DK178987B1 - Method and apparatus for sensing underwater signals - Google Patents
Method and apparatus for sensing underwater signals Download PDFInfo
- Publication number
- DK178987B1 DK178987B1 DKPA201570277A DKPA201570277A DK178987B1 DK 178987 B1 DK178987 B1 DK 178987B1 DK PA201570277 A DKPA201570277 A DK PA201570277A DK PA201570277 A DKPA201570277 A DK PA201570277A DK 178987 B1 DK178987 B1 DK 178987B1
- Authority
- DK
- Denmark
- Prior art keywords
- transducer
- piezoelectric element
- sensing
- coupled
- cantilever
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000008878 coupling Effects 0.000 claims abstract description 76
- 238000010168 coupling process Methods 0.000 claims abstract description 76
- 238000005859 coupling reaction Methods 0.000 claims abstract description 76
- 239000000463 material Substances 0.000 claims description 34
- 230000001133 acceleration Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 8
- 239000011540 sensing material Substances 0.000 abstract description 41
- 238000005259 measurement Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000006261 foam material Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/002—Electrostatic motors
- H02N1/006—Electrostatic motors of the gap-closing type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
- G01P15/0915—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the shear mode type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/12—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
- G01P15/123—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V13/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Acoustics & Sound (AREA)
- Manufacturing & Machinery (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Pressure Sensors (AREA)
- Geophysics And Detection Of Objects (AREA)
- Micromachines (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Claims (7)
1. Transducer (200) til registrering af vibrationssignaler, omfattende: en udligger, som er koblet til en base (201), hvilken udligger omfatter en stang (204), der definerer mindst en koblingsflade (220, 221), som er udformet til at modtage et eller flere registrerende elementer (222); og et registrerende materiale til registrering af belastninger, der påføres på stangen (204), hvor det registrerende materiale er indlejret i udliggerens stang (204), hvor det registrerende materiale omfatter et første piezoelektrisk element med en første og en anden overflade, der er orienteret vinklet i forhold til hinanden, hvor mindst en af den første og anden overflade af det første piezoelektriske element er strukturelt koblet til mindst en af stangens (204) koblingsflader (220, 221): hvor det registrerende materiale omfatter et andet piezoelektrisk element, der er indlejret i stangen (204), hvor det andet piezoelektriske element omfatter en tredje og fjerde overflade, der er orienteret vinklet i forhold til hinanden, hvor mindst en af den tredje og fjerde overflade af det andet piezoelektriske element er strukturelt koblet til mindst en af stangens (204) koblingsflader (220, 221), og hvor transduceren (200) også omfatter et tredje og fjerde piezoelektrisk element, der er indlejret i stangen (204), hvor det tredje piezoelektriske element er orienteret parallelt med det første piezoelektriske element, og det fjerde piezoelektriske element er orienteret parallelt med det andet piezoelektriske element; kendetegnet ved, at det første piezoelektriske element og det andet piezoelektriske element strækker sig i det væsentlige ikke-vinkelret på og ikke-parallelt med en længdeakse (224) af stangen (204).
2. Transducer (200) ifølge krav 1, hvor det registrerende materiale omfatter et piezoelektrisk element med forskydningstilstand, og en del af det registrerende materiale, der omfatter det piezoelektriske element med forskydningstilstand, haret parallelogramtværsnit.
3. Transducer (200) ifølge et hvilket som helst af de foregående krav, hvor udliggeren er koblet til basen (201) i en første ende af udliggeren og endvidere omfattende en prøve-masse (210), der er koblet til en anden ende af udliggeren.
4. Transducer (200) ifølge et hvilket som helst af de foregående krav, hvor udliggeren er koblet til basen (201) i en første ende af udliggeren, og det registrerende materiale er indlejret i udliggeren tæt på den første ende af udliggeren.
5. Transducer (200) ifølge et hvilket som helst af de foregående krav, hvor stangen (204) omfatter en rille med en første indvendig væg, en anden indvendig væg og en tredje indvendig væg, hvor den tredje indvendige væg er i det væsentlige parallel med den første indvendige væg, og en del af det registrerende materiale er indlejret i rillen, endvidere hvor delen af det registrerende materiale omfatter et af de piezoelektriske elementer, der er forbundet med den første og tredje indvendige væg, men ikke den anden indvendige væg, hvor overfladerne af det piezoelektriske element strækker sig i det væsentlige ikke-vinkelret på og ikke-parallelt med stangens (204) længdeakse (224).
6. Fremgangsmåde til registrering af vibrationssignaler, omfattende handlingen, hvor der tilvejebringes data fra en transducer (200) ifølge et hvilket som helst af kravene 1-5.
7. Fremgangsmåde ifølge krav 6, endvidere omfattende handlingen, hvor der behandles data fra transduceren (200) til bestemmelse af akustisk acceleration af legemet i mindst en retningskomponent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA201570277A DK178987B1 (en) | 2011-02-07 | 2015-05-12 | Method and apparatus for sensing underwater signals |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161462656P | 2011-02-07 | 2011-02-07 | |
US201161462617P | 2011-02-07 | 2011-02-07 | |
US201161462656 | 2011-02-07 | ||
US201161462617 | 2011-02-07 | ||
DK201370430A DK178437B1 (da) | 2011-02-07 | 2013-08-02 | Fremgangsmåde og indretning til registrering af undervandssignaler |
DK201370430 | 2013-08-02 | ||
DK201570277 | 2015-05-12 | ||
DKPA201570277A DK178987B1 (en) | 2011-02-07 | 2015-05-12 | Method and apparatus for sensing underwater signals |
Publications (2)
Publication Number | Publication Date |
---|---|
DK201570277A1 DK201570277A1 (en) | 2015-05-26 |
DK178987B1 true DK178987B1 (en) | 2017-07-24 |
Family
ID=45774330
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK201370430A DK178437B1 (da) | 2011-02-07 | 2013-08-02 | Fremgangsmåde og indretning til registrering af undervandssignaler |
DKPA201570277A DK178987B1 (en) | 2011-02-07 | 2015-05-12 | Method and apparatus for sensing underwater signals |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK201370430A DK178437B1 (da) | 2011-02-07 | 2013-08-02 | Fremgangsmåde og indretning til registrering af undervandssignaler |
Country Status (9)
Country | Link |
---|---|
US (2) | US9502993B2 (da) |
EP (2) | EP2673663B1 (da) |
CN (2) | CN103534612B (da) |
AU (2) | AU2012214506B2 (da) |
BR (1) | BR112013020039B1 (da) |
CA (1) | CA2826558C (da) |
DK (2) | DK178437B1 (da) |
RU (1) | RU2603438C2 (da) |
WO (2) | WO2012109266A2 (da) |
Families Citing this family (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9502993B2 (en) | 2011-02-07 | 2016-11-22 | Ion Geophysical Corporation | Method and apparatus for sensing signals |
US9297824B2 (en) * | 2012-09-14 | 2016-03-29 | Intel Corporation | Techniques, systems and devices related to acceleration measurement |
US9360495B1 (en) | 2013-03-14 | 2016-06-07 | Lockheed Martin Corporation | Low density underwater accelerometer |
CN103197101A (zh) * | 2013-04-18 | 2013-07-10 | 厦门乃尔电子有限公司 | 非等截面悬臂梁压电式加速度传感器 |
JP6675325B2 (ja) | 2014-05-16 | 2020-04-01 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | 車両用シャーシ用のモジュール式に形成されたノード及びそれらの使用方法 |
KR101580922B1 (ko) * | 2014-05-23 | 2015-12-30 | 국방과학연구소 | 관성형 벡터 수중 청음기 |
JP6135936B2 (ja) * | 2014-06-11 | 2017-05-31 | 横河電機株式会社 | 変換器 |
CA2953815A1 (en) | 2014-07-02 | 2016-01-07 | Divergent Technologies, Inc. | Systems and methods for fabricating joint members |
US9688371B1 (en) * | 2015-09-28 | 2017-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Vehicle based vector sensor |
CN105118240A (zh) * | 2015-09-30 | 2015-12-02 | 黄政充 | 传感器预测地震报警器 |
CN108431637B (zh) | 2015-10-30 | 2021-04-13 | 离子地球物理学公司 | 多轴单质量体加速度计 |
US10495663B2 (en) * | 2016-02-19 | 2019-12-03 | The Regents Of The University Of Michigan | High aspect-ratio low noise multi-axis accelerometers |
CN109100077A (zh) * | 2016-05-09 | 2018-12-28 | 南昌见诚科技有限公司 | 一种幕墙工程中使用的风力测量仪 |
JP2019527138A (ja) | 2016-06-09 | 2019-09-26 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | アークおよびノードの設計ならびに製作のためのシステムおよび方法 |
FR3052698B1 (fr) * | 2016-06-15 | 2019-08-09 | Centre National De La Recherche Scientifique | Procede et appareil pour la fabrication d'un systeme mecatronique par impression tridimensionnelle |
EP3336559B1 (en) * | 2016-12-13 | 2019-04-24 | Safran Colibrys SA | Out-of-plane-accelerometer |
US10759090B2 (en) | 2017-02-10 | 2020-09-01 | Divergent Technologies, Inc. | Methods for producing panels using 3D-printed tooling shells |
US11155005B2 (en) | 2017-02-10 | 2021-10-26 | Divergent Technologies, Inc. | 3D-printed tooling and methods for producing same |
US10898968B2 (en) | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
WO2018204642A1 (en) * | 2017-05-03 | 2018-11-08 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Floating base vector sensor |
US10703419B2 (en) | 2017-05-19 | 2020-07-07 | Divergent Technologies, Inc. | Apparatus and methods for joining panels |
US11358337B2 (en) | 2017-05-24 | 2022-06-14 | Divergent Technologies, Inc. | Robotic assembly of transport structures using on-site additive manufacturing |
US11123973B2 (en) | 2017-06-07 | 2021-09-21 | Divergent Technologies, Inc. | Interconnected deflectable panel and node |
US10919230B2 (en) | 2017-06-09 | 2021-02-16 | Divergent Technologies, Inc. | Node with co-printed interconnect and methods for producing same |
US10781846B2 (en) | 2017-06-19 | 2020-09-22 | Divergent Technologies, Inc. | 3-D-printed components including fasteners and methods for producing same |
US10994876B2 (en) | 2017-06-30 | 2021-05-04 | Divergent Technologies, Inc. | Automated wrapping of components in transport structures |
US11022375B2 (en) | 2017-07-06 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing microtube heat exchangers |
US10895315B2 (en) | 2017-07-07 | 2021-01-19 | Divergent Technologies, Inc. | Systems and methods for implementing node to node connections in mechanized assemblies |
US10751800B2 (en) | 2017-07-25 | 2020-08-25 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured exoskeleton-based transport structures |
US10940609B2 (en) | 2017-07-25 | 2021-03-09 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured endoskeleton-based transport structures |
US10605285B2 (en) | 2017-08-08 | 2020-03-31 | Divergent Technologies, Inc. | Systems and methods for joining node and tube structures |
US10357959B2 (en) | 2017-08-15 | 2019-07-23 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured identification features |
CN111108413A (zh) * | 2017-08-25 | 2020-05-05 | 尹迪泰特有限责任公司 | 具有传感器的移动设备 |
US11306751B2 (en) | 2017-08-31 | 2022-04-19 | Divergent Technologies, Inc. | Apparatus and methods for connecting tubes in transport structures |
US10960611B2 (en) | 2017-09-06 | 2021-03-30 | Divergent Technologies, Inc. | Methods and apparatuses for universal interface between parts in transport structures |
US11292058B2 (en) | 2017-09-12 | 2022-04-05 | Divergent Technologies, Inc. | Apparatus and methods for optimization of powder removal features in additively manufactured components |
US10814564B2 (en) | 2017-10-11 | 2020-10-27 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
US10668816B2 (en) | 2017-10-11 | 2020-06-02 | Divergent Technologies, Inc. | Solar extended range electric vehicle with panel deployment and emitter tracking |
US11786971B2 (en) | 2017-11-10 | 2023-10-17 | Divergent Technologies, Inc. | Structures and methods for high volume production of complex structures using interface nodes |
US10926599B2 (en) | 2017-12-01 | 2021-02-23 | Divergent Technologies, Inc. | Suspension systems using hydraulic dampers |
CN107884817B (zh) * | 2017-12-13 | 2023-09-26 | 中国地质大学(武汉) | 一种压电地震检波器 |
CN107870348A (zh) * | 2017-12-13 | 2018-04-03 | 中国地质大学(武汉) | 一种双臂压电地震检波器芯体及双臂压电地震检波器 |
CN107907909A (zh) * | 2017-12-13 | 2018-04-13 | 中国地质大学(武汉) | 一种压电地震检波器芯体及压电地震检波器 |
CN107918143A (zh) * | 2017-12-13 | 2018-04-17 | 中国地质大学(武汉) | 一种压电地震检波器 |
CN107870350B (zh) * | 2017-12-13 | 2023-12-15 | 中国地质大学(武汉) | 一种差动式双压电片地震检波器芯体及压电地震检波器 |
CN107870349A (zh) * | 2017-12-13 | 2018-04-03 | 中国地质大学(武汉) | 一种差动式双臂压电地震检波器及其芯体 |
US11110514B2 (en) | 2017-12-14 | 2021-09-07 | Divergent Technologies, Inc. | Apparatus and methods for connecting nodes to tubes in transport structures |
US11085473B2 (en) | 2017-12-22 | 2021-08-10 | Divergent Technologies, Inc. | Methods and apparatus for forming node to panel joints |
US11534828B2 (en) | 2017-12-27 | 2022-12-27 | Divergent Technologies, Inc. | Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits |
US11420262B2 (en) | 2018-01-31 | 2022-08-23 | Divergent Technologies, Inc. | Systems and methods for co-casting of additively manufactured interface nodes |
US10751934B2 (en) | 2018-02-01 | 2020-08-25 | Divergent Technologies, Inc. | Apparatus and methods for additive manufacturing with variable extruder profiles |
US11224943B2 (en) | 2018-03-07 | 2022-01-18 | Divergent Technologies, Inc. | Variable beam geometry laser-based powder bed fusion |
US11267236B2 (en) | 2018-03-16 | 2022-03-08 | Divergent Technologies, Inc. | Single shear joint for node-to-node connections |
US11872689B2 (en) | 2018-03-19 | 2024-01-16 | Divergent Technologies, Inc. | End effector features for additively manufactured components |
US11254381B2 (en) | 2018-03-19 | 2022-02-22 | Divergent Technologies, Inc. | Manufacturing cell based vehicle manufacturing system and method |
US11408216B2 (en) | 2018-03-20 | 2022-08-09 | Divergent Technologies, Inc. | Systems and methods for co-printed or concurrently assembled hinge structures |
US11613078B2 (en) | 2018-04-20 | 2023-03-28 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing adhesive inlet and outlet ports |
US11214317B2 (en) | 2018-04-24 | 2022-01-04 | Divergent Technologies, Inc. | Systems and methods for joining nodes and other structures |
US10682821B2 (en) | 2018-05-01 | 2020-06-16 | Divergent Technologies, Inc. | Flexible tooling system and method for manufacturing of composite structures |
US11020800B2 (en) | 2018-05-01 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for sealing powder holes in additively manufactured parts |
US11408961B2 (en) | 2018-05-03 | 2022-08-09 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Floating base vector sensor |
US11389816B2 (en) | 2018-05-09 | 2022-07-19 | Divergent Technologies, Inc. | Multi-circuit single port design in additively manufactured node |
CN108680246B (zh) * | 2018-05-14 | 2020-11-06 | 中国科学院上海微系统与信息技术研究所 | 基于阈值驱动能量采集器的振动模式识别装置及识别方法 |
US10691104B2 (en) | 2018-05-16 | 2020-06-23 | Divergent Technologies, Inc. | Additively manufacturing structures for increased spray forming resolution or increased fatigue life |
US11590727B2 (en) | 2018-05-21 | 2023-02-28 | Divergent Technologies, Inc. | Custom additively manufactured core structures |
US11441586B2 (en) | 2018-05-25 | 2022-09-13 | Divergent Technologies, Inc. | Apparatus for injecting fluids in node based connections |
US11035511B2 (en) | 2018-06-05 | 2021-06-15 | Divergent Technologies, Inc. | Quick-change end effector |
US11292056B2 (en) | 2018-07-06 | 2022-04-05 | Divergent Technologies, Inc. | Cold-spray nozzle |
US11269311B2 (en) | 2018-07-26 | 2022-03-08 | Divergent Technologies, Inc. | Spray forming structural joints |
US10836120B2 (en) | 2018-08-27 | 2020-11-17 | Divergent Technologies, Inc . | Hybrid composite structures with integrated 3-D printed elements |
US11433557B2 (en) | 2018-08-28 | 2022-09-06 | Divergent Technologies, Inc. | Buffer block apparatuses and supporting apparatuses |
US11826953B2 (en) | 2018-09-12 | 2023-11-28 | Divergent Technologies, Inc. | Surrogate supports in additive manufacturing |
CN112955752A (zh) | 2018-09-13 | 2021-06-11 | 离子地球物理学公司 | 多轴线、单质量加速度计 |
US11072371B2 (en) | 2018-10-05 | 2021-07-27 | Divergent Technologies, Inc. | Apparatus and methods for additively manufactured structures with augmented energy absorption properties |
US11260582B2 (en) | 2018-10-16 | 2022-03-01 | Divergent Technologies, Inc. | Methods and apparatus for manufacturing optimized panels and other composite structures |
US12115583B2 (en) | 2018-11-08 | 2024-10-15 | Divergent Technologies, Inc. | Systems and methods for adhesive-based part retention features in additively manufactured structures |
US11504912B2 (en) | 2018-11-20 | 2022-11-22 | Divergent Technologies, Inc. | Selective end effector modular attachment device |
USD911222S1 (en) | 2018-11-21 | 2021-02-23 | Divergent Technologies, Inc. | Vehicle and/or replica |
US11449021B2 (en) | 2018-12-17 | 2022-09-20 | Divergent Technologies, Inc. | Systems and methods for high accuracy fixtureless assembly |
US11529741B2 (en) | 2018-12-17 | 2022-12-20 | Divergent Technologies, Inc. | System and method for positioning one or more robotic apparatuses |
US10663110B1 (en) | 2018-12-17 | 2020-05-26 | Divergent Technologies, Inc. | Metrology apparatus to facilitate capture of metrology data |
US11885000B2 (en) | 2018-12-21 | 2024-01-30 | Divergent Technologies, Inc. | In situ thermal treatment for PBF systems |
US11203240B2 (en) | 2019-04-19 | 2021-12-21 | Divergent Technologies, Inc. | Wishbone style control arm assemblies and methods for producing same |
JP6545918B1 (ja) * | 2019-05-22 | 2019-07-17 | Imv株式会社 | 加速度センサコアユニット、加速度センサを載置する基板のたわみを防止する方法 |
US11912339B2 (en) | 2020-01-10 | 2024-02-27 | Divergent Technologies, Inc. | 3-D printed chassis structure with self-supporting ribs |
US11590703B2 (en) | 2020-01-24 | 2023-02-28 | Divergent Technologies, Inc. | Infrared radiation sensing and beam control in electron beam additive manufacturing |
US11479015B2 (en) | 2020-02-14 | 2022-10-25 | Divergent Technologies, Inc. | Custom formed panels for transport structures and methods for assembling same |
US11884025B2 (en) | 2020-02-14 | 2024-01-30 | Divergent Technologies, Inc. | Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations |
US11535322B2 (en) | 2020-02-25 | 2022-12-27 | Divergent Technologies, Inc. | Omni-positional adhesion device |
US11421577B2 (en) | 2020-02-25 | 2022-08-23 | Divergent Technologies, Inc. | Exhaust headers with integrated heat shielding and thermal syphoning |
US11413686B2 (en) | 2020-03-06 | 2022-08-16 | Divergent Technologies, Inc. | Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components |
KR20230035571A (ko) | 2020-06-10 | 2023-03-14 | 디버전트 테크놀로지스, 인크. | 적응형 생산 시스템 |
US11850804B2 (en) | 2020-07-28 | 2023-12-26 | Divergent Technologies, Inc. | Radiation-enabled retention features for fixtureless assembly of node-based structures |
US11806941B2 (en) | 2020-08-21 | 2023-11-07 | Divergent Technologies, Inc. | Mechanical part retention features for additively manufactured structures |
WO2022066671A1 (en) | 2020-09-22 | 2022-03-31 | Divergent Technologies, Inc. | Methods and apparatuses for ball milling to produce powder for additive manufacturing |
US12083596B2 (en) | 2020-12-21 | 2024-09-10 | Divergent Technologies, Inc. | Thermal elements for disassembly of node-based adhesively bonded structures |
US11872626B2 (en) | 2020-12-24 | 2024-01-16 | Divergent Technologies, Inc. | Systems and methods for floating pin joint design |
US11947335B2 (en) | 2020-12-30 | 2024-04-02 | Divergent Technologies, Inc. | Multi-component structure optimization for combining 3-D printed and commercially available parts |
US11928966B2 (en) | 2021-01-13 | 2024-03-12 | Divergent Technologies, Inc. | Virtual railroad |
US20220288850A1 (en) | 2021-03-09 | 2022-09-15 | Divergent Technologies, Inc. | Rotational additive manufacturing systems and methods |
WO2022226411A1 (en) | 2021-04-23 | 2022-10-27 | Divergent Technologies, Inc. | Removal of supports, and other materials from surface, and within hollow 3d printed parts |
US11865617B2 (en) | 2021-08-25 | 2024-01-09 | Divergent Technologies, Inc. | Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities |
CN114689166B (zh) * | 2022-03-23 | 2023-04-14 | 西安交通大学 | 一种压阻式离子聚合物水听器结构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050056096A1 (en) * | 2003-07-30 | 2005-03-17 | Nobuo Ozawa | Acceleration sensor and manufacturing method thereof |
WO2007095360A2 (en) * | 2006-02-14 | 2007-08-23 | The Regents Of The University Of California | Coupled mass-spring systems and imaging methods for scanning probe microscopy |
EP1953499A2 (en) * | 2007-02-02 | 2008-08-06 | Wacoh Corporation | Sensor for detecting acceleration and angular velocity |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1507251A (en) | 1976-01-05 | 1978-04-12 | Birchall D | Accelerometer transducer |
US4327350A (en) * | 1979-07-17 | 1982-04-27 | Data Instruments, Inc. | Pressure transducer |
US5000817A (en) | 1984-10-24 | 1991-03-19 | Aine Harry E | Batch method of making miniature structures assembled in wafer form |
GB2174500B (en) * | 1985-05-04 | 1988-02-10 | Stc Plc | Accelerometer |
AU6728787A (en) | 1985-10-21 | 1987-05-05 | Sundstrand Data Control, Inc. | Vibrating beam accelerometer with velocity change output |
GB8718639D0 (en) | 1987-08-06 | 1987-09-09 | Spectrol Reliance Ltd | Capacitive pressure sensors |
SU1647409A1 (ru) * | 1989-01-04 | 1991-05-07 | Предприятие П/Я В-2969 | Пьезоакселерометр |
US4930042A (en) * | 1989-02-28 | 1990-05-29 | United Technologies | Capacitive accelerometer with separable damping and sensitivity |
DE3920645A1 (de) * | 1989-06-23 | 1991-01-10 | Fraunhofer Ges Forschung | Vorrichtung zur messung mechanischer kraefte und kraftwirkungen |
US5121180A (en) | 1991-06-21 | 1992-06-09 | Texas Instruments Incorporated | Accelerometer with central mass in support |
JP2765316B2 (ja) * | 1991-11-21 | 1998-06-11 | 日本電気株式会社 | 容量型三軸加速度センサ |
US5406531A (en) | 1993-04-30 | 1995-04-11 | The United States Of America As Represented By The Secretary Of The Navy | Low frequency flex-beam underwater acoustic transducer |
JPH07191055A (ja) | 1993-12-27 | 1995-07-28 | Hitachi Ltd | 静電容量式加速度センサ |
US5777226A (en) * | 1994-03-28 | 1998-07-07 | I/O Sensors, Inc. | Sensor structure with L-shaped spring legs |
US5484073A (en) | 1994-03-28 | 1996-01-16 | I/O Sensors, Inc. | Method for fabricating suspension members for micromachined sensors |
WO1995035485A1 (fr) * | 1994-06-20 | 1995-12-28 | Sony Corporation | Capteur de vibrations et instrument de navigation |
DE19547642A1 (de) * | 1994-12-20 | 1996-06-27 | Zexel Corp | Beschleunigungssensor und Verfahren zu dessen Herstellung |
JPH10136665A (ja) * | 1996-10-31 | 1998-05-22 | Tdk Corp | 圧電アクチュエータ |
JP3489117B2 (ja) * | 1997-09-10 | 2004-01-19 | 松下電器産業株式会社 | 加速度センサ及びその製造方法 |
US6715363B1 (en) | 1998-02-20 | 2004-04-06 | Wilcoxon Research, Inc. | Method and apparatus for strain amplification for piezoelectric transducers |
US6196067B1 (en) | 1998-05-05 | 2001-03-06 | California Institute Of Technology | Silicon micromachined accelerometer/seismometer and method of making the same |
US6105427A (en) | 1998-07-31 | 2000-08-22 | Litton Systems, Inc. | Micro-mechanical semiconductor accelerometer |
US6871544B1 (en) | 1999-03-17 | 2005-03-29 | Input/Output, Inc. | Sensor design and process |
EP1169657A4 (en) | 1999-03-17 | 2003-03-05 | Input Output Inc | CALIBRATION OF SENSORS. |
JP2000275272A (ja) | 1999-03-23 | 2000-10-06 | Mitsubishi Electric Corp | 半導体加速度センサ及びその製造方法 |
US7152473B1 (en) | 2000-03-17 | 2006-12-26 | Input/Output, Inc. | Integrated and multi-axis sensor assembly and packaging |
US6805008B2 (en) * | 2000-06-21 | 2004-10-19 | Input/Output, Inc. | Accelerometer with folded beams |
US20030020377A1 (en) | 2001-07-30 | 2003-01-30 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive element and piezoelectric/electrostrictive device and production method thereof |
DE60226262T2 (de) | 2001-10-19 | 2009-05-20 | ION Geophysical Corp., Houston | Digitale optische schaltvorrichtung und verfahren zu ihrer herstellung |
US6763719B2 (en) | 2002-03-25 | 2004-07-20 | Hitachi Metals, Ltd. | Acceleration sensor |
US20040020292A1 (en) | 2002-04-17 | 2004-02-05 | Deng Ken Kan | Single chip piezoelectric triaxial MEMS accelerometer |
FR2845154B1 (fr) | 2002-09-27 | 2005-03-18 | Roulements Soc Nouvelle | Capteur d'angle absolu comprenant un codeur a singularites non-equireparties |
DE10260087A1 (de) | 2002-12-19 | 2004-07-01 | Endress + Hauser Gmbh + Co. Kg | Beschleunigungssensor |
US7137300B2 (en) * | 2003-03-19 | 2006-11-21 | California Institute Of Technology | Parylene capacitive accelerometer utilizing electrical fringing field sensing and method of making |
US20050057123A1 (en) | 2003-07-11 | 2005-03-17 | Deng Ken Kan | Piezoelectric vibration energy harvesting device and method |
US20050134149A1 (en) | 2003-07-11 | 2005-06-23 | Deng Ken K. | Piezoelectric vibration energy harvesting device |
EP1649591A2 (en) | 2003-07-11 | 2006-04-26 | Ken Deng | Acoustic vector sensor |
JP2005098726A (ja) | 2003-09-22 | 2005-04-14 | Hosiden Corp | 振動センサ |
US6981416B2 (en) * | 2003-11-21 | 2006-01-03 | Chung-Shan Institute Of Science And Technology | Multi-axis solid state accelerometer |
WO2005059472A2 (en) | 2003-12-15 | 2005-06-30 | Wilcoxon Research, Inc. | High sensitivity, low noise piezoelectric flexural sensing structure |
US20070119259A1 (en) | 2004-12-15 | 2007-05-31 | Lichun Zou | High sensitivity, low noise piezoelectric flexural sensing structure |
JP2008107257A (ja) | 2006-10-27 | 2008-05-08 | Hitachi Ulsi Systems Co Ltd | 加速度センサ |
CA2569159C (en) | 2006-11-28 | 2015-01-13 | Nanometrics Inc. | Inertial sensor |
JP5093795B2 (ja) * | 2007-01-11 | 2012-12-12 | 株式会社フジクラ | 蛍光寿命測定装置及び成膜装置、蛍光寿命測定方法 |
US7863907B2 (en) | 2007-02-06 | 2011-01-04 | Chevron U.S.A. Inc. | Temperature and pressure transducer |
CN100552453C (zh) * | 2007-03-16 | 2009-10-21 | 中国科学院上海微系统与信息技术研究所 | 对称直梁结构电容式微加速度传感器及其制作方法 |
JP4946796B2 (ja) | 2007-10-29 | 2012-06-06 | ヤマハ株式会社 | 振動トランスデューサおよび振動トランスデューサの製造方法 |
CN101475138B (zh) | 2009-01-16 | 2012-06-27 | 中国科学院上海微系统与信息技术研究所 | 具有检测压阻元件的扭转模态下超薄硅微机械悬臂梁及压阻检测方法 |
JP5260342B2 (ja) | 2009-01-30 | 2013-08-14 | ローム株式会社 | Memsセンサ |
CA2658141C (en) * | 2009-03-06 | 2014-07-22 | Nanometrics Inc. | Capacitive displacement transducer for a weak-motion inertial sensor |
US9016129B2 (en) | 2009-05-07 | 2015-04-28 | Applied Physical Sciences Corp. | Acoustic vector sensor having an accelerometer with in-band resonant frequency |
US8638956B2 (en) | 2009-08-06 | 2014-01-28 | Ken K. Deng | Acoustic velocity microphone using a buoyant object |
CN101858929B (zh) | 2010-05-21 | 2012-09-05 | 中国科学院上海微系统与信息技术研究所 | 对称组合弹性梁结构电容式微加速度传感器及制作方法 |
US9502993B2 (en) | 2011-02-07 | 2016-11-22 | Ion Geophysical Corporation | Method and apparatus for sensing signals |
-
2012
- 2012-02-07 US US13/984,266 patent/US9502993B2/en active Active
- 2012-02-07 CN CN201280016682.4A patent/CN103534612B/zh not_active Expired - Fee Related
- 2012-02-07 RU RU2013141164/28A patent/RU2603438C2/ru active
- 2012-02-07 WO PCT/US2012/024173 patent/WO2012109266A2/en active Application Filing
- 2012-02-07 EP EP12708419.2A patent/EP2673663B1/en active Active
- 2012-02-07 BR BR112013020039-1A patent/BR112013020039B1/pt active IP Right Grant
- 2012-02-07 EP EP12706744.5A patent/EP2673661B1/en active Active
- 2012-02-07 AU AU2012214506A patent/AU2012214506B2/en not_active Ceased
- 2012-02-07 CA CA2826558A patent/CA2826558C/en active Active
- 2012-02-07 CN CN201280016638.3A patent/CN103547895B/zh active Active
- 2012-02-07 US US13/984,255 patent/US9294011B2/en active Active
- 2012-02-07 WO PCT/US2012/024165 patent/WO2012109259A2/en active Application Filing
- 2012-02-07 AU AU2012214512A patent/AU2012214512B2/en not_active Ceased
-
2013
- 2013-08-02 DK DK201370430A patent/DK178437B1/da not_active IP Right Cessation
-
2015
- 2015-05-12 DK DKPA201570277A patent/DK178987B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050056096A1 (en) * | 2003-07-30 | 2005-03-17 | Nobuo Ozawa | Acceleration sensor and manufacturing method thereof |
WO2007095360A2 (en) * | 2006-02-14 | 2007-08-23 | The Regents Of The University Of California | Coupled mass-spring systems and imaging methods for scanning probe microscopy |
EP1953499A2 (en) * | 2007-02-02 | 2008-08-06 | Wacoh Corporation | Sensor for detecting acceleration and angular velocity |
Also Published As
Publication number | Publication date |
---|---|
AU2012214506B2 (en) | 2015-12-17 |
CN103534612B (zh) | 2017-10-31 |
DK201570277A1 (en) | 2015-05-26 |
AU2012214506A2 (en) | 2013-10-17 |
CN103534612A (zh) | 2014-01-22 |
WO2012109266A3 (en) | 2013-06-27 |
EP2673661B1 (en) | 2022-08-03 |
EP2673661A2 (en) | 2013-12-18 |
US9294011B2 (en) | 2016-03-22 |
EP2673663A2 (en) | 2013-12-18 |
WO2012109259A2 (en) | 2012-08-16 |
CA2826558A1 (en) | 2012-08-16 |
AU2012214512A1 (en) | 2013-10-10 |
CN103547895B (zh) | 2016-08-24 |
AU2012214506A1 (en) | 2013-10-10 |
EP2673663B1 (en) | 2021-09-01 |
CA2826558C (en) | 2021-01-26 |
BR112013020039A2 (pt) | 2016-10-25 |
US9502993B2 (en) | 2016-11-22 |
DK178437B1 (da) | 2016-02-29 |
US20130312522A1 (en) | 2013-11-28 |
BR112013020039B1 (pt) | 2020-11-10 |
WO2012109266A2 (en) | 2012-08-16 |
RU2013141164A (ru) | 2015-03-20 |
AU2012214512B2 (en) | 2015-11-19 |
RU2603438C2 (ru) | 2016-11-27 |
US20130319118A1 (en) | 2013-12-05 |
AU2012214512A2 (en) | 2014-01-09 |
DK201370430A (en) | 2013-08-02 |
WO2012109259A3 (en) | 2013-07-04 |
CN103547895A (zh) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK178987B1 (en) | Method and apparatus for sensing underwater signals | |
US7623414B2 (en) | Particle motion vector measurement in a towed, marine seismic cable | |
EP2341325B1 (en) | Combined impulsive and non-impulsive seismic sources | |
US11204365B2 (en) | Multi-axis, single mass accelerometer | |
US11871675B2 (en) | Seismic pressure and acceleration measurement | |
US12130396B2 (en) | Neutrally buoyant particle velocity sensor | |
US20220120927A1 (en) | Neutrally buoyant particle velocity sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |
Effective date: 20200207 |