DK167867B1 - PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST - Google Patents

PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST Download PDF

Info

Publication number
DK167867B1
DK167867B1 DK272885A DK272885A DK167867B1 DK 167867 B1 DK167867 B1 DK 167867B1 DK 272885 A DK272885 A DK 272885A DK 272885 A DK272885 A DK 272885A DK 167867 B1 DK167867 B1 DK 167867B1
Authority
DK
Denmark
Prior art keywords
catalyst
aluminum
range
temperature
cation
Prior art date
Application number
DK272885A
Other languages
Danish (da)
Other versions
DK272885A (en
DK272885D0 (en
Inventor
Peter Idelman
Original Assignee
Neste Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neste Oy filed Critical Neste Oy
Publication of DK272885A publication Critical patent/DK272885A/en
Publication of DK272885D0 publication Critical patent/DK272885D0/en
Application granted granted Critical
Publication of DK167867B1 publication Critical patent/DK167867B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/86Borosilicates; Aluminoborosilicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/86Borosilicates; Aluminoborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

DK 167867 B1DK 167867 B1

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af en aluminium-bor-silikatkalysator. Opfindelsen angår især Al-B-Si-katalysatorer, som kan anvendes til alkylering af aromatiske carbonhydrider.The present invention relates to a process for producing an aluminum boron silicate catalyst. In particular, the invention relates to Al-B-Si catalysts which can be used for alkylation of aromatic hydrocarbons.

5 Anvendelsen af krystallinske silikatforbindelser til alkylering af aromatiske carbonhydrider er kendt. Fx er der i USA patentskrift nr. 4.283.306 beskrevet et krystallinsk silikat til methylering af toluen til dannelse af paraxylen.The use of crystalline silicate compounds for the alkylation of aromatic hydrocarbons is known. For example, U.S. Patent No. 4,283,306 discloses a crystalline silicate for methylation of toluene to form the paraxylene.

Krystallinske aluminiumsilikatkatalysatorer til alkylering af aroma-10 tiske carbonhydrider er også kendte. USA patentskrift nr. 2.904.697 angår en alkyleringsproces, ved hvilken der anvendes metallisk aluminiumsilikat. USA patentskrift nr. 3.251.897 beskriver aluminiumsilikater af x- og y-typen og især sådanne, der som kation enten har hydrogen eller et metal af de sjældne jordarter. I adskillige andre 15 patentskrifter er der beskrevet aluminiumsilikater, som har høj selektivitet til at danne para-substituerede aromater: fx USA patentskrift nr. 3.702.886, 3.965.207, 4.100.217 og 4.117.024.Crystalline aluminum silicate catalysts for the alkylation of aromatic hydrocarbons are also known. U.S. Patent No. 2,904,697 relates to an alkylation process using metallic aluminum silicate. US Patent No. 3,251,897 describes aluminum silicates of the x and y types and especially those which, as a cation, have either hydrogen or a rare earth metal. In several other patents, aluminum silicates are described which have high selectivity to form para-substituted aromatics: e.g.

Ifølge USA patentskrift nr. 4.117.024 er krystallinske aluminiumsilikater blevet modificeret under anvendelse af opløsninger af vanske-20 ligt reducerbare oxider såsom antimon, phosphor eller bor.According to U.S. Patent No. 4,117,024, crystalline aluminum silicates have been modified using solutions of difficultly reducible oxides such as antimony, phosphorus or boron.

I adskillige patentskrifter er der beskrevet alkyleringsprocesser. Alkylering i dampfase med aluminiumsilikatkatalysatorer med højt siliciumindhold fører generelt til høj omdannelsesgrad. Silikatkatalysatorers anvendelseslevetid er temmelig lang, og i mange tilfælde 25 er det nødvendige tryk lavt, hvilket gør sådanne processer økonomisk attraktive. Eksempler på dampfasealkylering er bl.a. beskrevet i USA patentskrift nr. 3.751.504 og 3.751.506.In several patents, alkylation processes have been described. Steam phase alkylation with high silicon aluminum silicate catalysts generally leads to high conversion rates. The useful life of silicate catalysts is quite long, and in many cases 25 the required pressure is low, making such processes economically attractive. Examples of vapor phase alkylation include U.S. Patent Nos. 3,751,504 and 3,751,506.

Den foreliggende opfindelse angår hidtil ukendte zeolitkatalysatorer indeholdende silicium, aluminium og bor, i hvilke porer og passager 30 ikke er blokeret af atomer, molekyler eller ioner, fx af sulfateller chloridioner. Herved er reagensers bevægelse inden for silikatet uhindret, hvilket fører til en høj omdannelsesgrad ved alkyle-ringsprocessen og til en høj selektivitet.The present invention relates to novel zeolite catalysts containing silicon, aluminum and boron in which pores and passages 30 are not blocked by atoms, molecules or ions, for example by sulfate or chloride ions. Hereby, the movement of reagents within the silicate is hindered, leading to a high degree of conversion in the alkylation process and to a high selectivity.

DK 167867 B1 2DK 167867 B1 2

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af sådanne aluminium-bor-silikatkatalysatorer, som er særlig velegnede til anvendelse ved alkylering af aromatiske carbonhydrider, og som giver høj omdannelsesgrad og/eller høj selektivitetsgrad ved 5 fremstilling af para-substituerede carbonhydrider.The present invention relates to a process for the preparation of such aluminum boron silicate catalysts which are particularly suitable for use in the alkylation of aromatic hydrocarbons and which provide high degree of conversion and / or high selectivity in the production of para-substituted hydrocarbons.

Ifølge opfindelsen er der således tilvejebragt en fremgangsmåde til fremstilling af aluminium-bor-silikatkatalysatorer, i hvilke molforholdet SiC>2/Al203 ligger i området 10-150, fortrinsvis i området 10-60, og molforholdet AI2O3/B2O3 ligger i området 2-200, fortrinsvis i 10 området 19-200. Den molekylære formel for disse katalysatorer kan udtrykkes på følgende måde: 0,8-1,2 M20 : A1203 : 0,005-0,1 B203 : 10150 Si02 : x H20 hvor M er valgt fra gruppen bestående af en alkalimet alkat ion eller en organisk kation indeholdende nitrogen, og x ligger i området 0-60.According to the invention, there is thus provided a process for the preparation of aluminum boron silicate catalysts in which the molar ratio SiC> 2 / Al2 O3 is in the range 10-150, preferably in the range 10-60, and the molar ratio Al2O3 / B2O3 is in the range 2-200. , preferably in the range 19-200. The molecular formula of these catalysts can be expressed as follows: 0.8-1.2 M 2 O: Al 2 O 3: 0.005-0.1 B 2 O 3: 10150 SiO 2: x H cation containing nitrogen, and x is in the range of 0-60.

15 Fremgangsmåden er ejendommelig ved, at en reaktionsblanding, som omfatter en kation indeholdende organisk nitrogen opnået fra pyrrolidin eller tetraethyl-, tetrapropyl-, eller tetrabutylammoniumchlorid eller en blanding deraf, et alkalimetaloxid eller blandinger deraf, oxid af aluminium, bor og silicium og vand, 20 opvarmes i en lukket reaktionsbeholder, først til en begyndelsestemperatur, som er mindst 175“C og højst 220°G, og derefter til en lavere reaktionstemperatur, som ligger i området 100-190°C, fortrinsvis i området 130-170°C, til dannelse af aluminium-bor-silikatkatalysator.The process is characterized in that a reaction mixture comprising a cation containing organic nitrogen obtained from pyrrolidine or tetraethyl, tetrapropyl, or tetrabutylammonium chloride or a mixture thereof, an alkali metal oxide or mixtures thereof, aluminum oxide, boron and silicon and water, 20 is heated in a closed reaction vessel, first to an initial temperature of at least 175 ° C and at most 220 ° G, and then to a lower reaction temperature which is in the range of 100-190 ° C, preferably in the range of 130-170 ° C. to form aluminum-boron silicate catalyst.

25 M kan også være en blanding af alkalimetalkationer, fortrinsvis af natrium- og kaliumkationer. Den organiske kation indeholdende nitrogen kan være en ammoniumkation, fx en tetraethyl-, tetrapropyl-eller tetrabutylammoniumkation. Den organiske kation indeholdende nitrogen kan også være en kation afledt af pyrrolidin.25 M can also be a mixture of alkali metal cations, preferably of sodium and potassium cations. The organic cation containing nitrogen may be an ammonium cation, for example a tetraethyl, tetrapropyl or tetrabutylammonium cation. The organic cation containing nitrogen may also be a cation derived from pyrrolidine.

30 Ved fremstillingen af en aluminium-bor-silikatkalysator ifølge den foreliggende opfindelse opvarmes først en reaktionsblanding indeholdende en kation med organisk nitrogen, alkalimetaloxid, oxid DK 167867 B1 3 af aluminium, bor og silicium og vand i en reaktionsbeholder. Alt afhængig af omstændighederne ligger det nødvendige tryk ved reaktionen i området 1-15 bar. Der vælges en højere starttemperatur i området mellem 175 og 220°C, fortrinsvis i området mellem 190 og 5 200°C. Når der anvendes en højere starttemperatur, fås en homogen reaktionsblanding på kortere tid, og dannelsen af krystaller starter tidligere. Opvarmningstiden ved starttemperaturen ligger fortrinsvis på mellem 30 minutter og 6 timer. Opvarmningen fortsættes ved lavere reaktionstemperatur i området 100-190°C. Opvarmningstiden ved den 10 lavere temperatur vælges fortrinsvis i området mellem 1 og 6 dage.In the preparation of an aluminum-boron-silicate catalyst of the present invention, a reaction mixture first containing a cation of organic nitrogen, alkali metal oxide, oxide, aluminum, boron and silicon and water in a reaction vessel is first heated. Depending on the circumstances, the required pressure of the reaction is in the range 1-15 bar. A higher starting temperature is selected in the range between 175 and 220 ° C, preferably in the range between 190 and 5,200 ° C. When a higher starting temperature is used, a homogeneous reaction mixture is obtained in a shorter time and the formation of crystals starts earlier. The heating time at the starting temperature is preferably between 30 minutes and 6 hours. Heating is continued at a lower reaction temperature in the range of 100-190 ° C. The heating time at the lower temperature is preferably selected in the range between 1 and 6 days.

Det er muligt i en katalysator ifølge opfindelsen at udskifte ioner med andre kationer under anvendelse af kendt ionbytningsteknik. En anbefalelsesværdig praksis er at udskifte en hydrogenion med en alkalimetalkation, hvilket forøger katalysatorens aktivitet ved 15 aromatisk alkylering.It is possible in a catalyst according to the invention to exchange ions with other cations using known ion exchange technique. A recommended practice is to replace a hydrogen ion with an alkali metal cation, which increases the catalyst activity by aromatic alkylation.

Ved én udførelsesform af opfindelsen kan den på den ovenfor beskrevne måde fremstillede katalysator yderligere modificeres under anvendelse af forbindelser indeholdende bor, hvorved der dannes en katalysator, som ved alkylering danner para-substituerede aromater i højt udbytte.In one embodiment of the invention, the catalyst prepared in the manner described above can be further modified using compounds containing boron to form a catalyst which, in alkylation, produces high yield para-substituted aromatics.

20 Modifikationen kan udføres ved at blande en katalysator, der er fremstillet som anført ovenfor, og borsyre, boroxid eller blandinger deraf i tør tilstand. Derefter opvarmes blandingen til 300-700°C, fortrinsvis 550-600°C, under lejlighedsvis blanding. Opvarmningstiden er ikke kritisk. Når der anvendes en på denne måde modificeret kata-25 lysator, fås para-substituerede aromater i højt udbytte ved alkylering.The modification can be carried out by mixing a catalyst prepared as above and boric acid, boric oxide or mixtures thereof in the dry state. Then the mixture is heated to 300-700 ° C, preferably 550-600 ° C, with occasional mixing. The warm-up time is not critical. When a catalyst modified in this way is used, para-substituted aromatics are obtained in high yield by alkylation.

Katalysatorerne ifølge opfindelsen kan naturligvis anvendes enten som sådanne eller i kombination med sædvanlige bærestoffer og bindemidler.Of course, the catalysts of the invention can be used either as such or in combination with conventional carriers and binders.

30 Al-B-S i-katalysatorer, der er fremstillet ved fremgangsmåden ifølge opfindelsen kan anvendes ved alkylering. Ved denne fremgangsmåde kan der alkyleres forskellige carbonhydrider såsom benzener, naphthaiener, anthracener og substituerede derivater deraf såsom toluen og ethylbenzen.30 Al-B-S1 catalysts prepared by the process of the invention can be used in alkylation. In this process, various hydrocarbons such as benzenes, naphthanes, anthracenes and substituted derivatives thereof such as toluene and ethylbenzene can be alkylated.

DK 167867 B1 4DK 167867 B1 4

Som alkyleringsmidler ved fremgangsmåden ifølge opfindelsen kan der anvendes adskillige forbindelser, som indeholder mindst ét reaktivt alkylradikal, fx ethylen, propylen, formaldehyd, alkylhalogenider og alkoholer.As alkylating agents in the process of the invention, several compounds may be used which contain at least one reactive alkyl radical, for example ethylene, propylene, formaldehyde, alkyl halides and alcohols.

5 Procesbetingelserne under alkylering, fx temperaturen, trykket og strømningshastigheden, er generelt kritiske og afhænger af udgangsmaterialerne, og de beskrives derfor nærmere nedenfor.The process conditions during alkylation, e.g., temperature, pressure and flow rate, are generally critical and depend on the starting materials and are therefore described in more detail below.

Alkyleringsprocessen ifølge opfindelsen foretages i dampfase. Som reaktionsbeholder anvendes enten en fluid-bed-reaktor eller en sta-10 tionary-bed-reaktor. Aluminium-bor-silikat til anvendelse som kataly sator forekommer i hydrogen-form. Reaktions trykket kan variere alt afhængig af reaktortype, katalysatormængde, katalysatorpartikelstørrelse og andre faktorer, og ligger mellem atmosfæretryk og 10 bar. Temperaturen kan variere i området mellem 200 og 700°C, fortrinsvis i 15 området mellem 300 og 600°C. Før indgangsmaterialerne bringes i kontakt med katalysatoren, opvarmes de til den ønskede reaktions-temperatur. Den anvendte strømningshastighed afhænger af reaktanterne og reaktoren og ligger generelt i området mellem 1 og 100 time"^ (WHSV). Molforholdet mellem aromatisk carbohhydrid og alkylerings-20 middel kan ligge i området mellem 0,5 og 20. Det anbefalede molforhold til monoalkylering er 1-4. Desuden kan der anvendes en fortyndende gas, fx nitrogen og/eller midler til reduktion af koksdannelse, fx hydrogen.The alkylation process of the invention is carried out in vapor phase. As a reaction vessel, either a fluid bed reactor or a stationary bed reactor is used. Aluminum boron silicate for use as a catalyst occurs in hydrogen form. The reaction pressure can vary depending on the type of reactor, catalyst amount, catalyst particle size and other factors, and is between atmospheric pressure and 10 bar. The temperature can vary in the range of 200 to 700 ° C, preferably in the range of 300 to 600 ° C. Before contacting the input materials with the catalyst, they are heated to the desired reaction temperature. The flow rate used depends on the reactants and the reactor and is generally in the range between 1 and 100 hours (WHSV). The mole ratio of aromatic carbohydrate to alkylating agent may be in the range of 0.5 to 20. The recommended mole ratio for monoalkylation is In addition, a diluent gas, e.g., nitrogen and / or coke formation agents, e.g., hydrogen, may be used.

Den varme produktstrøm fra reaktoren afkøles til stuetemperatur eller 25 en temperatur derunder, hvorefter væske- og gasfasen adskilles. De gasser, som ikke har reageret, kan oplagres og genanvendes. De flydende komponenter, som ikke har deltaget i reaktionen, fx toluen, skilles fra produktblandingen, fx ved destillation, og genanvendes. 1 nedenstående eksempler beskrives fremstillingen af katalysatoren 30 ifølge opfindelsen nærmere.The hot product stream from the reactor is cooled to room temperature or a temperature below, after which the liquid and gas phases are separated. Gases that have not reacted can be stored and recycled. The liquid components which have not participated in the reaction, for example toluene, are separated from the product mixture, for example by distillation, and reused. In the examples below, the preparation of the catalyst 30 according to the invention is further described.

DK 167867 B1 5 EKSEMPEL 1 I dette eksempel fremstilles en aluminium-bor-silikatkatalysator med identifikationen BOA-1.EXAMPLE 1 In this example, an aluminum boron silicate catalyst having the identification BOA-1 is prepared.

4,05 g NaOH opløses i 165 ml vand. Til opløsningen sættes ved stue-5 temperatur 87,85 g tetrapropylammoniumbromid, hvorved der fås opløsning A.Dissolve 4.05 g of NaOH in 165 ml of water. 87.85 g of tetrapropylammonium bromide are added to the solution at room temperature to give solution A.

Opløsning B fremstilles ved at opløse 4,2 g NaA102 (indeholdende 28,4 vægtprocent Na20, 46,8 vægtprocent Al203 og 24,8 vægtprocent H20) og 0,19 g Na2B40-7 x 10 H20 (indeholdende 16,3 vægtprocent Na20, 36,5 10 vægtprocent B203 og 47,2 vægtprocent H20) i 405,5 g vand. Opløsning A og B blandes derefter sammen og ledes ind i en autoklav, i hvilken der anbringes yderligere 34,2 g Si02 (silicagel) og 82,8 g vand. Blandingens sammensætning er følgende: 0,02 mol Na20, 0,02 mol Al203, 0,001 mol B203, 0,57 mol Si02, 0,33 mol N(CH3CH2CH2)4 og 36,3 mol 15 vand.Solution B is prepared by dissolving 4.2 g of NaA102 (containing 28.4 wt% Na2 O, 46.8 wt% Al2 O3 and 24.8 wt% H2 O) and 0.19 g Na2B40-7 x 10 H 2 O (containing 16.3 wt% Na2 O, 36.5 wt% B 2 O 3 and 47.2 wt% H 2 O in 405.5 g water. Solution A and B are then mixed together and passed into an autoclave in which an additional 34.2 g SiO 2 (silica gel) and 82.8 g water are placed. The composition of the mixture is as follows: 0.02 moles Na 2 O, 0.02 moles Al 2 O 3, 0.001 moles B 2 O 3, 0.57 moles SiO 2, 0.33 moles N (CH 3 CH 2 CH 2) 4 and 36.3 moles of water.

Blandingen opvarmes til 200°C i 2 timer og derefter til 160°C i 3 dage. Efter afkøling til stuetemperatur filtreres det krystallinske produkt og vaskes med 2 liter vand. Krystallerne tørres ved 100°C og kalcineres derefter ved 530eC i 18 timer.The mixture is heated to 200 ° C for 2 hours and then to 160 ° C for 3 days. After cooling to room temperature, the crystalline product is filtered and washed with 2 liters of water. The crystals are dried at 100 ° C and then calcined at 530 ° C for 18 hours.

20 Den således vundne katalysator bringes i kontakt med en 5 vægtprocents opløsning af ammoniumchlorid ved 80°C i 1 1/2 time. Proceduren gentages tre gange, hver gang under anvendelse af 15 ml opløsning pr. g katalysator. Produktet filtreres og vaskes chloridfrit med vand.The catalyst thus obtained is contacted with a 5% by weight solution of ammonium chloride at 80 ° C for 1 1/2 hours. The procedure is repeated three times, each time using 15 ml of solution per ml. g catalyst. The product is filtered and washed chloride-free with water.

Tørring udføres ved 100°C, og efter tørring foretages kalcinering i 25 luft natten over ved 530°C, hvorved der fås hydrogenformen af katalysator BOA-1.Drying is carried out at 100 ° C and after drying calcination in 25 air overnight at 530 ° C to give the hydrogen form of catalyst BOA-1.

Katalysatorens overfladeareal er 345 m^/g.The surface area of the catalyst is 345 m 2 / g.

DK 167867 B1 6 EKSEMPEL 2EXAMPLE 2

Dette eksempel beskriver syntese af aluminium-bor-silikatkatalysa-toren BOA-2.This example describes the synthesis of the aluminum boron silicate catalyst BOA-2.

Nedenstående bestanddele blandes i vand (265 g): 6,5 g NaAl02 (inde-5 holdende 28,4 vægtprocent Na20, 46,8 vægtprocent AI2O3 og 24,8 vægtprocent H2O) og 0,29 g Na2B40y (indeholdende 16,3 vægtprocent Na20, 36,5 vægtprocent B2O3 og 47,2 vægtprocent H2O). Til blandingen sættes 2,78 g NaOH, og der blandes grundigt. Blandingen anbringes i en autoklav, og der tilsættes 900 g H2O, 395 g S1O2 og 141 g pyrrolidin.The following ingredients are mixed in water (265 g): 6.5 g NaAlO 2 (containing 28.4 wt% Na 2 O, 46.8 wt% Al 2 O 3 and 24.8 wt% H 2 O) and 0.29 g Na 2 B 40 y (containing 16.3 wt% Na2O, 36.5% by weight B2O3 and 47.2% by weight H2O). To the mixture is added 2.78 g of NaOH and thoroughly mixed. The mixture is placed in an autoclave and 900 g of H2O, 395 g of S1O2 and 141 g of pyrrolidine are added.

10 Blandingen opvarmes til 200°C i 3 timer og derefter til 165°C i 3 dage, hvorefter den afkøles til stuetemperatur i løbet af 15 timer. Krystallerne filtreres og vaskes med 3 liter vand. Yderligere fremstilling af katalysatoren BOA-2 foretages som beskrevet i eksempel 1 med den forskel, at der anvendes temperaturer på over 100°C, og at 15 der anvendes nitrogenatmosfære i stedet for luft.The mixture is heated to 200 ° C for 3 hours and then to 165 ° C for 3 days, after which it is cooled to room temperature over 15 hours. The crystals are filtered and washed with 3 liters of water. Further preparation of the catalyst BOA-2 is carried out as described in Example 1 with the difference that temperatures above 100 ° C are used and nitrogen atmosphere is used instead of air.

EKSEMPEL 3EXAMPLE 3

Ifølge dette eksempel foretages modifikation med borforbindelser af katalysatorerne B0A-1 og BOA-2.According to this example, modification with boron compounds of the catalysts B0A-1 and BOA-2 is performed.

5 g af de som beskrevet i eksempel 1 og 2 fremstillede katalysatorer 20 blandes med 0,5 g B2O3 og opvarmes derefter i luft til 550°C i 1 time. Under opvarmningen blandes komponenterne fem gange. Efter denne behandling er de modificerede katalysatorer klar til anvendelse.5 g of the catalysts 20 prepared as described in Examples 1 and 2 are mixed with 0.5 g of B2O3 and then heated in air to 550 ° C for 1 hour. During heating, the components are mixed five times. After this treatment, the modified catalysts are ready for use.

Toluen-ethyleringstests foretages under anvendelse af de umodificere-de og modificerede katalysatorer BQA-1 og BOA-2 fremstillet som 25 beskrevet I eksempel 1-3.Toluene ethylation tests are performed using the unmodified and modified catalysts BQA-1 and BOA-2 prepared as described in Examples 1-3.

EKSEMPEL 4-8 I disse eksempler anvendes en fluid-bed-reaktor, i hvilken 5 g af den umodificerede katalysator B0A-1 fra eksempel 1 er indført. I alle ek- DK 167867 Bl 7 semplerne er reaktionstemperaturen 600°C, og tilledningshastigheden og molforholdet mellem toluen og ethylen varieres. Resultaterne er angivet i nedenstående tabel I.EXAMPLES 4-8 In these examples, a fluid bed reactor is used in which 5 g of the unmodified B0A-1 catalyst from Example 1 is introduced. In all of the examples, the reaction temperature is 600 ° C and the feed rate and molar ratio of toluene to ethylene are varied. The results are given in Table I below.

TABEL ITABLE I

5 Eksem- Tempe- tol.:eth. WHSV toluen- p-ethyltol. ethyltol.5 Eczema Temp.Tol. WHSV toluene-p-ethyltol. ethyltol.

pel ratur mol time"^ omdan- pr. totalt pr. aro- °C nelse ethyltol. mat % % % 10 4 600 0,8 24 25 26 67 5 600 1,1 22 26 24 85 6 600 1,9 20 30 27 91 7 600 1,4 38 13 45 90 8 600 1,9 50 9 58 96 15 _ EKSEMPEL 9-13 I nedenstående eksempler indføres 5 g modificeret katalysator BOA-1 fra eksempel 3 i en fluid-bed-reaktor. Resultaterne er angivet i tabel II.pel ratur mole hour "conversion per total per aro- ° C ethyl etol. mat%% 10 4 600 0.8 24 25 26 67 5 600 1.1 22 26 24 85 6 600 1.9 20 30 EXAMPLES 9-13 In the following examples, 5 g of modified catalyst BOA-1 from Example 3 is introduced into a fluidized bed reactor. listed in Table II.

20 TABEL IITABLE II

Eksem- Tempe- tol.:eth. WHSV toluen- p-ethyltol. ethyltol. pel ratur mol time"·*· omdan- pr. totalt pr. aro- eC nelse ethyltol. mat % % % 25 9 520 1,9 61 12 90 91 10 520 2,3 59 13 90 100 II 520 1,4 32 22 84 95 12 520 1,4 37 22 90 97 30 13 470 1,2 33 17 93 100 DK 167867 B1 8Eczema Temp- tol.:eth. WHSV toluene-p-ethyltol. ethyltol. pel ratur mole hour "* * converted per total by arole ethyltol. mat%%% 25 9 520 1.9 61 12 90 91 10 520 2.3 59 13 90 100 II 520 1.4 32 22 84 95 12 520 1.4 37 22 90 97 30 13 470 1.2 33 17 93 100 DK 167867 B1 8

Der dannes intet o-ethyltoluen.No o-ethyltoluene is formed.

EKSEMPEL 14-15 I disse eksempler anvendes 5 g af katalysatoren BOA-1 fra eksempel 1 som katalysator i en stationary-bed-reaktor. Resultaterne er angivet 5 i tabel III.EXAMPLES 14-15 In these examples, 5 g of the catalyst BOA-1 from Example 1 is used as a catalyst in a stationary bed reactor. The results are given in Table III.

TABEL IIITABLE III

Eksem- Tempe- tol.:eth. WHSV toluen- p-ethyltol. ethyltol.Eczema Temp- tol.:eth. WHSV toluene-p-ethyltol. ethyltol.

pel ratur mol time'omdan- pr. totalt pr. aro- °C nelse ethyltol. mat 10 % % % 14 500 2,1 25 6 74 92 15 600 2,1 25 7 72 98 15 EKSEMPEL 16-18 I nedenstående eksempler indføres 5 g umodificeret katalysator BOA-2 fra eksempel 2 i en fluid-bed-reaktor. Reaktionstemperaturen er 600eC. Resultaterne er angivet i tabel IV.pel ratur mols time'conversion. total pr. ethyl acetate. mat 10%%% 14,500 2.1 25 6 74 92 15 600 2.1 25 7 72 98 15 EXAMPLES 16-18 In the examples below, 5 g of unmodified catalyst BOA-2 from Example 2 is introduced into a fluid bed reactor. The reaction temperature is 600 ° C. The results are given in Table IV.

TABEL IVTABLE IV

20 Eksem- Tempe- tol.:eth. WHSV toluen- p-ethyltol. ethyltol.20 Eczema Temp.Tol. WHSV toluene-p-ethyltol. ethyltol.

pel ratur mol time'^· omdan- pr. totalt pr. aro- °C nelse ethyltol. mat % % % 25 16 600 1,1 22 28 27 84 17 600 1,5 42 22 39 87 18 600 1,9 50 17 53 78 DK 167867 B1 9 EKSEMPEL 19-21 5 g af den ifølge eksempel 3 fremstillede katalysator BOA-2 modificeres som beskrevet i eksempel 3, og til alkyleringstestene anvendes en fluid-bed-reaktor og en reaktionstemperatur på 600°C. Resultaterne er 5 angivet i nedenstående tabel V.pel ratur mole hour '^ · convert. total pr. ethyl acetate. mat%%% 25 16 600 1.1 22 28 27 84 17 600 1.5 42 22 39 87 18 600 1.9 50 17 53 78 DK 167867 B1 9 EXAMPLES 19-21 5 g of the catalyst BOA prepared according to Example 3 -2 is modified as described in Example 3, and for the alkylation tests a fluid bed reactor and a reaction temperature of 600 ° C are used. The results are given in Table V below.

TABEL VTABLE V

Eksem- Tempe- tol.:eth. WHSV toluen- p-ethyltol. ethyltol.Eczema Temp- tol.:eth. WHSV toluene-p-ethyltol. ethyltol.

pel ratur mol time"^ omdan- pr. totalt pr. aro- eC nelse ethyltol. mat 10 % % % 19 600 2,3 15 2 92 70 20 600 1,9 20 2 92 65 21 600 1,5 42 2 89 30 15 _ EKSEMPEL 22pel ratur mole hour "conversion per total per aroleC ethyl etol. mat 10%%% 19 600 2.3 15 2 92 70 20 600 1.9 20 2 92 65 21 600 1.5 42 2 89 EXAMPLE 22

Methylering af toluen foretages med methanol under anvendelse af toluen og methanol i et molforhold på 2:1. Katalysatoren er BOA-2 fra eksempel 2, modificeret som beskrevet i eksempel 3. Reaktionen udfø-20 res i en stationary-bed-reaktor og ved en temperatur på 500°C.Methylation of toluene is done with methanol using toluene and methanol in a 2: 1 molar ratio. The catalyst is BOA-2 from Example 2, modified as described in Example 3. The reaction is carried out in a stationary bed reactor and at a temperature of 500 ° C.

Udbyttet er 1% rent isomerfrit p-xylen.The yield is 1% pure isomer-free p-xylene.

Claims (3)

1. Fremgangsmåde til fremstilling af en aluminium-bor -silikatkatalysator med sammensætningen: 0,8-1,2 M20 : A1203 : 0,005-0,1 B203 : 10150 Si02 : x H20 5 hvor M. er valgt fra gruppen bestående af en alkalimetalkation eller en organisk kation indeholdende nitrogen, og x ligger i området 0-60, ved opvarmning af en reaktionsblanding, som omfatter en kation indeholdende organisk nitrogen opnået fra pyrrolidin eller tetraethyl-, tetrapropyl-, eller tetrabutylammoniumchlorid eller en 10 blanding deraf, et alkalimetaloxid eller blandinger deraf, oxid af aluminium, bor og silicium og vand, i en lukket reaktionsbeholder, kendetegnet ved, at nævnte reaktionsblanding først opvarmes til en begyndelsestemperatur, som er mindst 175eC og højst 220°G, og derefter til en lavere reaktionstemperatur, som ligger i 15 området 100-190eC, fortrinsvis i området 130-170°C, til dannelse af aluminium-bor-silikatkataly satoren.A process for preparing an aluminum boron silicate catalyst having the composition: 0.8-1.2 M 2 O: Al 2 O 3: 0.005-0.1 B 2 O 3: 10150 SiO 2: x H 2 O where M is selected from the group consisting of an alkali metal cation or an organic cation containing nitrogen, and x is in the range of 0-60, by heating a reaction mixture comprising a cation containing organic nitrogen obtained from pyrrolidine or tetraethyl, tetrapropyl, or tetrabutylammonium chloride or a mixture thereof, an alkali metal oxide or mixtures thereof, aluminum oxide, boron and silicon and water, in a closed reaction vessel, characterized in that said reaction mixture is first heated to an initial temperature of at least 175 ° C and not more than 220 ° G, and then to a lower reaction temperature which is within In the range of 100-190 ° C, preferably in the range 130-170 ° C, to form the aluminum boron silicate catalyst. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at opvarmningstiden ved begyndelsestemperaturen er mellem 30 minutter og 6 timer. 20Process according to claim 1, characterized in that the heating time at the initial temperature is between 30 minutes and 6 hours. 20 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at opvarmningstiden ved den lavere temperatur er mindst 8 timer og fortrinsvis 1-6 dage. 1 Fremgangsmåde ifølge et hvilket som helst af kravene 1-3, kendetegnet ved, at kationen indeholdende organisk 25 nitrogen helt eller delvis erstattes med protoner til fremstilling af en katalysator i form af en syre.Process according to claim 1 or 2, characterized in that the heating time at the lower temperature is at least 8 hours and preferably 1-6 days. Process according to any one of claims 1 to 3, characterized in that the cation containing organic nitrogen is completely or partially replaced with protons to produce an catalyst in the form of an acid.
DK272885A 1983-10-17 1985-06-17 PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST DK167867B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FI833788A FI76005C (en) 1983-10-17 1983-10-17 ALUMINUM-BOR-SILICATE CATALYST, FREQUENCY FOR FRAMSTAELLNING AV DENNA OCH ALKYLERINGSPROCESS.
FI833788 1983-10-17
PCT/FI1984/000076 WO1985001675A1 (en) 1983-10-17 1984-10-16 Procedure for producing zeolite catalysts, and alkylation process
FI8400076 1984-10-16

Publications (3)

Publication Number Publication Date
DK272885A DK272885A (en) 1985-06-17
DK272885D0 DK272885D0 (en) 1985-06-17
DK167867B1 true DK167867B1 (en) 1993-12-27

Family

ID=8517932

Family Applications (1)

Application Number Title Priority Date Filing Date
DK272885A DK167867B1 (en) 1983-10-17 1985-06-17 PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST

Country Status (14)

Country Link
JP (1) JPS61500951A (en)
AT (1) AT399107B (en)
BE (1) BE900830A (en)
CA (1) CA1233459A (en)
CH (1) CH668714A5 (en)
DE (2) DE3490487C2 (en)
DK (1) DK167867B1 (en)
FI (1) FI76005C (en)
FR (1) FR2553301B1 (en)
GB (1) GB2169271B (en)
IT (1) IT1196297B (en)
NL (1) NL8420257A (en)
SE (1) SE453965B (en)
WO (1) WO1985001675A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714781A (en) * 1986-03-27 1987-12-22 Hoechst Celanese Corporation Process for producing 4-ring-substituted phenyl lower alkyl ketones
IT1213366B (en) * 1986-10-22 1989-12-20 Eniricerche Spa PROCEDURE FOR THE CONDENSATION BETWEEN AROMATIC AND CARBONYL COMPOUNDS.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029716A (en) * 1975-12-08 1977-06-14 Mobil Oil Corporation Selective production of para-xylene
DE2830787B2 (en) * 1978-07-13 1981-02-19 Basf Ag, 6700 Ludwigshafen Process for the production of nitrogen-containing crystalline metal silicates with a zeolite structure
CA1135286A (en) * 1978-12-14 1982-11-09 Mobil Oil Corporation Alkylation of aromatic hydrocarbons
DE2909929A1 (en) * 1979-03-14 1980-09-25 Basf Ag METHOD FOR PRODUCING A ZSM-5 STRUCTURAL TYPE
US4264473A (en) * 1980-01-17 1981-04-28 Uop Inc. Method of catalyst manufacture, and catalyst made by said method
SU891146A1 (en) * 1980-04-14 1981-12-23 Институт общей и неорганической химии АН БССР Catalyst for vapour-phase isomerization of cyclohexanoxime to e-caprolactam
US4276437A (en) * 1980-05-23 1981-06-30 Mobil Oil Corporation Shape selective reactions involving zeolite catalyst modified with group IIIB metal
JPS577818A (en) * 1980-06-13 1982-01-16 Idemitsu Kosan Co Ltd Manufacture of crystalline aluminosilicate zeolite and catalytically converting method for organic starting material using said zeolite
SU981146A1 (en) * 1980-09-09 1982-12-15 Предприятие П/Я Г-4781 Apparatus for pneumatic transport of articles
DE3134317A1 (en) * 1981-08-31 1983-03-10 Hoechst Ag, 6000 Frankfurt BORO ALUMOSILICATES WITH ZEOLITE STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
DE3134316A1 (en) * 1981-08-31 1983-03-10 Hoechst Ag, 6000 Frankfurt BORO ALUMOSILICATES WITH ZEOLITE STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
DE3368920D1 (en) * 1982-03-27 1987-02-12 Basf Ag Process for the preparation of olefines from methanol/dimethyl ether
DE3370469D1 (en) * 1982-11-16 1987-04-30 Hoechst Ag Aluminium silicates with a zeolite structure and process for their preparation

Also Published As

Publication number Publication date
AT399107B (en) 1995-03-27
JPS61500951A (en) 1986-05-15
SE453965B (en) 1988-03-21
CA1233459A (en) 1988-03-01
DK272885A (en) 1985-06-17
DK272885D0 (en) 1985-06-17
CH668714A5 (en) 1989-01-31
FI76005B (en) 1988-05-31
GB8513696D0 (en) 1985-07-03
IT8423170A0 (en) 1984-10-16
DE3490487C2 (en) 1995-05-11
SE8502661L (en) 1985-05-30
FI76005C (en) 1988-09-09
WO1985001675A1 (en) 1985-04-25
GB2169271B (en) 1987-10-07
IT1196297B (en) 1988-11-16
BE900830A (en) 1985-02-15
GB2169271A (en) 1986-07-09
FI833788A (en) 1985-04-18
FR2553301A1 (en) 1985-04-19
DE3490487T (en) 1985-09-19
IT8423170A1 (en) 1986-04-16
ATA903984A (en) 1994-08-15
FI833788A0 (en) 1983-10-17
FR2553301B1 (en) 1987-02-27
SE8502661D0 (en) 1985-05-30
NL8420257A (en) 1985-08-01
JPH0475163B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
US5334795A (en) Production of ethylbenzene
EP0137757B1 (en) Alkylation of aromatic hydrocarbons
RU2094418C1 (en) Method of producing cumene or ethyl benzene
US5227558A (en) Aromatic alkylation process employing steam modified zeolite beta catalyst
TW296371B (en)
EP0011900A1 (en) Process for the conversion of dimethyl ether
EP0214147B1 (en) Crystalline magnesia-silica composites and process for producing same
US4781906A (en) Crystalline silicas
US4721827A (en) Crystalline magnesia-silica composites and process for producing same
JPH0580262B2 (en)
GB2114999A (en) Method for para selective alkylation employing silicalite catalysts
JPH0238571B2 (en)
EP0005315B1 (en) Production of xylene hydrocarbons
DK167867B1 (en) PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST
EP0146525B1 (en) Process for preparing crystalline silicas
EP0148147A2 (en) Process for para selective alkylation of aromatic hydrocarbons
KR910004135B1 (en) Process for preparing a vinyl aromatic hydro hydrocarbon by dehydrogenation
JPS607604B2 (en) Selective method for producing para-substituted benzene
NO158926B (en) PROCEDURE FOR THE PREPARATION OF AN ALUMINUM DRILL-SILICATE CATALYST.
JPH0315609B2 (en)
CA1215081A (en) Dehydrogenation process
JPH0416447B2 (en)
JPH0342248B2 (en)
JP2000309546A (en) Production of alkylated aromatic compound and catalyst for the same
JPH0480855B2 (en)

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed