ttaattattg gttcagttaa aacaaatatt gggcatctag aagcagcagc agggattgct 1140 ggactgatta aagtcgtcct tgccatgcag catggagaaa ttccacctaa tttacacttt 1200 caccagccca atcctcgcat taactgggat aaattgccaa tcaggatccc cacagaacga 1260 acagcttggc ctactggcga tcgcatcgca gggataagtt ctttcggctt tagtggcact 1320 aattctcatg tcgtgttaga ggaagcccca aaaatagagc cgtctacttt agagattcat 1380 tcaaagcagt atgtttttac cttatcagca gcgacacctc aagcactaca agaacttact 1440 cagcgttatg taacttatct cactgaacac ttacaagaga gtctggcgga tatttgcttt 1500 acagccaaca cagggcgcaa acactttaga catcgctttg cagtagtagc agagtctaaa 1560 acccagttgc gccaacaatt ggaaacgttt gcccaatcgg gagaggggca ggggaagagg 1620 acatctctct caaaaatagc ttttctcttt acaggtcaag gctcacagta tgtggggatg 1680 gggcaagaac tttatgagag ccaacccacc ttccggcaaa ccattgaccg atgtgatgag 1740 attcttcgtt cactgttggg caaatcaatc ctctcaatac tctatcccag ccaacaaatg 1800 ggattggaaa cgccatccca aattgatgaa accgcctata ctcaacccac tcttttttct 1860 cttgaatatg cactggcgca gttgtggcgc tcctggggta ttgagcctga tgtggtgatg 1920 gggcatagtg tgggagaata tgtggccgct tgtgtggcgg gtgtcttttc tttagaggat 1980 ggactcaaac taattgctga aagaggccgt ctgatgcaag aattgcctcc cgatggggcg 2040 atggtttcag ttatggccaa taaatcgcgc atagagcaag caattcaatc tgtcagccga 2100 gaggtttcta ttgcggccat caatggacct gagagtgtgg ttatctctgg taaaagggag 2160 atattacaac agattaccga acatctggtt gccgaaggca ttaagacacg ccaactgaag 2220 gtctctcatg cctttcactc accattgatg gagccaatat fcaggtcagtt ccgccgagtt 2280 gccaatacca tcacctatcg gccaccgcaa attaaccttg tctcaaatgt cacaggcgga 2340 caggtgtata aagaaatcgc tactcccgat tattgggtga gacatctgca agagactgtc 2400 cgttttgcgg atggggttaa ggtgttacat gaacagaatg tcaatttcat gctcgaaatt 2460 ggtcccaaac ccacactgct gggcatggtt gagttacaaa gttctgagaa tccattttct 2520 atgccaatga tgatgcccag tttgcgtcag aatcgtagcg actggcagca gatgttggag 2580 agcttgagtc aactctatgt tcatggtgtt gagattgact ggatcggttt taataaagac 2640 tatgtgcgac ataaagttgt cctgccgaca tacccatggc agaaggagcg ttactgggta 2700 gaattggatc aacagaagca cgccgctaaa aatctacatc ctctactgga caggtgcatg 2760 aagctgcctc gtcataacga aacaattttt gagaaagaat ttagtctaga gacattgccc 2820 cctcttgctg actatcgcat ttatggttca gttgtgtcgc caggtgcaag ttatctatca 2880 atgatactaa gtattgccga gtcgtatgca aatggtcatt tgaatggagg gaatagtgca 2940 aagcaaacca cttatttact aaaggatgtc acattcccag tacctcttgt gatctctgat 3000 gaggcaaatt acatggtgca agttgcttgt tctctctctt gtgctgcgcc acacaatcgt 3060 ggcgacgaga cgcagtttga attgttcagt tttgctgaga atgtacctga aagtagcagt 3120 ataaatgctg attttcagac acccattatt catgcaaaag ggcaatttaa gcttgaagat 3180 acagcacctc ctaaagcgga gctagaagaa ctacaagcgg gttgtcccca agaaattgat 3240 ctcaaccttt tctatcaaac attcacagac aaaggttttg tttttggatc tcgttttcgc 3300 tggttagaac aaatctgggt gggcgatgga gaagcattgg cgcgtctgcg acaaccggaa 3360 agtattgaat cgtttaaagg atatgtgatt catcccggtt tgttggatgc ctgtacacaa 3420 gtcccatttg caatttcgtc tgacgatgaa aataggcaat cagaaacgac aatgcccttt 3480 gcgctgaatg aattacgttg ttatcagcct gcaaacggac aaatgtggtg ggttcatgca 3540 acagaaaaag atagatatac atgggatgtt tctctgtttg atgagagcgg gcaagttatt 3600 gcggaattta taggtttaga agttcgtgct gctatgcccg aaggcttact aagggcagac 3660 ttttggcata actggctcta tacagtgaat tggcgatcgc aacctctaca aatcccagag 3720 gtgctggata ttaataagac aggtgcagaa acatggcttc tttttgcaca accagaggga 3780 ataggagcgg acttagccga atatttgcag agccaaggaa agcactgtgt ttttgtagtg 3840 cctgggagtg agtatacagt gaccgagcaa cacattggac gcactggaca tcttgatgtg 3900 acgaaactga caaaaattgt cacgatcaat cctgcttctc ctcatgacta taaatatttt 3960 ttagaaactc tgacggacat tagattacct tgtgaacata tactctattt atggaatcgt 4020 tatgatttaa caaatacttc taatcatcgg acagaattga ctgtaccaga tatagtctta 4080 aacttatgta ctagtcttac ttatttggta caagccctta gccacaLggg ttttLccccg 4140 aaattatggc taattacaca aaatagtcaa gcggttggta gtgacttagc gaatttagaa 4200 atcgaacaat ccccattatg ggcattgggt cgaagcatcc gcgccgaaca Ccctgaattt 4260 gattgccgtt gtttagattt tgacacgctc tcaaatatcg caccactctt gttgaaagag 4320 atgcaagcta tagactatga atctcaaatt gcttaccgac aaggaacgcg ctatgttgca 4380 cgactaactc gtaatcaatc agaatgtcac gcaccgattc aaacaggaat ccgtcctgat 4440 ggcagctatt tgattacagg tggattaggc ggtctaggat tgcaggtagc actcgccctt 4500 gcggacgctg gagcaagaca cttgatcctc aatagtcgcc gtggtacggt ctccaaagaa 4560 gcccagttaa ttattgaccg actacgccaa gaggatgtta gggttgattt gattgcggca 4620 gatgtctctg atgcggcaga tagcgaacga ctcttagtag aaagtcagcg caagacctct 4680 cttcgaggga ttgtccatgt tgcgggagtc ttggatgatg gcatcctgct ccaacaaaat 4740 caagagcgtt ttgaaaaagt gatggcggct aaggtacgcg gagcttggca tctggaccaa 4800 cagagccaaa ccctcgattt agatttcttt gttgcgttct catctgttgc gtcgctcata 4860 gaagaaccag gacaagccaa ttacgccgca gcgaatgcgt ttttggattc attaatgtat 4920 tatcgtcaca taaagggatc taatagcttg agtatcaact ggggggcttg ggcagaagtc 4980 ggcatggcag ccaatttatc atgggaacaa cggggaatcg cggcaatttc tccaaagcaa 5040 gggaggcata ttctcgtcca acttattcaa aaacttaatc agcatacaat cccccaagtt 5100 gctgtacaac cgaccaattg ggctgaatat ctatcccatg atggcgtgaa tatgccattc 5160 tatgaatatt ttacacacca cttgcgtaac gaaaaagaag ccaaattgcg gcaaacagca 5220 ggcagcacct cagaggaagt cagtctgcgg caacagcttc aaacactctc agagaaagac 5280 cgggatgccc ttttgatgga acatcttcaa aaaactgcga tcagagttct cggtttggca 5340 tctaatcaaa aaattgatcc ctatcaggga ttgatgaata tgggactaga ctctttgatg 5400 gcggttgaat ttcggaatca cttgatacgt agtttagaac gccctctgcc agccactctg S460 ctctttaatt gcccaacact tgattcattg catgattacc tagtcgcaaa aatgtttgat 5520 gatgcccctc agaaggcaga gcaaatggca caaccaacaa cactgacagc acacagcata 5580 tcaatagaat ccaaaataga tgataacgaa agcgtggatg acattgcaca aatgctggca 5640 caagcactca atatcgcctt tgagtag 5667 <210 102 <211>1888
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 102
Met Asp Glu Lys Leu Arg Thr Tyr Glu Arg Leu Ile Lys Gin Ser Tyr 15 10 15
His Lys Ile Glu Ala Leu Glu Ala Glu Val Asn Arg Leu Lys Gin Thr 20 25 30
Gin Cys Glu Pro Ile Ala Ile Val Gly Met Gly Cys Arg Phe Pro Gly 35 40 45
Ala Asn Ser Pro Glu Ala Phe Trp Gin Leu Leu Cys Asp Gly Val Asp 50 55 60
Ala Ile Arg Glu Ile Pro Lys Asn Arg Trp Val Val Asp Ala Tyr ile 65 70 75 80
Asp Glu Asn Leu Asp Arg Ala Asp Lys Thr Ser Met Arg Phe Gly Gly 85 90 95
Phe Val Glu Gin Leu Glu Lys Phe Asp Ala Gin Phe Phe Gly Ile Ser 100 105 110
Pro Arg Glu Ala Val Ser Leu Asp Pro Gin Gin Arg Leu Leu Leu Glu 115 120 125
Val Ser Trp Glu Ala Leu Glu Asn Ala Ala Val Ile Pro Pro Ser Ala 130 135 140
Thr Gly Val Phe Val Gly Ile Ser Asn Leu Asp Tyr Arg Glu Thr Leu 145 150 155 160
Leu Lys Gin Gly Ala Ile Gly Thr Tyr Phe Ala Ser Gly Asn Ala His 165 170 175
Ser Thr Ala Ser Gly Arg Leu Ser Tyr Phe Leu Gly Leu Thr Gly Pro 180 185 190
Cys Leu Ser Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His 195 200 205
Gin Ser Leu Ile Ser Leu Arg Gin Arg Glu Cys Asp Leu Ala Leu Val 210 215 220
Gly Gly Val His Arg Leu Ile Ala Pro Glu Glu Ser Val Ser Leu Ala 225 230 235 240
Lys Ala His Met Leu Ser Pro Asp Gly Arg Cys Lys Val Phe Asp Ala 245 250 255
Ser Ala Asn Gly Tyr Val Arg Ala Glu Gly Cys Gly Met Ile Val Leu 260 265 270
Lys Arg Leu Ser Asp Ala Gin Ala Asp Gly Asp Lys Ile Leu Ala Leu 275 280 285
Ile Arg Gly Ser Ala Ile Asn Gin Asp Gly Arg Thr Ser Gly Leu Thr 290 295 300
Val Pro Asn Gly Pro Gin Gin Ala Asp Val Ile Arg Gin Ala Leu Ala 305 310 315 320
Asn Ser Gly Ile Arg Pro Glu Gin Val Asn Tyr Val Glu Ala His Gly 325 330 335
Thr Gly Thr Ser Leu Gly Asp Pro Ile Glu Val Gly Ala Leu Gly Thr 340 345 350
Ile Phe Asn Gin Arg Ser Gin Pro Leu Ile Ile Gly Ser Val Lys Thr 355 360 365
Asn Ile Gly His Leu Glu Ala Ala Ala Gly Ile Ala Gly Leu Ile Lys 370 375 380
Val Val Leu Ala Met Gin His Gly Glu Ile Pro Pro Asn Leu His Phe 385 390 395 400
His Gin Pro Asn Pro Arg Ile Asn Trp Asp Lys Leu Pro Ile Arg Ile 405 410 415
Pro Thr Glu Arg Thr Ala Trp Pro Thr Gly Asp Arg Ile Ala Gly Ile 420 425 430
Ser Ser Phe Gly Phe Ser Gly Thr Asn Ser His Val Val Leu Glu Glu 435 440 445
Ala Pro Lys Ile Glu Pro Ser Thr Leu Glu Ile His Ser Lys Gin Tyr 450 455 460
Val Phe Thr Leu Ser Ala Ala Thr Pro Gin Ala Leu Gin Glu Leu Thr 465 470 475 480
Gin Arg Tyr Val Thr Tyr Leu Thr Glu His Leu Gin Glu Ser Leu Ala 485 490 495
Asp Ile Cys Phe Thr Ala Asn Thr Gly Arg Lys His Phe Arg His Arg 500 505 510
Phe Ala Val Val Ala Glu Ser Lys Thr Gin Leu Arg Gin Gin Leu Glu 515 520 525
Thr Phe Ala Gin Ser Gly Glu Gly Gin Gly Lys Arg Thr Ser Leu Ser 530 535 540
Lys Ile Ala Phe Leu Phe Thr Gly Gin Gly Ser Gin Tyr Val Gly Met 545 550 555 560
Gly Gin Glu Leu Tyr Glu Ser Gin Pro Thr Phe Arg Gin Thr Ile Asp 565 570 575
Arg Cys Asp Glu ile Leu Arg Ser Leu Leu Gly Lys ser Ile Leu Ser 580 585 590
Ile Leu Tyr Pro Ser Gin Gin Met Gly Leu Glu Thr Pro Ser Gin Ile 595 600 605
Asp Glu Thr Ala Tyr Thr Gin Pro Thr Leu Phe Ser Leu Glu Tyr Ala 610 615 620
Leu Ala Gin Leu Trp Arg Ser Trp Gly Ile Glu Pro Asp Val Val Met 625 630 635 640
Gly His Ser Val Gly Glu Tyr Val Ala Ala Cys Val Ala Gly Val Phe 645 650 655
Ser Leu Glu Asp Gly Leu Lys Leu Ile Ala Glu Arg Gly Arg Leu Met 660 665 670
Gin Glu Leu Pro Pro Asp Gly Ala Met Val Ser Val Met Ala Asn Lys 675 680 685
Ser Arg Ile Glu Gin Ala Ile Gin Ser Val Ser Arg Glu Val Ser Ile 690 695 700
Ala Ala Ile Asn Gly Pro Glu Ser Val Val Ile Ser Gly Lys Arg Glu 705 710 715 720
Ile Leu Gin Gin Ile Thr Glu His Leu Val Ala Glu Gly Ile Lys Thr 725 730 735
Arg Gin Leu Lys Val Ser His Ala Phe His Ser Pro Leu Met Glu Pro 740 745 750
Ile Leu Gly Gin Phe Arg Arg Val Ala Asn Thr Ile Thr Tyr Arg Pro 755 760 765
Pro Gin ile Asn Leu Val Ser Asn Val Thr Gly Gly Gin Val Tyr Lys 770 775 780
Glu Ile Ala Thr Pro Asp Tyr Trp Val Arg His Leu Gin Glu Thr Val 785 790 795 800
Arg Phe Ala Asp Gly Val Lys Val Leu His Glu Gin Asn Val Asn Phe 805 810 815
Met Leu Glu Ile Gly Pro Lys Pro Thr Leu Leu Gly Met Val Glu Leu 820 825 830
Gin Ser Ser Glu Asn Pro Phe Ser Met Pro Met Met Met Pro Ser Leu 835 840 845
Arg Gin Asn Arg ser Asp Trp Gin Gin Met Leu Glu Ser Leu Ser Gin 850 855 860
Leu Tyr Val His Gly Val Glu Ile Asp Trp Ile Gly Phe Asn Lys Asp 865 870 875 880
Tyr Val Arg His Lys Val Val Leu Pro Thr Tyr Pro Trp Gin Lys Glu 885 890 895
Arg Tyr Trp Val Glu Leu Asp Gin Gin Lys His Ala Ala Lys Asn Leu 900 905 910
His Pro Leu Leu Asp Arg Cys Met Lys Leu Pro Arg His Asn Glu Thr 915 920 925
Ile Phe Glu Lys Glu Phe Ser Leu Glu Thr Leu Pro Phe Leu Ala Asp 930 935 940
Tyr Arg Ile Tyr Gly Ser Val Val Ser Pro Gly Ala Ser Tyr Leu Ser 945 950 955 960
Met Ile Leu Ser Ile Ala Glu Ser Tyr Ala Asn Gly His Leu Asn Gly 965 970 975
Gly Asn Ser Ala Lys Gin Thr Thr Tyr Leu Leu Lys Asp Vel Thr Phe 980 985 990
Pro Val Pro Leu Val ile Ser Asp Glu Ala Asn Tyr Met Val Gin Val 995 1000 1005
Ala Cys Ser Leu Ser Cys Ala Ala Pro His Asn Arg Gly-Asp Glu 1010 1015 1020
Thr Gin Phe Glu Leu Phe Sei Phe Ala Glu Asn Val Pro Glu Ser 1025 1030 1035
Ser Ser Ile Asn Ala Asp Phe Gin Thr Pro Ile Ile His Ala Lys 1040 1045 1050
Gly Gin Phe Lys Leu Glu Asp Thr Ala Pro Pro Lys Val Glu Leu 1055 1060 1065
Glu Glu Leu Gin Ala Gly Cys Pro Gin Glu Ile Asp Leu Asn Leu 1070 1075 1080
Phe Tyr Gin Thr Phe Thr Asp Lys Gly Phe Val Phe Gly Ser Arg 1085 1090 1095
Phe Arg Trp Leu Glu Gin Ile Trp Val Gly Asp Gly Glu Ala Leu 1100 1105 1110
Ala Arg Leu Arg Gin Pro Glu Ser Ile Glu Ser Phe Lys Gly Tyr 1115 1120 1125
Val Ile His Pro Gly Leu Leu Asp Ala Cys Thr Gin Val Pro Phe 1130 1135 1140
Ala Ile Ser Ser Asp Asp Glu Asn Arg Gin Ser Glu Thr Thr Met 1145 1150 1155
Pro Phe Ala Leu Asn Glu Leu Arg Cys Tyr Gin Pro Ala Asn Gly 1160 1165 1170
Gin Met Trp Trp Val His Ala Thr Glu Lys Asp Arg Tyr Thr Trp 1175 1180 1185
Asp Val Ser Leu Phe Asp Glu Ser Gly Gin Val Ile Ala Glu Phe 1190 1195 1200 ile Gly Leu Glu val Arg Ala Ala Met Pro Glu Gly Leu Leu Arg 1205 1210 1215
Ala Asp Phe Trp His Asn Trp Leu Tyr Thr Val Asn Trp Arg Ser 1220 1225 1230
Gin Pro Leu Gin Ile Pro Glu Val Leu Asp Ile Asn Lys Thr Gly 1235 1240 1245
Ala Glu Thr Trp Leu Leu Phe Ala Gin Pro Glu Gly Ile Gly Ala 1250 1255 1260
Asp Leu Ala Glu Tyr Leu Gin Ser Gin Gly Lys His Cys Val Phe 1265 1270 1275
Val Val Pro Gly Ser Glu Tyr Thr Val Thr Glu Gin His Ile Gly 1280 1285 1290
Arg Thr Gly His Leu Asp Val Thr Lys Leu Thr Lys Ile Val Thr 1295 1300 1305
Ile Asn Pro Ala Ser Pro His Asp Tyr Lys Tyr Phe Leu Glu Thr 1310 1315 1320
Leu Thr Asp Ile Arg Leu Pro Cys Glu His Ile Leu Tyr Leu Trp 1325 1330 1335
Asn Arg Tyr Asp Leu Thr Asn Thr Ser Asn His Arg Thr Glu Leu 1340 1345 1350
Thr Val Pro Asp Ile Val Leu Asn Leu Cys Thr Ser Leu Thr Tyr 1355 1360 1365
Leu Val Gin Ala Leu Ser His Met Gly Phe Ser Pro Lys Leu Trp 1370 1375 1380
Leu Ile Thr Gin Asn Ser Gin Ala Val Gly Ser Asp Leu Ala Asn 1385 1390 1395
Leu Glu Ile Glu Gin Ser Pro Leu Trp Ala Leu Gly Arg Ser Ile 1400 1405 1410
Arg Ala Glu His Pro Glu Phe Asp Cys Arg Cys Leu Asp Phe Asp 1415 1420 1425
Thr Leu Ser Asn Ile Ala Pro Leu Leu Leu Lys Glu Met Gin Ala 1430 1435 1440
Ile Asp Tyr Glu Ser Gin Ile Ala Tyr Arg Gin Gly Thr Arg Tyr 1445 1450 1455
Val Ala Arg Leu Ile Arg Asn Gin Ser Glu Cys His Ala Pro Ile 1460 1465 1470
Gin Thr Gly Ile Arg Pro Asp Gly Ser Tyr Leu ile Thr Gly Gly 1475 1480 1485
Leu Gly Gly Leu Gly Leu Gin Val Ala Leu Ala Leu Ala Asp Ala 1490 1495 1500
Gly Ala Arg His Leu Ile Leu Asn Ser Arg Arg Gly Thr Val Ser 1505 1510 1515
Lys Glu Ala Gin Leu Ile Ile Asp Arg Leu Arg Gin Glu Asp Val 1520 1525 1530
Arg Val Asp Leu Ile Ala Ala Asp Val Ser Asp Ala Ala Asp Ser 1535 1540 1545
Glu Arg Leu Leu Val Glu Ser Gin Arg Lys Thr Ser Leu Arg Gly 1550 1555 ' 1560
Ile Val His Val Ala Gly Val Leu Asp Asp Gly Ile Leu Leu Gin 1565 1570 1575
Gin Asn Gin Glu Arg Phe Glu Lys Val Met Ala Ala Lys Val Arg 1580 1585 1590
Gly Ala Trp His Leu Asp Gin Gin Ser Gin Thr Leu Asp Leu Asp 1595 1600 1605
Phe Phe Val Ala Phe Ser Ser Val Ala Ser Leu Ile Glu Glu Pro 1610 1615 1620
Gly Gin Ala Asn Tyr Ala Ala Ala Asn Ala Phe Leu Asp Ser Leu 1625 1630 1635
Met Tyr Tyr Arg His Ile Lys Gly Ser Asn Ser Leu Ser Ile Asn 1640 1645 1650
Trp Gly Ala Trp Ala Glu Val Gly Met Ala Ala Asn Leu Ser Trp 1655 1660 1665
Glu Gin Arg Gly Ile Ala Ala Ile Ser Pro Lys Gin Gly Arg His 1670 1675 1680
Ile Leu Val Gin Leu Ile Gin Lys Leu Asn Gin His Thr Ile Pro 1685 1690 1695
Gin Val Ala Val Gin Pro Thr Asn Trp Ala Glu Tyr Leu Ser His 1700 1705 1710
Asp Gly Val Asn Met Pro Phe Tyr Glu Tyr Phe Thr His His Leu 1715 1720 1725
Arg Asn Glu Lys Glu Ala Lys Leu Arg Gin Thr Ala Gly Ser Thr 1730 1735 1740
Ser Glu Glu Val Ser Leu Arg Gin Gin Leu Gin Thr Leu Ser Glu 1745 1750 1755
Lys Asp Arg Asp Ala Leu Leu Met Glu His Leu Gin Lys Thr Ala 1760 1765 1770
Ile Arg Val Leu Gly Leu. Ala Ser Asn Gin Lys Ile Asp Pro Tyr 1775 1780 1785
Gin Gly Leu Met Asn Met Gly Leu Asp Ser Leu Met Ala Val Glu 1790 1795 1800
Phe Arg Asn His Leu Ile Arg Ser Leu Glu Arg Pro Leu Pro Ala 1805 1810 1815
Thr Leu Leu Phe Asn Cys Pro Thr Leu Asp Ser Leu His Asp Tyr 1820 1825 1830
Leu Val Ala Lys Met Phe Asp Asp Ala Pro Gin Lys Ala Glu Gin 1835 1840 1845
Met Ala Gin Pro Thr Thr Leu Thr Ala His Ser Ile Ser Ile Glu 1850 1855 1860
Ser Lys Ile Asp Asp Asn Glu Ser Val Asp Asp Ile Ala Gin Met 1865 1870 1875
Leu Ala Gin Ala Leu Asn Ile Ala Phe Glu 1880 1885 <210> 103 <211> 5004
<212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 103 atgagtcagc ccaattatgg cattttgatg aaaaatgcgt tgaacgaaat aaatagccta 60 cgatcgcaac tagctgcggt agaagcccaa aaaaatgagt ctattgccat tgttggtatg 120 agttgccgtt ttccaggcgg tgcaactact ccagagcgtt tttgggtatt actgcgcgag 180 ggtatatcag ccattaeaga aatccctgct gatcgctggg atgttgataa atattatgat 240 gctgacccca catcgtccgg taaaatgcat actcgttacg gcggttttct gaatgaagtt 300 gatacatttg agccatcatt' ctttaatatt gctgcccgtg aagccgttag catggatcca 360 cagcaacgct tgctacttga agtcagttgg gaagctctgg aatccggtaa tattgttcct 420 gcaactcttt Ctgatagttc cactggtgta tttatcggta ttggtggtag caactacaaa 480 tctttaatga tcgaaaacag gagtcggatc gggaaaaccg at'ttgtatga gttaagtggc 540 actgatgtga gtgttgctgc cggcaggata tcctatgtcc tgggtttgat gggtcccagt 600 tttgtgattg atacagcttg ttcatcttct ttggtctcag ttcatcaagc ctgtcagagt 660 ctgcgtcaga gagaatgtga tctagcacta gctggtggag tcggtttact cattgatcca 720 gatgagatga ttggtctttc tcaagggggg atgctggcac ctgatggtag ttgtaaaaca 780 tttgatgcca atgcaaatgg ctatgtgcga ggcgaaggtt gtgggatgat tgttctaaaa 840 cgtctctcgg atgcaacagc cgatggggat aatattcttg ccatcattcg tgggtctatg 900 gttaatcatg atggtcatag cagtggttta actgctccaa gaggccccgc acaagtctct 960 gtcattaagc aagccttaga tagagcaggt attgcaccgg atgccgCaag ttatttagaa 1020 gcccatggta caggcacacc ccttggtgat cctatcgaga tggattcatt gaacgaagtg 1080 tttggtcgga gaacagaacc actttgggtc ggctcagtta agacaaatat tggtcattta 1140 gaagccgcgt ccggtattgc agggctgatt aaggttgtct tgatgctaaa aaacaagcag 1200 attcctcctc acttgcattt caagacacca aatccataca ttgattggaa aaatctcccg 1260 gtcgaaattc cgaccaccct tcatgcttgg gatgacaaga cattgaagga cagaaagcga 1320 attgcagggg ttagttcttt tagtttcagt ggtactaacg cccacattgt attatctgaa 1380 gccccatcta gcgaactaat tagtaatcat gcggcagtgg aaagaccatg gcacttgtta 1440 acccttagtg ctaagaatga ggaagcgttg gctaacttgg ttgggcttta tcagtcattt 1500 atttctacta ctgatgcaag tcttgccgat atatgctaca ctgctaatac ggcacgaacc 1560 catttttctc atcgccttgc tctatcggct acttcacaca tccaaataga ggctctttta 1620 gccgcttata aggaagggtc ggtgagtttg agcatcaatc aaggttgtgt cctttccaac 1680 agtcgtgcgc cgaaggtcgc ttttctcttt acaggtcaag gttcgcaata tgtgcaaatg 1740 gctggagaac tttatgagac ccagcctact ttccgtaatt gcttagatcg ctgtgccgaa 1800 atcttgcaat ccatcttttc atcgagaaac agcccttggg gaaacccact gctttcggta 1860 ttatatccaa accatgagtc aaaggaaatt gaccagacgg cttataccca acctgccctt 1920 tttgctgtag aatatgccct agcaoagatg tggcggtcgt ggggaatcga gccagatatc 1980 gtaatgggtc atagcatagg tgaatatgtg gcagcttgtg tggcggggat cttttctctg 2040 gaggatggtc tcaaacttgc tgccgaaaga ggccgtttga tgcaggcgct accacaaaat 2100 ggcgagatgg ttgctaCatc ggcctccctt gaggaagtta agccggctat tcaatctgac 2160 cagcgagttg tgatagcggc ggtaaatgga ccacgaagtg tcgtcatttc gggcgatcgc 2220 caagctgtgc aagtcttcac caacacccta gaagatcaag gaatccggtg caagagactg 2280 tctgtttcac acgctttcca ctctccattg atgaaaccaa tggagcagga gttcgcacag 2340 gtggccaggg aaatcaacta tagtcctcca aaaatagctc ttgtcagtaa tctaaccggc 2400 gacttgattt cacctgagtc ttccctggag gaaggagtga tcgcttcccc tggttactgg 2460 gtaaatcatt tatgcaatcc tgtcttgttc gctgatggta ttgcaactat gcaagcgcag 2520 gatgtccaag tcttccttga agttggacca aaaccgacct tatcaggact agtgcaacaa 2580 tattttgacg aggttgccca tagcgatcgc cctgtcacca ttcccacctt gcgccccaag 2640 caacccaact ggcagacact attggagagt ttgggacaac tgtatgcgct tggtgtccag 2700 gtaaattggg cgggctttga tagagattec accagacgca aagtaagcct acccacctat 2760 gcttggaagc gtcaacgtta ttggctagag aaacagtccg ctccacgttt agaaacaaca 2820 caagttcgtc ccgcaactgc cattgtagag catcttgaac aaggcaatgt gccgaaaatc 2880 gtggacttgt tagcggcgac ggatgtactt tcaggcgaag cacggaaatt gctacccagc 2940 atcattgaac tattggttgc aaaacatcgt gaggaagcga cacagaagcc catctgcgat 3000 tggctttatg aagtggtttg gcaaccccag ttgctgaccc tatctacctt acctgctgtg 3060 gaaacagagg gtagacaatg gctcatcttc gccgatgcta gtggacacgg tgaagcactt 3120 gcggctcaat tacgtcagca aggggatata attacgcttg tctatgctgg tctaaaatat 3180 cactcggcta ataataaaca aaataccggg ggggacatcc catattttca gattgatccg 3240 atccaaaggg aggattatga aaggttgttt gctgctttgc ctccactgta tggtattgtt 3300 catctttgga gtttagatat acttagcttg gacaaagtat ctaacctaat tgaaaatgta 3360 caattaggta gtggcacgct attaaattta atacagacag tcttgcaact tgaaacgccc 3420 acccctagct tgtggctcgt gacaaagaac gcgcaagctg tgcgtaaaaa cgatagccta 3480 gtcggagtgc ttcagtcacc cttatggggt atgggtaagg tgatagcctt agaacaccct 3540 gaactcaact gtgtatcaat cgaccttgat ggtgaagggc ttccagatga acaagccaag 3600 tttctggcgg ctgaactccg cgccgcctcc gagttcagac ataccaccat tccccacgaa 3660 agtcaagttg cttggcgtaa taggactcgc tatgtgtcac ggttcaaagg ttatcagaag 3720 catcccgcga cctcatcaaa aatgcctatt cgaccagatg ccacttattt gatcacgggc 3780 ggctttggtg gtttgggctt gcttgtggct cgttggatgg ttgaacaggg ggctacccat 3840 ctatttctga tgggacgcag ccaacccaaa ccagccgccc aaaaacaact gcaagagata 3900 gccgcgctgg gtgcaacagt gacggtggtg caagccgatg ttggcatccg ctcccaagta 3960 gccaatgtgt tggcacagat tgataaggca tatcctttgg ctggtattat tcatactgcc 4020 ggtgtattag acgacggaat cttattgcag caaaatCggg cgcgttttag caaggtgttc 4080 gcccccaaac tagagggagc ttggcatcta catacactga ctgaagagat gccgcttgat 4140 ttctttattt gtttctcctc aacagcagga ttgctgggca gtggtggaca agctaactat 4200 gctgctgcca atgccttttt agatgccttt gcccatcatc ggcgaataca aggcttgcca 4260 gctctctcga ttaactggga cgcttggtct caagtgggaa tgacggtacg tctccaacaa 4320 gcttcttcac aaagcaccac agttgggcaa gatattagca ctttggaaat ttcaccagaa 4380 cagggattgc aaatctttgc ctatcttctg caacaaccat ccgcccaaat agcggccatt 4440 tctaccgatg ggcttcgcaa gatgtacgac acaagctcgg ccttttttgc tttacttgat 4500 cttgacaggt cttcctecac tacccaggag caatctacac tttctcatga agttggcctt 4560 accttactcg aacaattgca gcaagctcgg ccaaaagagc gagagaaaat gttactgcgc 4620 catctacaga cccaagttgc tgcggtcttg cgtagtcccg aactgcccgc agttcatcaa 4680 cccttcactg acttggggat ggattcgttg atgtcacttg aattgatgcg gcgtttggaa 4740 gaaagtctgg ggattcagat gcctgcaacg cttgcattcg attatcctat ggtagaccgt 4800 ttggctaagt ttatactgac tcaaatatgt ataaattctg agccagatac ctcagcagtt 4860 ctcacaccag atggaaatgg ggaggaaaaa gacagtaata aggacagaag taccagcact 4920 tccgttgact caaatattac ttccatggca gaagatctat tcgcactcga atccttacta 4980 aataaaataa aaagagatca ataa 5004 <210 104 <211> 1667 <212> PRT . <213> Cylindrospermopsis raciborskii AWT205 <400> 104
Met Ser Gin Pro Asn Tyr Gly Ile Leu Met Lys Asn Ala Leu Asn Glu 1 5 10 15
Ile Asn Ser Leu Arg Ser Gin Leu Ala Ala Val Glu Ala Gin Lys Asn 20 25 30
Glu Ser Ile Ala Ile Val' Gly Met Ser Cys Arg phe Pro Gly Gly Ala 35 40 45
Thr Thr Pro Glu Arg Phe Trp Val Leu Leu Arg Glu Gly Ile Ser Ala 50 55 60
Ile Thr Glu Ile Pro Ala Asp Arg Trp Asp Val Asp Lys Tyr Tyr Asp 65 70 75 80
Ala Asp Pro Thr Ser Ser Gly Lys Met His Thr Arg Tyr Gly Gly Phe 85 90 95
Leu Asn Glu Val Asp Thr Phe Glu Pro Ser Phe Phe Asn Ile Ala Ala 100 105 110
Arg Glu Ala Val Ser Met Asp Pro Gin Gin Arg Leu Leu Leu Glu Val 115 120 125
Ser Trp Glu Ala Leu Glu Ser Gly Asn Ile Val Pro Ala Thr Leu Phe 130 135 140
Asp Ser Ser Thr Gly Val Phe Ile Gly Ile Gly Gly Ser Asn Tyr Lys 145 150 155 160
Ser Leu Met Ile Glu Asn Arg Ser Arg Ile Gly Lys Thr Asp Leu Tyr 165 170 175
Glu Leu Ser Gly Thr Asp Val Ser Val Ala Ala Gly Arg Ile Ser Tyr 180 185 190
Val Leu Gly Leu Met Gly Pro Ser Phe Val Ile Asp Thr Ala Cys Ser 195 200 205
Ser Ser Leu Val Ser Val His Gin Ala Cys Gin Ser Leu Arg Gin Arg 210 215 220
Glu Cys Asp Leu Ala Leu Ala Gly Gly Val Gly Leu Leu Ile Asp Pro 225 230 235 240
Asp Glu Met Ile Gly Leu Ser Gin Gly Gly Met Leu Ala Pro Asp Gly 245 250 255
Ser Cys Lys Thr Phe Asp Ala Asn Ala Asn Gly Tyr Val Arg Gly Glu 260 265 270
Gly Cys Gly Met Ile Val Leu Lys Arg Leu Ser Asp Ala Thr Ala Asp 275 280 285
Gly Asp Asn Ile Leu Ala Ile Ile Arg Gly Ser Met Val Asn His Asp 290 295 300
Gly His Ser Ser Gly Leu Thr Ala Pro Arg Gly Pro Ala Gin Val Ser 305 310 315 320
Val Ile Lys Gin Ala Leu Asp Arg Ala Gly Ile Ala Pro Asp Ala Val 325 330 335
Ser Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly Asp Pro Ile 340 345 350
Glu Met Asp Ser Leu Asn Glu Val Phe Gly Arg Arg Thr Glu Pro Leu 355 360 365
Trp Val Gly Ser Val Lys Thr Asn Ile Gly His Leu Glu Ala Ala Ser 370 375 380
Gly Ile Ala Gly Leu Ile Lys Val Val Leu Met Leu Lys Asn Lys Gin 385 390 395 400
Ile Pro Pro His Leu His Phe Lys Thr Pro Asn Pro Tyr Ile Asp Trp 405 410 415
Lys Asn Leu Pro Val Glu Ile Pro Thr Thr Leu His Ala Trp Asp Asp 420 425 430
Lys Thr Leu Lys Asp Arg Lys Arg Ile Ala Gly Val Ser Ser Phe Ser 435 440 445
Phe Ser Gly Thr Asn Ala His Ile Val Leu Ser Glu Ala Pro Ser Ser 450 455 460
Glu Leu ile Ser Asn. His Ala Ala Val Glu Arg Pro Trp His Leu Leu 465 470 475 480
Thr Leu Ser Ala Lys Asn Glu Glu Ala Leu Ala Asn Leu Val Gly Leu 485 490 495
Tyr Gin Ser Phe Ile Ser Thr Thr Asp Ala Ser Leu Ala Asp Ile Cys 500 505 510
Tyr Thr Ala Asn Thr Ala Arg Thr His Phe Ser His Arg Leu Ala Leu 515 520 525
Ser Ala Thr Ser His Ile Gin ile Glu Ala Leu Leu Ala Ala Tyr Lys 530 535 540
Glu Gly Ser Val Ser Leu Ser Ile Asn Gin Gly Cys Val Leu Ser Asn 545 550 555 560
Ser Arg Ala Pro Lys Val Ala Phe Leu Phe Thr Gly Gin Gly Ser Gin 565 570 575
Tyr Val Gin Met Ala Gly Glu Leu Tyr Glu Thr Gin Pro Thr Phe Arg 580 585 590
Asn Cys Leu Asp Arg Cys Ala Glu Ile Leu Gin Ser Ile Phe Ser Ser 595 600 605
Arg Asn Ser Pro Trp Gly Asn Pro Leu Leu Ser Val Leu Tyr Pro Asn 610 615 620
His Glu Ser Lys Glu Ile Asp Gin Thr Ala Tyr Thr Gin Pro Ala Leu 625 630 635 640
Phe Ala Val Glu Tyr Ala Leu Ala Gin Met Trp Arg Ser Trp Gly Ile 645 650 655
Glu Pro Asp Ile Val Met Gly His Ser Ile Gly Glu Tyr Val Ala Ala 660 665 670
Cys Val Ala Gly Ile Phe Ser Leu Glu Asp Gly Leu Lys Leu Ala Ala 675 680 685
Glu Arg Gly Arg Leu Met Gin Ala Leu Pro Gin Asn Gly Glu Met Val 690 695 700
Ala Ile Ser Ala Ser Leu Glu Glu Val Lys Pro Ala Ile Gin Ser Asp 705 710 715 720
Gin Arg Val Val Ile Ala Ala Val Asn Gly Pro Arg Ser Val Val Ile 725 730 735
Ser Gly Asp Arg Gin Ala Val Gin Val Phe Thr Asn Thr Leu Glu Asp 740 745 750
Gin Gly Ile Arg Cys Lys Arg Leu Ser Val Ser His Ala Phe His Ser 755 760 765
Pro Leu Met Lys Pro Met Glu Gin Glu Phe Ala Gin Val Ala Arg Glu 770 775 780
Ile Asn Tyr Ser Pro Pro Lys Ile Ala Leu Val Ser Asn Leu Thr Gly 785 790 795 800
Asp Leu Ile Ser Pro Glu Ser Ser Leu Glu Glu Gly Val Ile Ala Ser 805 810 815
Pro Gly Tyr Trp Val Asn His Leu Cys Asn Pro Val Leu Phe Ala Asp 820 825 830
Gly Ile Ala Thr Met Gin Ala Gin Asp Val Gin Val Phe Leu Glu Val 835 840 845
Gly Pro Lys Pro Thr Leu Ser Gly Leu Val Gin Gin Tyr Phe Asp Glu 850 855 860
Val Ala His Ser Asp Arg Pro Val Thr Ile Pro Thr Leu Arg Pro Lys 865 870 875 880
Gin Pro Asn Trp Gin Thr Leu Leu Glu Ser Leu Gly Gin Leu Tyr Ala 885 890 895
Leu Gly Val Gin Val Asn Trp Ala Gly Phe Asp Arg Asp Tyr Thr Arg 900 905 910
Arg Lys Val Ser Leu Pro Thr Tyr Ala Trp Lys Arg Gin Arg Tyr Trp 915 920 925
Leu Glu Lys Gin Ser Ala Pro Arg Leu Glu Thr Thr Gin Val Arg Pro 930 935 940
Ala Thr Ala Ile Val Glu His Leu Glu Gin Gly Asn Val Pro Lys Ile 945 950 955 960
Val Asp Leu Leu Ala Ala Thr Asp Val Leu Ser Gly Glu Ala Arg Lys 965 970 975
Leu Leu Pro Ser lie lie Glu Leu Leu Val Ala Lys His Arg Glu Glu 980 985 990
Ala Thr Gin Lys Pro He Cys Asp Trp Leu Tyr Glu Val Val Trp Gin 995 1000 1005
Pro Gin Leu Leu Thr Leu Ser Thr Leu Pro Ala Val Glu Thr Glu 1010 1015 1020
Gly Arg Gin Trp Leu lie Phe Ala Asp Ala Ser Gly His Gly Glu 1025 1030 1035
Ala Leu Ala Ala Gin Leu Arg Gin Gin Gly Asp lie lie Thr Leu 1040 1045 1050
Val Tyr Ala Gly Leu Lys Tyr His Ser Ala Asn Asn Lys Gin Asn 1055 1060 1065
Thr Gly Gly Asp lie Pro Tyr Phe Gin lie Asp Pro lie Gin Arg 1070 1075 1080
Glu Asp Tyr Glu Arg Leu Phe Ala Ala Leu Pro Pro Leu Tyr Gly 1085 1090 1095
He Val His Leu Trp Ser Leu Asp lie Leu Ser Leu Asp Lys Val 1100 1105 1110
Ser Asn Leu lie Glu Asn Val Gin Leu Gly Ser Gly Thr Leu Leu 1115 1120 1125
Asn Leu He Gin Thr Val Leu Gin Leu Glu Thr Pro Thr Pro Ser 1130 1135 1140
Leu Trp Leu Val Thr Lys Asn Ala Gin Ala Val Arg Lys Asn Asp 1145 1150 1155
Ser Leu Val Gly Val Leu Gin Ser Pro Leu Trp Gly Met Gly Lys 1160 1165 1170
Val He Ala Leu Glu His Pro Glu Leu Asn Cys Val Ser lie Asp 1175 1180 1185
Leu Asp Gly Glu Gly Leu Pro Asp Glu Gin Ala Lys Phe Leu Ala 1190 1195 1200
Ala Glu Leu Arg Ala Ala Ser Glu Phe Arg His Thr Thr He Pro 1205 1210 1215
His Glu Ser Gin Val Ala Trp Arg Asn Arg Thr Arg Tyr Val Ser 1220 1225 1230
Arg Phe Lys Gly Tyr Gin Lys His Pro Ala Thr Ser Ser Lys Met 1235 1240 1245
Pro He Arg Pro Asp Ala Thr Tyr Leu lie Thr Gly Gly Phe Gly 1250 1255 1260
Gly Leu Gly Leu Leu Val Ala Arg Trp Met Val Glu Gin Gly Ala 1265 1270 1275
Thr His Leu Phe Leu Met Gly Arg Ser Gin Pro Lys Pro Ala Ala 1280 1285 1290
Gin Lys Gin Leu Gin Glu lie Ala Ala Leu Gly Ala Thr Val Thr 1295 1300 1305
Val Val Gin Ala Asp Val Gly He Arg Ser Gin Val Ala Asn Val 1310 1315 1320
Leu Ala Gin lie Asp Lys Ala Tyr Pro Leu Ala Gly lie He His 1325 1330 1335
Thr Ala Gly Val Leu Asp Asp Gly lie Leu Leu Gin Gin Asn Trp 1340 1345 1350
Ala Arg Phe Ser Lys Val Phe Ala Pro Lys Leu Glu Gly Ala Trp 1355 1360 1365
His Leu His Thr Leu Thr Glu Glu Met Pro Leu Asp Phe Phe lie 1370 1375 1380
Cys Phe Ser Ser Thr Ala Gly Leu Leu Gly Ser Gly Gly Gin Ala 1385 1390 1395
Asn Tyr Ala Ala Ala Asn Ala Phe Leu Asp Ala Phe Ala His His 1400 1405 1410
Arg Arg Ile Gin Gly Leu Pro Ala Leu Ser Ile Asn Trp Asp Ala 1415 1420 1425
Trp Ser Gin Val Gly Met Thr Val Arg Leu Gin Gin Ala Ser Ser 1430 1435 1440
Gin Ser Thr Thr Val Gly Gin Asp Ile Ser Thr Leu Glu Ile Ser 1445 1450 1455
Pro Glu Gin Gly Leu Gin Ile Phe Ala Tyr Leu Leu Gin Gin Pro 1460 1465 1470
Ser Ala Gin Ile Ala Ala Ile Ser Thr Asp Gly Leu Arg Lys Met 1475 1480 1485
Tyr Asp Thr Ser Ser Ala Phe Phe Ala Leu Leu Asp Leu Asp Arg 1490 1495 1500
Ser Ser Ser Thr Thr Gin Glu Gin Ser Thr Leu Ser His Glu Val 1505 1510 1515
Gly Leu Thr Leu Leu Glu Gin Leu Gin Gin Ala Arg pro Lys Glu 1520 1525 1530
Arg Glu Lys Met Leu Leu Arg His Leu Gin Thr Gin Val Ala Ala 1535 1540 1545
Val Leu Arg Ser Pro Glu Leu Pro Ala Val His Gin Pro Phe Thr 1550 1555 1560
Asp Leu Gly Met Asp Ser Leu Met Ser Leu Glu Leu Met Arg Arg 1565 1570 1575
Leu Glu Glu Ser Leu Gly Ile Gin Met Pro Ala Thr Leu Ala Phe 1580 1585 1590
Asp Tyr Pro Met Val Asp Arg Leu Ala Lys Phe Ile Leu Thr Gin 1595 1600 1605
Ile Cys Ile Asn Ser Glu Pro Asp Thr Ser Ala Val Leu Thr Pro 1610 1615 1620
Asp Gly Asn Gly Glu Glu Lys Asp Ser Asn Lys Asp Arg Ser Thr 1625 1630 1635
Ser Thr Ser Val Asp Ser Asn Ile Thr Ser Met Ala Glu Asp Leu 1640 1645 1650
Phe Ala Leu Glu Ser Leu Leu Asn Lys Ile Lys Arg Asp Gin 1655 1660 1665
<210> 105 <211>318 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 105 ttatgctgca tctaaataga agttccatag ccctgcactg accaacatca attgatcatc 60 aaaatcggtc acacgattcc tatatgtggg ataaaatttg cagtacagca ggatataaaa 120 tagtttttcc tctatacttc tgagtgtagg cttgcgtccg cccccgggcg cacgtttgcg 180 gtttgctaag gagttgaaca cggtgcgttc ataggtatca gcaaactgag ataacagctc 240 gttgaatgct tggcggttaa gtccagtcat tgctcgtagc agtcgctctt gattcaggat 300 gcggtctaag ttcaacat 318 <210> 106 <211> 105
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 106
Met Leu Asn Leu Asp Arg Ile Leu Asn Gin Glu Arg Leu Leu Arg Ala 1 5 10 15
Met Thr Gly Leu Asn Arg Gin Ala Phe Asn Glu Leu Leu Ser Gin Phe 20 25 30
Ala Asp Thr Tyr Glu Arg Thr Val Phe Asn Ser Leu Ala Asn Arg Lys 35 40 45
Arg Ala Pro Gly Gly Gly Arg Lys Pro Thr Leu Arg Ser lie Glu Glu 50 55 60
Lys Leu Phe Tyr lie Leu Leu Tyr Cys Lys Phe Tyr Pro Thr Tyr Arg 65 70 75 80
Asn Arg Val Thr Asp Phe Asp Asp Gin Leu Met Leu Val Ser Ala Gly 85 90 95
Leu Trp Asn Phe Tyr Leu Asp Ala Ala 100 105
<210 107 <211> 600 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 107 etactgagtg aaagtgaact tctttcecac gtattcgagt agctgttgta agctggcctc 60 gatggaaagt tccgaagttt ccaccagtaa atctggtgtt ctcggtggtt cgtagggagc 120 gctaattccc gtaaaagact caatttctcc acggcgtgct tttgcataga gacccttggg 180 gtcacgttgt tcacaaattt ccatcggagt tgcaatatat acttcatgaa acagatctcc 240 ggacagaata cggatttgct cccggtcttt cctgtaaggt gaaatgaaag cagtaatcac 300 taaacaaccc gaatccgcaa aaagtttggc cacctcgcca atacgacgaa tattttccgc 360 acgatcagca gcagaaaatc ccaagtcagc acataatcca tgacggatat tgtcaccatc 420 aaggacaaaa gtataccaac ctttctggaa caaaatccgc tctaattcta gagccaatgt 480 tgttttacct gatcctgata atccagtgaa ccatagaatt ccatttcggt gaccattctt 540 taaacaacga tcaaatgggg acacaagatg ttttgtatgt tgaatattgc ttgatttcat 600 <210> 108 <211>199
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400> 108
Met Lys Ser Ser Asn lie Gin His Thr Lys His Leu Val Ser Pro Phe 15 10 15
Asp. Arg Cys Leu Lys Asn Gly His Arg Asn Gly lie Leu Trp Phe Thr 20 25 30
Gly Leu Ser Gly Ser Gly Lys Thr Thr Leu Ala Leu Glu Leu Glu Arg 35 40 45 lie Leu Phe Gin Lys Gly Trp Tyr Thr Phe Val Leu Asp Gly Asp Asn 50 55 60 lie Arg His Gly Leu Cys Ala Asp Leu Gly Phe Ser Ala Ala Asp Arg 65 70 75 80
Ala Glu Asn lie Arg Arg lie Gly Glu Val Ala Lys Leu Phe Ala Asp 85 90 95
Ser Gly Cys Leu Val lie Thr Ala Phe lie Ser Pro Tyr Arg Lys Asp 100 105 110
Arg Glu Gin lie Arg lie Leu Ser Gly Asp Leu Phe His Glu Val Tyr 115 120 125
He Ala Thr Pro Met Glu He Cys Glu Gin Arg Asp Pro Lys Gly Leu 130 135 . 140
Tyr Ala Lys Ala Arg Arg Gly Glu Tie Glu Ser Phe Thr Gly lie Ser 145 150 155 160
Ala Pro Tyr Glu Pro Pro Arg Thr Pro Asp Leu Leu Val Glu Thr Ser 165 170 175
Glu Leu Ser He Glu Ala Ser Leu Gin Gin Leu Leu Glu Tyr Val Gly 180 185 190
Lys Lys Phe Thr Phe Thr Gin 195
<210> 109 <211> 1548 <212> DNA <213> Cylindrospermopsis raciborskii AWT205 <400> 109 atgcctaaat actttaatac tgctggaccc tgtaaatccg aaatccacta tatgctctct 60 cccacagctc gactaccgga tttgaaagca ctaattgacg gagaaaacta ctttataatt 120 cacgcgccgc gacaagtcgg caaaactaca gctatgatag ccttagcacg agaattgact 180 gatagtggaa aatataccgc agttattctt tccgttgaag tgggatcagt attctcccat 240 aatccccagc aagcggagca ggttatttta gaagaatgga aacaggcaat caaattttat 300 ttacccaaag aactacaacc atcctattgg ccagagcgtg aaacagactc aggaataggc 360 aaaactttaa gtgagtggtc cgcacaatct ccaagacctc ttgtaatctt tttacatgaa 420 atcgattccc taacagatga agctttaatc ctaattttaa gacaattacg ctcaggtttt 480 ccccgtcgtc ctcggggatt tccccattcg gtggggttaa ttggtatgcg ggatgtgcgg 540 gactataagg ttaaatctgg tggaagtgaa cgactgaata cgtcaagtcc tttcaatatc 600 aaagcggaat ccttgacttt aagtaatttc actctgtcag aggtggaaga actttactta 660 caacatacgc aagctacagg acaaattttt accccggaag caattaaaca agcattttat 720 ttaaccgatg ggcaaccatg gttagtaaac gccctagctc gtcaagccac tcaggtgtta 780 gtgaaagata ttactcaacc cattaccgct gaagtaatta accaagccaa agaagttctg 840 attcagcgcc aggataccca tttggatagt ttggcagagc gcttacggga agatcgggtc 900 aaagccatta ttcaacctat gttagctgga tcggacttac cagatacccc agaggatgat 960 cgccgtttct tgctagattt aggcttggta aagcgcagtc ccttgggagg actaaccatt 1020 gccaatccca tttaccagga ggtgattcct cgtgttttgt cccagggtag tcaggatagt 1080 ctaccccaga ttcaacctac ttggttaaat actgataata ctttaaat.cc tgacaaactc 1140 ttaaatgctt tcctagagtt ttggcgacaa catggggaac cattactcaa aagtgcgcct 1200 tatcatgaaa ttgctcccca tttagttttg atggcgtttt tacatcgggt agtgaatggt 1260 ggtggcactt tagaacggga atatgccgtt ggttctggaa gaatggatat ttgtttacgc 1320 tatggcaagg tagtgatggg catagagtta aaggtttggg ggggaaaatc ggatccgtta 1380 acgaagggtt tgacccaatt ggataaatat ctgggtgggt taggattaga tagaggttgg 1440 ttagtaattt ttgatcaccg tccgggatta ccacccatgg gtgagaggat tagtatggaa 1500 caggccatta gtccagaggg aagaaccatt acagtgattc gtagctag 1548 <210>110 <211>515
<212> PRT <213> Cylindrospermopsis raciborskii AWT205 <400 110
Met Pro Lys Tyr Phe Asn Thr Ala Gly Pro Cys Lys Ser Glu Ile His 1 5 10 15
Tyr Met Leu Ser Pro Thr Ala Arg Leu Pro Asp Leu Lys Ala Leu ile 20 25 30
Asp Gly Glu Asn Tyr Phe Ile Ile His Ala Pro Arg Gin Val Gly Lys 35 40 ' 45
Thr Thr Ala Met Ile Ala Leu Ala Arg Glu Leu Thr Asp Ser Gly Lys 50 55 60
Tyr Thr Ala Val Ile Leu Ser Val Glu Val Gly Ser Val Phe Ser His 65 70 75 80
Asn Pro Gin Gin Ala Glu Gin Val Ile Leu Glu Glu Trp Lys Gin Ala 85 90 95
Ile Lys Phe Tyr Leu Pro Lys Glu Leu Gin Pro Ser Tyr Trp Pro Glu 100 105 110
Arg Glu Thr Asp Ser Gly Ile Gly Lys Thr Leu Ser Glu Trp Ser Ala 115 120 125
Gin Ser Pro Arg Pro Leu Val Ile Phe Leu His Glu Ile Asp Ser Leu 130 . 135 140
Thr Asp Glu Ala Leu Ile Leu ile Leu Arg Gin Leu Arg Ser Gly Phe 145 150 155 160
Pro Arg Arg Pro Arg Gly Phe Pro His Ser Val Gly Leu Ile Gly Met 165 170 175
Arg Asp Val Arg Asp Tyr Lys Val Lys Ser Gly Gly Ser Glu Arg Leu 180 185 190
Asn Thr Ser Ser Pro Phe Asn Ile Lys Ala Glu Ser Leu Thr Leu Ser 195 200 205
Asn Phe Thr Leu Ser Glu Val Glu Glu Leu Tyr Leu Gin His Thr Gin 210 215 220
Ala Thr Gly Gin ile Phe Thr Pro Glu Ala Ile Lys Gin Ala Phe Tyr 225 230 235 240
Leu Thr Asp Gly Gin Pro Trp Leu Val Asn Ala Leu Ala Arg Gin Ala 245 250 255
Thr Gin Val Leu Val Lys Asp Ile Thr Gin Pro Ile Thr Ala Glu Val 260 265 270
Ile Asn Gin Ala Lys Glu Val Leu Ile Gin Arg Gin Asp Thr His Leu 275 280 285
Asp Ser Leu Ala Glu Arg Leu Arg Glu Asp Arg Val Lys Ala Ile Ile 290 295 300
Gin Pro Met Leu Ala Gly Ser Asp Leu Pro Asp Thr Pro Glu Asp Asp 305 310 315 320
Arg Arg Phe Leu Leu Asp Leu Gly Leu Val Lys Arg Ser Pro Leu Gly 325 330 335
Gly Leu Thr Ile Ala Asn Pro Ile Tyr Gin Glu Val Ile Pro Arg Val 340 345 350
Leu Ser Gin Gly ser Gin Asp Ser Leu Pro Gin Ile Gin Pro Thr Trp 355 360 365
Leu Asn Thr Asp Asn Thr Leu Asn Pro Asp Lys Leu Leu Asn Ala Phe 370 375 380
Leu Glu Phe Trp Arg Gin His Gly Glu Pro Leu Leu Lys Ser Ala Pro 385 390 395 400
Tyr His Glu Ile Ala Pro His Leu Val Leu Met Ala Phe Leu His Arg 405 410 415
Val Val Asn Gly Gly Gly Thr Leu Glu Arg Glu Tyr Ala Val Gly Ser 420 425 430
Gly Arg Met Asp Ile Cys Leu Arg Tyr Gly Lys Val Val Met Gly Ile 435 440 445
Glu Leu Lys Val Trp Gly Gly Lys Ser Asp Pro Leu Thr Lys Gly Leu 450 455 460
Thr Gin Leu Asp Lys Tyr Leu Gly Gly Leu Gly Leu Asp Arg Gly Trp 465 470 475 480
Leu Val Ile Phe Asp His Arg Pro Gly Leu Pro Pro Met Gly Glu Arg 485 490 495
Ile Ser Met Glu Gin Ala Ile Ser Pro Glu Gly Arg Thr Ile Thr Val 500 505 510
Ile Arg Ser 515 <210>111 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii AWT205 sequence <400> 111 acttctctcc tttccctatc 20 <210> 112 <211> 22 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii AWT205 sequence <400>112 gagtgaaaat gcgtagaact tg 22 <210>113 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>113 cccaatatct ccctgtaaaa ct 22 <210>114 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>114 tggcaattgt ctctccgtat 20 <210>115 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>115 ctcgccgatg aaagtcctct 20 <210>116 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>116 gcgtgtcgag aaaaaggtgt 20 <210>117 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>117 ctcgacacgc aagaataacg 20 <210>118 <211> 21
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>118 atgcttctgc tttggcatgg c 21 <210>119 <211> 21
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 119 taactcgacg aactttgacc c 21 <210> 120 <211> 19 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 <400> 120 gccgccaatc ctcgcgatg 19 <210> 121 <211> 22 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 121 gaacgtctaa tgttgcacag tg 22 <210> 122 <211> 23 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 122 ctggtacgta gtcgcaaagg tgg 23 <210> 123 <211> 26
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 123 ctgacggtac atgtatttcc tgtgac 26 <210> 124 <211> 30
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 124 cgtctcatat gcagatctta ggaatttcag 30 <210> 125 <211> 25
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 125 gcttactacc acgatagtgc tgccg 25 <210> 126 <211> 22 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 126 tctatgttta gcaggtggtg tc 22 <210> 127 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 127 ttctgcaaga cgagccataa 20 <210> 128 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 128 ggttcgccgc ggacattaaa 20 <210> 129 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 129 atgctaatgc ggtgggagta 20 <210> 130 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 130 aaagcagttc cgacgacatt 20 <210> 131 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 131 cctatttcga ttattgtttt egg 23 <210> 132 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 132 gataccgatc ataaactacg 20 <210> 133 <211> 21
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 133 gcaaattttg caggagtaat g 21 <210> 134 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 134 gcaaattttg caggagtaat g 21 <210> 135 <211> 23 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 135 ttttgggtaa actttatagc cat 23 <210> 136 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 136 tgggtctgga cagttgtaga ta 22 <210> 137 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 137 aaggggaaaa caaaattatc aat 23 <210> 138 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 138 ggcgatcgcc tgctaaaaat 20 <210> 139 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 139 cctcattttc atttctagac gtt 23 <210> 140 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 140 ccacttcaac taaaacagca 20 <210> 141 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 141 aaaaattttg gaggggtagc 20 <210> 142 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 142 atccaagatg cgacaacact 20 <210> 143 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 143 ggtccttgcg cagatagagt g 21 <210> 144 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400 144 cactctatct gcgcaaggac c 21 <210> 145 <211> 21
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 145 tgactgcatt cgctgtataa a 21 <210> 146 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 146 ttcataagac ggctgttgaa tc 22 <210> 147 <211> 30
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 147 ctcgagttaa aaaagagtgt aaatgaaagg 30 <210> 148 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 148 ttctataact gctgccaaat ttt 23 <210> 149 <211> 23 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 149 aattttggag tgactggtta tgg 23 <210> 150 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 150 ccataaccag tcactccaaa att 23 <210> 151 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 151 ttttagttgt tacttttggc g 21 <210> 152 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 152 acagcagatg agagaaagta 20 <210> 153 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 153 gggttgtctt gctgattttc 20 <210> 154 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 154 cattaaaata agtccggaca gg 22 <210> 155 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 155 ttaaacagaa tgaggagcaa 20 <210> 156 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 156 aaacaacaca cccatctaag 20 <210> 157 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 157 ttaataaggc atccccaaga 20 <210> 158 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 158 gaaatggctg tgtaaaaact 20 <210> 159 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 159 tctgccatat ccccaaccta 20 <210> 160 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 160 gatcgcccga caggaagact 20 <210> 161 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 161 tccggcttga cctgctggac 20 <210> 162 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 162 tgcgatgatt ttgcctctgt 20 <210> 163 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 163 aaaatttgca cacccacacg 20 <210> 164 <211> 27
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 164 ttggattgaa cgtgtaattg aaaaagc 27 <210> 165 <211> 27
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 165 gctttttcaa ttacacgttc aatccaa 27 <210> 166 <211> 19
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 166 aaatggcgta tcgactaac 19 <210> 167 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 167 atataggagc gcataaagtg c 21 <210> 168 <211> 20 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 168 cttggtataa gtcttgtgat 20 <210> 169 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 169 aacactcatt agattcatct 20 <210> 170 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 170 tccactaaat cctttgaatt g 21 <210> 171 <211> 21 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 171 tgtttgtctg gatgcgatcc t 21 <210> 172 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 172 gcagttcagg tccatgaaac 20 <210> 173 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 173 agcccagtca caaccttcgt 20 <210> 174 <211> 21
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 174 tctggaagta cttgcactgt c 21 <210> 175 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 175 tgtaactccg tcaggacata aa 22 <210> 176 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 176 tgcaaatttt agtagcaata acg 23 <210> 177 <211> 27
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 177 ctttactaat tatagcgggg atattat 27 <210> 178 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 178 cagtggggaa atagatggat 20 <210> 179 <211> 20
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400> 179 tggtcataaa agcgggattc 20 <210>180 <211>18 <212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>180 ggatcttggc gcaattta 18 <210>181 <211> 23
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>181 gttagagact tggaacgtat tgg 23 <210>182 <211>19
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>182 ccaaacccag aagaaatcc 19 <210>183 <211> 22
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>183 aatctatagc caaaacccct aa 22 <210>184 <211>19
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>184 actgtgtgaa caattcccc 19 <210>185 <211> 29
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>185 gcaacaagac tacatttagt agatttaga 29 <210>186 <211> 27
<212> DNA <213> Artificial <220> <223> Based on Cylindrospermopsis raciborskii T3 sequence <400>186 gctttttcaa ttacacgttc aatccaa 27
Claims (14)
1. Fremgangsmåde til detektering af en cyanotoksisk organisme omfattende trinnene med opnåelse af en prøve til anvendelse i fremgangsmåde og analyse af prøven for tilstedeværelse af et XAT-clustergen, der kun er til stede i saxitoxin-producerende organismer, hvor analysen omfatter detektering af: (i) et polynukleotid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 og SEQ ID NO: 36; (ii) en polynukleotidvariant med mindst har 80 % sekvensidentitet med et polynukleotid af (i); (iii) en ribonukleinsyre eller komplementært dna kodet for af en sekvens ifølge (i); (iv) et polypeptid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 15, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, og SEQ ID NO: 37; eller (v) en polypeptidvariant med mindst 80 % sekvensidentitet med et polypeptid af (iv), og hvor tilstedeværelsen er en indikation for cyanotoksiske organismer i prøven.
2. Fremgangsmåde ifølge krav 1, hvor den cyanotoksiske organisme er en cyanobakterie eller en dinoflagellat.
3. Fremgangsmåde ifølge krav 1, hvor analysen omfatter amplifikation af DNA fra prøven ved polymerasekædereaktion ved anvendelse af én eller flere primere omfattende en sekvens, der er udvalgt fra gruppen bestående af SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af primersekvenseme.
4. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 3, hvilken fremgangsmåde endvidere omfatter analyse af prøven for forekomst af én eller flere af: (i) et polynukleotid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polynukleotidsekvenseme, (ii) en ribonukleinsyre eller komplementært dna kodet for af en sekvens ifølge (i), (iii) et polypeptid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 og SEQ ID NO: 110 samt varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polypeptidsekvenseme.
5. Fremgangsmåde ifølge krav 4, hvor analysen omfatter amplifikation af dna fra prøven ved polymerasekædereaktion ved anvendelse af én eller flere primere omfattende en sekvens, der er udvalgt fra gruppen bestående af SEQ ID NO: 111, SEQ ID NO: 112 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af sekvenserne.
6. Kit til detektering af cyanotoksiske organismer, hvilket kit omfatter mindst ét stof til detektering af tilstedeværelsen af et SXT-clustergen, der kun er til stede i saxitoxin-producerende organismer, hvor enten: (i) stoffet kan detektere et polynukleotid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 14, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 36, og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polynukleotidsekvenseme, og stoffet er en primer eller en sonde; (ii) stoffet kan detektere en ribonukleinsyre eller komplementært dna kodet for af en sekvens ifølge (i) og stoffet er en primer eller en sonde; eller (iii) stoffet kan detektere et polypeptid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 15, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 37 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polypeptidsekvenseme, og stoffet er et antistof, der specifikt kan bindes til polypeptidet.
7. Kit ifølge krav 6, hvor det mindst ene stof er en primer eller sonde, der omfatter en nukleotidsekvens udvalgt ffa gruppen bestående af SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af nukleotidsekvenseme.
8. Kit ifølge krav 6 eller krav 7, hvilket kit endvidere omfatter mindst ét supplerende stof til detektering af tilstedeværelsen af én eller flere af: (i) et polynukleotid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polynukleotidsekvenseme, (ii) en ribonukleinsyre eller komplementært dna kodet for af en sekvens ifølge (i) eller (iii) et polypeptid omfattende en sekvens, der er udvalgt fra gruppen bestående af: SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 og SEQ ID NO: 110 samt varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polypeptidsekvenseme.
9. Kit ifølge krav 8, hvor det mindst ene supplerende stof er et antistof, en primer eller sonde, hvor primeren eller sonden omfatter en sekvens, der er udvalgt ffa gruppen bestående af SEQ ID NO: 111, SEQ ID NO: 112 og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af sekvenserne.
10. Isoleret polynukleotid omfattende en nukleotidsekvens, der deler mindst 80 % sekvensidentitet med SEQ ID NO: 1 eller en nukleotidsekvens, der deler mindst 80 % sekvensidentitet med en sekvens, der er udvalgt fra gruppen bestående af SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:
6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66 og SEQ ID NO: 68.
11. Isoleret ribonukleinsyre eller isoleret komplementært dna kodet for af en sekvens ifølge krav 10.
12. Isoleret polypeptid fra saxitoxins biosyntesevej, hvilket polypeptid er kodet for af et fragment ifølge krav 10 og som omfatter en aminosyresekvens, der deler mindst 80 % sekvensidentitet med en sekvens, der er udvalgt fra gruppen bestående af SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ NO: 59, SEQ ID NO: 61, SEQ ID NO: 63 og SEQ ID NO: 69.
13. Sonde eller primer, der specifikt hybridiseres med én eller flere af: (i) et polynukleotid ifølge krav 10 eller (ii) en ribonukleinsyre eller komplementært dna ifølge krav 11, hvor primeren eller sonden omfatter en sekvens, der er udvalgt fra gruppen bestående af SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, og varianter, der mindst har 80 % sekvensidentitet med en hvilken som helst af polynukleotidsekvenseme.
14. Isoleret antistof, der specifikt kan bindes til et polypeptid ifølge krav 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008902056A AU2008902056A0 (en) | 2008-04-24 | Detection of cyanotoxic organisms | |
PCT/AU2008/001805 WO2009129558A1 (en) | 2008-04-24 | 2008-12-05 | Cyanobacteria saxitoxin gene cluster and detection of cyanotoxic organisms |
Publications (1)
Publication Number | Publication Date |
---|---|
DK2279265T3 true DK2279265T3 (da) | 2014-12-08 |
Family
ID=41216325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK08874034.5T DK2279265T3 (da) | 2008-04-24 | 2008-12-05 | Cyanobakterie-saxitoxin-gencluster og detektering af cyanotoksiske organismer |
Country Status (9)
Country | Link |
---|---|
US (2) | US20110129842A1 (da) |
EP (1) | EP2279265B1 (da) |
JP (1) | JP5722765B2 (da) |
AU (1) | AU2008355461B2 (da) |
DK (1) | DK2279265T3 (da) |
ES (1) | ES2525045T3 (da) |
PT (1) | PT2279265E (da) |
WO (1) | WO2009129558A1 (da) |
ZA (1) | ZA201007749B (da) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2279265E (pt) | 2008-04-24 | 2014-12-09 | Newsouth Innovations Pty Ltd | Agrupamento de genes saxitoxina das cianobactérias e deteção de organismos cianotoxicos |
WO2012155202A1 (en) * | 2011-05-16 | 2012-11-22 | Newsouth Innovations Pty Limited | Detection of saxitoxin-producing dinoflagellates |
WO2014016706A2 (en) * | 2012-05-16 | 2014-01-30 | University Of Oslo | Detection of dinoflagellates |
US9353165B2 (en) * | 2012-07-25 | 2016-05-31 | Grifols, S.A. | Purification of cell culture derived alpha1 protease inhibitor |
GB201602576D0 (en) | 2016-02-12 | 2016-03-30 | Bergen Teknologioverforing As | Process |
US10395889B2 (en) * | 2016-09-07 | 2019-08-27 | Axcelis Technologies, Inc. | In situ beam current monitoring and control in scanned ion implantation systems |
CN112342279B (zh) * | 2020-11-06 | 2022-10-14 | 中国科学院城市环境研究所 | 一种同时检测水华蓝藻拉氏尖头藻和产拟柱胞藻毒素特异基因的试剂盒及其方法 |
KR102707891B1 (ko) * | 2021-12-03 | 2024-09-23 | 대한민국 | 항-남조류 활성 물질을 생산하는 신규 스트렙토마이세스 속 nibr000498259 균주 |
WO2024094483A1 (en) * | 2022-11-03 | 2024-05-10 | Evonik Operations Gmbh | Improved biotechnological process to produce guanidinoacetic acid (gaa) by targeted introduction or by increasing the activity of a transmembrane transport protein belonging to the amino acid-polyamine-organocation superfamily |
WO2024094481A1 (en) | 2022-11-03 | 2024-05-10 | Evonik Operations Gmbh | Improved biotechnological process to produce guanidinoacetic acid (gaa) by targeted introduction or by increasing the activity of a transmembrane exporter protein |
KR102674005B1 (ko) * | 2023-03-14 | 2024-06-19 | 대한민국 | 실린드로스페르몹신 합성 유전자 검출용 프라이머 세트 |
KR102674008B1 (ko) * | 2023-03-14 | 2024-06-19 | 대한민국 | 삭시톡신 합성 유전자 검출용 프라이머 세트 |
KR102674001B1 (ko) * | 2023-03-14 | 2024-06-19 | 대한민국 | 실린드로스페르몹신 합성 유전자 검출용 프라이머 세트 |
CN116926218B (zh) * | 2023-08-14 | 2024-03-15 | 中国科学院水生生物研究所 | 一种检测拟柱孢藻菌型的探针组合、基因芯片、试剂盒及方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356270A (en) | 1977-11-08 | 1982-10-26 | Genentech, Inc. | Recombinant DNA cloning vehicle |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US5296348A (en) | 1989-05-16 | 1994-03-22 | The Wistar Institute Of Anatomy And Biology | Methods for screening monoclonal antibodies for therapeutic use |
AU673813B2 (en) | 1991-11-14 | 1996-11-28 | Qiagen Gaithersburg, Inc. | Non-radioactive hybridization assay and kit |
CA2513336A1 (en) | 1998-03-20 | 1999-09-30 | Benitec Australia Ltd. | Control of gene expression in a non-human eukaryotic cell, tissue or organ |
EP1272629A4 (en) | 2000-03-17 | 2004-12-22 | Benitec Australia Ltd | gene silencing |
US7601497B2 (en) | 2000-06-15 | 2009-10-13 | Qiagen Gaithersburg, Inc. | Detection of nucleic acids by target-specific hybrid capture method |
EP1379549A2 (fr) * | 2001-02-07 | 2004-01-14 | Institut Pasteur | Sequence du genome de photorhabdus luminescens souche tto1 et utilisations |
US7314974B2 (en) * | 2002-02-21 | 2008-01-01 | Monsanto Technology, Llc | Expression of microbial proteins in plants for production of plants with improved properties |
US7282355B2 (en) | 2002-03-13 | 2007-10-16 | Syngenta Participations Ag | Nucleic acid detection method |
US6995243B2 (en) | 2002-08-13 | 2006-02-07 | New York University | Antibodies that recognize and bind phosphorylated human glucocorticoid receptor and methods of using same |
US7109297B2 (en) * | 2004-09-13 | 2006-09-19 | The Hong Kong Polytechnic University | Biomarkers for toxic algae |
US7348147B2 (en) | 2004-11-15 | 2008-03-25 | Carestream Health, Inc. | Method and system for nucleic acid detection |
EP2096177A3 (en) * | 2004-12-17 | 2010-01-13 | Metanomics GmbH | Process for the production of lutein |
EP1871883A1 (en) * | 2005-03-02 | 2008-01-02 | Metanomics GmbH | Process for the production of fine chemicals |
PT2279265E (pt) | 2008-04-24 | 2014-12-09 | Newsouth Innovations Pty Ltd | Agrupamento de genes saxitoxina das cianobactérias e deteção de organismos cianotoxicos |
-
2008
- 2008-12-05 PT PT88740345T patent/PT2279265E/pt unknown
- 2008-12-05 ES ES08874034.5T patent/ES2525045T3/es active Active
- 2008-12-05 JP JP2011505319A patent/JP5722765B2/ja active Active
- 2008-12-05 DK DK08874034.5T patent/DK2279265T3/da active
- 2008-12-05 AU AU2008355461A patent/AU2008355461B2/en active Active
- 2008-12-05 US US12/989,394 patent/US20110129842A1/en not_active Abandoned
- 2008-12-05 EP EP08874034.5A patent/EP2279265B1/en active Active
- 2008-12-05 WO PCT/AU2008/001805 patent/WO2009129558A1/en active Application Filing
-
2010
- 2010-10-29 ZA ZA2010/07749A patent/ZA201007749B/en unknown
-
2015
- 2015-11-16 US US14/942,830 patent/US10415097B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011519275A (ja) | 2011-07-07 |
JP5722765B2 (ja) | 2015-05-27 |
US20110129842A1 (en) | 2011-06-02 |
US20160153030A1 (en) | 2016-06-02 |
EP2279265A1 (en) | 2011-02-02 |
US10415097B2 (en) | 2019-09-17 |
AU2008355461A1 (en) | 2009-10-29 |
EP2279265A4 (en) | 2011-06-29 |
ES2525045T3 (es) | 2014-12-16 |
WO2009129558A1 (en) | 2009-10-29 |
ZA201007749B (en) | 2011-08-31 |
AU2008355461B2 (en) | 2015-07-30 |
PT2279265E (pt) | 2014-12-09 |
EP2279265B1 (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2279265T3 (da) | Cyanobakterie-saxitoxin-gencluster og detektering af cyanotoksiske organismer | |
AU2020209370B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing abiotic stress tolerance, yield, growth rate, vigor, biomass, oil content, and/or nitrogen use efficiency of plants | |
AU2020267286B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics | |
AU2019253901B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency of plants | |
AU2020204520B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics | |
AU2020202369B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics | |
AU2018203835B2 (en) | Recombinant dna constructs and methods for modulating expression of a target gene | |
AU2017248519B2 (en) | Isolated Polynucleotides And Polypetides, And Methods Of Using Same For Increasing Nitrogen Use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, And/Or Abiotic Stress Tolerance | |
KR102708641B1 (ko) | 미생물유전체를 조정함으로써 면역 체크포인트 차단 요법을 증강시키는 방법 | |
KR101446626B1 (ko) | 신장암 진단, 신장암 환자 예후 예측을 위한 조성물 및 방법 | |
AU2018204825A1 (en) | Isolated Polynucleotides and Polypeptides, and Methods of Using Same For Increasing Nitrogen Use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, and/or Abiotic Stress Tolerance | |
KR20170005829A (ko) | 모기 제어를 위한 조성물 및 그의 용도 | |
AU2016274683A1 (en) | Streptomyces endophyte compositions and methods for improved agronomic traits in plants | |
KR20200111172A (ko) | 네페탈락톨 산화 환원 효소, 네페탈락톨 합성 효소, 및 네페탈락톤을 생산할 수 있는 미생물 | |
AU2017381762A1 (en) | Methods of increasing specific plants traits by over-expressing polypeptides in a plant | |
JP2002320494A (ja) | 特にグラム陽性バクテリアのグリコペプタイドに対する抵抗力の発現に係るポリペプタイド、ポリペプタイドをコードするヌクレオチドシーケンスおよび診断への使用 | |
CN113528550B (zh) | 草欧菌素的生物合成基因簇及其应用 | |
KR102578053B1 (ko) | 돼지 혈액을 이용한 돼지의 열 스트레스 노출 여부 판별용 바이오 마커 및 이의 용도 | |
AU2020210193B2 (en) | Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics | |
AU2017204404B2 (en) | Isolated Polynucleotides and Polypeptides, and Methods of Using Same for Increasing Plant Yield and/or Agricultural Characteristics | |
KR20230079107A (ko) | 개선된 특성을 갖는 유전자 변형된 메틸로바실러스 세균 | |
CN113348248A (zh) | 表达系统、重组细胞及其用途 | |
JPH11318466A (ja) | サーカディアンリズムに関するdna、該dnaがコードする蛋白質、該蛋白質を認識する抗体 |