DK163803B - CATALYST AND PROCEDURES FOR REFORMING CARBOHYDRIDES - Google Patents

CATALYST AND PROCEDURES FOR REFORMING CARBOHYDRIDES Download PDF

Info

Publication number
DK163803B
DK163803B DK037383A DK37383A DK163803B DK 163803 B DK163803 B DK 163803B DK 037383 A DK037383 A DK 037383A DK 37383 A DK37383 A DK 37383A DK 163803 B DK163803 B DK 163803B
Authority
DK
Denmark
Prior art keywords
catalyst
zeolite
barium
platinum
hydrocarbons
Prior art date
Application number
DK037383A
Other languages
Danish (da)
Other versions
DK37383D0 (en
DK163803C (en
DK37383A (en
Inventor
Waldeen C Buss
Thomas R Hughes
Original Assignee
Chevron Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/344,572 external-priority patent/US4435283A/en
Priority claimed from US06/393,160 external-priority patent/US4631123A/en
Application filed by Chevron Res filed Critical Chevron Res
Publication of DK37383D0 publication Critical patent/DK37383D0/en
Publication of DK37383A publication Critical patent/DK37383A/en
Publication of DK163803B publication Critical patent/DK163803B/en
Application granted granted Critical
Publication of DK163803C publication Critical patent/DK163803C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/24Controlling or regulating of reforming operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves

Description

DK 163803 BDK 163803 B

Den foreliggende opfindelse angår en ny katalysator til reformering af carbonhydrider, hvilken katalysator omfatter en storporet zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder 5 mindst ét gruppe VIII metal.The present invention relates to a novel hydrocarbon reforming catalyst comprising a large pore zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one Group VIII metal.

Katalytisk reformering er velkendt i jordolieindustrien og refererer til behandlingen af naphtha-fraktioner til forbedring af octantallet. De mere betydningsfulde carbonhydridreaktioner, der foregår 10 under reformeringsprocessen, indbefatter dehydrogene-ring af cyclohexaner til aromatiske forbindelser, dehydroisomerisering af alkylcyclopentaner til aromatiske forbindelser og dehydrocyclisering af paraffiner til aromatiske forbindelser. Hydrokrakningsreaktioner, 15 der giver høje udbytter af lette gasformige carbonhydrider, f.eks. methan, ethan, propan og butan, skal særlig minimeres under reformering, da disse nedsætter udbyttet af produkter i benzinkogeområdet.Catalytic reforming is well known in the petroleum industry and refers to the treatment of naphtha fractions to improve the octane number. The more significant hydrocarbon reactions that occur during the reforming process include dehydrogenation of cyclohexanes to aromatic compounds, dehydroisomerization of alkylcyclopentanes to aromatic compounds, and dehydrocyclization of paraffins to aromatic compounds. Hydrocracking reactions, which give high yields of light gaseous hydrocarbons, e.g. methane, ethane, propane and butane, should be particularly minimized during reform as they reduce the yield of products in the gasoline boiling range.

Dehydrocyclisering er en af hovedreaktionerne 20 ved reformeringsprocessen. De konventionelle fremgangsmåder til udførelse af disse hydrocycliseringsreaktioner er baseret på anvendelsen af katalysatorer, som omfatter et ædelmetal på en bærer. Kendte katalysatorer af denne art er baseret på aluminiumoxid, som bærer 0,2 25 til 0,8 vægt% platin og fortrinsvis et andet hjælpemetal.Dehydrocyclization is one of the main reactions 20 of the reforming process. The conventional methods for carrying out these hydrocyclization reactions are based on the use of catalysts which comprise a noble metal on a support. Known catalysts of this kind are based on alumina, which carry 0.2 to 0.8 weight percent platinum and preferably another auxiliary metal.

Muligheden for at anvende andre bærere end aluminiumoxid er også blevet undersøgt, og det er blevet foreslået at anvende visse molekylsigter, såsom X- og 30 Y-zeolitter, som viste sig at være egnede, forudsat at reaktant- og produktmolekylerne var tilstrækkelig små til at passere gennem zeolittens porer. Katalysatorer baseret på disse molekylsigter har imidlertid ikke haft kommerciel succes.The possibility of using carriers other than alumina has also been investigated, and it has been proposed to use certain molecular sieves, such as X and 30 Y zeolites, which proved to be suitable, provided that the reactant and product molecules were sufficiently small to pass through the pores of the zeolite. However, catalysts based on these molecular sieves have not had commercial success.

35 Ved den konventionelle fremgangsmåde til ud førelse af den ovennævnte dehydrocyclisering passeres paraffiner, som skal omdannes, over katalysatoren, i 2In the conventional process for carrying out the aforementioned dehydrocyclization, paraffins to be converted are passed over the catalyst for 2 hours.

DK 163803 BDK 163803 B

nærværelse af hydrogen, ved temperaturer af størrelsesordenen 500°C og tryk på fra 0,5 til 3 MPa.En del af paraffinerne omdannes til aromatiske carbonhydrider, og reaktionen er ledsaget af isomeriserings- og krak-5 ningsreaktioner, der også omdanner paraffinerne til isoparaffiner og lettere carbonhydrider.presence of hydrogen, at temperatures of the order of 500 ° C and pressures of from 0.5 to 3 MPa. Part of the paraffins is converted to aromatic hydrocarbons and the reaction is accompanied by isomerization and cracking reactions which also convert the paraffins to isoparaffins. and lighter hydrocarbons.

Omdannelsesgraden med hensyn til omdannelsen af carbonhydriderne til aromatiske carbonhydrider varierer med reaktionsbetingelserne og arten af kataly-10 satoren.The degree of conversion with respect to the conversion of the hydrocarbons to aromatic hydrocarbons varies with the reaction conditions and the nature of the catalyst.

De hidtil anvendte katalysatorer har givet moderat tilfredsstillende resultater med tunge paraffiner, men mindre tilfredsstillende resultater med Cg-Cg-pa-raffiner, navnlig Cg-paraffiner. Katalysatorer baseret 15 på en type L zeolit er mere selektive med hensyn til dehydrocycliseringsreaktionen og kan anvendes til forbedring af omdannelsesgraden med hensyn til omdannelse til aromatiske carbonhydrider uden at kræve højere temperaturer, der sædvanligvis har en betydelig ugunstig 20 virkning på katalysatorens stabilitet, og giver fortrinlige resultater med Cg-Cg-paraffiner. Driftstid og : regenereringsdygtighed er imidlertid problemer, og tilfredsstillende regenereringsprocedurer kendes ikke.The catalysts used so far have yielded moderately satisfactory results with heavy paraffins, but less satisfactory results with Cg-Cg-pa raffins, especially Cg paraffins. Catalysts based on a type L zeolite are more selective in the dehydrocyclization reaction and can be used to improve the conversion rate to aromatic hydrocarbons without requiring higher temperatures, which usually have a significant adverse effect on the stability of the catalyst, and provide excellent results with Cg-Cg paraffins. However, operating time and: regeneration ability are problems and satisfactory regeneration procedures are not known.

Ved en anden kendt fremgangsmåde til déhydrocyclisering af 25 alifatiske carbonhydrider bringes carbonhydrider i nærværelse af hydrogen i kontakt med en katalysator, som består i det væsentlige af en type L zeolit med udskiftelige kationer, af hvilke mindst 90% er alkalimetalioner valgt blandt ioner af natrium, lithium, 30 kalium, rubidium og caesium, og som indeholder mindst ét metal valgt blandt metaller fra gruppe VIII i grundstoffernes periodiske system, tin og germanium, idet nævnte metal eller metaller indbefatter mindst ét metal fra gruppe VIII i det periodiske system med dehydrogene-35 rende virkning, således at i det mindste en del af fødematerialet omdannes til aromatiske carbonhydrider.In another known method for dehydrocyclization of 25 aliphatic hydrocarbons, hydrocarbons are contacted in the presence of hydrogen with a catalyst consisting essentially of a type L zeolite with interchangeable cations, of which at least 90% are alkali metal ions selected from sodium ions. lithium, potassium, rubidium and cesium, and containing at least one metal selected from Group VIII metals in the Periodic Table of the Elements, tin and Germanium, said metal or metals including at least one Group VIII metal of the Periodic System of Dehydrogenase-35 such that at least part of the feed material is converted to aromatic hydrocarbons.

33

DK 163803 BDK 163803 B

Ved en særlig fordelagtig udførelsesform for denne fremgangsmåde anvendes en platin/alkalimetal/type L zeolit-katalysator som følge af dens fortrinlige virkning og selektivitet med hensyn til at omdanne hexaner 5 og heptaner til aromatiske forbindelser, men driftstiden forbliver et problem.In a particularly advantageous embodiment of this process, a platinum / alkali metal / type L zeolite catalyst is used due to its excellent action and selectivity in converting hexanes 5 and heptanes to aromatic compounds, but the operating time remains a problem.

Manglerne ved den kendte teknik overvindes ved hjælp af katalysatoren ifølge opfindelsen, der er ejendommelig ved, at den også indeholder et jordalkali-10 metal valgt blandt barium, strontium og calcium, og at katalysatorens selektivitetsindeks er større end 60%.The deficiencies of the prior art are overcome by the catalyst according to the invention, which is characterized in that it also contains an alkaline earth metal selected from barium, strontium and calcium and that the catalyst selectivity index is greater than 60%.

Hensigtsmæssige udførelsesformer for katalysatoren ifølge opfindelsen er angivet i krav 4-9.Suitable embodiments of the catalyst of the invention are set forth in claims 4-9.

Katalysatoren ifølge opfindelsen kan benyttes til 15 reformering af carbonhydrider med en yderst høj selektivitet med hensyn til omdannelse af alkaner til aromatiske forbindelser, og endvidere giver katalysatoren en tilfredsstillende driftstid.The catalyst of the invention can be used to reform hydrocarbons with an extremely high selectivity for the conversion of alkanes to aromatic compounds, and furthermore provides the catalyst with a satisfactory operating time.

Opfindelsen angår derfor også en fremgangsmåde 20 til reformering af carbonhydrider, ved hvilken man bringer de pågældende carbonhydrider i kontakt med en katalysator, som omfatter en storporet zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder mindst ét gruppe VIII metal, 25 hvilken fremgangsmåde er ejendommelig ved, at katalysatoren også indeholder et jordalkalimetal valgt blandt barium, strontium og calcium, og at procesbetingelserne vælges blandt en temperatur på fra 400 til 600°C, en LHSV på fra 0,3 til 10, et manometer-30 tryk på fra 0 til 3,45 MPa og et H2/HC-forhold på fra 1:1 til 10:1, således at selektiviteten med hensyn til n-hexan-dehydrocyclisering er større end 60%.The invention therefore also relates to a process for reforming hydrocarbons by contacting the relevant hydrocarbons with a catalyst comprising a large pore zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one group VIII metal, which process is characterized in that the catalyst also contains an alkaline earth metal selected from barium, strontium and calcium, and that the process conditions are selected from a temperature of from 400 to 600 ° C, an LHSV of from 0.3 to 10, a pressure gauge -30 pressures of from 0 to 3.45 MPa and a H2 / HC ratio of from 1: 1 to 10: 1, so that the selectivity for n-hexane dehydrocyclization is greater than 60%.

44

DK 163803 BDK 163803 B

Opfindelsen angår endvidere en fremgangsmåde til reformering af carbonhydrider, ved hvilken man under reformeringsbetingelser og i nærværelse af hydrogen bringer de pågældende carbonhydrider i kontakt 5 med en første katalysator, som omfatter en metaloxidbærer, hvori der i intim blanding er inkorporeret platin og rhenium, hvilken fremgangsmåde er ejendommelig ved, at man derefter bringer carbonhydriderne i kontakt med en anden katalysator, som omfatter en 10 storporet zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder mindst ét gruppe VIII metal og et jordalkalimetal valgt blandt barium, strontium og calcium, hvorhos den anden katalysators selektivitetsindeks er større end 60%.The invention further relates to a process for reforming hydrocarbons, in which, under reforming conditions and in the presence of hydrogen, the relevant hydrocarbons are contacted with a first catalyst comprising a metal oxide support in which platinum and rhenium are incorporated in an intimate mixture. is characterized in that the hydrocarbons are then contacted with another catalyst which comprises a 10 large pore zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one group VIII metal and an alkaline earth metal selected from barium, strontium and calcium, where the selectivity index of the second catalyst is greater than 60%.

15 Der kan benyttes hensigtsmæssige udførelsesformer for fremgangsmåderne ifølge opfindelsen som angivet i krav 10 og 11.Suitable embodiments of the methods of the invention as set forth in claims 10 and 11 may be used.

Den storporede zeolit er fortrinsvis en type L zeolit, som indeholder fra 0,1 til 5 vægt% platin og 20 fra 0,1 til 35 vægt% barium. Carbonhydriderne bringes i kontakt med zeolitten af den barium-udvekslede type ved en temperatur på fra 400°C til 600°C (fortrinsvis 430°C til 550°C), en LHSV på fra 0,3 til 5, et manometertryk på fra 0 til 3,45 MPa (fortrinsvis fra 0,35 25 til 2,07 MPa), og et ^/HC-forh'old på fra 1:1 til 10:1 (fortrinsvis fra 2:1 til 6:1).The large pore zeolite is preferably a type L zeolite containing from 0.1 to 5% by weight platinum and from 0.1 to 35% by weight barium. The hydrocarbons are contacted with the barium-exchanged zeolite at a temperature of from 400 ° C to 600 ° C (preferably 430 ° C to 550 ° C), an LHSV of 0.3 to 5, a pressure gauge of 0 to 3.45 MPa (preferably from 0.35 to 2.07 MPa), and an H / HC ratio of from 1: 1 to 10: 1 (preferably from 2: 1 to 6: 1).

Kort beskrevet indebærer den foreliggende opfindelse anvendelsen af en katalysator, som omfatter en storporet zeolit, et jordalkalimetal og et 30 metal fra gruppe VIII ved reformering af carbonhydrider, navnlig dehydrocyclisering af alkaner, med en yderst høj selektivitet med hensyn til omdannelse af hexaner til aromatiske forbindelser.Briefly, the present invention involves the use of a catalyst comprising a large-pore zeolite, an alkaline earth metal and a Group VIII metal in hydrocarbon reforming, in particular dehydrocyclization of alkanes, with an extremely high selectivity in converting hexanes to aromatic compounds. .

Udtrykket "selektivitet" som anvendt i forbindel-35 se med den foreliggende opfindelse defineres som pro- 5The term "selectivity" as used in connection with the present invention is defined as the process

DK 163803 BDK 163803 B

centdelen af mol paraffin omdannet til aromater i forhold til mol omdannet til aromater og krakkede produkter, dvs.the proportion of moles of paraffin converted to aromatics compared to moles converted to aromatics and cracked products, ie.

100 x mol paraffiner omdannet 5 selektivitet = ti! aromater......100 x moles of paraffins converted to selectivity = ten! aromatics ......

b selektivitet mol paraffiner on,dannet til aromater og krakkede produkter Isomeriseringsreaktioner og alkylcyclopentan-dannelse tages ikke i betragtning ved bestemmelse af selektivitet.b selectivity moles of paraffins on aromatics and cracked products Isomerization reactions and alkylcyclopentane formation are not taken into account in the determination of selectivity.

10 Udtrykket "selektivitet med hensyn til n-hexan" som anvendt ved den foreliggende opfindelse defineres som procentdelen af mol n-hexan omdannet til aromater i forhold til mol omdannet til aromater og krakkede produkter.The term "n-hexane selectivity" as used in the present invention is defined as the percentage of moles of n-hexane converted to aromatics relative to moles converted to aromatics and cracked products.

15 Selektiviteten med hensyn til omdannelse af paraffiner til aromater er et mål for fremgangsmådens effektivitet med hensyn til omdannelse af paraffiner til de ønskede og værdifulde produkter, dvs. aromater og hydrogen i modsætning til de mindre ønskelige hydro-20 krakningsprodukter.The selectivity of conversion of paraffins to aromatics is a measure of the efficiency of the process in converting paraffins to the desired and valuable products, ie. aromatics and hydrogen as opposed to the less desirable hydrocracking products.

En iboende egenskab hos enhver dehydrocyclise-ringskatalysator er dens selektivitetsindeks. Selektivitetsindekset defineres som "selektiviteten med hensyn til n-hexan", når man anvender n-hexan som fødemateriale 25 og arbejder ved 490°C, 0,790 MPa (abs.), en LHSV på 3 og et I^/HC-forhold på 3, efter 20 timer.An inherent property of any dehydrocyclization catalyst is its selectivity index. The selectivity index is defined as "n-hexane selectivity" when using n-hexane as feedstock 25 and operating at 490 ° C, 0.790 MPa (abs.), An LHSV of 3, and an I / HC ratio of 3 , after 20 hours.

Højselektive katalysatorer producerer mere hydrogen end mindre selektive katalysatorer, da der dannes hydrogen, når paraffiner omdannes til aromatiske 30 forbindelser, og forbruges hydrogen, når paraffiner omdannes til krakkede produkter. Ved forøgelse af processens selektivitet forøges mængden af dannet hydrogen (mere aromatisering) og formindskes mængden af forbrugt hydrogen (mindre krakning).Highly selective catalysts produce more hydrogen than less selective catalysts as hydrogen is formed when paraffins are converted to aromatic compounds and hydrogen is consumed when paraffins are converted into cracked products. By increasing the selectivity of the process, the amount of hydrogen formed (more aromatization) is increased and the amount of hydrogen consumed (less cracking) is reduced.

35 En anden fordel ved anvendelse af højselektive katalysatorer er, at det ved hjælp af højselektive katalysatorer producerede hydrogen er renere end det ved hjælp af mindre selektive katalysatorer producerede.Another advantage of using highly selective catalysts is that the hydrogen produced by high selective catalysts is purer than that produced by less selective catalysts.

66

DK 163803 BDK 163803 B

Denne større renhed fremkommer, fordi der produceres mere hydrogen, medens der produceres mindre af lavtkogende carbonhydrider (krakkede produkter).This greater purity results because more hydrogen is produced while less is produced by low boiling hydrocarbons (cracked products).

Renheden af det ved reformering producerede hydrogen 5 er kritisk, hvis, som det sædvanligvis er tilfældet i et integreret raffinaderi, det producerede hydrogen udnyttes ved processer som hydrobehandling og hydro-krakning, der kræver i det mindste et vist minimalt partialtryk af hydrogen. Hvis renheden bliver alt for 10 lav, kan hydrogenet ikke længere anvendes til dette formål og må anvendes på en mindre værdifuld måde, f.eks. som brændselsgas.The purity of the hydrogen produced by reforming is critical if, as is usually the case in an integrated refinery, the produced hydrogen is utilized in processes such as hydro-treatment and hydro-cracking, which require at least some minimum partial pressure of hydrogen. If the purity becomes too low, the hydrogen can no longer be used for this purpose and must be used in a less valuable way, e.g. such as fuel gas.

Ved fremgangsmåden ifølge opfindelsen omfatter carbonhydridfødeblandingen fortrinsvis ikke-aromatiske 15 carbonhydrider, som indeholder mindst 6 carbonatomer. Fødematerialet er fortrinsvis i det væsentlige fri for svovl, nitrogen, metaller og andre kendte gifte for reformeringskatalysatorer .In the process of the invention, the hydrocarbon feed mixture preferably comprises non-aromatic hydrocarbons containing at least 6 carbon atoms. The feed material is preferably substantially free of sulfur, nitrogen, metals and other known toxins for reforming catalysts.

Dehydrocycliseringen udføres i nærværelse af hy-20 drogen ved et tryk, der er indstillet således, at det begunstiger reaktionen termodynamisk og begrænser uønskede hydrokrakningsreaktioner ved kinetiske midler. De anvendte nanometertryk ligger fortrinsvis fra 0 til 3,45 MPa, og mere foretrukket fra 0,35 til 2,07 MPa, idet mol-25 forholdet mellem hydrogen og carbonhydrider fortrinsvis er fra 1:1 til 10:1, og mere foretrukket fra 2:1 til 6:1.The dehydrocyclization is carried out in the presence of the hydrogen at a pressure which is adjusted to favor the reaction thermodynamically and limit undesired hydrocracking reactions by kinetic agents. The nanometer pressures used are preferably from 0 to 3.45 MPa, and more preferably from 0.35 to 2.07 MPa, with the molar ratio of hydrogen to hydrocarbons being preferably from 1: 1 to 10: 1, and more preferably from 2: 1 to 6: 1.

I temperaturområdet fra 400°C til 600°C foregår dehydrocycliseringsreaktionen med acceptabel hastighed og selektivitet.In the temperature range of 400 ° C to 600 ° C, the dehydrocyclization reaction takes place with acceptable rate and selectivity.

30 Hvis driftstemperaturen er under 400°C, er reak tionshastigheden utilstrækkelig, og følgelig er udbyttet for lavt til industrielle formål. Desuden er dehydrocyc-liseringsligevægten ugunstig ved lave temperaturer. Når driftstemperaturen er over 600°C, optræder der forstyr-35 rende sekundære reaktioner, såsom hydrokrakning og koksdannelse, hvilket i væsentlig grad formindsker udbyttet og forøger katalysatordeaktiveringsgraden. Det er derfor ikke tilrådeligt at overskride en temperatur på 600°C.If the operating temperature is below 400 ° C, the reaction rate is insufficient and, consequently, the yield is too low for industrial purposes. In addition, dehydrocyclization equilibrium is unfavorable at low temperatures. When the operating temperature is above 600 ° C, disruptive secondary reactions such as hydrocracking and coke formation occur, which substantially diminishes the yield and increases the catalyst activation rate. Therefore, it is not advisable to exceed a temperature of 600 ° C.

77

DK 163803 BDK 163803 B

Det foretrukne temperaturområde (430°C til 550°C) for dehydrocyclisering er det område, hvori processen er optimal med hensyn til aktivitet, selektivitet og stabiliteten af katalysatoren.The preferred temperature range (430 ° C to 550 ° C) for dehydrocyclization is the range in which the process is optimal in terms of activity, selectivity and catalyst stability.

5 Den specifikke volumetriske væsketilførselshastig hed LHSV for carbonhydriderne ligger fortrinsvis mellem 0,3 og 10.The specific volumetric liquid feed rate LHSV for the hydrocarbons is preferably between 0.3 and 10.

Den ifølge opfindelsen anvendte katalysator er en storporet zeolit ladet med én eller flere dehydrogene-10 rende bestanddele. Udtrykket "storporet zeolit" defineres som en zeolit med en effektiv porediameter på 6 til 15 ångstrøm.The catalyst used in the invention is a large pore zeolite charged with one or more dehydrogenating components. The term "large pore zeolite" is defined as a zeolite having an effective pore diameter of 6 to 15 angstroms.

Blandt de storporede krystallinske zeoliter, der har vist sig at være nyttige ved udøvelsen af den fore-15 liggende opfindelse, er type L zeolit og syntetiske zeoliter med faujasit-struktur, såsom zeolit X og zeolit Y, de vigtigste, og de har tilsyneladende porestørrelser af størrelsesordenen 7 til 9 ångstrøm.Among the large-pore crystalline zeolites which have been found to be useful in the practice of the present invention, type L zeolites and synthetic zeolites with faujasite structure such as zeolite X and zeolite Y are the most important, and apparently have pore sizes of the order of 7 to 9 angstroms.

En sammensætning af type L zeolit, udtrykt som 20 molforhold af oxider, kan gengives som følger: (0,9-l,3)M2/nO:Al2O3(5,2-6,9)Si02:yH20 hvori M betegner en kation, n betegner valensen af M, og y kan være en vilkårlig værdi fra 0 til ca. 9. Zeolit L, dens røntgenstrålediffraktionsmønster, dens egenskaber 25 og en fremgangsmåde til dens fremstilling er beskrevet nærmere i USA-patentskrift nr. 3.216.789. I kraft af henvisningen dertil inkorporeres USA-patentskrift nr.A composition of type L zeolite, expressed as a 20 molar ratio of oxides, may be represented as follows: (0.9-1.1) M2 / nO: Al2O3 (5.2-6.9) SiO2: yH2O wherein M represents a cation , n denotes the valence of M, and y may be any value from 0 to ca. 9. Zeolite L, its X-ray diffraction pattern, its properties and a process for its preparation are described in detail in U.S. Patent No. 3,216,789. By virtue of the reference thereto, U.S. Pat.

3.216.789 heri for at vise den foretrukne zeolit ifølge den foreliggende opfindelse. Den virkelige formel kan 30 variere uden ændring af krystalstrukturen; f.eks. kan molforholdet mellem silicium og aluminium (Si/Al) variere fra 1,0 til 3,5.3,216,789 herein to show the preferred zeolite of the present invention. The real formula can vary without changing the crystal structure; eg. For example, the molar ratio of silicon to aluminum (Si / Al) may range from 1.0 to 3.5.

Den kemiske formel for zeolit Y udtrykt som mol-forhold af oxider kan skrives som: 35 (0,7-1,1)Na20:A1203:xSi02:yH20 hvori x er en værdi større end 3 og op til ca. 6, og y kan være en værdi op til ca. 9. Zeolit Y har et karakteristisk røntgenstråle-pulverdiffraktionsmønster, der 8The chemical formula of zeolite Y expressed as molar ratio of oxides can be written as: 35 (0.7-1.1) Na 2 O: Al 2 O 3: xSiO 2: yH 2 O in which x is a value greater than 3 and up to approx. 6, and y may be a value up to approx. 9. Zeolite Y has a characteristic X-ray powder diffraction pattern that 8

DK 163803 BDK 163803 B

sammen med den ovenstående formel kan anvendes til identifikation. Zeolit Y er beskrevet nærmere i USA-patent-skrift nr. 3.130.007. I kraft af henvisningen dertil inkorporeres USA-patentskrift nr. 3.130.007 heri for at vi-5 se en zeolit, som er nyttig ved den foreliggende opfindelse.together with the above formula can be used for identification. Zeolite Y is described in greater detail in U.S. Patent No. 3,130,007. By reference thereto, U.S. Patent No. 3,130,007 is incorporated herein to show a zeolite useful in the present invention.

Zeolit X er en syntetisk krystallinsk zeolitisk molekylsigte, der kan gengives ved formlen: (0,7-1,1)M2^n0:Al20g : (2,0-3,0) SiC>2 ryl^O 10 hvori M betegner et metal, navnlig alkali- og jordalka-limetaller, n er valensen af M, og y kan have en vilkårlig værdi op til ca. 8 afhængig af identiteten af M og den krystallinske zeolits hydratationsgrad. Zeolit X, dens røntgenstrålediffraktionsmønster, dens egenskaber 15 og en fremgangsmåde til dens fremstilling er beskrevet nærmere i USA-patentskrift nr. 2.882.244. I kraft af henvisningen dertil inkorporeres USA-patentskrift nr.Zeolite X is a synthetic crystalline zeolite molecular sieve which can be represented by the formula: (0.7-1.1) M 2 n0: Al 2 Og: (2.0-3.0) SiC> 2 ryl 2 O 10 wherein M represents a metal, in particular alkali and alkaline earth limes, n is the valence of M, and y may have any value up to approx. 8, depending on the identity of M and the degree of hydration of the crystalline zeolite. Zeolite X, its X-ray diffraction pattern, its properties and a process for its preparation are described in detail in U.S. Patent No. 2,882,244. By virtue of the reference thereto, U.S. Pat.

2.882.244 heri for at vise en zeolit, der er nyttig ved den foreliggende opfindelse.2,882,244 herein to show a zeolite useful in the present invention.

20 Den foretrukne katalysator ifølge opfindelsen er en type L zeolit ladet med én eller flere dehydrogene-rende bestanddele.The preferred catalyst of the invention is a type L zeolite charged with one or more dehydrogenating components.

Et væsentligt element ved den foreliggende opfindelse er tilstedeværelsen af et jordalkalimetal i den 25 storporede zeolit. Dette jordalkalimetal må være enten barium, strontium eller calcium, fortrinsvis barium. Jordalkalimetallet kan inkorporeres i zeoliten ved syntese, imprægnering eller ionbytning. Barium foretrækkes frem for de andre jordalkalimetaller, da det giver en 30 noget mindre sur katalysator. Stærk aciditet er uønsket i katalysatoren, da det fremmer krakning, hvilket fører til lavere selektivitet.An essential element of the present invention is the presence of an alkaline earth metal in the large pore zeolite. This alkaline earth metal must be either barium, strontium or calcium, preferably barium. The alkaline earth metal can be incorporated into the zeolite by synthesis, impregnation or ion exchange. Barium is preferred over the other alkaline earth metals as it gives a somewhat less acidic catalyst. Strong acidity is undesirable in the catalyst as it promotes cracking, leading to lower selectivity.

Ifølge én udførelsesform ombyttes i det mindste en del af alkalimetallet med barium under anvendelse af 35 kendte metoder til ionbytning hos zeoliter. Dette indebærer, at man bringer zeoliten i kontakt med en opløsning indeholdende overskud af Ba -ioner. Bariumet skal udgøre fra 0,1 til 35 vægt% af zeoliten.According to one embodiment, at least part of the alkali metal is exchanged with barium using 35 known methods of ion exchange in zeolites. This implies contacting the zeolite with a solution containing excess Ba ions. The barium should comprise from 0.1 to 35% by weight of the zeolite.

DK 163803BDK 163803B

99

Dehydrocycliseringskatalysatorerne ifølge opfindelsen er ladet med ét eller flere gruppe VIII metaller, f.eks. nikkel, ruthenium, rhodium, palladium, iridium eller platin.The dehydrocyclization catalysts of the invention are charged with one or more Group VIII metals, e.g. nickel, ruthenium, rhodium, palladium, iridium or platinum.

5 De foretrukne gruppe VIII metaller er iridium og navnlig platin, som er mere selektive med hensyn til dehydrocyclisering og desuden er mere stabile under de-hydrocycliseringsreaktionsbetingelserne end andre gruppe VIII metaller.The preferred Group VIII metals are iridium and, in particular, platinum, which are more selective in dehydrocyclization and, moreover, are more stable under the dehydrocyclization reaction conditions than other Group VIII metals.

10 Den foretrukne procentmængde af platin i kataly satoren er mellem 0,1% og 5%.The preferred percentage of platinum in the catalyst is between 0.1% and 5%.

Gruppe VIII metaller indføres i den storporede zeolit ved syntese, imprægnering eller ombytning i en vandig opløsning af et passende salt. Når det ønskes at 15 indføre to gruppe VIII metaller i zeoliten, kan operationerne udføres samtidig eller efter hinanden.Group VIII metals are introduced into the large-pore zeolite by synthesis, impregnation or exchange in an aqueous solution of a suitable salt. When it is desired to introduce two Group VIII metals into the zeolite, the operations can be performed simultaneously or consecutively.

Platin kan eksempelvis indføres ved at imprægnere zeoliten med en vandig opløsning af tetramminplatin. (Hlndr trat, tetramminplatin (IIIhydroxid, dinitrodiamino-platin 20 eller tetramminplatin (II) chlorid. Ved en ionbytningsproces kan platin indføres ved anvendelse af kationiske platinkomplekser, såsom tetramminplatin(li)nitrat.For example, platinum can be introduced by impregnating the zeolite with an aqueous solution of tetrammin platinum. (Change trat, tetramminplatin (III hydroxide, dinitrodiamino-platinum 20 or tetramminplatin (II) chloride). In an ion exchange process, platinum can be introduced using cationic platinum complexes such as tetramminplatin (II) nitrate.

Et uorganisk oxid kan også anvendes som bærer til binding af den storporede zeolit, der indeholder gruppe 25 VIII metallet og jordalkalimetallet. Bæreren kan være et naturligt eller et syntetisk fremstillet uorganisk oxid eller en kombination af uorganiske oxider. Af typiske u-organiske oxidbærere, som kan anvendes, kan der nævnes lerarter, aluminiumoxid og siliciumoxid, hvori de sure 30 steder fortrinsvis er ombyttet med kationer, der ikke bibringer stærk aciditet (såsom Na, K, Rb, Cs, Ca, Sr eller Ba) .An inorganic oxide can also be used as a carrier for bonding the large-pore zeolite containing the Group 25 VIII metal and the alkaline earth metal. The carrier may be a natural or synthetically produced inorganic oxide or a combination of inorganic oxides. Typical inorganic oxide carriers which may be used are clays, alumina and silica, wherein the acidic sites are preferably exchanged with cations which do not confer strong acidity (such as Na, K, Rb, Cs, Ca, Sr or Ba).

Katalysatoren kan anvendes i enhver af de i teknikken kendte konventionelle typer apparatur. Den kan an-35 vendes i form af piller, pellets, granuler, knuste brudstykker eller forskellige specialformer, anbragt som et fast leje i en reaktionszone, og fødematerialet kan passeres derigennem i væskefase, dampfase eller blandet fa- 10The catalyst can be used in any of the conventional types of apparatus known in the art. It can be used in the form of pellets, pellets, granules, crushed fragments or various special forms, placed as a fixed bed in a reaction zone, and the feed material can be passed therethrough in liquid phase, vapor phase or mixed phase.

DK 163803 BDK 163803 B

se, og i enten opadgående eller nedadgående strømning. Alternativt kan den fremstilles i en passende form til anvendelse i bevægende lejer, eller ved fluidiseret-faststof-processer, ved hvilke fødematerialet passeres 5 opad gennem et turbulent leje af findelt katalysator.see, and in either upward or downward flow. Alternatively, it may be prepared in a suitable form for use in moving beds, or by fluid-solid processes in which the feedstock is passed upwardly through a turbulent bed of comminuted catalyst.

Efter at det eller de ønskede metaller er blevet indført, behandles katalysatoren i luft ved ca. 260°C og reduceres derefter i hydrogen ved temperaturer på fra 200°C til 700°C, fortrinsvis fra 400°C til 620°C.After the desired metal or metals have been introduced, the catalyst is treated in air at approx. 260 ° C and then reduced in hydrogen at temperatures of from 200 ° C to 700 ° C, preferably from 400 ° C to 620 ° C.

10 På dette trin er den klar til anvendelse ved de- hydrocycliseringsprocessen. I nogle tilfælde, f.eks. når metallet eller metallerne er blevet indført ved en ionbytningsproces, foretrækkes det imidlertid at fjerne enhver tilbageværende aciditet i zeoliten ved at behandle 15 katalysatoren med en vandig opløsning af et salt eller hydroxid af et passende alkali- eller jordalkalimetal til neutralisation af eventuelle hydrogenioner dannet under reduktionen af metalioner med hydrogen.At this stage, it is ready for use in the dehydrocyclization process. In some cases, e.g. however, when the metal or metals have been introduced by an ion exchange process, it is preferred to remove any residual acidity in the zeolite by treating the catalyst with an aqueous solution of a salt or hydroxide of an appropriate alkali or alkaline earth metal to neutralize any hydrogen ions formed during the reduction of metal ions with hydrogen.

Til opnåelse af optimal selektivitet skal tempe-20 raturen indstilles således, at reaktionshastigheden er kendelig, men omdannelsen er mindre end 98%, da for høj temperatur og for vidtgående reaktion kan have en ugunstig virkning på selektiviteten. Trykket skal også indstilles inden for et passende område. Et for højt tryk 25 vil sætte en termodynamisk (ligevægts-) grænse for den ønskede reaktion, specielt for hexan-aromatisering, og et for lavt tryk kan medføre koksdannelse og deaktivering.To achieve optimum selectivity, the temperature must be set so that the reaction rate is noticeable, but the conversion is less than 98% as too high temperature and excessive reaction can adversely affect the selectivity. The pressure must also be set within a suitable range. Too high pressure 25 will set a thermodynamic (equilibrium) limit for the desired reaction, especially for hexane aromatization, and too low pressure may cause coke formation and deactivation.

Selv om den primære fordel ved den foreliggende opfindelse ligger i forbedringen af selektiviteten med 30 hensyn til omdannelse af paraffiner (navnlig Cg-Cg-pa-raffiner) til aromater, har det også overraskende vist sig, at selektiviteten med hensyn til omdannelse af me-thylcyclopentan til benzen er fortrinlig. Denne reaktion, der på konventionelle reformeringskatalysatorer baseret 35 på chlorideret aluminiumoxid indebærer et syrekatalyseret isomerisationstrin, foregår på katalysatoren ifølge den foreliggende opfindelse med en selektivitet, der er lige så god som eller bedre end på de kendte katalysato- 11Although the primary advantage of the present invention lies in the enhancement of the selectivity of converting paraffins (in particular Cg-Cg paraffins) to aromatics, it has also surprisingly been found that the selectivity of thylcyclopentane for benzene is excellent. This reaction, involving conventional reforming catalysts based on chlorinated alumina, involves an acid-catalyzed isomerization step, taking place on the catalyst of the present invention with a selectivity as good as or better than that of the known catalysts.

DK 163803 BDK 163803 B

rer baseret på chlorideret aluininiumoxid. Den foreliggende opfindelse kan således også anvendes til at katalysere omdannelsen af udgangsmaterialer med et højt indhold af alkylnaphthener med 5-leddede ringe til aromater.is based on chlorinated alumina. Thus, the present invention can also be used to catalyze the conversion of starting materials with a high content of 5-membered alkyl naphthenes to aromatics.

5 ‘ En anden fordel ved den foreliggende opfindelse er, at katalysatoren ifølge den foreliggende opfindelse er mere stabil end kendte zeolitiske katalysatorer. Katalysatorens stabilitet, eller bestandighed mod deaktivering, bestemmer dens nyttige anvendelsestid. Længere 10 driftstider medfører færre stilstandsperioder og mindre udgifter til regenerering eller udskiftning af katalysatorladningen.Another advantage of the present invention is that the catalyst of the present invention is more stable than known zeolitic catalysts. The stability of the catalyst, or resistance to deactivation, determines its useful life. Longer 10 operating times result in fewer downtime and less expense for regenerating or replacing the catalyst charge.

Fremgangsmåden ifølge krav 3 består kort beskrevet i, at man bringer et carbonhydrid-fødemateriale i kon-1 5 takt med en første katalysator, der er en konventionel reformeringskatalysator, og en anden katalysator, der er en dehydrocycliseringskatalysator, som omfatter en storporet zeolit, et jordalkalimetal og et gruppe VIII metal.The process of claim 3 is briefly described in bringing a hydrocarbon feedstock into contact with a first catalyst which is a conventional reforming catalyst and a second catalyst which is a dehydrocyclization catalyst comprising a large pore zeolite, a alkaline earth metal and a Group VIII metal.

Anvendelsen af en reformeringskatalysator, der om-20 fatter en aluminiumoxidbærer, platin og rhenium, er diskuteret fuldt ud i USA-patentskrift nr. 3.415.737, som i kraft af henvisningen dertil inkorporeres heri for at vise anvendelsen af en fordelagtig konventionel reformeringskatalysator. Af andre fordelagtige bimetalkatalysa-25 torer kan der nævnes platin-tin, platin-germanium, platin-bly og platin-iridium.The use of a reforming catalyst comprising an alumina support, platinum and rhenium is fully discussed in U.S. Patent No. 3,415,737, which, by reference thereto, is incorporated herein to demonstrate the use of an advantageous conventional reforming catalyst. Other advantageous bimetal catalysts include platinum tin, platinum germanium, platinum lead and platinum iridium.

Carbonhydriderne kan bringes i kontakt med de to katalysatorer i serie, idet carbonhydriderne først bringes i kontakt med den første (konventionelle) reforme-30 ringskatalysator og derefter med den anden (dehydrocycli-serings-)katalysator, eller idet carbonhydriderne først bringes i kontakt med den anden katalysator og derefter med den første katalysator. Carbonhydriderne kan også parallelt bringes i kontakt med katalysatorerne, idet én 35 fraktion af carbonhydriderne bringes i kontakt med den første katalysator, og en anden fraktion af carbonhydriderne bringes i kontakt med den anden katalysator. Carbonhydriderne kan også samtidig bringes i'kontakt med 12The hydrocarbons may be contacted in series with the two catalysts, the hydrocarbons being first contacted with the first (conventional) reforming catalyst and then with the second (dehydrocyclization) catalyst, or the hydrocarbons first being contacted with the second catalyst and then with the first catalyst. The hydrocarbons can also be contacted in parallel with the catalysts, contacting one fraction of the hydrocarbons with the first catalyst and another fraction of the hydrocarbons contacting the second catalyst. The hydrocarbons can also be brought into contact with 12 at the same time

DK 163803 BDK 163803 B

begge katalysatorer i den samme reaktor.both catalysts in the same reactor.

Opfindelsen belyses nærmere ved hjælp af de efterfølgende eksempler, der beskriver særlig fordelagtige udførelsesformer for fremgangsmåden og katalysato-5 ren ifølge opfindelsen.The invention is further illustrated by the following examples which describe particularly advantageous embodiments of the process and catalyst of the invention.

Eksempel 1Example 1

En arabisk let "straight run", som var blevet underkastet hydrofining til fjernelse af svovl, oxygen og nitrogen, underkastedes reformering ved 0,79 MPa (abs.),en 10 LHSV på 2 og et I^/HC-forhold på 6 ved hjælp af tre forskellige katalysatorer. Fødeblandingen indeholdt 80,2 vol% paraffiner, 16,7 vol% naphthener og 3,1 vol% aroma-ter, og den indeholdt 21,8 vol% C5, 52,9 vol% Cg, 21,3 vol% Ο,η og 3,2 vol% Cg.An Arabic light "straight run" which had been subjected to hydrofining to remove sulfur, oxygen and nitrogen was subjected to reforming at 0.79 MPa (abs.), A 10 LHSV of 2 and an I / HC ratio of 6 at using three different catalysts. The food mixture contained 80.2 vol% paraffins, 16.7 vol% naphthenes and 3.1 vol% aromatics, and contained 21.8 vol% C5, 52.9 vol% Cg, 21.3 vol% Ο, η and 3.2 vol% Cg.

15 Ved det første forsøg underkastedes den arabiske let- I * te "straight run" reformering v^d 499UC under anvendelse af en kommerciel sulfideret platin-rhenium-aluminiumoxid-katalysator, der er beskrevet i USA-patentskrift nr. 3.415.737.In the first experiment, the Arab lightweight straight run reform under 499UC was subjected to a commercial sulphided platinum-rhenium alumina catalyst disclosed in U.S. Patent No. 3,415,737.

20 Ved det andet forsøg underkastedes den arabiske lette "straight run" reformering ved 493°C under anvendelse af en platin-kalium-type L zeolit-katalysator fremstillet ved: (1) imprægnering af en kalium-type L zeolit med 0,8% platin under anvendelse af tetrairminplatin (II).ni-25 trat, (2) tørring af katalysatoren, (3) calcinering af katalysatoren ved 260°C, og (4) reduktion af katalysatoren ved 480°C til 500°C i 1 time.In the second experiment, the Arab light straight run reforming was subjected to 493 ° C using a platinum-potassium-type L zeolite catalyst prepared by: (1) impregnating a potassium-type L zeolite with 0.8% platinum using tetrairminplatin (II) nitrate, (2) drying the catalyst, (3) calcining the catalyst at 260 ° C, and (4) reducing the catalyst at 480 ° C to 500 ° C for 1 hour. .

Ved det tredje forsøg, fremgangsmåden ifølge den foreliggende opfindelse, underkastedes den arabiske let-30 te "straight run" reformering ved 493°C under anvendelse af en platin-barium-type L zeolit-katalysator fremstillet ved: (1)ionbytning af en kalium-type L zeolit med et tilstrækkeligt rumfang af 0,17 molær bariumnitratopløs-ning til, at den indeholder et overskud af barium sammen-35 lignet med zeolitens ionbytningskapacitet, (2) tørring af den opnåede barium-ombyttede type L zeolit-katalysator, (3) calcinering af katalysatoren ved 590°C, (4) im- 13In the third experiment, the process of the present invention, the Arab lightweight straight run reforming was subjected to 493 ° C using a platinum-barium type L zeolite catalyst prepared by: (1) ion exchange of a potassium -type L zeolite having a sufficient volume of 0.17 molar barium nitrate solution to contain an excess of barium compared with the ion exchange capacity of the zeolite, (2) drying the obtained barium-exchanged type L zeolite catalyst, ( 3) calcination of the catalyst at 590 ° C, (4) im-13

DK 163803 BDK 163803 B

prægnering af katalysatoren med 0,8% platin under anvendelse af tetramminplatin (II)nitrat, (5) tørring af katalysatoren, (6) calcinering af katalysatoren ved 260°C, og (7) reduktion af katalysatoren i hydrogen ved 480°C til 5 500°C i 1 time.priming the catalyst with 0.8% platinum using tetrammin platinum (II) nitrate, (5) drying the catalyst, (6) calcining the catalyst at 260 ° C, and (7) reducing the catalyst in hydrogen at 480 ° C to 5 500 ° C for 1 hour.

Resultaterne af disse tre forsøg er anført i tabel I.The results of these three experiments are listed in Table I.

Tabel ITable I

Fødeblan- 499°C 493°C 493°CFood mixture 499 ° C 493 ° C 493 ° C

ding Pt/Re/ Pt/K/L Pt/Ba/Lthing Pt / Re / Pt / K / L Pt / Ba / L

alumini- _ umoxid___ 10 vægt% fødebl. 2,8 5,5 3,6 C2 6,6 2,5 1,3 C3 9,3 3,2 1,5 iC4 0,1 5,8 0,9 0,5 NC4 0,5 6,8 3,8 2,4 15 iC5 5,1 13,6 6,7 5,6 NC5 11,3 9,8 12,6 12,6alumina 10 wt% feed bl. 2.8 5.5 3.6 C2 6.6 2.5 1.3 C3 9.3 3.2 1.5 iC4 0.1 5.8 0.9 0.5 NC4 0.5 6.8 3 , 8 2.4 15 iC5 5.1 13.6 6.7 5.6 NC5 11.3 9.8 12.6 12.6

Cg + P+N 81,3 13,4 7,8 9,3Cg + P + N 81.3 13.4 7.8 9.3

Benzen 1,5 15,1 40,6 43,8 C^+ aromater 0,8 15,8 12,7 15,0 20 C5+ LV % udbytte 63 69,9 74,4Benzene 1.5 15.1 40.6 43.8 C + Aromatics 0.8 15.8 12.7 15.0 20 C5 + LV% yield 63 69.9 74.4

Hydrogen, SCF/B 470 1660 2050Hydrogen, SCF / B 470 1660 2050

Selektivitet, mol% 20 72 87Selectivity, mole% 20 72 87

Cg+ p —> aromaterCg + p -> aromatics

Denne forsøgsrække viser, at anvendelsen af en 25 platin-barium-type L zeolit-katalysator ved reformering giver en selektivitet med hensyn til omdannelse af hexa-ner til benzen, hvilken selektivitet er tydeligt bedre end den ved den kendte teknik opnåede. Det bemærkes, at der i forbindelse med denne bedrede selektivitet forekom-30 mer en forøgelse i produktionen af hydrogengas, der kan anvendes ved andre fremgangsmåder. Det bemærkes desuden, at renheden af hydrogenet er højere for Pt/Ba/L-forsøget, idet der dannes mere hydrogen og mindre + C2·This series of experiments shows that the use of a platinum-barium-type L zeolite catalyst in reforming provides a selectivity for converting hexanes to benzene, which selectivity is clearly better than that obtained in the prior art. It is noted that in connection with this enhanced selectivity there is an increase in the production of hydrogen gas which can be used in other methods. In addition, it is noted that the purity of the hydrogen is higher for the Pt / Ba / L test as more hydrogen and less + C

DK 163803 BDK 163803 B

1414

Eksempel 2Example 2

Der blev udført en anden forsøgsrække for at vise, at den foreliggende opfindelse vil fungere med andre storporede zeoliter end type L zeolit. Selektivitetsin-5 dekset måltes for fire katalysatorer.Another test series was performed to show that the present invention will work with large-pore zeolites other than type L zeolite. The selectivity index was measured for four catalysts.

Denne anden forsøgsrække udførtes under anvendelse af n-hexan som fødemateriale. Alle forsøg i denne række blev udført ved 490°C, 0,79 MPa (abs..), en LHSV på 3 og et I^/HC-forhold på 3.This second series of experiments was performed using n-hexane as feed material. All experiments in this series were performed at 490 ° C, 0.79 MPa (abs ..), an LHSV of 3 and an I / HC ratio of 3.

10 Ved det første forsøg anvendtes der en platin-ka- lium-type L zeolit, der var fremstillet ved de under den anden proces i eksempel 1 anførte procedurer.In the first experiment, a platinum-potassium type L zeolite was used which was prepared by the procedures set out in the second process of Example 1.

Ved det andet forsøg anvendtes der en platin-ba-rium-type L zeolit, der var fremstillet ved de under den 15 tredje proces i eksempel 1 anførte procedurer, bortset fra at bariumnitratopløsningen var 0,3 molær i stedet for 0,17 molær.In the second experiment, a platinum-barium type L zeolite was used which was prepared by the procedures set out in the third process of Example 1, except that the barium nitrate solution was 0.3 molar instead of 0.17 molar.

Ved det tredje forsøg anvendtes der en platin-na-trium-zeolit Y, som var fremstillet ved imprægnering af 20 en natrium-zeolit Y med PtiNH^) 4 (NO^) 2 til opnåelse af 0,8% platin, derefter tørring, calcinering af katalysatoren ved 260°C og reduktion i hydrogen ved 480 til 500°c.In the third experiment, a platinum sodium zeolite Y was prepared which was prepared by impregnating a sodium zeolite Y with PtiNH 4 (NO 2) 2 to obtain 0.8% platinum, then drying, calcination of the catalyst at 260 ° C and reduction in hydrogen at 480 to 500 ° C.

Ved det fjerde forsøg anvendtes der en platin-barium-zeolit Y, som var fremstillet ved ionbytning af en 25 natrium-zeolit Y med 0,3 molær bariumnitrat ved 80°C, tørring, og calcinering ved 590°C, derefter imprægnering af zeoliten med Pt(NH^)4(NC^)2 til opnåelse af 0,8% platin, og derpå tørring, calcinering af katalysatoren ved 260°C og reduktion i hydrogen ved 480 til 500°C. Resul-30 taterne af disse forsøg er anført nedenfor i tabel II.In the fourth experiment, a platinum-barium zeolite Y was prepared which was prepared by ion exchange of a sodium zeolite Y with 0.3 molar barium nitrate at 80 ° C, drying and calcination at 590 ° C, then impregnating the zeolite with Pt (NH 4) 4 (NC 2) 2 to give 0.8% platinum, and then drying, calcination of the catalyst at 260 ° C and reduction in hydrogen at 480 to 500 ° C. The results of these experiments are listed below in Table II.

Tabel IITable II

Omdannelsesgrad Selektivitets-5 timer 20 timer indeksConversion rate Selectivity-5 hours 20 hours index

Pt/K/L 70 59 79 35 Pt/Ba/L 85 85 92Pt / K / L 70 59 79 35 Pt / Ba / L 85 85 92

Pt/Na/Y 82 79 54Pt / Na / Y 82 79 54

Pt/Ba/Y 74 68 66Pt / Ba / Y 74 68 66

Ved drift forårsager inkorporeringen af barium i 15In operation causes the incorporation of barium into 15

DK 163803 BDK 163803 B

en storporet zeolit, såsom type Y zeolit, således en drastisk forbedring i selektiviteten med hensyn til n-hexan.a large-pore zeolite, such as type Y zeolite, thus drastically improves n-hexane selectivity.

Det bemærkes, at stabiliteten af platin-barium-type L zeo-liten er fortræffelig. Efter 20 timers forløb var der 5 intet- fald i omdannelsesgrad, når der anvendtes platin-barium-type L zeolit-katalysator.It is noted that the stability of platinum-barium type L zeo-small is excellent. After 20 hours, there was no decrease in conversion rate when using platinum-barium type L zeolite catalyst.

Eksempel 3Example 3

Der udførtes en tredje forsøgsrække for at vise virkningen af tilsætning af yderligere bestanddele til - 10 katalysatoren.A third test series was performed to show the effect of adding additional constituents to the catalyst.

Denne tredje forsøgsrække udførtes under anvendelse af en fødeblanding, som var blevet underkastet hydrofining til fjernelse af svovl, oxygen og nitrogen, og som indeholdt 80,9 vol% paraffiner, 16,8 vol% naphthener 15 og 1,7 vol% aromater. Fødeblandingen indeholdt desuden 2,6 vol% Ccj, 47,6 vol% Cg, 43,4 vol% C η og 6,3 vol% Cg.This third series of experiments was carried out using a feed mixture which had been subjected to hydrofining to remove sulfur, oxygen and nitrogen, containing 80.9% by volume of paraffins, 16.8% by volume of naphthenes and 1.7% by volume of aromatics. The food mixture additionally contained 2.6 vol% Ccj, 47.6 vol% Cg, 43.4 vol% C η and 6.3 vol% Cg.

Alle forsøg i denne række udførtes ved 490°C, 0,79 MPa (abs.), en LHSV på 2,0 og et Hg/HC-forhold på 6,0.All experiments in this range were performed at 490 ° C, 0.79 MPa (abs.), A LHSV of 2.0, and a Hg / HC ratio of 6.0.

Ved det første forsøg fremstilledes der en platinr-20 natrium-zeolit Y ved de under den tredje proces i eksempel 2 anførte procedurer.In the first experiment, a platinum-20 sodium zeolite Y was prepared by the procedures set forth in the third process of Example 2.

Ved det andet forsøg fremstilledes der en platin-barium-zeolit Y ved de under fjerde proces i eksempel 2 anførte procedurer.In the second experiment, a platinum-barium zeolite Y was prepared by the procedures set forth in the fourth process of Example 2.

25 Ved det tredje forsøg fremstilledes der en platin- sjæLdent-jordmetal-zeolit Y ved imprægnering af en sjæl-dent-gordmetal-zeolit Y opnået fra Strem Chemicals Inc. til opnåelse af 0,8% Pt under anvendelse af Pt(NHg)4 (NOg^ hvorefter zeoliten tørredes, calcineredes ved 260°C og 30 reduceredes ved 480 til 500°C.In the third experiment, a platinum rare-earth metal zeolite Y was prepared by impregnating a soul-dent earth metal zeolite Y obtained from Strem Chemicals Inc. to obtain 0.8% Pt using Pt (NHg) 4 (NOg 2) and the zeolite was dried, calcined at 260 ° C and reduced at 480 to 500 ° C.

Ved det fjerde forsøg fremstilledes der en platinsjældent- jordmetal -barium-zeolit Y ved ionbytning af en kommerciel, fra Strem Chemicals Inc. opnået sjældent-jord-metal-zeolit Y med en 0,3 molær Ba(NOg)2-opløsning ved 35 80°C, tørring og calcinering af zeoliten ved 590°C, imprægnering af zeoliten med Pt(NHg)4(NOg)2 til opnåelse af 0,8% Pt, og derefter tørring, calcinering af zeoliten ved 16In the fourth experiment, a platinum-rare-earth barium zeolite Y was prepared by ion exchange of a commercial, from Strem Chemicals Inc. obtained rare-earth metal zeolite Y with a 0.3 molar Ba (NOg) 2 solution at 80 ° C, drying and calcination of the zeolite at 590 ° C, impregnating the zeolite with Pt (NHg) 4 (NOg) 2 to obtain 0.8% Pt, and then drying, calcining the zeolite at 16

DK 163803 BDK 163803 B

260°C og reduktion ved 480 til 500°C. Resultaterne af disse forsøg er anført nedenfor i tabel III.260 ° C and reduction at 480 to 500 ° C. The results of these experiments are listed below in Table III.

Tabel IIITable III

Katalysatoraktivitet mht.Catalyst activity with respect to

aromater bestemt efter 3 timer Selektlvitet, 5 ved maling af C5+ mol« % ved 3 tlmer af fødeblandingaromatics determined after 3 hours Selectivity, 5 by painting C5 + mol «% at 3 hours of food mixture

Pt/Na/Y " 36 46Pt / Na / Y "36 46

Pt/Ba/Y 54 68Pt / Ba / Y 54 68

Pt/sjældent 22 (for lav til jordmetal/Y at måles) 10 Pt/Ba/sjældent 97Pt / Rare 22 (too low for earth metal / Y to be measured) 10 Pt / Ba / Rare 97

jordmetal/Yearth metal / Y

Denne forsøgsrække viser, at tilsætningen af sjældent jordmetal til katalysatoren har en ugunstig virkning på selektiviteten.This series of experiments shows that the addition of rare earth metal to the catalyst has an adverse effect on the selectivity.

Eksempel 4 15 En arabisk naphtha, der var blevet underkastet hydrofining til fjernelse af svovl, oxygen og nitrogen, underkastedes reformering ved 0,79· MPa (abs.), en LHSV på 3 og et H2/HC-forhold på 3 til opnåelse af et C^t-produkt med et indhold af aromater på 82 vægt% ved hjælp af to for-20 skellige processer. Fødeblandingen var en arabisk naphtha, der var underkastet hydrofining og indeholdt 67,9% paraffiner, 23,7% naphthener og 8,4% aromater. Destillationsresultaterne ved ASTM metode D86 var: start -203°F, 5%-219, 10%-224, 30%-248, 50%-265, 70%-291, 90%-25 321, 95%-337, slutpunkt 370°F.Example 4 An arabic naphtha which had been subjected to hydrofining to remove sulfur, oxygen and nitrogen was subjected to reforming at 0.79 MPa (abs.), An LHSV of 3 and a H2 / HC ratio of 3 to obtain a C 2 t product having a content of 82% by weight aromatics by two different processes. The food blend was an Arab naphtha that was subjected to hydrofining and contained 67.9% paraffins, 23.7% naphthenes and 8.4% aromatics. The distillation results of ASTM method D86 were: start -203 ° F, 5% -219, 10% -224, 30% -248, 50% -265, 70% -291, 90% -25,321, 95% -337, end point 370 ° F.

Ved den første proces underkastedes den arabiske naphtha reformering ved 516°C i en reaktor under anvendelse af en konventionel reformeringskatalysator, som omfattede 0,3 vægt% Pt, 0,6 vægt% Re og 1,0 vægt% Cl på 30 aluminiumoxid. Den blev presulfideret særskilt.In the first process, the Arabian naphtha was subjected to reforming at 516 ° C in a reactor using a conventional reforming catalyst comprising 0.3 wt% Pt, 0.6 wt% Re and 1.0 wt% Cl on alumina. It was presulfated separately.

Ved den anden proces underkastedes den arabiske naphtha reformering ved 493°C i den samme reaktor, hvori den øverste halvdel af reaktoren indeholdt den samme ty- 17In the second process, the Arabian naphtha was subjected to reforming at 493 ° C in the same reactor, wherein the upper half of the reactor contained the same reactor.

DK 163803 BDK 163803 B

pe katalysator som ved den første proces, og den neder-ste halvdel af reaktoren indeholdt en platin-barium-type L zeolit-katalysator fremstillet ved de i eksempel 1 anførte procedurer.catalyst as in the first process, and the lower half of the reactor contained a platinum-barium type L zeolite catalyst prepared by the procedures set forth in Example 1.

5 Resultaterne af disse to forsøg er anført i tabel IV.5 The results of these two experiments are listed in Table IV.

Tabel IVTable IV

Pt/Re/alumi- 1/2 Pt/Re/aluminiumoxid niumoxid 1/2 Pt/Ba/L_ 1 o Deaktiveringsgrad 2,0 1,9 C^+ -udbytte, LV% udbytte 68,9 71,0Pt / Re / Aluminum 1/2 Pt / Re / Aluminum Nitric Oxide 1/2 Pt / Ba / L_ 1 o Deactivation rate 2.0 1.9 C 2+ yield, LV% yield 68.9 71.0

Hydrogen, SCF/D 950 1050 i iHydrogen, SCF / D 950 1050 i i

Claims (11)

1. Katalysator til reformering af carbonhydrider, hvilken katalysator omfatter en storporet zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder mindst ét gruppe VIII metal, k e n - Sdetegnet ved, at den også indeholder et jord-alkalimetal valgt blandt barium, strontium og calcium, og at katalysatorens selektivitetsindeks er større end 60%.A hydrocarbon reforming catalyst comprising a large pore zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one group VIII metal, characterized in that it also contains an alkaline earth metal selected among barium, strontium and calcium, and that the catalyst selectivity index is greater than 60%. 2. Fremgangsmåde til reformering af carbonhydri-10 der, ved hvilken man bringer de pågældende carbonhydrider i kontakt med en katalysator, som omfatter en storporet zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder mindst ét gruppe VIII metal, kendetegnet ved, at katalysatoren 15 også indeholder et jordalkalimetal valgt blandt barium, strontium og calcium, og at procesbetingelserne vælges blandt en temperatur på fra 400 til 600°C, en LHSV på fra 0,3 til 10, et manometertryk på fra 0 til 3,45 MPa og et H2/HC-forhold på fra 1:1 til 10:1, således at se-20 lektiviteten med hensyn til n-hexan-dehydrocyclisering er større end 60%.A process for reforming hydrocarbons by contacting said hydrocarbons with a catalyst comprising a large pore zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one Group VIII metal , characterized in that the catalyst 15 also contains an alkaline earth metal selected from barium, strontium and calcium and that the process conditions are selected from a temperature of from 400 to 600 ° C, an LHSV of from 0.3 to 10, a pressure gauge of from 0 to 3.45 MPa and a H2 / HC ratio of from 1: 1 to 10: 1, so that the selectivity of n-hexane dehydrocyclization is greater than 60%. 3. Fremgangsmåde til reformering af carbonhydrider, ved hvilken man under reformeringsbetingelser og i nærværelse af hydrogen bringer de pågældende carbon-25 hydrider i kontakt med en første katalysator, som omfatter en metaloxidbærer, hvori der i intim blanding er inkorporeret platin og rhenium, kendetegnet ved, at man derefter bringer carbonhydriderne i kontakt med en anden katalysator, som omfatter en storporet 30 zeolit, der har en effektiv porediameter på fra 6 til 15 ångstrøm, og som indeholder mindst ét gruppe VIII metal og et jordalkalimetal valgt blandt barium, strontium og calcium, hvorhos den anden katalysators selektivitetsindeks er større end 60%. DK 163803BA process for reforming hydrocarbons, in which, under reforming conditions and in the presence of hydrogen, the relevant hydrocarbons are contacted with a first catalyst comprising a metal oxide support incorporating platinum and rhenium in intimate admixture, characterized by then contacting the hydrocarbons with another catalyst comprising a large pore 30 zeolite having an effective pore diameter of from 6 to 15 angstroms and containing at least one Group VIII metal and an alkaline earth metal selected from barium, strontium and calcium , where the selectivity index of the second catalyst is greater than 60%. DK 163803B 4. Katalysator ifølge krav 1, kendetegnet ved, at jordalkalimetallet er barium, og at gruppe VIII metallet er platin.Catalyst according to claim 1, characterized in that the alkaline earth metal is barium and the group VIII metal is platinum. 5. Katalysator ifølge krav 4, kendete g-5 net ved, at katalysatoren indeholder fra 0,1 til 35 vægt% barium og fra 0,1 til 5 vægt% platin.The catalyst of claim 4, characterized in that the catalyst contains from 0.1 to 35% by weight of barium and from 0.1 to 5% by weight of platinum. 6. Katalysator ifølge krav 1, 4 eller 5, k e n -detegnet ved, at den nævnte storporede zeolit har en tilsyneladende porestørrelse på fra 7 til 9 ång- 10 strøm.Catalyst according to claim 1, 4 or 5, characterized in that said large pore zeolite has an apparent pore size of from 7 to 9 steam stream. 7. Katalysator ifølge krav 6, kendetegnet ved, at den nævnte storporede zeolit er valgt blandt zeolit X, zeolit Y og type L zeolit.Catalyst according to claim 6, characterized in that said large pore zeolite is selected from zeolite X, zeolite Y and type L zeolite. 8. Katalysator ifølge krav 7, kendete g-15 n e t ved, at den nævnte storporede zeolit er zeolit Y.8. Catalyst according to claim 7, characterized in that said large-pore zeolite is zeolite Y. 9. Katalysator ifølge krav 7, kendetegnet ved, at den nævnte storporede zeolit er en type L zeolit.Catalyst according to claim 7, characterized in that said large pore zeolite is a type L zeolite. 10. Fremgangsmåde ifølge krav 3, kendeteg-20 n e t ved, at den nævnte kontaktbringning foregår ved en temperatur på fra 400°C til 600°C, en LHSV på fra 0,3 til 5, et manometertryk på fra 0 til 3,45 MPa og et H2/HC-forhold på fra 1:1 til 10:1.Process according to claim 3, characterized in that said contacting takes place at a temperature of from 400 ° C to 600 ° C, an LHSV of from 0.3 to 5, a pressure gauge of from 0 to 3.45 MPa and a H2 / HC ratio of from 1: 1 to 10: 1. 11. Fremgangsmåde ifølge krav 2 eller 3, k e n d e -25 tegnet ved, at nævnte kontaktbringning foregår ved en temperatur på fra 430°C til 550°C, et manometertryk på fra 0,35 til 2,07 MPa og et K^/HC-forhold på fra 2:1 til 6:1.11. A method according to claim 2 or 3, characterized in that said contacting takes place at a temperature of from 430 ° C to 550 ° C, a pressure gauge of from 0.35 to 2.07 MPa and a K ratio of 2: 1 to 6: 1.
DK037383A 1982-02-01 1983-01-31 CATALYST AND PROCEDURES FOR REFORMING CARBOHYDRIDES DK163803C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US06/344,572 US4435283A (en) 1982-02-01 1982-02-01 Method of dehydrocyclizing alkanes
US34457282 1982-02-01
US06/393,160 US4631123A (en) 1982-02-01 1982-06-28 Method of dehydrocyclizing alkanes
US39316082 1982-06-28
US42054082A 1982-09-20 1982-09-20
US42054082 1982-09-20

Publications (4)

Publication Number Publication Date
DK37383D0 DK37383D0 (en) 1983-01-31
DK37383A DK37383A (en) 1983-08-02
DK163803B true DK163803B (en) 1992-04-06
DK163803C DK163803C (en) 1992-08-31

Family

ID=27407634

Family Applications (1)

Application Number Title Priority Date Filing Date
DK037383A DK163803C (en) 1982-02-01 1983-01-31 CATALYST AND PROCEDURES FOR REFORMING CARBOHYDRIDES

Country Status (20)

Country Link
KR (1) KR900005092B1 (en)
AU (1) AU560671B2 (en)
BR (1) BR8300400A (en)
CA (1) CA1196027A (en)
CH (1) CH655513B (en)
DE (1) DE3303121A1 (en)
DK (1) DK163803C (en)
ES (2) ES8406534A1 (en)
FI (1) FI71078C (en)
FR (1) FR2520749B1 (en)
GB (2) GB2114150B (en)
IL (1) IL67669A (en)
IT (1) IT1193653B (en)
MX (1) MX164962B (en)
NL (1) NL8300355A (en)
NO (1) NO171674C (en)
NZ (1) NZ202947A (en)
PH (2) PH19038A (en)
SE (1) SE457727B (en)
YU (1) YU43295B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648961A (en) * 1982-09-29 1987-03-10 Chevron Research Company Method of producing high aromatic yields through aromatics removal and recycle of remaining material
US4595668A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Bound zeolite catalyst
US4595669A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Method of preparing an improved catalyst
CA1231699A (en) * 1983-11-10 1988-01-19 Samuel J. Tauster Zeolite catalyst and process for using said catalyst
US4552856A (en) * 1983-11-10 1985-11-12 Exxon Research And Engineering Co. Zeolite catalyst and preparation thereof
US4925819A (en) * 1983-11-10 1990-05-15 Exxon Research & Engineering Company Method of regenerating a deactivated catalyst
US4595670A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Zeolite catalyst
GB2153840B (en) * 1984-02-07 1987-03-18 Chevron Res Hydrocarbon conversion process
US5242675A (en) * 1985-10-15 1993-09-07 Exxon Research & Engineering Company Zeolite L
US5486498A (en) * 1986-10-14 1996-01-23 Exxon Research & Engineering Company Zeolite L
US5013423A (en) * 1987-11-17 1991-05-07 Mobil Oil Corporation Reforming and dehydrocyclization
US4886926A (en) * 1988-06-24 1989-12-12 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over tin-containing crystalline microporous materials
US4849567A (en) * 1987-12-28 1989-07-18 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over indium-containing crystalline microporous materials
US4935566A (en) * 1987-11-17 1990-06-19 Mobil Oil Corporation Dehydrocyclization and reforming process
US4868145A (en) * 1987-12-28 1989-09-19 Mobil Oil Corporation Dehydrogenation and dehydrocyclization catalyst
US4830729A (en) * 1987-12-28 1989-05-16 Mobil Oil Corporation Dewaxing over crystalline indium silicates containing groups VIII means
US4990710A (en) * 1988-06-24 1991-02-05 Mobil Oil Corporation Tin-containing microporous crystalline materials and their use as dehydrogenation, dehydrocyclization and reforming catalysts
US4922050A (en) * 1987-12-28 1990-05-01 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over indium-containing crystalline microporous materials
US4822942A (en) * 1987-12-28 1989-04-18 Mobil Oil Corporation Styrene production
US4982028A (en) * 1987-12-28 1991-01-01 Mobil Oil Corporation Dehydrogenation and dehydrocyclization catalyst
GB8801067D0 (en) * 1988-01-19 1988-02-17 Exxon Chemical Patents Inc Zeolite l preparation
US4851599A (en) * 1988-06-24 1989-07-25 Mobil Oil Corporation Styrene production
US4882040A (en) * 1988-06-24 1989-11-21 Mobil Oil Corporation Reforming process
US4892645A (en) * 1988-06-24 1990-01-09 Mobil Oil Corporation Dewaxing catalyst based on tin containing materials
US4910357A (en) * 1988-06-24 1990-03-20 Mobil Oil Corporation Alkylate upgrading
US4931416A (en) * 1988-06-24 1990-06-05 Mobil Oil Corporation Thallium or lead-containing microporous crystalline materials and their use as dehydrogenation dehydrocyclization and reforming catalysts
US5192728A (en) * 1988-06-24 1993-03-09 Mobil Oil Corporation Tin-colating microporous crystalline materials and their use as dehydrogenation, dehydrocyclization reforming catalysts
US5124497A (en) * 1989-10-11 1992-06-23 Mobil Oil Corporation Production of mono-substituted alkylaromatics from C8 +N-paraffins
US5037529A (en) * 1989-12-29 1991-08-06 Mobil Oil Corp. Integrated low pressure aromatization process
US5122489A (en) * 1990-10-15 1992-06-16 Mobil Oil Corporation Non-acidic dehydrogenation catalyst of enhanced stability
US5147837A (en) * 1990-10-22 1992-09-15 Mobil Oil Corporation Titania containing dehydrogenation catalysts
AU645632B2 (en) * 1990-12-06 1994-01-20 Tosoh Corporation Catalyst for purifying exhaust gas
EP0519573B1 (en) * 1991-06-21 1995-04-12 Shell Internationale Researchmaatschappij B.V. Hydrogenation catalyst and process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1545411A1 (en) * 1951-01-28 1970-01-08 Union Carbide Corp Process for the catalytic conversion of hydrocarbons
BE598682A (en) * 1959-12-30 1900-01-01
GB1050385A (en) * 1963-06-28
DE1270212B (en) * 1964-03-26 1968-06-12 Union Oil Co Process for adjusting the aromatic content in hydrocracking processes
NL6610025A (en) * 1965-07-16 1967-01-17
US3397137A (en) * 1965-07-16 1968-08-13 Union Carbide Corp Hydrocarbon reforming process and catalyst compositions therefor
FR1486871A (en) * 1965-07-16 1967-06-30 Union Carbide Corp Advanced process for reforming petroleum fractions
US3707460A (en) * 1971-03-19 1972-12-26 Standard Oil Co Naphtha hydroforming process
JPS5744466B2 (en) * 1973-06-14 1982-09-21
JPS5016785A (en) * 1973-05-21 1975-02-21
US3871409A (en) * 1973-05-21 1975-03-18 Owens Corning Fiberglass Corp Reinforced synthetic pipe wall construction

Also Published As

Publication number Publication date
CA1196027A (en) 1985-10-29
FI830346A0 (en) 1983-02-01
GB2153384A (en) 1985-08-21
DK37383D0 (en) 1983-01-31
NO830323L (en) 1983-08-02
YU43295B (en) 1989-06-30
SE457727B (en) 1989-01-23
NZ202947A (en) 1985-07-31
GB8302286D0 (en) 1983-03-02
SE8300415L (en) 1983-08-02
ES8506785A1 (en) 1985-08-01
IT8319360A0 (en) 1983-01-31
SE8300415D0 (en) 1983-01-27
GB2114150B (en) 1986-01-02
FI71078C (en) 1986-11-24
FR2520749A1 (en) 1983-08-05
GB2153384B (en) 1986-02-05
BR8300400A (en) 1983-10-25
CH655513B (en) 1986-04-30
IL67669A (en) 1986-09-30
YU18583A (en) 1986-04-30
FR2520749B1 (en) 1987-07-17
GB8505626D0 (en) 1985-04-03
AU560671B2 (en) 1987-04-16
ES519449A0 (en) 1984-08-01
ES8406534A1 (en) 1984-08-01
NL8300355A (en) 1983-09-01
GB2114150A (en) 1983-08-17
DK163803C (en) 1992-08-31
ES532004A0 (en) 1985-08-01
KR840004150A (en) 1984-10-06
FI71078B (en) 1986-08-14
NO171674B (en) 1993-01-11
IL67669A0 (en) 1983-05-15
PH19038A (en) 1985-12-06
DE3303121A1 (en) 1983-08-04
IT1193653B (en) 1988-07-21
FI830346L (en) 1983-08-02
MX164962B (en) 1992-10-09
KR900005092B1 (en) 1990-07-19
DK37383A (en) 1983-08-02
AU1007183A (en) 1983-08-11
PH19412A (en) 1986-04-10
NO171674C (en) 1993-04-21

Similar Documents

Publication Publication Date Title
DK163803B (en) CATALYST AND PROCEDURES FOR REFORMING CARBOHYDRIDES
US4435283A (en) Method of dehydrocyclizing alkanes
US4645586A (en) Reforming process
US4447316A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4517306A (en) Composition and a method for its use in dehydrocyclization of alkanes
RU2605406C2 (en) Hydrocarbon conversion catalyst
US5358631A (en) Dehydrocyclization or catalytic reforming using sulfur tolerant zeolite catalyst
DK163571B (en) CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL AND USE THEREOF
NL8400859A (en) PROCESS FOR THE CONVERSION OF HYDROCARBONS.
WO1991006616A2 (en) Process for reforming petroleum hydrocarbon stocks
US4867864A (en) Dehydrogenation, dehydrocyclization and reforming catalyst
JPS61283354A (en) Aromatizing catalyst having high activity and high selectivity
US5182012A (en) Crystalline silicate catalyst and processes using the catalyst
US4882040A (en) Reforming process
NL8401110A (en) METHOD FOR REFORMING WITH HIGH SELECTIVITY AND ACTIVITY FOR DEHYDRATION CLOSURE, ISOMERIZATION AND DEHYDROISOMERIZATION.
US5052561A (en) Crystalline silicate catalyst and a reforming process using the catalyst
US6740228B1 (en) Process for reforming petroleum hydrocarbon stocks
US5028312A (en) Method of dehydrocyclizing alkanes
WO1992013045A1 (en) Reforming naphtha with large-pore zeolites
US4636298A (en) Reforming process
US4645588A (en) Reforming with a platinum-barium-zeolite of L family
US5171691A (en) Method for controlling multistage reforming process to give high octane barrel per calendar day throughput
JPH0227013B2 (en)
US4721695A (en) Platinum-barium-zeolite of L family
US5011805A (en) Dehydrogenation, dehydrocyclization and reforming catalyst

Legal Events

Date Code Title Description
PBP Patent lapsed