DK170945B1 - Process for Preparation of 13-Cisretinoic Acid and Process for Preparing a Palladium Catalyst for Use in the Process - Google Patents

Process for Preparation of 13-Cisretinoic Acid and Process for Preparing a Palladium Catalyst for Use in the Process Download PDF

Info

Publication number
DK170945B1
DK170945B1 DK565683A DK565683A DK170945B1 DK 170945 B1 DK170945 B1 DK 170945B1 DK 565683 A DK565683 A DK 565683A DK 565683 A DK565683 A DK 565683A DK 170945 B1 DK170945 B1 DK 170945B1
Authority
DK
Denmark
Prior art keywords
palladium
cis
retinoic acid
process according
salt
Prior art date
Application number
DK565683A
Other languages
Danish (da)
Other versions
DK565683D0 (en
DK565683A (en
Inventor
Robert Lucci
Hansjoerg Stoller
Original Assignee
Hoffmann La Roche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche filed Critical Hoffmann La Roche
Publication of DK565683D0 publication Critical patent/DK565683D0/en
Publication of DK565683A publication Critical patent/DK565683A/en
Application granted granted Critical
Publication of DK170945B1 publication Critical patent/DK170945B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/20Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by carboxyl groups or halides, anhydrides, or (thio)esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)

Abstract

1. A process for the manufacture of 13-cis-retinoic acid, characterized by a) reacting 5-hydroxy-4-methyl-2(5H)-furanone with a salt of the formula see diagramm : EP0111325,P8,F1 wherein R1 , R2 and R3 are aryl or di-(lower-alkyl)-amino and X is halogen, in a lower alkanol in the presence of an alkali metal hydroxide at a temperature of -10 to -50 degrees C, and b) treating the reaction product obtained in step a) in an organic solvent with a compound or a complex of rhodium or palladium other than palladium or rhodium phthalocyanine or a palladium or rhodium compound containing a cyanide ion.

Description

DK 170945 B1DK 170945 B1

Den foreliggende opfindelse angår en særlig fremgangsmåde til fremstilling af 13-cis-retinsyre og en fremgangsmåde til fremstilling af en palladiumkatalysator til brug ved fremgangsmåden.The present invention relates to a particular process for preparing 13-cis-retinoic acid and to a process for preparing a palladium catalyst for use in the process.

13-cis-Retinsyre (13-cis-vitamin-A-syre) er et værdifuldt lægemid-5 del, der kan anvendes til behandling af acne. Denne isomer er dog meget vanskelig at fremstille. Pattenden og Weedon, J. Chem. Soc.13-cis-Retinoic acid (13-cis vitamin A acid) is a valuable drug that can be used to treat acne. However, this isomer is very difficult to prepare. Pattenden and Weedon, J. Chem. Soc.

(C), 1984-1997 (1968) har beskrevet en fremgangsmåde til fremstilling af 13-cis-retinsyre, ved hvilken et [3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 2,4-pentadienyl]triphenylphosphoniumsalt og 5-hy-10 droxy-4-methyl-2(5H)-furanon omsættes til en blanding af cis-isomerer af retinsyren. Denne fremgangsmåde har den ulempe, at udbyttet af cis-isomererne af retinsyre i blandingen er ringe. Endvidere er det vanskeligt at omdanne denne isomerblanding ved isomerisering til den specifikke isomer, nemlig 13-cis-retinsyre. Dette skyldes især, at de 15 ved denne fremgangsmåde vundne isomerer har cis-konfiguration i 11-og 13-stillingen. Det har vist sig at være meget vanskeligt at iso-merisere 11-cis-dobbeltbindingen selektivt uden at isomerisere 13-cis-dobbeltbindingen. Mange af de anvendte isomeriseringsteknikker er relativt uvirksomme ved den selektive isomerisering af 11-cis-dob-20 beltbindingen. Hver isomerisering sænker udbyttet af 13-cis-vitamin-A-syre.(C), 1984-1997 (1968) have disclosed a process for the preparation of 13-cis-retinoic acid in which [3-methyl-5- (2,6,6-trimethyl-1-cyclohexen-1-yl)] - 2,4-pentadienyl] triphenylphosphonium salt and 5-hydroxy-4-methyl-2 (5H) -furanone are reacted with a mixture of cis isomers of the retinoic acid. This process has the disadvantage that the yield of the cis isomers of retinoic acid in the mixture is poor. Furthermore, it is difficult to convert this isomer mixture by isomerization to the specific isomer, namely 13-cis-retinoic acid. This is mainly because the 15 isomers obtained by this process have cis configuration at the 11 and 13 positions. It has been found to be very difficult to selectively isomerize the 11-cis double bond without isomerizing the 13-cis double bond. Many of the isomerization techniques used are relatively ineffective in the selective isomerization of the 11-cis double bond. Each isomerization lowers the yield of 13-cis-vitamin-A acid.

Der har derfor været et behov for en fremgangsmåde til fremstilling af 13-cis-retinsyre med højt udbytte og i ren form.Therefore, there has been a need for a process for producing 13-cis-retinoic acid in high yield and in pure form.

Ifølge opfindelsen har det nu vist sig, at 13-cis-retinsyre kan frem-25 stilles ved, at manAccording to the invention, it has now been found that 13-cis-retinoic acid can be prepared by

a) omsætter 5-hydroxy-4-methyl-2(5H)-furanon med et salt med den almene formel Ia) Reacts 5-hydroxy-4-methyl-2 (5H) -furanone with a salt of general formula I

X ® sp il 1 1 DK 170945 B1 2 hvor R^ , R2 og R3 betegner aryl eller di(lavere alkyl)amino, og X betegner halogen, med en lavere alkanol i nærværelse af et alkalimetalhydroxid ved en temperatur på mellem -10 og -50°C og 5 b) behandler det i trin a) vundne reaktionsprodukt i et organisk opløsningsmiddel med en forbindelse eller et complex af rhodium eller palladium, bortset fra palladiumphthalocyanin, rhodiumphthalocyanin, en cyanidionholdig palladiumforbindelse og en cyanidionholdig rho-diumforbindelse.X is sp in the 1 1 wherein R 1, R 2 and R 3 represent aryl or di (lower alkyl) amino, and X represents halogen, with a lower alkanol in the presence of an alkali metal hydroxide at a temperature between -10 and - 50 ° C and 5 b) treat the reaction product obtained in step a) in an organic solvent with a compound or complex of rhodium or palladium other than palladium phthalocyanine, rhodium phthalocyanine, a cyanide ion-containing palladium compound and a cyanide ion-containing rhodium.

10 Et aspekt af opfindelsen angår omsætningen af butenolidet, 5-hydroxy-4-methyl-2(5H)-furanon med Vittig-saltet med formlen 1 til dannelse af en blanding, som indeholder 13-cis-retinsyre og 11,13-cis-retin-syre. Reaktionen udføres under en Wittig-reaktions betingelser. Selv om forbindelsen med formlen I kan være et hvilket som helst sædvan-15 ligt Wittig-salt, foretrækkes triphenylphosphoniumchlorid som forbindelsen med formlen I.An aspect of the invention relates to the reaction of the butenolide, 5-hydroxy-4-methyl-2 (5H) -furanone with the Wittig salt of formula 1 to form a mixture containing 13-cis-retinoic acid and 11,13-cis -retin acid. The reaction is carried out under a Wittig reaction conditions. Although the compound of formula I can be any usual Wittig salt, triphenylphosphonium chloride is preferred as the compound of formula I.

I det næste fremgangsmådetrin til fremstilling af 13-cis-retinsyre omdannes 11,13-di-cis-retinsyren enten som isoleret forbindelse eller i blanding med 13-cis-retinsyre med udbytter på over 90% til 20 13-cis-retinsyre. Den foretrukne katalysator til denne isomerisering er en palladiumforbindelse, som fås ved omsætning af palladium-II-nitrat med en tri(lavere alkyl)- eller arylphosphin og tri(lavere alkyl)amin. Ved anvendelse af denne foretrukne katalysator foretages isomeriseringen til 13-cis-retinsyre næsten straks med højt udbytte, 25 uden at der skal recycliseres.In the next process step for preparing 13-cis-retinoic acid, the 11,13-di-cis-retinoic acid is converted either as an isolated compound or in admixture with 13-cis-retinoic acid with yields greater than 90% to 13-cis-retinoic acid. The preferred catalyst for this isomerization is a palladium compound obtained by reacting palladium II nitrate with a tri (lower alkyl) or arylphosphine and tri (lower alkyl) amine. Using this preferred catalyst, the isomerization to 13-cis-retinoic acid is carried out almost immediately at high yield, 25 without recycling.

Det har endvidere vist sig, at der ved udførelse af Wittig-reaktionen ved temperaturer på mellem -10 og -50°C, fortrinsvis mellem -20 og -50°C, især mellem -30 og -45°C, fås en blanding af 13-cis- og 11,13-di-cis-isomerer med udbytter på 90% og derover. Desuden for-30 hindrer anvendelsen af disse temperaturer dannelsen af andre retin-syreisomerer end 13-cis- eller 11,13-di-cis-retinsyre.Furthermore, it has been found that by carrying out the Wittig reaction at temperatures of between -10 and -50 ° C, preferably between -20 and -50 ° C, especially between -30 and -45 ° C, a mixture of 13-cis and 11,13-di-cis isomers with yields of 90% and above. In addition, the use of these temperatures prevents the formation of retinoic acid isomers other than 13-cis or 11,13-di-cis-retinoic acid.

DK 170945 B1 3DK 170945 B1 3

Ved denne reaktion anvendes der generelt en base og et inert organisk opløsningsmiddel. Det organiske opløsningsmiddel vælges således, at det ikke størkner ved de til Wittig-reaktionen anvendte lave temperaturer. Valget af et særligt inert opløsningsmiddel afhænger således 5 af den temperatur, ved hvilken Wittig-reaktionen udføres. Blandt de foretrukne opløsningsmidler er lavere alkanoler såsom isopropanol, ethanol og methanol, hvorhos isopropanol er særlig foretrukket.In this reaction, a base and an inert organic solvent are generally used. The organic solvent is chosen so that it does not solidify at the low temperatures used for the Wittig reaction. Thus, the choice of a particularly inert solvent depends on the temperature at which the Wittig reaction is carried out. Among the preferred solvents are lower alkanols such as isopropanol, ethanol and methanol, of which isopropanol is particularly preferred.

Ifølge opfindelsen foretrukne baser er alkalimetalhydroxider såsom kaliumhydroxid, natriumhydroxid og lithiumhydroxid. Langt de bedste 10 resultater med hensyn til udbytte og produktkvalitet fås ved anvendelse af kaliumhydroxid og isopropanol. Ved udførelse af denne reaktion er det almindeligvis foretrukket at arbejde under en atmosfære af inert gas, fortrinsvis under nitrogen.Preferred bases of the invention are alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide. By far the best 10 results in yield and product quality are obtained using potassium hydroxide and isopropanol. In carrying out this reaction, it is generally preferred to operate under an inert gas atmosphere, preferably under nitrogen.

Fremgangsmådetrin a) ifølge den foreliggende opfindelse giver en 15 blanding af 13-cis- og 11,13-di-cis-isomererne. Denne blanding kan om ønsket omdannes direkte til 13-cis-isomeren uden isolering af 11,13-di-cis-isomeren. På den anden side kan 11,13-di-cis-isomeren om ønsket isoleres fra blandingen og omdannes til 13-cis-isomeren. Når man ønsker at spalte blandingen, kan der anvendes de sædvanlige 20 teknikker til opspaltning af isomerer. En foretrukken metode består i fraktioneret krystallisation.Process step a) of the present invention provides a mixture of the 13-cis and 11,13-di-cis isomers. If desired, this mixture can be converted directly to the 13-cis isomer without isolation of the 11,13-di-cis isomer. On the other hand, if desired, the 11,13-cis isomer can be isolated from the mixture and converted to the 13-cis isomer. When it is desired to decompose the mixture, the usual 20 techniques for cleavage of isomers can be used. A preferred method consists in fractional crystallization.

Generelt giver Wittig-reaktionen en blanding, som indeholder ca.In general, the Wittig reaction gives a mixture containing ca.

70 - ca. 90% 11,13-di-cis-retinsyre og ca. 10 - ca. 30% af 13-cis-isomeren. Ved anvendelse af lave temperaturer, dvs. tempera-25 turer på under- 20°C og fortrinsvis på mellem -30 og -50°C, fås en blanding af retinsyrer med et udbytte på mindst 90%, beregnet på det som udgangsmateriale anvendte butenolid.70 - approx. 90% 11,13-di-cis-retinoic acid and ca. 10 - approx. 30% of the 13-cis isomer. When using low temperatures, ie. temperatures of less than 20 ° C and preferably between -30 and -50 ° C are obtained a mixture of retinoic acids with a yield of at least 90%, based on the butenolide used as the starting material.

I det næste trin i fremgangsmåden ifølge opfindelsen isomeriseres enten 11,13-di-cis-retinsyre eller den blanding, som indeholder 30 11,13-di-cis- og 13-cis-isomeren, til ren 13-cis-isomer. Isomeri- seringen udføres i et inert opløsningsmiddel, idet der som katalysator anvendes en forbindelse eller et complex af palladium eller rhodium, bortset fra palladium- eller rhodiumphthalocyanin eller en cyanidionholdig forbindelse eller et cyanidionholdigt complex. Ge- DK 170945 B1 4 nerelt foretages reaktionen ved temperaturer på 10-150°C, idet der særlig foretrækkes temperaturer på 40-65°C, især 45-55°C.In the next step of the process of the invention, either 11,13-di-cis-retinoic acid or the mixture containing the 11,13-di-cis and 13-cis isomer is isomerized to pure 13-cis isomer. The isomerization is carried out in an inert solvent, using as a catalyst a compound or complex of palladium or rhodium, except for palladium or rhodium phthalocyanine or a cyanide ion-containing compound or a cyanide ion-containing complex. Generally, the reaction is carried out at temperatures of 10-150 ° C, especially temperatures of 40-65 ° C, especially 45-55 ° C.

Det har ifølge opfindelsen vist sig, at disse katalysatorer selektivt isomeriserer 11-cis-dobbeltbindingen til den tilsvarende trans-dob-5 beltbinding, uden at angribe 13-cis-dobbeltbindingen. Selv om nogle rhodium- eller palladiumforbindelser eller complexer ikke giver 13-cis-forbindelsen med højt udbytte, er den omstændighed, at de selektivt isomeriserer 11-cis-dobbeltbindingen, af største betydning.It has been found, according to the invention, that these catalysts selectively isomerize the 11-cis double bond to the corresponding trans-double bond, without attacking the 13-cis double bond. Although some rhodium or palladium compounds or complexes do not provide the 13-cis compound with high yield, the fact that they selectively isomerize the 11-cis double bond is of paramount importance.

I sådanne tilfælde kan udbytterne forbedres ved, at man recycliserer 10 den ikke omdannede 11-cis-forbindelse og igen underkaster den iso-merisering. Hvis katalysatoren kunne isomerisere 13-cis- til 13-trans-dobbeltbindingen i blot et eller andet omfang, ville der fås et udbyttetab, fordi 13-trans-dobbeltbindingen ikke på enkel måde kan isomeriseres. Da disse katalysatorer på ingen måde angriber 15 13-cis-bindingen, er det muligt at udføre isomeriseringen, uden at isolere 13-cis-isomeren fra reaktionsproduktet fra Wittig-reaktionen.In such cases, the yields can be improved by recycling the un-converted 11-cis compound and subjecting it to isomerization. If the catalyst was able to isomerize the 13-cis to 13-trans double bond to some extent, a loss of yield would be obtained because the 13-trans double bond cannot be isomerized simply. Since these catalysts in no way attack the 13-cis bond, it is possible to carry out the isomerization, without isolating the 13-cis isomer from the reaction product of the Wittig reaction.

På denne måde kan reaktionsproduktet fra isomeriseringsreaktionen underkastes gentagen katalytisk isomerisering for at forøge udbyttet, uden at 13-cis-isomeren skal isoleres.In this way, the reaction product of the isomerization reaction can be subjected to repeated catalytic isomerization to increase the yield without isolating the 13-cis isomer.

20 Enhver af de forbindelser eller complexer af palladium, som er beskrevet i USA-patentskrift nr. 4.051.174, kan anvendes til den fore liggende opfindelse. Selv om der foretrækkes et homogent katalytisk system, kan der også anvendes et heterogent katalytisk system. I tilfælde af heterogen katalytisk isomerisering kan katalysatoren an-25 vendes i fravær af et bærestof, eller det kan anbringes på et bærestof. Bærestoffet kan være et hvilket som helst sædvanligt bærestof, fx kul, nikkeloxid, aluminiumoxid, bariumsulfat, calciumcarbonat og molekylarsi. Visse polymerer såsom nylon og perlon kan ligeledes anvendes som bærer. Katalysatoren kan anbringes på bærestoffet ved 30 sædvanlige fremgangsmåder.Any of the compounds or complexes of palladium disclosed in U.S. Patent No. 4,051,174 can be used for the present invention. Although a homogeneous catalytic system is preferred, a heterogeneous catalytic system may also be used. In the case of heterogeneous catalytic isomerization, the catalyst may be used in the absence of a carrier or it may be applied to a carrier. The carrier can be any conventional carrier, for example, carbon, nickel oxide, alumina, barium sulfate, calcium carbonate and molecular alloy. Certain polymers such as nylon and perlone can also be used as a carrier. The catalyst can be applied to the support by conventional methods.

De palladium- eller rhodiumforbindelser eller complexer, der anvendes som katalysator ifølge den foreliggende opfindelse, er fortrinsvis salte eller complexer af palladium eller rhodium. Fx kan der anvendes nedenstående palladiumsalte eller complexer: DK 170945 B1 5The palladium or rhodium compounds or complexes used as catalyst of the present invention are preferably salts or complexes of palladium or rhodium. For example, the following palladium salts or complexes may be used: DK 170945 B1 5

PdCl2, PdBr2, PdF2, Pdl2, K2PdCl4, PdS04, K2PdBr4, (CH3CN)2PdCl2,PdCl2, PdBr2, PdF2, Pdl2, K2PdCl4, PdS04, K2PdBr4, (CH3CN) 2PdCl2,

Pd(OAC)2, (benzonitril)2PdCl2, (benzonitril)2PdBr2, (C3H5PdCl)2, (cyclohexen-PdCl2)2, (1,5-cyclooctadien)PdCl2, (1,5-cyclooctadien)-PdBr2, (1,5-cyclooctadien)Pdl2, (cyclooctatetraen)PdBr2, (acrylni-5 tril)2PdCl2, Pd(N03)4(NH4)2, Pd(pyridin)2(N02)2, [N(CH2)3ben- zyl]2Pd(N02)4, Pd(NH3)2Cl2, Pd(NH3)2(N02)2, Pd(2,2-bipyridyl)Cl2, (NH4)2PdCl4, (NH3)2PdCl6, PdS2, K2PdCl6, (ethylendiamin)Pd(N02)3, (amylamino)2Pd(N02)2, (NH3)4Pd(N03>2, Pd(salicylaldoxim)2, (ravsyre-dinitril)PdCl2, (cyclooctatetraen)PdCl2, (azobenzen)2PdCl2, (bipyri-10 dyl)Pd(N02)2, K2Pd(malonat)2, (tricyclohexylphosphin)2PdCl2, (triphe-nylphosphin)2PdCl2, tetrakis(triethylphosphit)Pd(0) og tetrakis-(triphenylphosphin)Pd(O). De samme salte eller complexer af rhodium kan også anvendes.Pd (OAC) 2, (benzonitrile) 2PdCl2, (benzonitrile) 2PdBr2, (C3H5PdCl) 2, (cyclohexene-PdCl2) 2, (1,5-cyclooctadiene) PdCl2, (1,5-cyclooctadiene) -PdBr2, (1, 5-cyclooctadiene) Pd12, (cyclooctatetraene) PdBr2, (acrylonitrile) 2PdCl2, Pd (NO3) 4 (NH4) 2, Pd (pyridine) 2 (NO2) 2, [N (CH2) 3benzyl] 2Pd ( NO2) 4, Pd (NH3) 2Cl2, Pd (NH3) 2 (NO2) 2, Pd (2,2-bipyridyl) Cl2, (NH4) 2PdCl4, (NH3) 2PdCl6, PdS2, K2PdCl6, (ethylenediamine) Pd (NO2 ) 3, (amylamino) 2Pd (NO2) 2, (NH3) 4Pd (NO3> 2, Pd (salicylaldoxime) 2, (succinic dinitrile) PdCl2, (cyclooctatetraene) PdCl2, (azobenzene) 2PdCl2, (bipyri-10dyl) Pd (NO2) 2, K2Pd (malonate) 2, (tricyclohexylphosphine) 2PdCl2, (triphenylphosphine) 2PdCl2, tetrakis (triethylphosphite) Pd (0) and tetrakis (triphenylphosphine) Pd (O) The same salts or complexes can also be used.

Ifølge opfindelsen har det endvidere vist sig, at den katalytiske 15 isomerisering optræder med stort udbytte, uden at der skal recycli- seres, når der anvendes en katalysator, der fremstilles ved omsætning af et palladium-II-salt med en tri(lavere alkyl)- eller tri(aryl)-phosphin, fortrinsvis en tri(aryl)phosphin, i nærværelse af en tri(lavere alkyl)amin i et inert organisk opløsningsmiddel, fortrins-20 vis acetonitril. Anvendelsen af en tri(lavere alkyl)amin forbedrer katalysatoren og således det ved isomeriseringen vundne udbytte.Furthermore, according to the invention, it has been found that the catalytic isomerization occurs in high yield, without having to be recycled when using a catalyst prepared by reacting a palladium-II salt with a tri (lower alkyl) - or tri (aryl) phosphine, preferably a tri (aryl) phosphine, in the presence of a tri (lower alkyl) amine in an inert organic solvent, preferably acetonitrile. The use of a tri (lower alkyl) amine improves the catalyst and thus the yield obtained by the isomerization.

Til opnåelse af de bedste resultater foretrækkes det at anvende palladium-II-nitrat som palladiumsalt. Den foretrukne triarylphosphin er triphenylphosphin. Enhver sædvanlig lavere alkylamin kan anvendes 25 til dannelse af complexet, og der foretrækkes triethylamin.For best results, it is preferred to use palladium II nitrate as palladium salt. The preferred triarylphosphine is triphenylphosphine. Any usual lower alkylamine can be used to form the complex, and triethylamine is preferred.

Ved en foretrukken udførelsesform for den foreliggende opfindelse opløses palladium-II-nitrat og triarylphosphinen i acetonitril. Til acetonitrilopløsningen sættes tri(lavere alkyl)aminen, hvorefter katalysatoren udfælder som bundfald. Om ønsket kan bundfaldet fra-30 filtreres og anvendes til isomerisering af 11,13-di-cis-isomeren, enten alene eller i blanding med 13-cis-isomeren. På den anden side kan opløsningen og bundfaldet tilsættes i substratet. Til fremstilling af den foretrukne katalysator omsættes 1 mol palladium-II-nitrat med mindst 4 mol triarylphosphin. Der kan også anvendes et større 35 overskud af triphenylphosphin. Da det imidlertid ikke er særlig DK 170945 B1 6 fordelagtigt at anvende større overskud af triphenylphosphin, anvendes der sjældent mængder på mere end 10 mol triphenylphosphin pr. mol palladiumsalt. Til omsætningen af triphenylphosphinen med palladium- II -nitratet kan der anvendes et hvilket som helst sædvanligt 5 opløsningsmiddel for triphenylphosphin og palladium-II-nitrat. De bedste resultater opnås med acetonitril som opløsningsmiddel. Ved anvendelse af en tri(lavere alkyl)amin såsom triethylamin til fremstilling af katalysatoren anvendes almindeligvis mindst 2 mol triethylamin pr. mol palladiumsalt eller complex. Om ønsket kan tri-10 (lavere alkyl·)aminen anvendes i større mængder, fx 20 mol pr. mol palladiumsalt eller complex. Med anvendelsen af sådanne store mængder er der dog kun forbundet ringe, om overhovedet nogen, fordele.In a preferred embodiment of the present invention, palladium II nitrate and the triaryl phosphine are dissolved in acetonitrile. To the acetonitrile solution is added tri (lower alkyl) amine, after which the catalyst precipitates as a precipitate. If desired, the precipitate can be filtered and used to isomerize the 11,13-di-cis isomer, either alone or in admixture with the 13-cis isomer. On the other hand, the solution and the precipitate can be added into the substrate. To prepare the preferred catalyst, 1 mole of palladium II nitrate is reacted with at least 4 moles of triarylphosphine. A greater excess of triphenylphosphine may also be used. However, since it is not particularly advantageous to use larger excess of triphenylphosphine, amounts of more than 10 moles of triphenylphosphine are rarely used per day. moles of palladium salt. For the reaction of the triphenylphosphine with the palladium II nitrate, any usual solvent for triphenylphosphine and palladium II nitrate can be used. The best results are obtained with acetonitrile as the solvent. When using a tri (lower alkyl) amine such as triethylamine to prepare the catalyst, at least 2 moles of triethylamine per m.p. moles of palladium salt or complex. If desired, the tri-10 (lower alkyl ·) amine can be used in greater amounts, e.g. moles of palladium salt or complex. However, with the use of such large quantities, there are only few, if any, advantages.

Ved udførelse af isomeriseringen forekommer katalysatoren i katalytiske mængder. Almindeligvis foretages isomeriseringen i et inert 15 organisk opløsningsmiddel. Der kan anvendes et hvilket som helst sædvanligt inert organisk opløsningsmiddel. Foretrukne opløsningsmidler er ethere såsom tetrahydrofuran, nitriler såsom acetonitril og lavere alkylestere af lavere alkancarboxylsyrer, fx lavere alkancar-boxylsyre med 2-4 carbonatomer, fx ethylacetat. Det foretrækkes ge-20 nerelt, at katalysatoren forekommer i mængder på ca. 0,0001 mol - ca. 0,01 mol pr. mol 11,13-di-cis-retinsyre. Katalysatoren kan anvendes i overskud i en mængde på ca. 1 mol pr. mol 11,13-di-cis-retin-syre. Da der imidlertid ikke opnås fordele ved anvendelse af større mængder katalysator, og da disse katalysatorer er kostbare, anvendes 25 der sjældent store katalysatormængder. Det foretrækkes generelt at anvende ca. 0,001 - ca. 0,01 mol katalysator pr. mol 11,13-di-cis-re-tinsyre.In carrying out the isomerization, the catalyst is present in catalytic amounts. Generally, the isomerization is carried out in an inert organic solvent. Any usual inert organic solvent may be used. Preferred solvents are ethers such as tetrahydrofuran, nitriles such as acetonitrile and lower alkyl esters of lower alkane carboxylic acids, for example lower alkane carboxylic acid of 2-4 carbon atoms, eg ethyl acetate. It is generally preferred that the catalyst be present in amounts of approx. 0.0001 mol - approx. 0.01 moles per mole of 11,13-di-cis-retinoic acid. The catalyst can be used in excess in an amount of approx. 1 mole pr. mole of 11,13-di-cis-retinoic acid. However, since no benefits are obtained from the use of larger amounts of catalyst, and since these catalysts are expensive, large amounts of catalyst are rarely used. It is generally preferred to use approx. 0.001 - approx. 0.01 mole of catalyst per mole of 11,13-di-cis-retinoic acid.

Efter den foretagne isomerisering kan 13-cis-retinsyre isoleres fra reaktionsblandingen med store udbytter ved sædvanlige metoder såsom 30 krystallisation. Denne krystallisation kan udføres ved tilsætning af vand til reaktionsblandingen, hvorved der dannes en suspension, hvorpå suspensionen afkøles til en temperatur på mellem 0 og -5eC.Following the isomerization, 13-cis-retinoic acid can be isolated from the reaction mixture with high yields by conventional methods such as crystallization. This crystallization can be carried out by adding water to the reaction mixture to form a suspension and cooling the suspension to a temperature between 0 and -5 ° C.

Det i nærværende beskrivelse anvendte udtryk "lavere alkyl" betegner ligekædede og forgrenede alkylgrupper med 1-7 carbonatomer, fx me-35 thyl, ethyl, og propyl, fortrinsvis methyl. Lavere alkoxy omfatter DK 170945 B1 7 lavere alkoxygrupper med 1-7 carbonatomer, fx methoxy og ethoxy.The term "lower alkyl" as used herein refers to straight-chain and branched-chain alkyl groups having 1-7 carbon atoms, e.g., methyl, ethyl, and propyl, preferably methyl. Lower alkoxy includes lower alkoxy groups having 1-7 carbon atoms, for example methoxy and ethoxy.

Lavere alkancarboxylsyrer indeholder 2-7 carbonatomer, fx eddikesyre, propionsyre og smørsyre. Halogen omfatter alle halogenerne, nemlig fluor, chlor, brom og iod.Lower alkane carboxylic acids contain 2-7 carbon atoms, for example acetic acid, propionic acid and butyric acid. Halogen includes all the halogens, namely fluorine, chlorine, bromine and iodine.

5 Udtrykket "aryl" betegner enkeltkernede aromatiske carbonhydridgrupper såsom phenyl, som kan være usubstituerede eller substituerede i én eller flere stillinger med lavere alkylendioxy, halogen, nitro, lavere alkyl eller lavere alkoxy, og flerkernede arylgrupper såsom naphthyl, anthryl, phenanthryl og azulyl, som kan være substituerede 10 med én eller flere af de ovennævnte grupper. De foretrukne arylgrupper er substituerede og usubstituerede enkeltkernede arylgrupper, især phenyl og tolyl.The term "aryl" refers to single-core aromatic hydrocarbon groups such as phenyl which may be unsubstituted or substituted at one or more positions with lower alkylenedioxy, halogen, nitro, lower alkyl or lower alkoxy, and multi-core aryl groups such as naphthyl, anthryl, phenanthryl and azulyl which may be substituted by one or more of the above groups. The preferred aryl groups are substituted and unsubstituted single-core aryl groups, especially phenyl and tolyl.

Fremgangsmåden ifølge opfindelsen belyses nærmere ved nedenstående eksempler: 15 EKSEMPEL 1The process of the invention is illustrated in more detail by the following examples: EXAMPLE 1

En opløsning af 157,5 g [3-methyl-5-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4-pentadienyl]-triphenylphosphoniumchlorid (Wittig-saltet) og 57,0 g af butenolidet, 5-hydroxy-4-methyl-2(5H)-furanon, i 1000 ml isopropanol blev omrørt under nitrogenatmosfære ved -30°C. Til op-20 løsningen blev der i løbet af 1-1,5 time ved en temperatur på -30±2°C sat 625 ml 2N vandigt kaliumhydroxid i isopropanol. Derefter blev reaktionsblandingen omrørt i 10 minutter og hældt ud i 2500 ml vand.A solution of 157.5 g of [3-methyl-5- (2,6,6-trimethyl-1-cyclohexen-1-yl) -2,4-pentadienyl] triphenylphosphonium chloride (Wittig salt) and 57.0 g of the butenolide, 5-hydroxy-4-methyl-2 (5H) -furanone, in 1000 ml of isopropanol was stirred under a nitrogen atmosphere at -30 ° C. To the solution was added 625 ml of 2N aqueous potassium hydroxide in isopropanol over a period of 1-1.5 hours at a temperature of -30 ± 2 ° C. Then, the reaction mixture was stirred for 10 minutes and poured into 2500 ml of water.

Den alkaliske (pH 10) opløsning blev ekstraheret med 2 x 500 ml hexan. De samlede hexanekstrakter blev vasket med 2 x 100 ml metha-25 nol-vand (7:3 volumendele), og vaskevandet blev sat til den oprindelige vandige opløsning. Den samlede vandige opløsning blev syrnet (pH 2) ved tilsætning af 250 ml 4N vandig svovlsyre og ekstraheret med 2000 ml og 2 x 1000 ml ethylacetat-hexan (2:8 volumendele). Ethylace-tat-hexan-ekstrakterne blev hver for sig vasket med 6 x 400 ml metha-30 nol-vand (7:3 volumendele) efter hinanden, idet der hver gang blev anvendt den samme vaskeopløsning. Hver methanol- vand-vaskeopløsning blev vasket successivt med 3 x 1000 ml ethylacetat-hexan (2:8 volumendele) , idet der hele tiden blev anvendt samme vaskeopløsning. Til DK 170945 B1 8 sidst fik man i alt 6 organiske (ethylacetat-hexan)-ekstrakter og 6 vandige (methanol-vand)-ekstrakter. Tyndtlagschromatografi viste, at alt triphenylphosphinoxid var i den vandige fase, og at de organiske faser indeholdt 11,13-di-cis-retinsyre og 16,7 vægtprocent 13-cis-re-5 tinsyre. De organiske ekstrakter blev sammenhældt og vasket med 7 x 500 ml vand. Opløsningsmidlet blev afdampet, og man fik 137,2 g (91,5%) af en krystalblanding, som indeholdt 75,9 vægtprocent 11,13-di-cis-retinsyre og 16,7 vægtprocent 13-cis-retinsyre.The alkaline (pH 10) solution was extracted with 2 x 500 ml hexane. The combined hexane extracts were washed with 2 x 100 ml methanol-25 water (7: 3 parts by volume) and the wash water added to the original aqueous solution. The combined aqueous solution was acidified (pH 2) by the addition of 250 ml of 4N aqueous sulfuric acid and extracted with 2000 ml and 2 x 1000 ml of ethyl acetate-hexane (2: 8 by volume). The ethyl acetate-hexane extracts were washed separately with 6 x 400 ml methanol-30 water (7: 3 parts by volume) one after the other, using the same washing solution each time. Each methanol-water wash solution was washed successively with 3 x 1000 ml ethyl acetate-hexane (2: 8 by volume), using the same wash solution all the time. For DK 170945 B1 8, a total of 6 organic (ethyl acetate-hexane) extracts and 6 aqueous (methanol-water) extracts were obtained. Thin layer chromatography showed that all triphenylphosphine oxide was in the aqueous phase and that the organic phases contained 11,13-di-cis-retinoic acid and 16.7 wt% 13-cis-retinoic acid. The organic extracts were combined and washed with 7 x 500 ml water. The solvent was evaporated to give 137.2 g (91.5%) of a crystal mixture containing 75.9 wt.% 11,13-di-cis-retinoic acid and 16.7 wt.% 13-cis-retinoic acid.

EKSEMPEL 2-35 10 I eksempel 2-35 blev Wittig-saltet og butenolidet ifølge eksempel 1 omsat til en krystallinsk blanding af 11,13-di-cis-retinsyre og 13-cis-retinsyre. Den ved anvendelse af forskellige temperaturer opnåede effekt på udbyttet er angivet i nedenstående tabel. Procenterne er beregnet på vægt. I eksempel 2-23 og 26-35 var molforholdet 15 mellem butenolid og Wittig-salt som i eksempel 1. Når mængden af butenolid således var forhøjet i sammenligning med eksempel 1, var mængden af Wittig-salt forhøjet i samme grad, så at der var samme molforhold som i eksempel 1. I eksempel 24 blev der anvendt et 10%'s molært overskud af Wittig-saltet i sammenligning med eksempel 1. I 20 eksempel 25 blev der anvendt et 20%'s molært overskud af Wittig-saltet i sammenligning med eksempel 1.EXAMPLE 2-35 In Examples 2-35, the Wittig salt and butenolide of Example 1 were reacted with a crystalline mixture of 11,13-di-cis-retinoic acid and 13-cis-retinoic acid. The effect obtained by using different temperatures on the yield is given in the table below. The percentages are by weight. In Examples 2-23 and 26-35, the molar ratio of butenolide to Wittig salt was as in Example 1. Thus, when the amount of butenolide was increased compared to Example 1, the amount of Wittig salt was increased to the same degree so that was the same molar ratio as in Example 1. In Example 24, a 10% molar excess of the Wittig salt was used in comparison with Example 1. In 20 Example 25, a 20% molar excess of the Wittig salt was used in Comparison with Example 1.

Tabel ITable I

Eksempel nr. Mol butenolid Temperatur, °C % udbytte 25 ___ 2 0,02 0 61,5 3 0,02 0 60,0 4 0,02 -20 91,7 5 0,02 0 55,0 30 6 0,02 -20 81,7 7 0,1 -20 90,0 8 0,1 -20 88,7 9 0,1 -20 84,7 10 0,1 -10 80,7 DK 170945 B1 9Example No. Mole Butenolide Temperature, ° C% Yield 25 0.02 2 61.5 3 0.02 0 60.0 4 0.02 -20 91.7 5 0.02 0 55.0 30 6 0, 02 -20 81.7 7 0.1 -20 90.0 8 0.1 -20 88.7 9 0.1 -20 84.7 10 0.1 -10 80.7 DK 170945 B1 9

Tabel 1 fortsat 11 0,1 -20 91,0 12 0,1 -10 82,3 13 0,1 -30 93,7 5 14 0,1 -30 99,3 15 0,1 -20 86,0 16 0,1 -30 98,3 17 0,1 -30 95,0 18 0,1 -30 95,7 10 19 0,1 -30 96,7 20 0,1 -30 92,3 21 0,1 -30 98,7 22 0,1 -30 99,3 23 0,1 -30 92,3 15 24 0,1 -20 93,3 25 0,1 0 91,3 26 0,1 -20 62,0 27 0,5 -25 88,3 28 0,5 -30 91,5 20 29 0,5 -20 90,0 30 0,5 -30 91,7 31 0,5 -30 90,7 32 0,5 -30 89,6 33 0,5 -30 93,5 25 34 0,5 -30 93,1 35 0,5 -30 93,2 EKSEMPEL 37Table 1 continued 11 0.1 -20 91.0 12 0.1 -10 82.3 13 0.1 -30 93.7 5 14 0.1 -30 99.3 15 0.1 -20 86.0 16 0.1 -30 98.3 17 0.1 -30 95.0 18 0.1 -30 95.7 10 19 0.1 -30 96.7 20 0.1 -30 92.3 21 0.1 - 98.7 22 0.1 -30 99.3 23 0.1 -30 92.3 15 24 0.1 -20 93.3 25 0.1 0 91.3 26 0.1 -20 62.0 27 0.5 -25 88.3 28 0.5 -30 91.5 20 29 0.5 -20 90.0 30 0.5 -30 91.7 31 0.5 -30 90.7 32 0.5 - 89.6 33 0.5 -30 93.5 25 34 0.5 -30 93.1 35 0.5 -30 93.2 Example 37

En opløsning af 137,2 g af den ifølge eksempel 1 fremstillede blan-30 ding af retinsyrer i 250 ml tetrahydrofuran og 500 ml acetonitril blev opvarmet til 50°C under kraftig omrøring og under nitrogenatmosfære. En blanding af 111 mg palladium-II-nitrat, 509 mg triphenyl-phosphin og 98 mg triethylamin i 25 ml acetonitril blev tilsat på én gang, hvorefter der blev skyllet efter med 25 ml acetonitril. Blan-35 dingen blev opvarmet til 50°C i 1 time. Umiddelbart efter tilsætning DK 170945 B1 10 af katalysatoren blev reaktionsopløsningen mørk. I løbet af 1 minut begyndte krystallisationen, og i løbet af 2 minutter fik man en tyk orange suspension. Denne blev kølet ved tilsætning af 500 ml vand, holdt i 2 timer ved 0-5°C og filtreret. Krystallerne blev vasket med 5 4 x 100 ml koldt acetonitril-vand (25:75 volumendele) og tørret ved stuetemperatur under reduceret tryk. Man fik 128,5 g 13-cis-retinsyre (85,7 vægtprocent, beregnet på butenolid).A solution of 137.2 g of the mixture of retinoic acid prepared in Example 1 in 250 ml of tetrahydrofuran and 500 ml of acetonitrile was heated to 50 ° C with vigorous stirring and under a nitrogen atmosphere. A mixture of 111 mg of palladium II nitrate, 509 mg of triphenylphosphine and 98 mg of triethylamine in 25 ml of acetonitrile was added at one time and then rinsed with 25 ml of acetonitrile. The mixture was heated to 50 ° C for 1 hour. Immediately after the addition of the catalyst, the reaction solution became dark. Within 1 minute, crystallization began and within 2 minutes a thick orange suspension was obtained. This was cooled by adding 500 ml of water, kept for 2 hours at 0-5 ° C and filtered. The crystals were washed with 5 x 100 ml cold acetonitrile water (25:75 volume) and dried at room temperature under reduced pressure. 128.5 g of 13-cis-retinoic acid (85.7% by weight based on butenolide) were obtained.

EKSEMPEL 38-43 I eksempel 38-43 blev den krystallinske blanding fra eksempel 1, som 10 indeholdt 75,9 vægtprocent 11,13-di-cis-retinsyre og 16,7 vægtprocent 13-cis-retinsyre, ved den i eksempel 37 beskrevne fremgangsmåde omdannet til 13-cis-retinsyre, idet der blev anvendt andre katalysatorer end palladiumnitrat og triphenylphosphin. Der blev anvendt samme betingelser med den undtagelse, at alle reaktioner blev fore-15 taget i 3 timer ved 50°C, med 0,1 molprocent katalysator og 2 ækvivalenter triethylamin, beregnet på katalysatoren. Isoleringen af 13-cis-retinsyren blev foretaget ved tilsætning af en overskydende mængde vand (opløsningsmiddelindhold til sidst 62,5 volumenprocent) og filtrering. Procentangivelserne i tabel II er beregnet på vægten 20 af den vundne 13-cis-retinsyre, beregnet på vægten af den som udgangsmateriale anvendte krystallinske blanding.EXAMPLES 38-43 In Examples 38-43, the crystalline mixture of Example 1 containing 75.9% by weight of 11,13-di-cis-retinoic acid and 16.7% by weight of 13-cis-retinoic acid was described in Example 37 process converted to 13-cis-retinoic acid using catalysts other than palladium nitrate and triphenylphosphine. The same conditions were used except that all reactions were carried out for 3 hours at 50 ° C, with 0.1 mole percent catalyst and 2 equivalents of triethylamine, calculated on the catalyst. The isolation of 13-cis-retinoic acid was done by adding an excess amount of water (solvent content at last 62.5% by volume) and filtering. The percentages in Table II are based on the weight 20 of the 13-cis-retinoic acid obtained, based on the weight of the crystalline mixture used as a starting material.

Tabel IITable II

Eksempel Katalysator Total- Analyse 25 nr. udbytte 13-cis all-trans 11,13- di-cis 38 (PhCN)2PdCl2 97,0 90,3 4,5 39 (Ph3P)3RhCl 97,3 58,1 1,8 35,1 30 40 (Ph3P)2PdCl2 98,0 20,6 - 74,5 41 (Ph3P)RhH(C0) 98,0 66,6 1,1 27,3 42 Pd(N03)2+Ph3P 97,3 91,0 0,6 4,1 43 (Ph2P)3RuCl2 93,3 15,4 - 78,9 DK 170945 B1 11 EKSEMPEL 44-53Example Catalyst Total Analysis 25 No. Yield 13-cis all-trans 11,13-di-cis 38 (PhCN) 2PdCl2 97.0 90.3 4.5 39 (Ph3P) 3RhCl 97.3 58.1 1.8 35.1 30 40 (Ph3P) 2PdCl2 98.0 20.6 - 74.5 41 (Ph3P) RhH (CO) 98.0 66.6 1.1 27.3 42 Pd (NO3) 2 + Ph3P 97.3 91.0 0.6 4.1 43 (Ph2P) 3RuCl2 93.3 15.4 - 78.9 DK 170945 B1 11 EXAMPLES 44-53

Eksempel 44-53 blev udført ved den i eksempel 37 beskrevne fremgangsmåde, idet der blev anvendt forskellige mængder katalysator (palladium- II -nitrat) til omdannelse af den ifølge eksempel 1 vundne kry-5 stallinske blanding af retinsyrer til 13-cis-retinsyre.Examples 44-53 were carried out by the procedure described in Example 37 using different amounts of catalyst (palladium II nitrate) to convert the crystalline mixture of retinoic acids obtained from Example 1 into 13-cis-retinoic acid.

Tabel IIITable III

Eksempel Mol Kataly- Reak- Udbytte^ Udbyttec Renhed nr. bute- sator, tionstid, (%) (%) 10 nolida mol% minutter 44 0,1 0,047 30 78,1 70,3 97,2 45 0,1 0,074 30 83,6 78,3 94,0d 46 0,1 0,043 30 91,4 85,3 15 47 0,1 0,070 150 78,5 78,0 48 0,1 0,046 180 84,4 83,0 97,0e 49 0,1 0,10 30 86,8 81,0 50 0,5 0,10 60 93,1 82,3 92,7 51 0,5 0,10 60 93,7 85,7 100,5 20 52 0,5 0,10 60 94,2 84,8 99,4fExample Mol Catalytic React Yield ^ Yield C Purity No. Butcher, Tension Time, (%) (%) 10 Nolida Mole% Minutes 44 0.1 0.047 30 78.1 70.3 97.2 45 0.1 0.074 30 83.6 78.3 94.0d 46 0.1 0.043 30 91.4 85.3 15 47 0.1 0.070 150 78.5 78.0 48 0.1 0.046 180 84.4 83.0 97.0 49 0.1 0.10 30 86.8 81.0 50 0.5 0.10 60 93.1 82.3 92.7 51 0.5 0.10 60 93.7 85.7 100.5 20 52 0 , 5 0.10 60 94.2 84.8 99.4f

53 0,5 0,10 60 94,5 86,7 99,8S53 0.5 0.10 60 94.5 86.7 99.8S

a. ved fremstilling af udgangsmaterialet ifølge eksempel 1 b. beregnet på anvendt isomerblanding 25 c. beregnet på det ved fremstillingen af udgangsmaterialet an vendte butenolid (ikke korrigeret) d. produkt indeholdt 1,4% 11,13-di-cis-retinsyre e. produkt indeholdt 0,8% 11,13-di-cis-retinsyre f. produkt indeholdt 0,7% all-trans- og 0,5% 11,13-di-cis-retin- 30 syre g. produkt indeholdt 0,7% 11,13-di-cis-retinsyre.a. in the preparation of the starting material of Example 1 b. calculated on the isomer mixture used 25 c. calculated on the butenolide (not corrected) used in the preparation of the starting material. d. product contained 1.4% 11,13-di-cis-retinoic acid product containing 0.8% 11,13-di-cis-retinoic acid f. product containing 0.7% all-trans and 0.5% 11,13-di-cis-retinoic acid g. product containing 0 , 7% 11,13-di-cis-retinoic acid.

DK 170945 B1 12 EKSEMPEL 54Example 170

Alle operationer blev udført under nitrogenatmosfære. I en 190 liters reaktionsbeholder af rustfrit stål, som blev kølet med tøris-acetone og var forsynet med en omrører, blev der hældt 34,3 kg isopropanol, 5 5,0 kg 5-hydroxy-4-methyl-2(5H)-furanon og 23,0 kg [3-methyl-5- (2,6,6-trimethyl-l-cyclohexen-l-yl)-2,4-pentadienyl]-triphenylphos-phoniumchlorid. Blandingen blev omrørt, indtil der var dannet en opløsning, hvorefter den blev afkølet til en temperatur på mellem -22 og -25°C og holdt ved denne temperatur. Derefter blev der i løbet af 10 1,5 time tilsat 49,9 kg af en 2,0N kaliumhydroxid-isopropanolopløs- ning (5-10°C) ved en temperatur på mellem -22 og -25°C. Derefter blev reaktionsblandingen omrørt i yderligere 1 time ved mellem -22 og -25°C og sat til 151,4 kg deioniseret vand og 54,6 kg hexan ved stuetemperatur. Blandingen blev omrørt i 10 minutter og fik derefter lov 15 at sætte sig, og den nedre fase (som indeholdt materialet) blev fraskilt. Hexanfasen blev ekstraheret med en blanding af 4,8 kg methanol og 2,6 kg deioniseret vand. Methanol-vand-reekstrakten og den pro-duktholdige fase blev holdt ved 0-10°C under nitrogenatmosfære.All operations were performed under nitrogen atmosphere. In a 190 liter stainless steel reaction vessel, which was cooled with dry ice-acetone and equipped with a stirrer, was poured 34.3 kg of isopropanol, 5 5.0 kg of 5-hydroxy-4-methyl-2 (5H) - furanone and 23.0 kg of [3-methyl-5- (2,6,6-trimethyl-1-cyclohexen-1-yl) -2,4-pentadienyl] -triphenylphosphonium chloride. The mixture was stirred until a solution was formed and then cooled to a temperature between -22 and -25 ° C and maintained at this temperature. Then, during 10 1.5 hours, 49.9 kg of a 2.0N potassium hydroxide isopropanol solution (5-10 ° C) was added at a temperature between -22 and -25 ° C. Then, the reaction mixture was stirred for an additional hour at between -22 and -25 ° C and added to 151.4 kg of deionized water and 54.6 kg of hexane at room temperature. The mixture was stirred for 10 minutes and then allowed to settle and the lower phase (containing the material) was separated. The hexane phase was extracted with a mixture of 4.8 kg of methanol and 2.6 kg of deionized water. The methanol-water extract and the product-containing phase were maintained at 0-10 ° C under a nitrogen atmosphere.

Den ovenfor beskrevne fremgangsmåde blev udført yderligere 3 gange, 20 så at der i alt i fire reaktioner blev anvendt 20,0 kg C5-butenolid.The procedure described above was carried out a further 3 times, 20 so that in total in four reactions 20.0 kg of C5-butenolide was used.

De fire ansatser blev sammenhældt og syrnet til en pH-værdi på 4,0-4,5 ved forsigtig tilsætning af 32,5-35,6 kg 85 vægtprocents vandig phosphorsyre. Den vundne reaktionsblanding blev ekstraheret med en blanding af 115,8 kg ethylacetat og 343,9 kg hexan (ekstrakt 25 nr. 1).The four abutments were combined and acidified to a pH of 4.0-4.5 by the careful addition of 32.5-35.6 kg of 85% by weight aqueous phosphoric acid. The obtained reaction mixture was extracted with a mixture of 115.8 kg of ethyl acetate and 343.9 kg of hexane (extract 25 # 1).

Ekstrakt nr. 1 blev vasket med 94,6 kg deioniseret vand og med 6 portioner af en blanding af 54,4 kg methanol og 29,5 kg deioniseret vand. Hver af vaskevæskerne blev ekstraheret successivt med 5 portioner af en blanding af 44,2 kg ethylacetat og 131,3 kg hexan. Ethyl-30 acetat-hexan-ekstrakterne blev sammenhældt og ved et tryk på 50-100 mm Hg og en indre temperatur på 20-30°C reduceret til et slutrumfang på ca. 570 1. Undertrykket blev ophævet under nitrogen, og der blev tilsat 2,0 kg kul. Ansatsen blev omrørt i 30 minutter ved 20-25°C med kullet og filtreret gennem et diatoméjordfilter. Filter-35 kagen blev vasket med 34,1 kg ethylacetat, og vaskevandet blev sat DK 170945 B1 13 til ansatsen. Ansatsen blev inddampet som ovenfor til et volumen på 95 1. Derefter blev ansatsen sat til 34,1 kg ethylacetat og igen reduceret til et volumen på 95 1. Temperaturen i ansatsen blev indstillet på 50oC, hvorefter der blev tilsat en opløsning af 2,65 kg 5 acetonitril, som indeholdt 33,7 g palladium-II-nitrat, 162,4 g tri-phenylphosphin og 31,8 g triethylamin. Opløsningen blev sat til ansatsen med yderligere 1 1 ethylacetat. Ansatsen blev derefter omrørt ved 50°C i en time, afkølet til en temperatur på mellem -10 og -15°C i løbet af 2 timer og holdt natten over ved denne temperatur.Extract # 1 was washed with 94.6 kg of deionized water and with 6 portions of a mixture of 54.4 kg of methanol and 29.5 kg of deionized water. Each of the washings was successively extracted with 5 portions of a mixture of 44.2 kg of ethyl acetate and 131.3 kg of hexane. The ethyl acetate-hexane extracts were combined and at a pressure of 50-100 mm Hg and an internal temperature of 20-30 ° C reduced to a final volume of approx. 570 1. The vacuum was removed under nitrogen and 2.0 kg of coal was added. The charge was stirred for 30 minutes at 20-25 ° C with the charcoal and filtered through a diatomaceous earth filter. The filter cake was washed with 34.1 kg of ethyl acetate and the wash water was added to the batch. The charge was evaporated as above to a volume of 95 1. Then the charge was added to 34.1 kg of ethyl acetate and again reduced to a volume of 95 1. The temperature of the charge was adjusted to 50 ° C, after which a solution of 2.65 was added. 5 kg of acetonitrile containing 33.7 g of palladium II nitrate, 162.4 g of tri-phenylphosphine and 31.8 g of triethylamine. The solution was added to the batch with an additional 1 L of ethyl acetate. The charge was then stirred at 50 ° C for one hour, cooled to a temperature between -10 and -15 ° C over 2 hours and kept overnight at this temperature.

10 Krystallerne af rå 13-cis-retinsyre blev frafiltreret og vasket 3 gange med 10,2 kg ethylacetat ved en temperatur på mellem -10 og -15°C. Krystallerne blev slynget så tørre som muligt i centrifuge.The crystals of crude 13-cis-retinoic acid were filtered off and washed 3 times with 10.2 kg of ethyl acetate at a temperature between -10 and -15 ° C. The crystals were thrown as dry as possible in the centrifuge.

356,4 kg ethylacetat, 39,7 kg ethylacetatfugtigt 13-cis-retinsyre og 2,0 kg kul blev opvarmet til kogning under tilbagesvaling (75-80°C).356.4 kg of ethyl acetate, 39.7 kg of ethyl acetate moist 13-cis-retinoic acid and 2.0 kg of coal were heated to reflux (75-80 ° C).

15 Blandingen blev kogt under tilbagesvaling i 30 minutter. Opløsningen blev filtreret under tryk gennem et diatoméjordfilter. Filteret blev vasket med 68,1 kg ethylacetat og vaskevandet sat til ansatsen.The mixture was refluxed for 30 minutes. The solution was filtered under pressure through a diatomaceous earth filter. The filter was washed with 68.1 kg of ethyl acetate and the wash water added to the charge.

Ansatsen blev under nitrogenatmosfære inddampet til et volumen på 11,5 1 ved en indre temperatur på 75-80°C. Ansatsen blev derefter 20 afkølet til en temperatur på mellem -10 og -15°C og henstillet ved denne temperatur natten over. De vundne krystaller af ren 13-cis-re-tinsyre blev frafiltreret og vasket med 3 portioner på 10,2 kg ethylacetat ved en temperatur på mellem -10 og -15°C. Krystallerne blev tørret i 24 timer ved et tryk på 50-100 mm Hg ved 35°C under nitro-25 genatmosfære.The charge was evaporated under a nitrogen atmosphere to a volume of 11.5 liters at an internal temperature of 75-80 ° C. The charge was then cooled to a temperature of between -10 and -15 ° C and left at this temperature overnight. The obtained crystals of pure 13-cis-retinoic acid were filtered off and washed with 3 portions of 10.2 kg of ethyl acetate at a temperature between -10 and -15 ° C. The crystals were dried for 24 hours at a pressure of 50-100 mm Hg at 35 ° C under nitrogen atmosphere.

EKSEMPEL 55EXAMPLE 55

En opløsning af 262,5 g [3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1-yl)-2,4-pentadienyl]-triphenylphosphoniumchlorid, 57,0 g C5*butenolid (0,500 mol) og 1000 ml isopropanol blev afkølet under nitrogenatmo-30 sfære til -25°C og i løbet af 1 time ved en temperatur på mellem -20 og -25°C tilsat 625 ml 2,ON kaliumhydroxid-isopropanol (1,25 mol). Derefter blev blandingen omrørt i yderligere 1 time ved -25°C og derefter hældt ud i 2500 ml deioniseret vand. Den vundne blanding blev ekstraheret med 2 x 500 ml hexan for at fjerne upolære forure-35 ninger. De samlede hexanfaser blev vasket med 2 x 100 ml methanol- DK 170945 B1 14 vand (70-30 volumenprocent). De samlede vandige faser blev ved tilsætning af 55 ml 85%'s phosphorsyre indstillet på pH-værdi 4, og den resulterende suspension blev ekstraheret med 2000 ml ethylacetat-hexan (20-80 volumenprocent). Denne ekstrakt blev vasket successivt 5 med 6 x 400 ml methanol-vand (70-30 volumenprocent). Hver vaskevæske blev opbevaret for sig og reekstraheret successivt med 5 x 1000 ml ethylacetat-hexan (20-80 volumenprocent). Derefter blev de 6 ethyl-acetat-hexan-ekstrakter sammenhældt, vasket med 2 x 500 ml deioni-seret vand og koncentreret under reduceret tryk til 130,4 g (86,9%'s 10 udbytte) af en krystallinsk blanding, som indeholdt ca. 70-85 vægtprocent 11,13-di-cis-retinsyre og ca. 15-30 vægtprocent 13-cis-retin-syre.A solution of 262.5 g of [3-methyl-5- (2,6,6-trimethyl-2-cyclohexen-1-yl) -2,4-pentadienyl] -triphenylphosphonium chloride, 57.0 g of C5 * butenolide (0.500 mole) and 1000 ml of isopropanol were cooled under nitrogen atmosphere to -25 ° C and over 1 hour at a temperature between -20 and -25 ° C was added 625 ml of 2, ON potassium hydroxide isopropanol (1.25 moles ). Then the mixture was stirred for a further 1 hour at -25 ° C and then poured into 2500 ml of deionized water. The obtained mixture was extracted with 2 x 500 ml hexane to remove nonpolar impurities. The combined hexane phases were washed with 2 x 100 ml methanol-water (70-30% by volume). The combined aqueous phases were adjusted to pH 4 by the addition of 55 ml of 85% phosphoric acid, and the resulting suspension was extracted with 2000 ml of ethyl acetate-hexane (20-80% by volume). This extract was washed successively with 6 x 400 ml methanol-water (70-30% by volume). Each wash was stored separately and successively extracted with 5 x 1000 ml ethyl acetate-hexane (20-80% by volume). Then, the 6 ethyl acetate-hexane extracts were combined, washed with 2 x 500 ml deionized water and concentrated under reduced pressure to 130.4 g (86.9% 10%) of a crystalline mixture containing ca. 70-85% by weight of 11,13-di-cis-retinoic acid and ca. 15-30% by weight of 13-cis-retinoic acid.

EKSEMPEL 56 130,4 g af den ifølge eksempel 55 fremstillede krystallinske blanding 15 og 200 ml ethylacetat blev ved 50°C omrørt under nitrogenatmosfære, og en blanding af 100 mg palladium-II-nitrat, 482 mg triphenylphos-phin, 94,4 mg triethylamin og 25 ml acetonitril blev tilsat. Reaktionsblandingen blev straks mørk og krystalliserede i løbet af 1 minut til en tyk orangefarvet suspension. Denne blanding blev omrørt i 20 1 time ved 50°C, afkølet i 2 timer til en temperatur på mellem -10 og -15°C og filtreret, og bundfaldet blev vasket med 3 x 50 ml koldt ethylacetat og tørret under reduceret tryk. Man fik 117,7 g ren 13-cis-retinsyre (90,3%'s udbytte af den ifølge eksempel 55 fremstillede krystallinske blanding, 78,4%'s totaludbytte beregnet på C5~bu-25 tenolid).EXAMPLE 56 130.4 g of the crystalline mixture of Example 55 prepared 15 and 200 ml of ethyl acetate were stirred at 50 ° C under a nitrogen atmosphere and a mixture of 100 mg of palladium II nitrate, 482 mg of triphenylphosphine, 94.4 mg triethylamine and 25 ml of acetonitrile were added. The reaction mixture immediately darkened and crystallized over 1 minute to a thick orange suspension. This mixture was stirred for 20 hours at 50 ° C, cooled for 2 hours to a temperature between -10 and -15 ° C and filtered, and the precipitate was washed with 3 x 50 ml of cold ethyl acetate and dried under reduced pressure. 117.7 g of pure 13-cis-retinoic acid were obtained (90.3% yield of the crystalline mixture prepared according to Example 55, 78.4% total yield calculated on C5-butenolide).

EKSEMPEL 57 121,2 g af den ifølge eksempel 55 vundne krystallinske blanding af 13-cis-retinsyre og 11,13-di-cis-retinsyre blev opløst i 500 ml diethylether. Fra denne blanding blev 250 ml ether afdestilleret, og 30 de blev erstattet med det samme volumen hexan. Der blev tilsat yderligere 250 ml hexan, og den resulterende opløsning fik lov at afkøle til stuetemperatur og henstod i ro i ca. 4 timer. Krystallerne blevExample 57 121.2 g of the crystalline mixture of 13-cis-retinoic acid and 11,13-di-cis-retinoic acid obtained in Example 55 were dissolved in 500 ml of diethyl ether. From this mixture, 250 ml of ether was distilled off and replaced with the same volume of hexane. An additional 250 ml of hexane was added and the resulting solution was allowed to cool to room temperature and left to stand for approx. 4 hours. The crystals became

Claims (14)

15 Til en opløsning af 8,0 g 11,13-di-cis-retinsyre og 25 ml ethylacetat blev der under nitrogenatmosfære sat en blanding af 10,0 mg palla-dium-II-nitrat, 60 mg triphenylphosphin, 9,4 mg triethylamin og 2,5 ml acetonitril. Krystallisation indtrådte i løbet af 3-5 minutter. Blandingen blev omrørt i 1 time ved 50°C, afkølet til -10°C og 20 filtreret. Krystallerne blev vasket med 3 x 20 ml koldt (-20°C) ethylacetat og tørret under reduceret tryk. Man fik 7,28 g (91,5%) 13-cis-retinsyre.To a solution of 8.0 g of 11,13-di-cis-retinoic acid and 25 ml of ethyl acetate was added under a nitrogen atmosphere a mixture of 10.0 mg of palladium-II nitrate, 60 mg of triphenylphosphine, 9.4 mg triethylamine and 2.5 ml of acetonitrile. Crystallization occurred within 3-5 minutes. The mixture was stirred for 1 hour at 50 ° C, cooled to -10 ° C and filtered. The crystals were washed with 3 x 20 ml of cold (-20 ° C) ethyl acetate and dried under reduced pressure. 7.28 g (91.5%) of 13-cis-retinoic acid were obtained. 1. Fremgangsmåde til fremstilling af 13-cis-retinsyre, 25 kendetegnet ved, at man a) omsætter 5-hydroxy-4-methyl-2(5H)-furanon med et salt med den almene formel I ØT^>- x DK 170945 B1 hvor , R2 og R3 betegner aryl eller di(lavere alkyl)amino, og X betegner halogen, i en lavere alkanol i nærværelse af et alkalimetalhydroxid ved en temperatur på mellem -10 og -50°C og 5 b) behandler det i trin a) vundne reaktionsprodukt i et organisk opløsningsmiddel med en forbindelse eller et complex af rhodium eller palladium, bortset fra palladiumphthalocyanin, rhodiumphthalocyanin, en cyanidionholdig palladiumforbindelse og en cyanidionholdig rho-diumforbindelse. 10A process for the preparation of 13-cis-retinoic acid, characterized in that a) reacting 5-hydroxy-4-methyl-2 (5H) -furanone with a salt of the general formula I - x DK 170945 B1 where, R 2 and R 3 represent aryl or di (lower alkyl) amino, and X represents halogen, in a lower alkanol in the presence of an alkali metal hydroxide at a temperature between -10 and -50 ° C and 5 b) treat it in steps a) obtained reaction product in an organic solvent with a compound or complex of rhodium or palladium other than palladium phthalocyanine, rhodium phthalocyanine, a cyanide ion-containing palladium compound and a cyanide ion-containing rhodium compound. 10 2, Fremgangsmåde ifølge krav 1, kendetegnet ved, at reaktionen udføres ved mellem -20 og-50°C.Process according to claim 1, characterized in that the reaction is carried out at between -20 and -50 ° C. 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at reaktionen udføres ved mellem -30 og 15 -45°C.Process according to claim 1, characterized in that the reaction is carried out at between -30 and 15 -45 ° C. 4. Fremgangsmåde ifølge krav 1, kendetegnet ved, at katalysatoren er fremstillet ved omsætning af palladium-II-nitrat med en triaryl- eller trialkylphosp-hin i nærværelse af en lavere alkylamin i et opløsningsmiddel.Process according to claim 1, characterized in that the catalyst is prepared by reacting palladium-II nitrate with a triaryl or trialkylphosphine in the presence of a lower alkylamine in a solvent. 5 R2 I hvor , R2 og R3 betegner aryl eller di(lavere alkyl)amino, og X betegner halogen, i en lavere alkanol i nærværelse af et alkalimetalhydroxid ved en temperatur på mellem -10 og -50°C.Wherein R 2 and R 3 are aryl or di (lower alkyl) amino, and X is halogen, in a lower alkanol in the presence of an alkali metal hydroxide at a temperature between -10 and -50 ° C. 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at phosphinen er triphenylphosphin, og aminen er diethylamin.Process according to claim 4, characterized in that the phosphine is triphenylphosphine and the amine is diethylamine. 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at opløsningsmidlet er acetonitril.Process according to claim 5, characterized in that the solvent is acetonitrile. 7. Fremgangsmåde til fremstilling af 13-cis-retinsyre, kendetegnet ved, at man behandler 11,13-di-cis-retinsyre i et inert organisk opløsningsmiddel med en katalysator, hvorhos katalysatoren er en forbindelse eller et complex af rhodium eller palladium, bortset fra palladiumphthalocyanin, rhodiumphthalocyanin, en 30 cyanidionholdig palladiumforbindelse og en cyanidionholdig rhodium-forbindelse. DK 170945 B1Process for the preparation of 13-cis-retinoic acid, characterized in that 11,13-di-cis-retinoic acid is treated in an inert organic solvent with a catalyst, the catalyst being a compound or a complex of rhodium or palladium, except from palladium phthalocyanine, rhodium phthalocyanine, a cyanide ion-containing palladium compound and a cyanide ion-containing rhodium compound. DK 170945 B1 8. Fremgangsmåde til fremstilling af en blanding, som indeholder 13-cis-retinsyre og 11,13-di-cis-retinsyre, kendetegnet ved, at man omsætter 5-hydroxy-4-methyl-2(5H)-furanon med et salt med den almene formel I I f ^ ^p'Ri ^Process for preparing a mixture containing 13-cis-retinoic acid and 11,13-di-cis-retinoic acid, characterized by reacting 5-hydroxy-4-methyl-2 (5H) -furanone with a salt with the general formula II f ^^ p'Ri ^ 9. Fremgangsmåde ifølge krav 8, kendetegnet ved, at reaktionen udføres i isopropanol i nærværelse af et alkalimetalhydroxid.Process according to claim 8, characterized in that the reaction is carried out in isopropanol in the presence of an alkali metal hydroxide. 10. Fremgangsmåde til fremstilling af en palladiumkatalysator til anvendelse ved fremgangsmåden ifølge krav 1, 15 kendetegnet ved, at man omsætter 1 mol af et palladium-II-salt, bortset fra palladium-II-cyanid og palladium-II-phthalo-cyanin, med mindst 4 mol af en triarylphosphin i et organisk opløsningsmiddel og derefter tilsætter en tri(lavere alkyl)amin i en mængde på mindst 2 mol amin pr. mol palladium-II-salt.Process for preparing a palladium catalyst for use in the process of claim 1, characterized in that one mole of a palladium-II salt, other than palladium-II cyanide and palladium-II-phthalo-cyanine, is reacted with at least 4 moles of a triaryl phosphine in an organic solvent and then adding a tri (lower alkyl) amine in an amount of at least 2 moles of amine per mole of palladium-II salt. 11. Fremgangsmåde ifølge krav 10, kendetegnet ved, at triarylphosphinen forekommer i en mængde på 4-10 mol pr. mol palladium-II-salt og tri(lavere alkyl)-aminen i en mængde på 2-20 mol pr. mol palladium-II-salt.Process according to claim 10, characterized in that the triarylphosphine is present in an amount of 4-10 moles per ml. mole of palladium-II salt and the tri (lower alkyl) amine in an amount of 2-20 moles per mole of palladium-II salt. 12. Fremgangsmåde ifølge krav 10, 25 kendetegnet ved, at palladium-II - saltet er palladium-II-nitrat, og at phosphinen er triphenylphosphin. DK 170945 B1Process according to claim 10, 25, characterized in that the palladium-II salt is palladium-II nitrate and that the phosphine is triphenylphosphine. DK 170945 B1 13. Fremgangsmåde ifølge krav 12, kendetegnet ved, at opløsningsmidlet er acetonitril.Process according to claim 12, characterized in that the solvent is acetonitrile. 14. Fremgangsmåde ifølge krav 13, kendetegnet ved, at aminen er triethylamin.Process according to claim 13, characterized in that the amine is triethylamine.
DK565683A 1982-12-10 1983-12-08 Process for Preparation of 13-Cisretinoic Acid and Process for Preparing a Palladium Catalyst for Use in the Process DK170945B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44866082A 1982-12-10 1982-12-10
US44866082 1982-12-10

Publications (3)

Publication Number Publication Date
DK565683D0 DK565683D0 (en) 1983-12-08
DK565683A DK565683A (en) 1984-06-11
DK170945B1 true DK170945B1 (en) 1996-03-25

Family

ID=23781154

Family Applications (1)

Application Number Title Priority Date Filing Date
DK565683A DK170945B1 (en) 1982-12-10 1983-12-08 Process for Preparation of 13-Cisretinoic Acid and Process for Preparing a Palladium Catalyst for Use in the Process

Country Status (5)

Country Link
EP (1) EP0111325B1 (en)
JP (1) JPS59116263A (en)
AT (1) ATE32217T1 (en)
DE (1) DE3375480D1 (en)
DK (1) DK170945B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313089A1 (en) * 1993-04-22 1994-10-27 Basf Ag Process for the preparation of 13-(Z)-retinoic acid
US5534261A (en) * 1995-01-17 1996-07-09 University Of Southern California Retinoid-based compositions and method for preventing adhesion formation using the same
IT1274494B (en) * 1995-05-12 1997-07-17 Lab Mag Spa PHOTOCHEMICAL PROCEDURE FOR THE PREPARATION OF 13-CIS-RETINOIC ACID
US6124485A (en) * 1998-03-25 2000-09-26 Abbott Laboratories Process for producing 13-cis retinoic acid
EP1564209A1 (en) * 2004-02-17 2005-08-17 Helsinn Advanced Synthesis SA Process for the preparation of 13-cis-retinoic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051174A (en) * 1973-08-21 1977-09-27 Hoffmann-La Roche Inc. Isomerization process

Also Published As

Publication number Publication date
DE3375480D1 (en) 1988-03-03
DK565683D0 (en) 1983-12-08
JPH0425263B2 (en) 1992-04-30
JPS59116263A (en) 1984-07-05
DK565683A (en) 1984-06-11
EP0111325A3 (en) 1985-07-03
EP0111325B1 (en) 1988-01-27
ATE32217T1 (en) 1988-02-15
EP0111325A2 (en) 1984-06-20

Similar Documents

Publication Publication Date Title
CN108752251B (en) Preparation method of all-trans β -carotene
US4556518A (en) Preparation of 13-cis retinoic acid
US5166445A (en) Method for the manufacture of carotinoids and the novel intermediates
DK170945B1 (en) Process for Preparation of 13-Cisretinoic Acid and Process for Preparing a Palladium Catalyst for Use in the Process
US7763748B2 (en) Process for preparation of highly pure isotretinoin
US5424465A (en) Preparation of 13-(Z)-retinoic acid
US4051174A (en) Isomerization process
US5208381A (en) Method for the manufacture of carotinoids and novel intermediates
US4305887A (en) Process for obtaining the enantiomeric forms of 4-cyano-1-[N-methyl-N-(2'-{3",4"-dimethoxyphenyl}-ethyl)-amino]-5-methyl-4-(3',4',5'-trimethoxyphenyl)-hexane and of salts thereof
JPH02172924A (en) Production of octane derivative
EP0002849B1 (en) Process for the preparation of di-(halo)-vinyl compounds and di-(halo)-vinyl compounds produced thereby
EP0397042B1 (en) Process for the preparation of isoquinoline derivatives
EP0959069B1 (en) A process for the preparation of 13-CIS-retinoic acid
US4544770A (en) Catalytic hydrogenation
Wailes The synthesis of the stereoisomeric hexadeca-2, 4-dienoic acids and their isobutylamides
US3429928A (en) Polyene compounds and processes
JPH04225952A (en) Process for producing cycloalkenylalkenes
JP2006522757A (en) Method for preparing 9-cis retinoic acid
CN116283741B (en) Bisimine ligand, preparation method and application thereof
US6124485A (en) Process for producing 13-cis retinoic acid
Schaefgen et al. Synthesis of an Octabasic Carboxylic Acid
SU1003749A3 (en) Process for producing derivatives of 2-arylpropionic acid
CN113511984A (en) Preparation method and application of beta-azido acid and beta-amino acid compound
US3026349A (en) Production of trans-beta-styrylthioglycolic acid
IE911917A1 (en) Process for racemate resolution of 2,2-dimethylcyclopropanecarboxylic acid

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed