DK163917B - GAMMA-SUBSTITUTED BETA-HYDROXYBUTANIC ACID DERIVATIVES AND PROCEDURES FOR PREPARING THEM - Google Patents
GAMMA-SUBSTITUTED BETA-HYDROXYBUTANIC ACID DERIVATIVES AND PROCEDURES FOR PREPARING THEM Download PDFInfo
- Publication number
- DK163917B DK163917B DK559283A DK559283A DK163917B DK 163917 B DK163917 B DK 163917B DK 559283 A DK559283 A DK 559283A DK 559283 A DK559283 A DK 559283A DK 163917 B DK163917 B DK 163917B
- Authority
- DK
- Denmark
- Prior art keywords
- substituted
- microorganism
- alkoxy group
- carbon atoms
- acetic acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
DK 163917 BDK 163917 B
Opfindelsen angår γ-substituerede 8-hydroxybutan-syre derivater, som er et mellemprodukt i fremstillingen af L-carnitin og en fremgangsmåde til mikrobiologisk reduktion af γ-substituerede aceteddikesyreestre eller 5 -amider til de respektive L-B-hydroxy-y-substituerede butansyrederivater, som nemt kan omdannes til L-carni-tinchlorid.The invention relates to γ-substituted 8-hydroxybutanoic acid derivatives which are an intermediate in the preparation of L-carnitine and a process for microbiologically reducing γ-substituted acetic acetic esters or 5-amides to the respective LB-hydroxy-γ-substituted butanoic acid derivatives which can be easily converted to L-carnitine chloride.
Som det er velkendt indeholder carnitin (β-hydroxy-γ-trimethylaminobutansyre) et asymetrisk centrum, og 10 derfor eksisterer carnitin på to stereoisomere former, D- og L-formen.As is well known, carnitine (β-hydroxy-γ-trimethylaminobutanoic acid) contains an asymmetric center, and therefore carnitine exists in two stereoisomeric forms, the D and L forms.
L-Carnitin er normalt til stede i den menneskelige organisme, hvor dets funktion er at transportere aktiverede, frie fedtsyrer med lange kæder over mito-15 chondriemembranen. Idet mitochondriemembranen er imper-meabel overfor acyl-CoA-derivater, kan frie fedtsyrer med lange kæder kun trænge ind, hvis en forestering med L-carnitin har fundet sted. Bærerfunktionen af L-carnitin anvendes både til at transportere aktiverede 20 fedtsyrer med lange kæder fra de steder, hvor de biosyntetiseres, f.eks. mikrosomerne, ind i mitochondrier-ne, hvor de oxideres, og til at transportere acetyl-CoA fra mitochondrierne, hvor det dannes, til de ekstra-mitochondrielle lokaliteter, hvor syntesen af fedtsyrer 25 med lange kæder foregår, f.eks. til mikrosomerne, i hvilke acetyl-CoA kan udnyttes ved syntetisering af cholesterol og fedtsyrer.L-Carnitine is usually present in the human organism, where its function is to transport activated, long-chain fatty acids across the mitochondrial membrane. As the mitochondrial membrane is imperceptible to acyl-CoA derivatives, long chain free fatty acids can only penetrate if an esterification with L-carnitine has occurred. The carrier function of L-carnitine is used both to transport activated long chain fatty acids from the sites where they are biosynthesized, e.g. the microsomes, into the mitochondria where they are oxidized, and to transport acetyl-CoA from the mitochondria where it is formed, to the extra-mitochondrial sites where the synthesis of long chain fatty acids takes place, e.g. to the microsomes in which acetyl-CoA can be utilized in the synthesis of cholesterol and fatty acids.
Mens det er fastslået at den biologiske form udelukkende er den venstredrejede isomer(L-carnitin) 30 (D-carnitin indtil nu ikke har kunnet påvises i væv fra pattedyr), er D,L-carnitinracemat i en årrække blevet anvendt til forskellige indikationer. D,L-Carnitin er f.eks. solgt i Europa som appetitstimulans, og det er rapporteret, at stoffet har indflydelse på børns 35 vækst, se. f.eks. Borniche et al., Clinica Chemia Acta, 5, 171-176, 1960 og Alexander et al., "Protides in the Biological Fluids", 6th Colloquim, Bruges, 1958, 306-While it has been established that the biological form is solely the left-isomer (L-carnitine) 30 (D-carnitine has not been detectable in mammalian tissue so far), D, L-carnitine racemate has been used for various indications for a number of years. D, L-Carnitine is e.g. sold in Europe as an appetite stimulant and it is reported that the drug has an impact on children's 35 growth, see. eg. Borniche et al., Clinica Chemia Acta, 5, 171-176, 1960 and Alexander et al., "Protides in the Biological Fluids", 6th Colloquim, Bruges, 1958, 306-
DK 163917 BDK 163917 B
2 310. U.S. patentskrift nr. 3.830.931 beskriver, at forbedringer i myocardial sammentrækkelighed og i systolisk rytme ved kongestiv hjerteinsufficiens ofte kan opnås ved indgivelse af D,L-carnitin. U.S. patent-5 skrift nr. 3.968.241 beskriver anvendelsen af D,L-car-nitin ved kardial arrytmi. U.S. patentskrift nr.2 310. U.S. U.S. Patent No. 3,830,931 discloses that improvements in myocardial contractility and systolic rhythm in congestive heart failure can often be achieved by administration of D, L-carnitine. U.S. Patent No. 3,968,241 describes the use of D, L-carnitine in cardiac arrhythmia. U.S. patent specification no.
3.810.994 beskriver anvendelsen af D,L-carnitin i behandlingen af fedme.3,810,994 discloses the use of D, L-carnitine in the treatment of obesity.
I den senere tid er der imidlertid lagt stigen-10 de vægt på vigtigheden af kun at anvende den venstredrej ende carnitinisomer, i det mindste ved nogle terapeutiske anvendelser. Det er endog vist, at D-carnitin virker som kompetitiv inhibitor af carnitinbundne enzymer såsom carnitin-acetyl-transferase (CAT) og carni-15 tin-palmityl-transferase. Endvidere har det for nylig vist sig, at D-carnitin kan sænke L-carnitinmængden i hjertevævet. Følgelig er det nødvendigt udelukkende at indgive L-carnitin hos patienter, der er under medicinsk behandling for hjerteinsufficiens eller for for-20 hø.jét indhold af lipider i blodet. ;In recent times, however, increasing emphasis has been placed on the importance of using only the left-handed carnitine isomer, at least in some therapeutic applications. It has even been shown that D-carnitine acts as a competitive inhibitor of carnitine-bound enzymes such as carnitine acetyl transferase (CAT) and carnitine palmityl transferase. Furthermore, it has recently been found that D-carnitine can lower the amount of L-carnitine in the heart tissue. Accordingly, it is necessary to administer L-carnitine exclusively in patients undergoing medical treatment for heart failure or for high blood lipid content. ;
Der er foreslået adskillige fremgangsmåder til fremstilling af carnitin i industriel skala. Kemisk j syntese af carnitin fører imidlertid uundgåeligt til ! en racemisk blanding af D- og L-isomerer. Følgelig må 25 der anvendes adskillelsesmetoder til opnåelse af separate enantiomere forbindelser fra den racemiske blanding. Disse adskillelsesmetoder er imidlertid besværlige og dyre.Several methods have been proposed for the production of carnitine on an industrial scale. However, chemical synthesis of carnitine inevitably leads to! a racemic mixture of D and L isomers. Accordingly, separation methods must be used to obtain separate enantiomeric compounds from the racemic mixture. However, these separation methods are cumbersome and expensive.
Det tilsigtes med opfindelsen at tilvejebringe hidtil ukendte, nyttige optisk aktive mellemprodukter i fremstillingen af L-carnitin og dets salte eller estere.It is an object of the invention to provide novel, useful optically active intermediates in the preparation of L-carnitine and its salts or esters.
Det tilsigtes desuden med opfindelsen at tilvejebring' en fremgangsmåde til fremstilling af de hidtil ukendte optisk aktive mellemprodukter.It is further an object of the invention to provide a process for producing the novel optically active intermediates.
Det tilsigtede samt flere fordele af opfindelsen vil fremgå tydeligere længere fremme i beskrivelsen.The intended and several advantages of the invention will become more apparent in the description.
35 335 3
DK 163917 BDK 163917 B
Opfindelsens fordele vil for en fagmand tydeligt fremgå af den følgende detaljerede beskrivelse.The advantages of the invention will become apparent to those skilled in the art from the following detailed description.
Det er kendt at β-ketogruppen i 3-stillingen i γ-substi tuerede aceteddikesyrederivater kan reduceres 5 ved hydrogenering over Pt/C (se f.eks. U.S. patentskrift nr. 3.969.406). Hydroxyforbindelsen, der opnås ved en sådan fremgangsmåde, findes imidlertid i en racemisk blanding. Ved fremgangsmåden ifølge opfindelsen kan hydrogeneringen af oxo-gruppen i 3-stillingen 10 derimod udføres stereoselektivt, ved at anvende fermen-tativ indvirkning af en mikroorganisme, til opnåelse af optisk aktive γ-substituerede Ø-hydroxybutansyre-derivater.It is known that the β-keto group at the 3-position of γ-substituted acetic acid derivatives can be reduced by hydrogenation over Pt / C (see, for example, U.S. Patent No. 3,969,406). However, the hydroxy compound obtained by such a process is found in a racemic mixture. In contrast, in the process of the invention, the hydrogenation of the oxo group at the 3-position 10 can be performed stereoselectively, using the fermentative action of a microorganism, to obtain optically active γ-substituted γ-hydroxybutanoic acid derivatives.
Specielt opnås 3(R)- eller L-epimeren, i over-15 ensstemmelse med fremgangsmåden ifølge opfindelsen, ved passende valg (som beskrevet nedenfor) af det substrat, der skal fermenteres. Denne epimer kræves til omdannelsen til naturligt forekommende L-carnitin.Specifically, the 3 (R) or L epimer, in accordance with the process of the invention, is obtained by appropriate selection (as described below) of the substrate to be fermented. This epimer is required for the conversion to naturally occurring L-carnitine.
I store træk omfatter opfindelsen anvendelsen 20 af det mikrobielle reduktaseenzym, L-f3-hydroxyacyl-CoA-dehydrogenase [EC 1.1.1.35], til at katalysere stereoselektiv hydrogenering af γ-substituerede aceteddikesyrederivater, som er defineret nedenfor.Broadly, the invention encompasses the use of the microbial reductase enzyme, L-f3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], to catalyze stereoselective hydrogenation of γ-substituted acetic acetic acid derivatives defined below.
Opfindelsen tilvejebringer således forbindelser 25 med følgende formel, hvoraf bl.a. 3(R)-konfigurationen fremgår, x Xf. ? : 30 i hvilken X betegner Cl, Br, I eller OH og R betegner en alkoxygruppe med mellem 1 og 1 5 carbonatomer, phenoxy- eller phenylalkoxygruppe med mellem 7 og 14 carbonatomer eller en phenyl-35 aminogruppe.Thus, the invention provides compounds 25 of the following formula, The 3 (R) configuration appears, x Xf. ? : 30 in which X represents Cl, Br, I or OH and R represents an alkoxy group having between 1 and 15 carbon atoms, phenoxy or phenyl alkoxy group having between 7 and 14 carbon atoms, or a phenyl-amino group.
Opfindelsen omfatter også en fremgangsmåde til fremstilling af optisk aktive γ-substituerede β-hydroxy- 4The invention also encompasses a process for the preparation of optically active γ-substituted β-hydroxy-4
DK 163917 BDK 163917 B
butansyrederivater med formlen °\ H ? X «butanoic acid derivatives of the formula ° \ H? X «
RR
5 i hvilken X er Cl, Br, I eller OH og R betegner en alkoxygruppe, der har mellem 1 og 15 carbonatomer, phenoxy- eller phenylalkoxygruppe med mellem 7 og 14 carbonatomer eller en phenylamino-10 gruppe ud fra de tilsvarende γ-substituerede aceteddikesyre-esteré eller -amider, som udsættes for fermentativ enzymatisk indvirkning af mikroorganismer, der danner L-β-hydroxyacyl-CoA-dehydrogenase [EC 1.1.1.35], og udvin-15 ding af de ønskede optisk aktive γ-substituerede β-hy-;droxybutansyrederivater.5 in which X is Cl, Br, I or OH and R represents an alkoxy group having between 1 and 15 carbon atoms, phenoxy or phenyl alkoxy group having between 7 and 14 carbon atoms or a phenylamino-10 group from the corresponding γ-substituted acetic acetic acid ester or amides which are subjected to the fermentative enzymatic action of microorganisms forming L-β-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], and the recovery of the desired optically active γ-substituted β-hydrogenase. ; droxybutansyrederivater.
I særdeleshed omfatter fremgangsmåden, til fremstilling af optisk aktive γ-substitueret 3(R)-hydroxy-butansyrederivater med følgende formel, af hvilken bl.a.In particular, the process for preparing optically active γ-substituted 3 (R) -hydroxy-butanoic acid derivatives of the following formula
20 3(R)-konfigurationen fremgår, OH „ 0 25 at forbindelser med formlen 0 0- XCH -C-CH.CR 2 2 30 hvor X og R har de ovenfor fastlagte betydninger, hvor R har mellem 5 og ca. 15 carbonatomer, hvis den betegner en alkoxygruppe, udsættes for fermentativ enzy-ratisk indvirkning af mikroorganismer, der danner L-β-hydroxyacyl CoA-dehydrogenase [EC 1.1.1.35], og udvin-35 ding af de ønskede optisk aktive 4-substituerede 3(R)-hydroxybutansyrederivater fra reaktionsblandingen.The 3 (R) configuration shows, OH 0 0 25, that compounds of the formula 0 0- XCH -C-CH.CR 2 2 30 wherein X and R have the meanings defined above, where R has between 5 and approx. 15 carbon atoms, if it denotes an alkoxy group, is subjected to the fermentative enzymatic action of microorganisms forming L-β-hydroxyacyl CoA dehydrogenase [EC 1.1.1.35] and the recovery of the desired optically active 4-substituted 3 (R) -hydroxybutanoic acid derivatives from the reaction mixture.
DK 163917BDK 163917B
55
Det har vist sig, at en hvilken som helst mikroorganisme, der danner det ønskede enzym, er i stand til at katalysere den stereoselektive reduktion. Særligt egnede er mikroorganismer af klassen Ascomycetes, fami-5 lierne Endomycetales, Mucorales, Moniliales og Eurotia-les, samt slægten Saccharomyces. Særligt foretrukne er Saccharomyces cerevisiae.It has been found that any microorganism that forms the desired enzyme is capable of catalyzing the stereoselective reduction. Particularly suitable are microorganisms of the class Ascomycetes, the families Endomycetales, Mucorales, Moniliales and Eurotia-les, as well as the genus Saccharomyces. Especially preferred are Saccharomyces cerevisiae.
Til fremstilling af optisk aktive 4-substitue-rede 3(R)-hydroxybutansyreestere indeholdende 1-4 carlo bonatomer, er det nødvendigt at anvende oprenset L-β-hydroxyacyl CoA-dehydrogenase [EC 1.1.1.35] f.eks. fra svinehjerter, fordi intakte mikroorganismer indeholder interfererende oxido-reduktaser,der giver den modsatte konfiguration. Således giver mikrobiel reduktion af 15 f.eks. 4-chloraceteddikesyreestere med 1-4 carbonatomer 4-chlor-3-hydroxybutyrater med en utilfredsstillelnde optisk renhed.For the preparation of optically active 4-substituted 3 (R) hydroxybutanoic acid esters containing 1-4 carbon atoms, it is necessary to use purified L-β-hydroxyacyl CoA dehydrogenase [EC 1.1.1.35] e.g. from pig hearts, because intact microorganisms contain interfering oxido reductases that give the opposite configuration. Thus, microbial reduction of 15, e.g. 4-chloroacetic acetic acid esters of 1-4 carbon atoms 4-chloro-3-hydroxybutyrates with an unsatisfactory optical purity.
Opfindelsen tilvejebringer derfor også en fremgangsmåde til fremstilling af optisk aktive γ-substitue-20 rede 3(R)-hydroxybutansyrederivater med følgende formel, hvoraf bl.a. 3(R)-konfigurationen fremgår OH „ 0 ! 25 R .The invention therefore also provides a process for the preparation of optically active γ-substituted 3 (R) -hydroxybutanoic acid derivatives of the following formula, The 3 (R) configuration appears in OH 0! 25 R.
i hvilken X betegner Cl, Br, I eller OH, og R betegner en alkoxygruppe med 1-4 carbonatomer, hvilken omfatter at en forbindelse med formlen 30 -00wherein X represents Cl, Br, I or OH, and R represents an alkoxy group of 1-4 carbon atoms comprising a compound of formula 30 -00
I II I
XCH-C-CHC-R 2 2 i hvilken X og R har de ovenfor bestemte betydninger 35 udsættes for enzymatisk indvirkning af L-3-hydroxyacyl-CoA-dehydrogenase [EC 1.1.1.35] på oprenset form, samt 6XCH-C-CHC-R 2 2 in which X and R have the meanings defined above are subjected to the enzymatic action of L-3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35] in purified form, and 6
DK 163917 BDK 163917 B
udvinding af de ønskede optisk aktive γ-substituerede 3(R)-hydroxybutansyrederivater fra enzymreaktionsblandingen .recovering the desired optically active γ-substituted 3 (R) -hydroxybutanoic acid derivatives from the enzyme reaction mixture.
De optisk aktive γ-sub stituerede L-B-hydroxybu-<. tansyrederivater kan omsættes med trimethyl- amin til opnåelse af de korresponderende γ-trimethyl-ammonium-L-3-hydroxybutansyrederivater, som let kan omdannes til L-carnitin ved behandling med vandig syre. Nedenstående reaktionsskema viser reaktionens enkelte io trin*The optically active γ-substituted L-B-hydroxybu- <. tannic acid derivatives can be reacted with trimethylamine to give the corresponding γ-trimethyl-ammonium L-3-hydroxybutanoic acid derivatives which can be readily converted to L-carnitine by treatment with aqueous acid. The following reaction scheme shows the individual io steps of the reaction *
OHOH
go ' h o x Ιί II Micro- r 'Z li organisme ^ or L-&-hydroxyacylgo 'h o x Ιί II Micro- r' Z li organism ^ or L - & - hydroxyacyl
^ I CoA dehydrogenase II^ In CoA dehydrogenase II
X=C1, Br, I,' OH CHX = C1, Br, I, OH OH
I 3 ch3 Ψ 20I 3 ch3 Ψ 20
CH3 OH _ OHCH3 OH _ OH
I 3 ;.a I * J* 9 b3c*T<r— x" æ3 x ch3I 3; .a I * J * 9 b3c * T <r— x „æ3 x ch3
IV IIIIV III
25 . .25. .
L-CarmtmL-Carmtm
Det har vist sig, at reaktionen I I forløberIt has been found that the reaction I I proceeds
lettest, hvis X = Cl. Da den efterfølgende reaktion IImost easily if X = Cl. Since the subsequent reaction II
III imidlertid giver bedst udbytte, når X = iod eller brom, foretrækkes det først at fremstille Cl-derivatet 30 og derefter omdanne det til det korresponderende I-eller Br-derivat.III, however, best yields when X = iodine or bromine, it is preferred to first prepare the C1 derivative and then convert it to the corresponding I or Br derivative.
En forbedret fremgangsmåde er først at omdanne 4-chlor-3(R)-hydroxybutansyreester til det korresponderende 4-iod- eller 4-brom-3 (R)-hydroxybutyrat. For nemheds skyld 35 refereres nedenfor til iodderivatet. lodforbindelsen (V) kan omsætter glat med trimethylamin ved stuetemperatur til opnpelse af VI, der let kan omdannes til L-carnitinAn improved method is first to convert 4-chloro-3 (R) -hydroxybutanoic acid ester to the corresponding 4-iodo or 4-bromo-3 (R) -hydroxybutyrate. For convenience, 35 is referred to below as the iodine derivative. the solder compound (V) can react smoothly with trimethylamine at room temperature to obtain VI, which can be readily converted to L-carnitine
DK 163917BDK 163917B
7 i overensstemmelse med det følgende reaktionsskema: HO H 0 HO, M 0 ν(Λ -*ΐ- OCA.7 according to the following reaction scheme: HO H 0 HO, M 0 ν (Λ - * ΐ- OCA.
II VII V
5 R * H eller ester CH, I 35 R * H or ester CH, I 3
MeOH N-CH, I 3 ch3 10 CH« AU nMeOH N-CH, I 3 ch3 10 CH «AU n
In? - 4 i. CH« OH Η n *Sr-In? - 4 in. CH «OH Η n * Sr-
CH, OH form I“CHCH, OH form I “CH
3 3 VI3 3 VI
L-camitin 15L-camitin 15
De før omtalte reaktioner, som eksemplificeret ved reaktionsligningerne, kan udsættes for talrige variationer. Uanset hvilken form, der således fremstilles, 20 omsættes esteren med natriumiodid i et passende opløsningsmiddel, såsom 2-butanon, acetone butanol, osv.The aforementioned reactions, as exemplified by the reaction equations, can be subject to numerous variations. Whatever form thus prepared, the ester is reacted with sodium iodide in a suitable solvent such as 2-butanone, acetone butanol, etc.
Den ønskede hovedreaktion med natriumiodid på dette sted i reaktionen er en substitutionsreaktion, som danner iodforbindelsen (V), uden at forstyrre det 25 chirale centrum ved carbonatomet i nabostilling. Til denne reaktion kræves mindst tilstrækkeligt natriumiodid til at erstatte alt chlor i II. Generelt sagt anvendes et lille overskud af natriumiodid.The desired main reaction with sodium iodide at this point in the reaction is a substitution reaction which forms the iodine compound (V) without interfering with the chiral center at the neighboring carbon atom. For this reaction, at least sufficient sodium iodide is required to replace all chlorine in II. Generally, a small excess of sodium iodide is used.
Omsætningen af V med trimethylamin kan gennem-30 føres ved en moderat temperatur f.eks. ved 25°C (se S.The reaction of V with trimethylamine can be carried out at a moderate temperature e.g. at 25 ° C (see S.
G. Boots og M.R. Boots, J. Pharm, Sci., 64, 1262, 1975) i en række forskellige opløsningsmidler såsom methanol eller ethanol, der indeholder trimethylamin i overskud.G. Boots and M.R. Boots, J. Pharm, Sci., 64, 1262, 1975) in a variety of solvents such as methanol or ethanol containing excess trimethylamine.
Det er værd at lægge mærke til, at der afhængigt af 35 hvilken alkohol der anvendes som opløsningsmiddel, sker en omesterificering. F.eks. dannes L-carnitinmethyl-ester ved reaktionen, når methanol anvendes som opløs- 8It is worth noting that depending on the alcohol used as a solvent, a reesterification takes place. Eg. L-carnitine methyl ester is formed in the reaction when methanol is used as the solution 8
DK 163917 BDK 163917 B
ningsmiddel. Denne omesterificering er fordelagtig, idet at L-carnitinmethylester som bekendt kan omdannes direkte til L-carnitin på fri baseform ved passage gennem en ionbytterkolonne (OH ) (se E. Strack og J. Lorenz, 5 J. Physiol. Chem (1966) 344, 276).agent. This re-esterification is advantageous in that, as is well known, L-carnitine methyl ester can be directly converted to free base L-carnitine by passage through an ion exchange column (OH) (see E. Strack and J. Lorenz, 5 J. Physiol. Chem (1966) 344 , 276).
Det kan ses af beskrivelsen af de ovenstående processer, at der dannes flere forskellige hidtil ukendte og meget nyttige optisk aktive mellemprodukter.It can be seen from the description of the above processes that several different novel and very useful optically active intermediates are formed.
Specielt nyttig er 4-iod-3(R)-hydroxybutansyrealkyΙ-ΙΟ estere, hvor alkylgruppen indeholder mellem 6 og 10 carbonatomer. Octylesteren er særligt foretrukken.Particularly useful are 4-iodo-3 (R) -hydroxybutanoic acid alkyl ester esters wherein the alkyl group contains between 6 and 10 carbon atoms. The octyl ester is particularly preferred.
Mikroorganismer med den ønskede oxido-reduktase-aktivitet er velkendte indenfor mikrobiologien, og en vilkårlig af disse mikroorganismer kan anvendes ved 15 gennemførsel af processen ifølge opfindelsen (se K.Microorganisms with the desired oxido reductase activity are well known in the microbiology, and any of these microorganisms can be used in carrying out the process of the invention (see K.
Kieslich, "Microbial Transformations of Non-Stereoid Cyclic Compounds" (George Thime Publishers, Stuttgart, 1976)) med slægterne af mikroorganismer, der specielt er beskrevet heri som særligt egnede. Let tilgængelige 20 og billige mikroorganismer af slægten Saccharomyces, f.eks. ølgær, bagegær eller vingær (Saccharomyces vini) har vist sig at producere L-p-hydroxyacyl—CoA-dehydro-genase (EC 1.1.1.35] og at være særdeles fordelagtige ved gennemførsel af fremgangsmåden ifølge opfindelsen.Kieslich, "Microbial Transformations of Non-Stereoid Cyclic Compounds" (George Thime Publishers, Stuttgart, 1976)) with the genera of microorganisms specifically described herein as particularly suitable. Easily accessible 20 and inexpensive microorganisms of the genus Saccharomyces, e.g. beer yeast, baker's yeast or wine yeast (Saccharomyces vini) has been found to produce L-β-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) and to be particularly advantageous in carrying out the process of the invention.
25 Enzymet er beskrevet af S.J. Wakil og E.M. Barnes Jr. in Comprehensive Biochemistry Vo. 185(1971) side 57-104.The enzyme is described by S.J. Wakil and E.M. Barnes Jr. in Comprehensive Biochemistry Vo. 185 (1971) pages 57-104.
4-Substitueret aceteddikesyresubstrat kan inkorporeres i et næringsmedium med standardsammensætning, i hvilket disse mikroorganismer dyrkes ved sædvanlige 30 fermenteringsbetingelser, for at fremkalde den reduktive omsætning. Alternativt kan den aktive bestanddel fjernes fra den dyrkede kultur af mikroorganismer, f.eks. ved opløsning af cellerne for at frigøre enzymer, eller ved suspension af hvilende celler i et friskt vandigt 35 system. Ved en vilkårlig af disse metoder vil β-keto-gruppen blive reduceret selektivt, så længe det af mikroorganismerne dannede aktive system er til stede i mediet. Som det vil stå klart for en sagkyndig vil reak- 94-Substituted acetic acetic acid substrate can be incorporated into a standard composition nutrient medium in which these microorganisms are grown under usual fermentation conditions to produce the reductive reaction. Alternatively, the active ingredient may be removed from the cultured culture of microorganisms, e.g. by dissolving the cells to release enzymes, or by suspending dormant cells in a fresh aqueous system. In any of these methods, the β-keto group will be selectively reduced as long as the active system formed by the microorganisms is present in the medium. As will be clear to an expert will react- 9
DK 163917 BDK 163917 B
tionstiden selvfølgelig være afhængig under hvilke temperatur- og trykforhold kontakten af 4-substitueret aceteddikesyrederivat med aktivt enzym finder sted.of course, depending on the temperature and pressure conditions the contact of 4-substituted acetic acetic acid derivative with active enzyme takes place.
F.eks. vil det tid, der er nødvendig til at forårsage 5 den reduktive omsætning, være mindre ved let opvarmning og atmosfæretryk end hvis reaktionen alt andet lige forløber ved stuetemperatur. Selvfølgelig må hverken tryk eller temperatur være så høj eller tiden så lang, at det resulterer i, at substratet nedbrydes. I de 10 tilfælde, der anvendes en organismekultur i vækst, skal reaktionsbetingelserne være så milde, at organismerne ikke dræbes inden de har produceret tilstrækkeligt hydrolytisk enzym til at reaktionen er i stand til at forløbe. Generelt kan temperaturen variere fra ca. 10°C 15 til ca. 35°C, og reaktionstiden fra ca. 12 timer til ca.Eg. for example, the time required to cause the reductive reaction will be less at light heating and atmospheric pressure than if the reaction proceeds at room temperature. Of course, neither pressure nor temperature must be so high or time so long as to cause the substrate to degrade. In the 10 cases where an organism culture is used in growth, the reaction conditions must be so mild that the organisms are not killed until they have produced enough hydrolytic enzyme for the reaction to be able to proceed. In general, the temperature can vary from approx. 10 ° C 15 to approx. 35 ° C, and the reaction time from ca. 12 hours to approx.
10 dage ved atmosfæretryk.10 days at atmospheric pressure.
I de følgende eksempler, i hvilke opfindelsen belyses nærmere, var γ-halogenaceteddikesyrederivat-substraterne, der blev udsat for mikrobiel reduktion, 20 fremstillet ud fra diketen i overensstemmelse med den generelle metode af C.D. Hurd og H.L. Abernethly (J. Am.In the following examples, in which the invention is further elucidated, the γ-haloacetic acetic acid derivative substrates subjected to microbial reduction were prepared from the dyke in accordance with the general method of C.D. Hurd and H.L. Abernethly (J. Am.
Cher.. So., 62, 1147, 1940) for γ-chloraceteddikesyre-derivater og F. Chick, N.T.M. Wilsmore (J. Chem. Soc., 1978 (1910)) for γ-bromaceteddikesyrederivaterne via 25 det følgende reaktionsskema:Cher .. So., 62, 1147, 1940) for γ-chloroacetic acetic acid derivatives and F. Chick, N.T.M. Wilsmore (J. Chem. Soc., 1978 (1910)) for the γ-bromoacetic acetic acid derivatives via the following reaction scheme:
X2 \\ IX2 \\ I
H2C^-<jS2 -XCH-C-CELCXH2C ^ - <jS2 -XCH-C-CELCX
0-C=O0-C = O
30 diketen ^RNH OR30 thicknesses ^ RNH OR
1 ^ i I1 ^ i I
XCH2CCH2C-NR XCH2CCH2C0RXCH2CCH2C-NR XCH2CCH2C0R
35 hvor X = Cl eller Br Y - H eller alkyl R = som beskrevet tidligere 10Wherein X = Cl or Br Y - H or alkyl R = as previously described 10
DK 163917 BDK 163917 B
Alternativt kan γ-halogenaceteddikesyrederiva-terne, hvis det ønskes, fremstilles ud fra γ-halogened-dikesyreestere ved almindelig Grignard reaktion. F.eks. blev γ-chloraceteddikesyreoctylester let fremstillet 5 ved at koge γ-chloroctylesteren med to ækvivalenter magnesium under tilbagesvaling i 48 timer. Efter, fjernelse af opløsningsmidlet blev aceteddikesyreoctyl-esteren udvundet med 70% udbytte.Alternatively, the γ-haloacetic acetic acid derivatives, if desired, can be prepared from γ-haloacetic acid esters by ordinary Grignard reaction. Eg. For example, the γ-chloroacetic acetic acid ester ester was readily prepared by boiling the γ-chloroacyl ester with two equivalents of magnesium under reflux for 48 hours. After removal of the solvent, the acetic acid octyl ester was recovered in 70% yield.
γ-Hydroxyaceteddikesyrederivater blev fremstil-10 let ud fra deres korresponderende γ-bromaceteddikesyre-derivater ved omrøring i dioxan-vandopløsning (1:1) indeholdende CaCO^ ved 25°C i 12 timer.γ-Hydroxyacetic acetic acid derivatives were prepared from their corresponding γ-bromoacetic acetic derivatives by stirring in dioxane-aqueous solution (1: 1) containing CaCO 3 at 25 ° C for 12 hours.
Hvert af de i overensstemmelse med de følgende eksempler fremstillede stoffer, blev identificeret med 15 hensyn til struktur ved brug af kernemagnetisk resonance (nmr) og indfrarød spektroskop! samt ved tyndtlags-chromatografi (TLC). Den optiske renhed og den absolutte konfiguration af produkterne blev fastlagt såvel ved deres omdannelse til L-carnitin som ved deres omdan-20 nelse til estere. Disse analysereslet ved hjælp af nmr-spektroskopi og optisk drejning.Each of the substances prepared in accordance with the following examples was identified with respect to structure using nuclear magnetic resonance (nmr) and infrared spectroscope! as well as by thin layer chromatography (TLC). The optical purity and absolute configuration of the products were determined both by their conversion to L-carnitine as well as by their conversion to esters. These are analyzed using nmr spectroscopy and optical rotation.
Eksempel 1 (gær) (+)4-Chlor-3(R)-hydroxybutansyreoctylester blev 25 fremstillet som følger: ^XXx,—-> c'StX.Example 1 (yeast) (+) 4-Chloro-3 (R) -hydroxybutanoic acid octyl ester was prepared as follows: - XXx, -> c'StX.
OC8H17 oc8h17 30 A. Fermentering. Overfladevækst af en ugegammel agerkultur af Candida keyfr. NRRL Y-329, dyrket på en agar med følgende sammensætning: 35OC8H17 oc8h17 30 A. Fermentation. Surface growth of an ancient field crop of Candida keyfr. NRRL Y-329, grown on an agar of the following composition: 35
DK 163917BDK 163917B
1111
Agar 20 gAgar 20 g
Glucose 10 g Gærekstrakt 2,5 g K2HP04 1 g 5 Destilleret vand, q.s. 1 liter (Steriliseret 15 min. ved 20 p.s.i.) blev suspenderet i 5 ml 0,85% saltopløsning. En portion på 1 ml af denne suspension blev brugt til at inoculere en 250 ml Erlenmeyer-kolbe (F-l trin) indeholdende 50 ml 10 af det følgende medium (Vogel's medium): Gærekstrakt 5 gGlucose 10 g Yeast extract 2.5 g K2HP04 1 g 5 Distilled water, q.s. 1 liter (Sterilized 15 min at 20 p.s.i.) was suspended in 5 ml of 0.85% saline. A 1 ml aliquot of this suspension was used to inoculate a 250 ml Erlenmeyer flask (F-1 stage) containing 50 ml of the following medium (Vogel's medium): Yeast extract 5 g
Casaminosyrer 5 gCasamino acids 5 g
Dextrose 40 gDextrose 40 g
Na^-citrat x 5,5 E^O 3 g 15 KH2P04 5 5 NH4N03 2 gNa 2 citrate x 5.5 E 2 O 3 g 15 KH 2 PO 4 5 NH 4 NO 3 2 g
CaCl2 x 2H20 0,1 gCaCl 2 x 2 H 2 O 0.1 g
MgS04 x 7H20 0,2 gMgSO 4 x 7H 2 O 0.2 g
Sporelementopløsning 0,1 ml 20 Destilleret vand, q.s. 1 liter pH 5,6 (steriliseret i 15 min. ved 30 p.s.i.)Trace element solution 0.1 ml 20 Distilled water, q.s. 1 liter pH 5.6 (sterilized for 15 minutes at 30 p.s.i.)
Sporelementopløsning_g/100 ml 25 Citronsyre x 1H20 5Trace element solution_g / 100 ml Citric acid x 1H 2 O 5
ZnS04 x 7H20 7ZnS04 x 7H20 7
Fe(NH4)2(S04)2 x 6H20 1Fe (NH4) 2 (SO4) 2 x 6H20 1
CuS04 x 5H20 0,25CuSO 4 x 5H 2 O 0.25
MgS04 x 1H20 0,05 30 H3B03 0,05MgSO4 x 1H20 0.05 H3B03 0.05
NaH2Mo04 x 2H20 0,05NaH 2 MoO 4 x 2H 2 O 0.05
Kolben blev inkuberet på en rotationsryster (250 cycler pr. min-2" radius) i 24 timer ved 25°C, herefter 35 overførtes 10 volumen% af flaskens indhold til en anden 250 ml Erlenmeyerkolbe (F-2 trin) indeholdende 50 ml af Vocel's medium. Efter 24 timers inkubation på en rotationsryster blev 150 mg γ-chloraceteddikesyreoctylester 12The flask was incubated on a rotary shaker (250 cycles per min-2 "radius) for 24 hours at 25 ° C, then 35% by volume of the bottle was transferred to another 250 ml Erlenmeyer flask (F-2 steps) containing 50 ml of Vocel's medium After 24 hours of incubation on a rotary shaker, 150 mg of γ-chloroacetic acetic acid octyl ester 12
DK 163917 BDK 163917 B
i 0,1 ml 10% "Tween 80" tilsat. F-2 trin-flasken blev herefter inkuberet i endnu 24 timer under de samme betingelser som anvendt ved inkuberingen af F-l trinflasken.in 0.1 ml of 10% "Tween 80" added. The F-2 step bottle was then incubated for another 24 hours under the same conditions as used for the incubation of the F-1 step bottle.
5 B. Isolation. 24 Timer efter tilsætningen af γ-chloraceteddikesyreoctylester, blev cellerne fjernet ved centrifugering. Væskefasen blev ekstraheret med 50 ml ethylacetat tre gange. Ethylacetatopløsningen blev tørret over Na2S0^ og inddampet til opnåelse af 10 olieagtig remanens (186 g). Remanensen blev opløst i 0,5 ml af den mobile fase og ført gennem en kolonne (1 x 25 cm) med silicagel (MN-kiselgel 60). Kolonnen blev elueret med "Skelly B":ethylacetat (8:1) og fraktioner af 14 ml blev opsamlet. Fraktion 6 og 7 indeholdt 15 det ønskede produkt og blev forenet og inddampet til tørhed, hvorved der fremkom 120 mg af en krystallinsk remanens. Omkrystallisation i ethylacetat-hexan gav 23 107 mg 4-chlor-3(R)-hydroxybutansyreoctylester [a] +13,3° (c, 4,45) (CHC13)j pmr (5CDC13) 0,88 [3H, tr.B. Isolation. Twenty-four hours after the addition of γ-chloroacetic acetic acid octyl ester, the cells were removed by centrifugation. The liquid phase was extracted with 50 ml of ethyl acetate three times. The ethyl acetate solution was dried over Na 2 SO 4 and evaporated to give 10 oily residue (186 g). The residue was dissolved in 0.5 ml of the mobile phase and passed through a column (1 x 25 cm) with silica gel (MN silica gel 60). The column was eluted with "Skelly B": ethyl acetate (8: 1) and fractions of 14 ml were collected. Fractions 6 and 7 contained the desired product and were combined and evaporated to dryness to give 120 mg of a crystalline residue. Recrystallization in ethyl acetate-hexane gave 23 107 mg of 4-chloro-3 (R) -hydroxybutanoic acid octyl ester [α] + 13.3 ° (c, 4.45) (CHClC) δ pmr (5CDCl13) 0.88 [3H, tr.
20 forvredet, CH3~(CH2)n~]? 1,28 [10H, s, -(CH2)5-]; 1,65 (2H, m, -CH2-CH2-CH2-0-C-); 2,62 (2H, d, J = 6 Hz,20 distorted, CH3 ~ (CH2) n ~]? 1.28 [10H, s, - (CH 2) 5-]; 1.65 (2H, m, -CH 2 -CH 2 -CH 2 -O-C-); 2.62 (2H, d, J = 6 Hz,
OISLAND
-CH-CH^-COOR); 3,22 (IH, br., -OH); 3,60 (2H, d, J = 6 I Δ ~-CH-CH ^ -COOR); 3.22 (1H, br, -OH); 3.60 (2H, d, J = 6 I Δ ~
OHOH
1313
DK 163917 BDK 163917 B
reaktionen forløbet i endnu 24 timer. Cellerne blev derefter fjernet ved filtrering gennem celiteskive.the reaction proceeded for another 24 hours. The cells were then removed by filtration through celite disk.
Cellerne blev vasket med vand og med ethylacetat. Vaske-væskerne blev forenet med filtratet og fuldstændigt eks-5 traheret med ethylacetat. Ethylacetatfasen blev tørret over MgSO^ og inddampet til en olieagtig remanens, som blev chromatograferet i en silicagelkolonne til opnåelse af 2,52 g 4-chlor-3(R)-hydroxybutansyreoctylester, som et fast stof med lavt smeltepunkt, [a]23 +13,2° 10 (c, 4,0, CHC13).The cells were washed with water and with ethyl acetate. The washings were combined with the filtrate and completely extracted with ethyl acetate. The ethyl acetate phase was dried over MgSO 4 and evaporated to an oily residue which was chromatographed in a silica gel column to give 2.52 g of 4-chloro-3 (R) -hydroxybutanoic acid oxyester ester as a low melting solid, [a] 23 + 13.2 ° (c, 4.0, CHCl 3).
Eksempel 3 (+)4-Chlor-3(R)-hydroxybutansyrebenzylester blev fremstillet som følger: A. Fermentering. Overfladevækst af en ugegammel agar-20 kultur af Gliocladium virens ATCC 13362, dyrket på en agar med følgende sammensætning:Example 3 (+) 4-Chloro-3 (R) -hydroxybutanoic acid benzyl ester was prepared as follows: A. Fermentation. Surface growth of an age-old agar culture of Gliocladium virens ATCC 13362, grown on an agar of the following composition:
Maltekstrakt 20 gMalt extract 20 g
Glucose 20 gGlucose 20 g
Pepton 1 g 25 Agar 20 gPeptone 1 g 25 Agar 20 g
Destilleret vand, q.s. 1 liter (steriliseret 15 min. ved 20 p.s.i.) blev suspenderet i 5 ml 0,85% saltopløsning. En portion på 1 ml af denne suspension blev brugt til at inoculere 30 en 250 ml Erlenmeyer-kolbe (F-l trin) indeholdende 50 ml af den følgende medium (Sojabønne-dextrosemedium):Distilled water, q.s. 1 liter (sterilized 15 min at 20 p.s.i.) was suspended in 5 ml of 0.85% saline. A 1 ml aliquot of this suspension was used to inoculate a 250 ml Erlenmeyer flask (F-1 stage) containing 50 ml of the following medium (Soybean Dextrose Medium):
Sojamel 5 gSoy flour 5 g
Dextrose 20 gDextrose 20 g
NaCl 5 g 35 KH2P04 5 9 Gær 5 gNaCl 5 g 35 KH2 PO4 5 9 Yeast 5 g
Vand 1 liter pH justeret til 7,0 14Water 1 liter pH adjusted to 7.0 14
DK 163917 BDK 163917 B
Autoklaveret ved 15 p.s.i. i 15 minutter Kolben bleb inkuberet på en rotationsryster (250 cycler/min - 2" radius) i 24 timer ved 25°C, hvorefter 10 volumen% af indholdet blev overført til en 5 anden 250 ml Erlenmeyer-kolbe (F-2 trin) indeholdende 50 ml sojabønne-dextrosemedium. Efter inkubation i 24 timer på en rotationsryster, blev 150 mg γ-chloracet-eddikesyrebenzylester i 0,1 ml 10% "Tween 80" tilsat.Autoclaved at 15 p.s.i. for 15 minutes The flask was incubated on a rotary shaker (250 cycles / min - 2 "radius) for 24 hours at 25 ° C, after which 10% by volume of the contents was transferred to another 250 ml Erlenmeyer flask (F-2 steps) containing 50 ml of soybean dextrose medium After 24 hours incubation on a rotary shaker, 150 mg of γ-chloroacet acetic acid benzyl ester in 0.1 ml of 10% Tween 80 was added.
F-2 trin-kolben blev herefter inkuberet i endnu 24 timer 10 under de samme betingelser, der blev anvendt ved inku-bering af F-l trin-kolben.The F-2 step flask was then incubated for another 24 hours 10 under the same conditions used for incubating the F-1 step flask.
B. Isolation. 24 Timer efter tilsætningen af γ-chlor-aceteddikesyrebenzylester, blev myceliet fjernet ved filtrering. Filtratet blev ekstraheret med 50 ml ethyl-15 acetat tre gange. Ethylacetatfasen blev tørret over MgSO^ og under vakuum inddampet til en rest på 160 mg.B. Insulation. Twenty-four hours after the addition of γ-chloroacetic acetic acid benzyl ester, the mycelium was removed by filtration. The filtrate was extracted with 50 ml of ethyl acetate three times. The ethyl acetate phase was dried over MgSO 4 and evaporated in vacuo to a residue of 160 mg.
Denne rest blev chromatograferet i en silicagelkolonne (MN-kiselgel 60 j 1 x 25 cm). Kolonnen blev elueret med "Skelly B” og ethylacetat (10:1), og fraktioner 20 af 12 ml blev opsamlet. Fraktionerne 11-16 indeholdt det ønskede produkt og blev forenet og inddampet til tørhed, hvorved der fremkom 115 mg 4-chlor-3(R)-hydroxy-butansyrebenzylester, [a]^ + 8,7° (c, 5,26; CHC13); pmr (6CDC13) 2,65 (2H, d, J = 6 Hz, -CH-CH2-COOR);This residue was chromatographed in a silica gel column (MN silica gel 60 µl x 25 cm). The column was eluted with "Skelly B" and ethyl acetate (10: 1) and fractions 20 of 12 ml were collected. Fractions 11-16 contained the desired product and were combined and evaporated to dryness to give 115 mg of 4-chloro 3 (R) -hydroxy-butanoic acid benzyl ester, [α] + + 8.7 ° (c, 5.26; CHCl13); pmr (6CDCl13) 2.65 (2H, d, J = 6 Hz, -CH-CH₂- COOR);
25 OHOH
3.20 (IH, br, -OH)} 3,54 (2H, d, J = 6 Hz, C1-CH,-CH);3.20 (1H, br, -OH)} 3.54 (2H, d, J = 6 Hz, C 1 -CH, -CH);
OHOH
4.20 (IH, m, -CH2-CH-CH2-); 5,12 (2H, s, -C-0-CH2C6H5);4.20 (1H, m, -CH 2 -CH-CH 2 -); 5.12 (2H, s, -C-O-CH 2 Cl 6 H 5);
OH OOH O
30 7,31 (5H, s. fem aromatiske protoner). Analyseberegning for C11H1303Cli C 57,77, H 5,73. Fundet: C 57,64, H 5,67. TLC silicagel EM Brinkmannplade, 0,25 cm, = 0,43, "Skelly B"-ethylacetat (5:1).7.31 (5H, p. Five aromatic protons). Analysis for C 11 H 13 O 3 Cl 2 57.77, H 5.73. Found: C 57.64, H 5.67. TLC silica gel EM Brinkmann plate, 0.25 cm, = 0.43, "Skelly B" ethyl acetate (5: 1).
35 Eksemplerne 4-23Examples 4-23
Den samme fremgangsmåde i i eksempel 1 blev gentaget med hver af organismerne opstillet i tabel 1, med 15The same procedure in Example 1 was repeated with each of the organisms listed in Table 1 by 15
DK 163917 BDK 163917 B
den undtagelse, at γ-chloraceteddikesyreoctylesteren blev tilsat til en koncentration på 1 mg/ml. Omsætning til det ønskede produkt (+)4-chlor-3(R)-hydroxybutan-syreoctylester fandt sted. Fremgangsmåden i disse ek-5 sempler blev gentaget med kontinuert tilsætning af substratet til gærmediet. Vægtforholdet substrat/gær var ca. 1:1,5 med fremragende omsætning til det ønskede produkt.with the exception that the γ-chloroacetic acetic acid octyl ester was added to a concentration of 1 mg / ml. Reaction to the desired product (+) 4-chloro-3 (R) -hydroxybutane acid octyl ester took place. The procedure of these examples was repeated with continuous addition of the substrate to the yeast medium. The weight ratio of substrate / yeast was approx. 1: 1.5 with excellent reaction to the desired product.
10 Eksemplerne 24-48Examples 24-48
Den samme fremgangsmåde som i eksempel 3 blev gentaget med enhver af organismerne opstillet i tabel 2, med den undtagelse, at γ-chloraceteddikesyreoctylester (1 mg/ml) blev anvendt. Omsætning til dem ønskede for-15 bindelse, (+)4-chlor-3(R)-hydroxybutansyreoctylester fandt sted.The same procedure as in Example 3 was repeated with any of the organisms listed in Table 2, except that γ-chloroacetic acetic acid octyl ester (1 mg / ml) was used. Reaction to them desired compound, (+) 4-chloro-3 (R) -hydroxybutanoic acid octyl ester took place.
Eksempelerne 49-68Examples 49-68
Den samme fremgangsmåde som i eksempel 1 blev 20 gentaget med enhver af organismer opstillet i tabel 1 med den undtagelse, at γ-chloraceteddikesyrebenzyl-ester (1 mg/ml) blev anvendt som substrat. Omsætning til det ønskede produkt (+)4-chlor-3(R)-hydroxybutan-syrebenzylester fandt sted.The same procedure as in Example 1 was repeated with any of the organisms listed in Table 1 except that γ-chloroacetic acetic benzyl ester (1 mg / ml) was used as the substrate. Reaction to the desired product (+) 4-chloro-3 (R) -hydroxybutane acid benzyl ester took place.
2525
Eksemplerne 69-93Examples 69-93
Den samme fremgangsmåde i eksempel 3 blev gentaget med enhver af organismerne opstillet i tabel 2 med brug af γ-chloraceteddikesyrebenzylester som substrat 30 (1 mg/ml). Omdannelse til det ønskede produkt (+)4-chlor- 3(R)-hydroxybutansyrebenzylester fandt sted.The same procedure in Example 3 was repeated with any of the organisms listed in Table 2 using γ-chloroacetic acetic acid benzyl ester as substrate 30 (1 mg / ml). Conversion to the desired product (+) 4-chloro-3 (R) -hydroxybutanoic acid benzyl ester took place.
Eksempel 94 (+)4-Chlor-3(R)-hydroxybutansyreanilid blev 35 fremstillet i overensstemmelse med fremgangsmåden i eksempel 2, bortset fra at 4-chloracetoacetanilid blev brugt ved en koncentration på 1 mg/mlExample 94 (+) 4-Chloro-3 (R) -hydroxybutanoic acid anilide was prepared according to the procedure of Example 2 except that 4-chloroacetoacetanilide was used at a concentration of 1 mg / ml
DK 163917BDK 163917B
16 XNØ 5 soir. substrat for omsætningen til det ønskede optisk aktive produkt, snip. 110-111°C; [a]^ +17,5° (c, 3,0 CHC13)j pmr (6CD3CCD3) 2,67 (2H, d, J = 6 Hz,16 XNØ 5 soir. substrate for the reaction to the desired optically active product, snip. 110-111 ° C; + 17.5 ° (c, 3.0 CHCl 3) j pmr (6CD3CCD3) 2.67 (2H, d, J = 6 Hz,
OISLAND
-HOCHCH2-CONHR); 3,66 ]2H, d, J = 6 Hz, C1CH2CH0H-R); 10 4,43 (IH, m, -CH2-CHOH-CH2-) ; 7,03-7,44 (3H, m, aroma tiske protoner i meta- og parastilling); 7,69 (2H, d, J = 6 Hz, aromatiske protoner i orthostilling); 9,24 (IH, br, -C-HN-Ø). Analyseberegning for C^qH^2N02C1: C 56,21; H 5,66. Fundet: C 56,17; H 5,47.-HOCHCH2-CONHR); 3.66] 2H, d, J = 6Hz, C1CH2CHOH-R); 4.43 (1H, m, -CH 2 -CHOH-CH 2 -); 7.03-7.44 (3H, m, aromatic protons in meta and para position); 7.69 (2H, d, J = 6 Hz, aromatic protons in ortho position); 9.24 (1H, br, -C-HN-O). Analysis calculated for C C qHH₂NO₂Cl: C, 56.21; H, 5.66. Found: C, 56.17; H, 5.47.
1515
Eksemplerne 95-114Examples 95-114
Den samme fremgangsmåde som i eksempel 1 blev gentaget med enhver af organismerne opstillet i tabel 1 bortset fra at γ-chlor-acetoacetanilid blev tilsat til 20 en koncentration på 1 mg/ml. I alle tilfælde fandt omsætning til det ønskede produkt (+)4-chlor-3(R)-hy-droxybutansyreanilid sted.The same procedure as in Example 1 was repeated with any of the organisms listed in Table 1 except that γ-chloro-acetoacetanilide was added to a concentration of 1 mg / ml. In all cases, reaction to the desired product (+) 4-chloro-3 (R) -hydroxybutanoic anilide took place.
Eksemplerne 115-139 25 Den samme fremgangsmåde som i eksempel 3 blev aentaget med enhver af organismerne opstillet i tabel 2. γ-Chloracetoacetanilid blev tilsat til en koncentration på 1 mg/ml. I disse tilfælde blev omsætning til det ønskede (+)4-chlor-3(R)-hydroxybutansyreanilid 3 0 opnået.Examples 115-139 The same procedure as in Example 3 was repeated with any of the organisms listed in Table 2. γ-Chloro-acetoacetanilide was added to a concentration of 1 mg / ml. In these cases, reaction to the desired (+) 4-chloro-3 (R) -hydroxybutanoic anilide 30 was obtained.
Eksemplerne 140-159Examples 140-159
Den samme fremgangsmåde som i eksempel 1 blev gentaget med organismerne opstillet i tabel 1, bortset 35 fra at γ-bromaceteddikesyreoctylester (1 mg/ml) blev anvendt som substrat. Omsætning til det ønskede produkt (+)4-brom-3(R)-hydroxybutansyreoctylester blev opnået.The same procedure as in Example 1 was repeated with the organisms listed in Table 1, except that γ-bromoacetic acetic acid octyl ester (1 mg / ml) was used as a substrate. Reaction to the desired product (+) 4-bromo-3 (R) -hydroxybutanoic acid octyl ester was obtained.
DK 163917BDK 163917B
1717
Eksemplerne 160-184Examples 160-184
Den samme fremgangsmåde som i eksempel 3 blev gentaget med organismerne opstillet i tabel 2 med den undtagelse, at γ-bromaceteddikesyreoctylester (1 mg/ml) 5 blev anvendt. Omsætning til det ønskede produkt (+)4-brom-3(R)-hydroxybutansyreoctylester fandt sted.The same procedure as in Example 3 was repeated with the organisms listed in Table 2 except that γ-bromoacetic acetic acid octyl ester (1 mg / ml) 5 was used. Reaction to the desired product (+) 4-bromo-3 (R) -hydroxybutanoic acid octyl ester took place.
Eksemplerne 185-204Examples 185-204
Den samme fremgangsmåde som i eksempel 1 blev 10 gentaget med organismerne opstillet i tabel 1 med den undtagelse, at γ-bromaceteddikesyrebenzylester (1 mg/ml) blev anvendt som substrat. Omsætning til det ønskede produkt (+)4-brom-3(R)-hydroxybutansyrebenzylester fandt sted.The same procedure as in Example 1 was repeated with the organisms listed in Table 1 except that γ-bromoacetic acetic acid benzyl ester (1 mg / ml) was used as the substrate. Reaction to the desired product (+) 4-bromo-3 (R) -hydroxybutanoic acid benzyl ester took place.
1515
Eksemplerne 205-229Examples 205-229
Den samme fremgangsmåde som i eksempel 3 blev gentaget med organismerne opstillet i tabel 2 med den forskel, at γ-bromaceteddikesyrebenzylester (1 mg/ml) 20 blev anvendt. Omsætning til det ønskede produkt (+)4-brom-3(R)-hydroxybutansyrebenzylester blev opnået.The same procedure as in Example 3 was repeated with the organisms listed in Table 2 with the difference that γ-bromoacetic acetic acid benzyl ester (1 mg / ml) was used. Reaction to the desired product (+) 4-bromo-3 (R) -hydroxybutanoic acid benzyl ester was obtained.
Eksemplerne 230-249Examples 230-249
Den samme fremgangsmåde som i eksempel 1 blev 25 gentaget med organismerne opstillet i tabel 1 med den forskel, at γ-bromacetoacetanilid (1 mg/ml) blev brugt som substrat. Omsætning til det ønskede (+)4-brom-3(R)-hydroxybutansyreanilid blev opnået.The same procedure as in Example 1 was repeated with the organisms listed in Table 1 with the difference that γ-bromoacetoacetanilide (1 mg / ml) was used as a substrate. Reaction to the desired (+) 4-bromo-3 (R) -hydroxybutanoic anilide was obtained.
30 Eksemplerne 250-274Examples 250-274
Den samme fremgangsmåde som i eksempel 3 blev gentaget med organismerne opstillet i tabel 2 med den forskel, at "γ-bromacetoacetanilid (1 mg/ml) blev brugt som substrat. Omsætning til det ønskede (+)4-brom-35 3(R)-hydroxybutansyreanilid blev opnået.The same procedure as in Example 3 was repeated with the organisms listed in Table 2 with the exception that "γ-bromoacetoacetanilide (1 mg / ml) was used as a substrate. Reaction to the desired (+) 4-bromo-35 (R ) -hydroxybutanoic anilide was obtained.
1818
DK 163917 BDK 163917 B
Eksemplerne 275-294Examples 275-294
Den samme fremgangsmåde som i eksempel 1 blev gentaget med organismerne opstillet i tabel 1 med den forskel, at γ-hydroxyaceteddikesyreoctylester (1 mg/ml) 5 blev brugt som substrat. Omsætning til det ønskede 4-hydroxy-3(R)-hydroxybutansyreoctylester fandt sted.The same procedure as in Example 1 was repeated with the organisms listed in Table 1 with the difference that γ-hydroxyacetic acetic acid octyl ester (1 mg / ml) 5 was used as a substrate. Reaction to the desired 4-hydroxy-3 (R) -hydroxybutanoic acid octyl ester took place.
Eksemplerne 295-319Examples 295-319
Den samme fremgangsmåde som i eksempel 3 blev 10 gentaget med organismerne opstillet i tabel 2 med den forskel, at γ-hydroxyaceteddikesyreoctylester (1 mg/ml) blev brugt som substrat. Omsætning til det ønskede 4-hydroxy-3(R)-hydroxybutansyreoctylester fandt sted.The same procedure as in Example 3 was repeated with the organisms listed in Table 2 with the difference that γ-hydroxyacetic acetic acid octyl ester (1 mg / ml) was used as a substrate. Reaction to the desired 4-hydroxy-3 (R) -hydroxybutanoic acid octyl ester took place.
15 Eksemplerne 320-339Examples 320-339
Den samme fremgangsmåde som i eksempel 1 blev gentaget med organismerne opstillet i tabel 1 med den forskel, at γ-hydroxyacetoacetanilid (1 mg/ml) blev brugt som substrat. Omsætning til det ønskede 4-hydroxy-20 3(R)-hydroxybutansyreanilid blev opnået.The same procedure as in Example 1 was repeated with the organisms listed in Table 1 with the difference that γ-hydroxyacetoacetanilide (1 mg / ml) was used as a substrate. Reaction to the desired 4-hydroxy-20 3 (R) -hydroxybutanoic anilide was obtained.
Eksemplerne 340-364Examples 340-364
Den samme fremgangsmåde som i eksempel 3 blev gentaget med organismerne opstillet i tabel 2 med den 25 forskel, at γ-hydroxyacetoacetanilid (1 mg/ml) blev anvendt som substrat. Omsætning til det ønskede 4-hy-droxy-3(R)-hydroxybutansyreanilid blev opnået.The same procedure as in Example 3 was repeated with the organisms listed in Table 2 with the difference that γ-hydroxyacetoacetanilide (1 mg / ml) was used as a substrate. Reaction to the desired 4-hydroxy-3 (R) -hydroxybutanoic anilide was obtained.
Eksempel 365 30 Methyl-4-chlor-3(R)-hydroxybutyrat (VIII) =00.,., θα.,, 35Example 365 Methyl 4-chloro-3 (R) -hydroxybutyrate (VIII) = 00,., Θα., 35
VII VIIIVII VIII
DK 163917BDK 163917B
1919
Methyl-4-chloracetoacetat (VII) (100 mg), 29 enheder svinehjerte (EC 1.1.1.35), |3-hydroxyacyl-CoA-dehydrogenase (Sigma, H4626) og 1,36 g NADH (Sigma, 90%) bleb inkuberet i 30 ml 0,1 M natriumphosphatpuffer, pH 5 6,5.Methyl 4-chloroacetoacetate (VII) (100 mg), 29 units of pig heart (EC 1.1.1.35), 3-hydroxyacyl-CoA dehydrogenase (Sigma, H4626) and 1.36 g of NADH (Sigma, 90%) were incubated in 30 ml of 0.1 M sodium phosphate buffer, pH 6.5.
Efter henstand i 30 timer ved 25UC blev reaktion sblandingen ekstraheret fire gange med 30 ml ethyl-acetat. Det organiske fase blev tørret over natriumsulfat og inddampet til tørhed under reduceret tryk.After standing for 30 hours at 25UC, the reaction mixture was extracted four times with 30 ml of ethyl acetate. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure.
10 Remanensen blev chromatograferet gennem en silicagel-kolonne (12 g silicagel, 1,3 x 34 cm). Kolonnen blev elueret med en opløsningsmiddelblanding bestående af "Skelly B"-ethylacetat (8:1), og fraktioner å 20 ml blev opsamlet. Frationerne 9-11, som indeholdt det 15 ønskede methyl-4-chlor-3(R)-hydroxybutyrat (VIII) iden- 2 3 tificeret ved TLC analyse og med [cy +23,5° (c, 5,2 CHC13), blev forenet.The residue was chromatographed through a silica gel column (12 g silica gel, 1.3 x 34 cm). The column was eluted with a solvent mixture consisting of "Skelly B" ethyl acetate (8: 1) and fractions of 20 ml were collected. Fractions 9-11 containing the desired methyl 4-chloro-3 (R) -hydroxybutyrate (VIII) identified by TLC analysis and with [cy + 23.5 ° (c, 5.2 CHCl 3) , was united.
Eksempel 366 20 Den samme fremgangsmåde som i eksempel 365 blev gentaget med brug af ethyl-4-chloracetoacetat som substrat til dannelse af ethyl-4-chlor-3(R)-hydroxybutyrat, [a]jp +22,7° (c, 4,7, CHC13).Example 366 The same procedure as in Example 365 was repeated using ethyl 4-chloro-acetoacetate as a substrate to form ethyl 4-chloro-3 (R) -hydroxybutyrate, [a] jp + 22.7 ° (c, 4.7, CHCl3).
25 Eksempel 367Example 367
Den samme fremgangsmåde som i eksempel 365 blev gentaget med brug af n-propyl-4-chloracetoacetat som substrat til dannelse af n-propyl-4-chlor-3(R)-hydroxybutyrat, [a]33 +21,5° (c, 5,0, CHC13).The same procedure as in Example 365 was repeated using n-propyl-4-chloro-acetoacetate as a substrate to form n-propyl-4-chloro-3 (R) -hydroxybutyrate, [α] 33 + 21.5 ° (c , 5.0, CHCl3).
3030
Eksempel 368Example 368
Den samme fremgangsmåde som i eksempel 365 blev gentaget med brug af n-butyl-4-chloracetoacetat som substrat til dannelse af n-butyl-4-chlor-3(R)-hydroxy- 35 butyrat, [a]^3 +20,1° (c, 3,1, CHC13).The same procedure as in Example 365 was repeated using n-butyl-4-chloroacetoacetate as a substrate to form n-butyl-4-chloro-3 (R) -hydroxybutyrate, [α] 3 + 20, 1 ° (c, 3.1, CHCl 3).
Generel fremgangsmåde til omdannelse af 4-halo-gen-3(R)-hydroxybutansyreestere og -amider til L-carni-tin.General procedure for converting 4-halo gene-3 (R) -hydroxybutanoic acid esters and amides to L-carnitine.
DK 163917 BDK 163917 B
2020
Eksempel 369Example 369
En blanding af 4-chlor-3(R)-hydroxybutansyreoc-tylester (1,5 g), ethanol (3 ml) og trimethylamin (25 vægt% opløsning) i vand (3 ml) blev opvarmet til 5 80-90°C i ca. 2 timer. Blandingen inddampes til tørhed under vakuum til opnåelse af 1,8 g råprodukt. Det rå produkt (1 g) blev opvarmet til 80-90°C i en 10% HC1-opløsning (7 ml) i 1,5 timer. Efter afdrivning af opløsningsmidlet under reduceret tryk, blev råproduktet 10 ekstraheret to gange med absolut ethanol (10 ml), og ethanolen blev afdrevet under vakuum. Den krystallinske remanens blev opløst i en lille mængde ethanol og L-car-nitinchlorid, smp. 142°C (dek.); [a] -23,7° (c, 4,5, H2O), blev udfældet i godt udbytte (320 mg) ved til-15 sætning af ether.A mixture of 4-chloro-3 (R) -hydroxybutanoic acid octyl ester (1.5 g), ethanol (3 ml) and trimethylamine (25 wt% solution) in water (3 ml) was heated to 80-90 ° C. for approx. 2 hours. The mixture is evaporated to dryness in vacuo to give 1.8 g of crude product. The crude product (1 g) was heated to 80-90 ° C in a 10% HCl solution (7 ml) for 1.5 hours. After evaporating the solvent under reduced pressure, the crude product was extracted twice with absolute ethanol (10 ml) and the ethanol was evaporated under vacuum. The crystalline residue was dissolved in a small amount of ethanol and L-carnitine chloride, m.p. 142 ° C (dec.); [α] -23.7 ° (c, 4.5, H 2 O), was precipitated in good yield (320 mg) by addition of ether.
L-Carnitinchlorid kan let omdannes til det farmaceutisk foretrukne indre L-carnitinsalt ved velkendte ionbytningsmetoder.L-Carnitine chloride can be readily converted to the pharmaceutically preferred internal L-carnitine salt by well known ion exchange methods.
20 Eksempel 370Example 370
Octyl-4-iod-3(R)-hydroxybutyrat (IX) ® 0 OH 0 . : 11 ‘ ixOctyl-4-iodo-3 (R) -hydroxybutyrate (IX) ® OH OH. : 11 'ix
En blanding af octyl-4-chlor-3(R)-hydroxybutyrat (II) (1,426 g) og vandfrit Nal (1,2 g) i 15 ml methyl-30 ethylketon blev kogt under tilbagesvaling i 24 timer. Blandingen blev rotationsinddampet og omsat med ether (100 ml) og vand (50 ml). Den organiske fase blev skilt fra og vasket med en 10% natriumsulfatopløsning (150 ml) samt med en saltvandsopløsning (150 ml) og tøret over 35 vandfrit natriumsulfat. Opløsningsmidlet blev afdrevet under reduceret tryk, hvorved der fremkom 1,762 g af IX som en lys, gul olie. IR (tynd film) 3460 cm”1 (OH) og 1730 cm”1 (ester C=0). PMR (CDC13) 3,93-4,27 (m, 3H), 21A mixture of octyl-4-chloro-3 (R) -hydroxybutyrate (II) (1.426 g) and anhydrous NaI (1.2 g) in 15 ml of methyl-ethyl ketone was refluxed for 24 hours. The mixture was rotary evaporated and reacted with ether (100 ml) and water (50 ml). The organic phase was separated and washed with a 10% sodium sulfate solution (150 ml) as well as with a brine solution (150 ml) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 1.762 g of IX as a light yellow oil. IR (thin film) 3460 cm ”1 (OH) and 1730 cm” 1 (ester C = 0). PMR (CDCl3) 3.93-4.27 (m, 3H), 21
DK 163917 BDK 163917 B
3,17 (d, 2H), 2,50 (d, 2H), 1,50-1,87 (m 2H), 1,30 (bs, 12H), 0,93 (m 3H).3.17 (d, 2H), 2.50 (d, 2H), 1.50-1.87 (m 2H), 1.30 (bs, 12H), 0.93 (m 3H).
Omdannelse af octyl-4~iod-3(R)-hydroxybutyrat(IX) til 5 L-carnitin.Conversion of octyl-4-iodo-3 (R) -hydroxybutyrate (IX) to 5 L-carnitine.
f 3 2H O N—CH3f 3 2H O N-CH 3
i>Sl «3 _ f3 OB nOi> Sl «3 _ f3 OB nO
10 CT30H> i" ca3 oca310 CT30H> i "ca3 oca3
« X«X
15 9®3 OH9®3 OH
arfJ*XarfJ * X
CH3 o- L-Camitin 20CH3 o- L-Camitin 20
En 25% opløsning af trimethylamin i vand (8 ml) blev tilsat til en opløsning af IX (1,593 g) i methanol (15 ml). Blandingen henstod under omrøring i 20 timer ved 27°C. Opløsningsmidlerne og overskuddet af trime-25 thylamin blev afdrevet under reduceret tryk, hvorved der fremkom et semikrystallinsk, fast stof, X. Denne remanens blev vasket med små mængder ether for at fjerne octanol og derefter opløst i vand og ført gennem "Dowex l-x4 kolonne [OH form, 50-100 mesh., kolonnevolumen 30 2,5 x 15 cm]. Kolonnen blev vasket med destilleret vand.A 25% solution of trimethylamine in water (8 ml) was added to a solution of IX (1.593 g) in methanol (15 ml). The mixture was allowed to stir for 20 hours at 27 ° C. The solvents and excess trimethylamine were stripped under reduced pressure to give a semi-crystalline solid, X. This residue was washed with small amounts of ether to remove octanol and then dissolved in water and passed through Dowex l-x4. column [OH form, 50-100 mesh., column volume 30 2.5 x 15 cm] The column was washed with distilled water.
Fjernelse under vakuum af opløsningsmidlet fra de første 200 ml eluat gav L-carnitin som et hvidt krystallinsk, fast stof (490 mg, 65% udbytte) [a]^ -29,2° (c, 6,5 H20).Vacuum removal of the solvent from the first 200 ml of eluate gave L-carnitine as a white crystalline solid (490 mg, 65% yield) [α] D -29.2 ° (c, 6.5 H2 O).
3535
Eksempel 371Example 371
Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af hexyl-4-chlor-3(R)-hydroxybutyrat 22The same procedure as in Example 370 was repeated using hexyl 4-chloro-3 (R) -hydroxybutyrate 22
DK 163917 BDK 163917 B
til opnåelse af hexyl-4-iod-3(R)-hydroxybutyrat, som derefter blev omdannet til L-carnitin.to obtain hexyl 4-iodo-3 (R) -hydroxybutyrate, which was then converted to L-carnitine.
Eksempel 372 5 Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af heptyl-4-chlor-3(R)-hydroxybutyrat til opnåelse af heptyl-4-iod-3(R)-hydroxybutyrat, som derefter blev omdannet til L-carnitin.Example 372 The same procedure as in Example 370 was repeated using heptyl-4-chloro-3 (R) -hydroxybutyrate to obtain heptyl-4-iodo-3 (R) -hydroxybutyrate, which was then converted to L carnitine.
10 Eksempel 373Example 373
Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af decyl-4-chlor-3(R)-hydroxybutyrat til opnåelse af decyl-4-iod-3(R)-hydroxybutyrat, som derefter blev omdannet til L-carnitin.The same procedure as in Example 370 was repeated using decyl-4-chloro-3 (R) -hydroxybutyrate to give decyl-4-iodo-3 (R) -hydroxybutyrate, which was then converted to L-carnitine.
1515
Eksempel 374Example 374
Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af methyl-4-chlor-3(R)-hydroxybutyrat (VIII) til opnåelse af methyl-4-iod-3(R)-hydroxybuty-20 rat, som derefter blev omdannet til L-carnitin.The same procedure as in Example 370 was repeated using methyl 4-chloro-3 (R) hydroxybutyrate (VIII) to obtain methyl 4-iodo-3 (R) hydroxybutyrate, which was then converted to L-carnitine.
Eksempel 375Example 375
Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af ethyl-4-chlor-3(R)-hydroxybutyrat 25 til opnåelse af ethyl-4-iod-3(R)-hydroxybutyrat, som derefter blev omdannet til L-carnitin.The same procedure as in Example 370 was repeated using ethyl 4-chloro-3 (R) hydroxybutyrate 25 to give ethyl 4-iodo-3 (R) hydroxybutyrate which was then converted to L-carnitine.
Eksempel 376Example 376
Den samme fremgangsmåde som i eksempel 370 blev 30 gentaget med brug af n-propyl-4-chlor-3(R)-hydroxybutyrat til opnåelse af n-propyl-4-iod-3(R)-hydroxybutyrat, som efterefter blev omdannet til L-carnitin.The same procedure as in Example 370 was repeated using n-propyl-4-chloro-3 (R) -hydroxybutyrate to obtain n-propyl-4-iodo-3 (R) -hydroxybutyrate, which was subsequently converted to L-carnitine.
Eksempel 377 35 Den samme fremgangsmåde som i eksempel 370 blev gentaget med brug af n-butyl-4-chlor-3(R)-hydroxybutyrat til opnåelse af n-butyl-4-iod-3(R)-hydroxybutyrat, scm derefter blev omdannet til L-carnitin.Example 377 The same procedure as in Example 370 was repeated using n-butyl-4-chloro-3 (R) -hydroxybutyrate to obtain n-butyl-4-iodo-3 (R) -hydroxybutyrate, converted to L-carnitine.
DK 163917BDK 163917B
2323
Repræsentative gær og fungi, der danner det ønskede enzym, er opstillet i henholdsvis tabel 1 og tabel 2.Representative yeasts and fungi that form the desired enzyme are listed in Table 1 and Table 2, respectively.
5 Tabel 1 (Gær) 1. Candida lipolytica NRRL Y-1095 2. Candida pseudotropjcalis NRRL Y-1264 3. Mycoderma cerevisiae NRRL Y-1615 10 4· Torala lactosa NRRL Y-329 5. Geotrichum candidun NRRL Y-552 6. Hansenula anomala NRRL Y-366 7. Hansenula subpelliculosa NRRL Y-1683 8. Pichia alcoholophila NRRL Y-2026 15 S ac charomvc esc e revi s i ae NRRL Y-12,632 10. Saccharomyces lactis NRRL Y-1140 11- Zygosaccharomyces priorianus NRRL Y-12,624 12.5 Table 1 (Yeast) 1. Candida lipolytica NRRL Y-1095 2. Candida pseudotropjcalis NRRL Y-1264 3. Mycoderma cerevisiae NRRL Y-1615 10 4 · Torala lactosa NRRL Y-329 5. Geotrichum candidun NRRL Y-552 6. Hansenula anomala NRRL Y-366 7. Hansenula subpelliculosa NRRL Y-1683 8. Pichia alcoholophila NRRL Y-2026 12th
12. Saccharomyces acidifaciens NRRL Y-7253 13. Kloeckera corticis ATCC 20109 2o 14. Cryptococus mascerans' ATCC 24194 15. Rhodotorula sp. ATCC 20254 15. Candida albicans .ATCC 752 17. Dipodascus albidus ATCC 12934 18. Saccharomyces c'erevisiae (commercial Red Star) 25 19. Rhodotorula rubra NRRL Y-1592 20. Oosoora lactis ATCC 14318 NRRL --Northern Regional Research Lab. at Peoria,12. Saccharomyces acidifaciens NRRL Y-7253 13. Kloeckera corticis ATCC 20109 2o 14. Cryptococus mascerans' ATCC 24194 15. Rhodotorula sp. ATCC 20254 15. Candida albicans .ATCC 752 17. Dipodascus albidus ATCC 12934 18. Saccharomyces c'erevisiae (commercial Red Star) 25 19. Rhodotorula rubra NRRL Y-1592 20. Oosoora lactis ATCC 14318 NRRL --Northern Regional Research Lab. at Peoria,
Illinois.Illinois.
30 ATCC - American Type Culture Collection at Rockville, Maryland.30 ATCC - American Type Culture Collection at Rockville, Maryland.
DK 163917BDK 163917B
2424
Tabel 2 (Fungi) 1. Gliocladium virens ATCC 13362 2. Caldariomyces fumago ATCC 16373 5 3- Linderina pennisopora ATCC 12442 4. Aspergillus ochraceus NRRL 405 5. Trichoderma lignormn ATCC 8678 6. Heterocephalum autantiacum ATCC 16328 7. Entomophthora coronata NRRL 1912 10 8* Scopulariopsis constantini NRRL 1860 9. Zygorhvnchus heterogamus ATCC 6743 10. Scopulariopsis brevicaulis NRRL 2157 11. ·Rhizopus arrhizus NRRL 2286 12. Penicillium thomii NRRL 2077 15 13. Wucor hieaali3 (-) NRRL 4088 14. Byssochlaays nivea ATCC 12550 15. Penicillium patulum NRRL 1952 16. Metarrhizium anisooliae ATCC 24942 17. Penicillium islandicum ATCC 10127 20 18. Cunninghamella elegans ATCC 10028a 19. Cunninghamella echinulata ATCC 11585a 20. Aspergillus fumigatus ATCC 16907 21. Aspergillus amstelodami NRRL 90 22. Gliocladium roseum ATCC 10521 25 23. Aspergillus gjqanteus ATCC 10059 24. Absidia blakeleeana ATCC 10148b 25. Penicillium rocueforti NRRL 849aTable 2 (Fungi) 1. Gliocladium virens ATCC 13362 2. Caldariomyces fumago ATCC 16373 5 3- Linderina pennisopora ATCC 12442 4. Aspergillus ochraceus NRRL 405 5. Trichoderma lignormn ATCC 8678 6. Heterocephalum autantiacum ATCC 16328 7. Entomophthora corona 10 * Scopulariopsis constantini NRRL 1860 9. Zygorhvnchus heterogamus ATCC 6743 10. Scopulariopsis brevicaulis NRRL 2157 11. Rhizopus arrhizus NRRL 2286 12. Penicillium thomii NRRL 2077 15 13. Wucor hieaali3 (-) NRRL 4088 14. Byssochlaays nivea ATCC 12550 NRRL 1952 16. Metarrhizium anisooliae ATCC 24942 17. Penicillium islandicum ATCC 10127 20 18. Cunninghamella elegans ATCC 10028a 19. Cunninghamella echinulata ATCC 11585a 20. Aspergillus fumigatus ATCC 16907 21. Aspergillus amstelodami NRRL 90 22. Gliocladium ridgeum ATCC ATCC 10059 24. Absidia blakeleeana ATCC 10148b 25. Penicillium rocueforti NRRL 849a
Claims (24)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44717182 | 1982-12-06 | ||
US06/447,171 US4642290A (en) | 1982-12-06 | 1982-12-06 | Process for preparing a compound for use in the production of L-carnitine |
US54495783A | 1983-10-24 | 1983-10-24 | |
US54495783 | 1983-10-24 |
Publications (4)
Publication Number | Publication Date |
---|---|
DK559283D0 DK559283D0 (en) | 1983-12-05 |
DK559283A DK559283A (en) | 1984-06-07 |
DK163917B true DK163917B (en) | 1992-04-21 |
DK163917C DK163917C (en) | 1992-09-14 |
Family
ID=27034888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK559283A DK163917C (en) | 1982-12-06 | 1983-12-05 | GAMMA-SUBSTITUTED BETA-HYDROXYBUTANIC ACID DERIVATIVES AND PROCEDURES FOR PREPARING THEM |
Country Status (23)
Country | Link |
---|---|
JP (1) | JPH0767674A (en) |
KR (1) | KR840008165A (en) |
AT (1) | AT393136B (en) |
AU (1) | AU566906B2 (en) |
CA (1) | CA1225956A (en) |
CH (1) | CH661498A5 (en) |
DE (1) | DE3344085C2 (en) |
DK (1) | DK163917C (en) |
ES (1) | ES8601305A1 (en) |
FI (1) | FI81115C (en) |
FR (1) | FR2537130B1 (en) |
GB (1) | GB2132614B (en) |
GR (1) | GR78767B (en) |
IE (1) | IE56322B1 (en) |
IL (1) | IL70352A (en) |
IT (1) | IT1167289B (en) |
LU (1) | LU85115A1 (en) |
NL (1) | NL8304190A (en) |
NO (1) | NO159291C (en) |
PH (1) | PH20456A (en) |
PT (1) | PT77780B (en) |
SE (1) | SE455501B (en) |
TR (1) | TR23136A (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK544284A (en) * | 1983-12-06 | 1985-06-07 | Hoffmann La Roche | PROCEDURE FOR THE PREPARATION OF OPTIC ACTIVE PROPIONIC ACID DERIVATIVES |
IT1181908B (en) * | 1984-07-12 | 1987-09-30 | Debi Derivati Biologici | PROCEDURE FOR THE PREPARATION OF L-CARNITINA |
IT1181812B (en) * | 1984-07-27 | 1987-09-30 | Sigma Tau Ind Farmaceuti | PROCEDURE FOR THE PREPARATION OF THE GAMMA-DIMETHYLAMINE L-BETA-HYDROXYBUTIRRIC ACID |
IT1190358B (en) * | 1985-05-24 | 1988-02-16 | Sclavo Spa | PROCEDURE FOR THE PREPARATION OF L-CARNITINA |
JPS62126997A (en) * | 1985-11-28 | 1987-06-09 | Nippon Synthetic Chem Ind Co Ltd:The | Production of optically active gamma-halo-beta hydroxybutyric ester |
IT1189070B (en) * | 1986-03-14 | 1988-01-28 | Donegani Guido Ist | PROCESS FOR THE PREPARATION OF THE L (-) - CARNITINE CHLORIDE FROM FOREIGN 3,4-EPOXYBUTYRRICS |
JPH0678277B2 (en) * | 1988-02-19 | 1994-10-05 | 高砂香料工業株式会社 | Process for producing optically active alcohol and its derivative |
JP2939646B2 (en) * | 1990-07-17 | 1999-08-25 | チッソ株式会社 | 4-Substituted-2-hydroxybutanoic acid esters and production method |
US5215919A (en) * | 1991-02-25 | 1993-06-01 | Takeda Chemical Industries, Ltd. | Process for producing optically active 2-hydroxycycloalkanecarboxylic acid esters using microbially derived reductase |
US5324662A (en) | 1992-05-15 | 1994-06-28 | E. R. Squibb & Sons, Inc. | Stereoselective microbial or enzymatic reduction of 3,5-dioxo esters to 3-hydroxy-5-oxo, 3-oxo-5-hydroxy, and 3,5-dihydroxy esters |
JP3155107B2 (en) * | 1993-01-12 | 2001-04-09 | ダイセル化学工業株式会社 | Method for producing optically active 4-halo-3-hydroxybutyrate |
JP2000189170A (en) | 1998-05-08 | 2000-07-11 | Daicel Chem Ind Ltd | Production of optically active 4-halo-3-hydroxybutyric acid ester |
DK1619191T3 (en) | 1998-08-05 | 2011-01-31 | Kaneka Corp | Process for the preparation of optically active 2- [6-hydroxymethyl) -1,3-dioxan-4-yl] -acetic acid derivatives |
BR0305767A (en) * | 2002-08-09 | 2005-05-24 | Codexis Inc | Methods and compositions for the preparation of 4-substituted 3-hydroxybutyric acid derivatives |
DE10315760A1 (en) * | 2003-04-07 | 2004-10-21 | Basf Ag | L-carnitine dehydrogenases, their derivatives and a process for the preparation of substituted (S) -alkanols |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931410A (en) * | 1974-02-28 | 1976-01-06 | The Upjohn Company | Composition and method of use |
CH589604A5 (en) * | 1974-04-26 | 1977-07-15 | Lonza Ag | |
JPS5139634A (en) * | 1974-09-27 | 1976-04-02 | Ono Pharmaceutical Co | Ganma amino beeta hidorokishibutansananirido no seizoho |
JPS6017776B2 (en) * | 1979-11-07 | 1985-05-07 | 電気化学工業株式会社 | Production method of γ-chloro-β-hydroxybutyric acid alkyl ester |
JPS5950661B2 (en) * | 1980-07-28 | 1984-12-10 | 電気化学工業株式会社 | Method for producing γ-amino-β-hydroxybutyric acid |
JPS5950663B2 (en) * | 1981-04-28 | 1984-12-10 | 電気化学工業株式会社 | Method for producing γ-amino-β-hydroxybutyric acid |
-
1983
- 1983-11-22 IE IE2732/83A patent/IE56322B1/en not_active IP Right Cessation
- 1983-11-28 AU AU21758/83A patent/AU566906B2/en not_active Ceased
- 1983-11-29 CA CA000442170A patent/CA1225956A/en not_active Expired
- 1983-11-30 IL IL8370352A patent/IL70352A/en not_active IP Right Cessation
- 1983-12-01 GR GR73128A patent/GR78767B/el unknown
- 1983-12-02 FI FI834419A patent/FI81115C/en not_active IP Right Cessation
- 1983-12-02 CH CH6448/83A patent/CH661498A5/en not_active IP Right Cessation
- 1983-12-05 GB GB08332359A patent/GB2132614B/en not_active Expired
- 1983-12-05 SE SE8306714A patent/SE455501B/en not_active IP Right Cessation
- 1983-12-05 IT IT8324018A patent/IT1167289B/en active
- 1983-12-05 PH PH29928A patent/PH20456A/en unknown
- 1983-12-05 NO NO834461A patent/NO159291C/en unknown
- 1983-12-05 AT AT4237/83A patent/AT393136B/en not_active IP Right Cessation
- 1983-12-05 LU LU85115A patent/LU85115A1/en unknown
- 1983-12-05 ES ES83527807A patent/ES8601305A1/en not_active Expired
- 1983-12-05 DK DK559283A patent/DK163917C/en not_active IP Right Cessation
- 1983-12-06 FR FR8319505A patent/FR2537130B1/en not_active Expired
- 1983-12-06 DE DE3344085A patent/DE3344085C2/en not_active Expired - Fee Related
- 1983-12-06 TR TR10354/83A patent/TR23136A/en unknown
- 1983-12-06 KR KR1019830005765A patent/KR840008165A/en not_active Application Discontinuation
- 1983-12-06 NL NL8304190A patent/NL8304190A/en not_active Application Discontinuation
- 1983-12-06 PT PT77780A patent/PT77780B/en not_active IP Right Cessation
-
1993
- 1993-09-01 JP JP21771093A patent/JPH0767674A/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK163917B (en) | GAMMA-SUBSTITUTED BETA-HYDROXYBUTANIC ACID DERIVATIVES AND PROCEDURES FOR PREPARING THEM | |
US20090148917A1 (en) | Method for producing chiral alcohols | |
US4642290A (en) | Process for preparing a compound for use in the production of L-carnitine | |
JP4219976B2 (en) | Asymmetric reduction of 1,1,1-trifluoroacetone | |
US4710468A (en) | Process for preparing L-carnitine and chemical intermediates employed therein | |
JP3794702B2 (en) | Enzymatic preparation of chiral-α-tertiary carboxylic esters | |
US20080131944A1 (en) | Process For the Production of (S)-5-Chloro-2-Ispropylpent-4-Enoic Acid Esters | |
CA2116003C (en) | Arylalkanoic acid resolution | |
US7582469B2 (en) | Method for enantioselectively opening oxetan-2-ones | |
US7294492B2 (en) | Process for the manufacture of spiroketals | |
US5493063A (en) | Process for optical resolution of 1,2-diol derivatives | |
US4310635A (en) | Fermentative production of D(-)-β-hydroxyisobutyric acid | |
JPH11103878A (en) | Optically active 1-acyloxy-3-chloro-2-propanol, and production of optically active 3-chloro-1,2-propanediol | |
US5605833A (en) | Process for preparation of D-lactic acid from D,L lactic acid ester using wheat germ or pancreatic lipase | |
EP3063281B1 (en) | Process for the chiral resolution of acetates to (r)-alcohols employing fusarium proliferatum | |
JPH08289799A (en) | Enzymatic preparation of intermediate in synthesis of befloxatone | |
JP4536484B2 (en) | Process for producing optically active 2-hydroxy-5- (4-methoxyphenyl) -pentanoic acid ester | |
JP2981250B2 (en) | Method for producing D-pantothenonitrile | |
JP2002253289A (en) | Method for producing optically active lactone | |
JPS60153797A (en) | Fermentative production of mevalonic acid | |
JPH02227085A (en) | Production of d-pantothenic acid ester | |
JPH0679557B2 (en) | Process for producing optically active cis-cyclopropanecarboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |