DK163571B - CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL AND USE THEREOF - Google Patents

CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL AND USE THEREOF Download PDF

Info

Publication number
DK163571B
DK163571B DK037283A DK37283A DK163571B DK 163571 B DK163571 B DK 163571B DK 037283 A DK037283 A DK 037283A DK 37283 A DK37283 A DK 37283A DK 163571 B DK163571 B DK 163571B
Authority
DK
Denmark
Prior art keywords
zeolite
catalyst
type
platinum
barium
Prior art date
Application number
DK037283A
Other languages
Danish (da)
Other versions
DK37283D0 (en
DK163571C (en
DK37283A (en
Inventor
Waldeen Carl Buss
Thomas Robert Hughes
Original Assignee
Chevron Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/344,571 external-priority patent/US4447316A/en
Priority claimed from US06/392,907 external-priority patent/US4645588A/en
Priority claimed from US06/405,837 external-priority patent/US4634518A/en
Priority claimed from US06/420,541 external-priority patent/US4434311A/en
Application filed by Chevron Res filed Critical Chevron Res
Publication of DK37283D0 publication Critical patent/DK37283D0/en
Publication of DK37283A publication Critical patent/DK37283A/en
Publication of DK163571B publication Critical patent/DK163571B/en
Application granted granted Critical
Publication of DK163571C publication Critical patent/DK163571C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/62Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/387Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation of cyclic compounds containing non six-membered ring to compounds containing a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • C07C5/417Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/26After treatment, characterised by the effect to be obtained to stabilize the total catalyst structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L
    • C07C2529/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L containing iron group metals, noble metals or copper
    • C07C2529/62Noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

DK 163571 BDK 163571 B

Opfindelsen angår en katalysator omfattende en type L zeolit og mindst et gruppeVIII metal, samt anvendelse af en sådan katalysator.The invention relates to a catalyst comprising a type L zeolite and at least one group VIII metal, as well as the use of such a catalyst.

Katalytisk reformering er velkendt indenfor olie-5 industrien og angiver en behandling af naphthafraktio-nerne -for at forbedre oktantallet ved fremstilling af aromatiske stoffer. De vigtigere carbonhydridreaktioner, der sker under reformeringsprocessen, inkluderer dehydro-genering af cyclohexaner til aromater, dehydroisomeri-10 sering. af alkylcyclopentaner til aromater og dehydro-cyclisering af acycliske carbonhydrider til aromater.Catalytic reforming is well known in the oil industry and indicates a treatment of the naphtha fractions - to improve the octane number in the production of aromatics. The more important hydrocarbon reactions that occur during the reforming process include dehydrogenation of cyclohexanes to aromatics, dehydroisomerization. of alkylcyclopentanes for aromatics and dehydrocyclization of acyclic hydrocarbons to aromatics.

Der sker også en række andre reaktioner inklusive de følgende: dealkylering af alkylbenzener, isomerisering af paraffiner og hydrokrakningsreaktioner, der giver 15 lette gasformige carbonhydrider, f.eks. methan, ethan, propan og butan. Hydrokrakningsreaktioner skal især minimeres under reformering, eftersom de nedsætter udbyttet af i benzinområdet kogende produkter og hydrogen.There are also a number of other reactions including the following: dealkylation of alkyl benzenes, isomerization of paraffins, and hydrocracking reactions giving 15 gaseous hydrocarbons, e.g. methane, ethane, propane and butane. Hydrocracking reactions should be minimized especially during reform, as they reduce the yield of boiling products and hydrogen in the gasoline area.

På grund af efterspørgslen efter benzin med højt 20 oktantal til brug som motorbrændstof osv. udføres der extensiv forskning for at udvikle forbedrede reforme— ringskatalysatorer og katalytiske reformeringsprocesser. Katalysatorer til vellykkede reformeringsprocesser må besidde god selektivitet, dvs. være i stand til at 25 frembringe store udbytter af flydende produkter i ben-zinkogeområdet, og indeholdende store koncentrationer af aromatiske carbonhydrider med højt oktantal og følgelig små udbytter af lette gasformige carbonhydrider. Katalysatorerne skal have god aktivitet for at den tem-30 peratur, der kræves til at fremstille et vist kvalitetsprodukt, ikke behøver at være for høj. Det er også nødvendigt, at katalysatorerne enten har god stabilitet, for at aktivitets- og selektivitetsegenskaberne kan bevares under længere driftstider, eller er tilstrække-35 ligt regenererbare til at muliggøre hyppig regenerering uden tab af ydeevne.Due to the demand for high-octane gasoline for use as motor fuel, etc., extensive research is being conducted to develop improved reforming catalysts and catalytic reforming processes. Catalysts for successful reform processes must have good selectivity, ie. be capable of producing large yields of liquid products in the benzine zinc boiling range, and containing high concentrations of high octane aromatic hydrocarbons and consequently small yields of light gaseous hydrocarbons. The catalysts must have good activity so that the temperature required to produce a certain quality product need not be too high. It is also necessary that the catalysts either have good stability to maintain the activity and selectivity properties for longer operating times, or are sufficiently regenerable to allow frequent regeneration without loss of performance.

Katalysatorer, der omfatter platin, f.eks. platin båret på aluminiumoxid, er velkendte og 2Catalysts comprising platinum, e.g. platinum supported on alumina is well known and 2

DK 163571 BDK 163571 B

udbredt anvendte til reformering af naphthaer. De vigtigste produkter fra katalytisk reformening er benzen og alkylbenzener. Disse aromatiske carbonhydrider har stor værdi som komponenter med højt oktantal i benzin.widely used for reforming naphthas. The main products of catalytic reforming are benzene and alkylbenzenes. These aromatic hydrocarbons have great value as high octane number components in gasoline.

5 Katalytisk reformering er også en vigtig proces for den kemiske industri på grund af den store og stigende efterspørgsel efter aromatiske carbonhydrider til brug ved fremstilling af forskellige kemiske produkter såsom syntetiske fibre, insekticider, klæbemidler, 10 detergenter, plasttyper, syntetiske gummiarter, farmaceutiske produkter, benzin med højt oktantal, parfumer, tørrende-olier, ionbytterharpikser og forskellige andre produkter,der er velkendte for fagmænd. Et eksempel på denne efterspørgsel ligger i fremstilling af alkylerede 15 aromater såsom ethylbenzen, cumen og dodecylbenzen ved anvendelse af de passende monoolefiner til at alky-lere benzen. Et andet eksempel på denne efterspørgsel ligger i området med chlorering af benzen til fremstilling af chlorbenzen, der derefter anvendes til 20 fremstilling af phenol ved hydrolyse med natriumhydroxid. Hovedanvendelsen af phenol ligger i fremstilling af phenol-formaldehydharpikser og plastarter. En anden fremstillingsvej til phenol anvender cumen som udgangsmateriale og involverer oxidation af cumen med luft 25 til cumenhydroperoxid, der derefter kan nedbrydes til phenol og acetone ved påvirkning meden passende syre. Efterspørgslen efter ethylbenzen skyldes hovedsagelig dets anvendelse til fremstilling af styren ved selektiv dehydr og enering. Styren anvendes på sin side til frem-30 stilling af styren-butadiengummi og polystyren. Ortho-xylen oxideres typisk til phthalsyreanhydrid ved omsætning med luft i dampfasen i nærværelse af en vanadium-pentoxidkatalysator. Phthalsyreanhydrid anvendes på sin side til fremstilling af blødgøringsmidler, poly-35 estere og harpikstyper. Efterspørgslen efter paraxylen 3Catalytic reforming is also an important process for the chemical industry due to the large and growing demand for aromatic hydrocarbons for use in the manufacture of various chemical products such as synthetic fibers, insecticides, adhesives, 10 detergents, plastics, synthetic gums, pharmaceuticals, high octane gasoline, perfumes, drying oils, ion exchange resins and various other products well known to those skilled in the art. An example of this demand lies in the preparation of alkylated aromatics such as ethylbenzene, cumene and dodecylbenzene using the appropriate monoolefins to alkylate benzene. Another example of this demand lies in the area of chlorination of benzene to produce chlorobenzene, which is then used to produce phenol by hydrolysis with sodium hydroxide. The main use of phenol lies in the production of phenol-formaldehyde resins and plastics. Another phenol preparation pathway uses cumene as a starting material and involves oxidation of cumene with air 25 to cumene hydroperoxide which can then be degraded to phenol and acetone by action with appropriate acid. Demand for ethylbenzene is mainly due to its use in the production of styrene by selective dehydration and deification. The styrene, in turn, is used to make styrene-butadiene rubber and polystyrene. Orthoxylene is typically oxidized to phthalic anhydride by reaction with air in the vapor phase in the presence of a vanadium pentoxide catalyst. Phthalic anhydride, in turn, is used to prepare plasticizers, polyesters and resin types. Demand for paraxylene 3

DK 163571 BDK 163571 B

skyldes i det væsentlige dets anvendelse ved fremstilling af terephthalsyre eller dimethylterephthalat, der på sin side omsættes med ethylenglycol og polymeriseres til opnåelse af polyesterfibre. En væsentlig efterspørg-5 sel efter benzen skyldes også dets anvendelse til fremstilling af anilin, nylon, maleinsyreanhydrid, opløsningsmidler og lignende petrokemiske produkter. Toluen er på den anden side i det mindste i forhold til benzen og Cg-aromaterne ikke meget efterspurgt indenfor den 10 petrokemiske industri som et grundlæggende byggeblokkemikalie. Følgelig hydrodealkyleres væsentlige mængder toluen til benzen eller disproportioneres til benzen og xylen. En anden anvendelse af toluen er forbundet med transalkyleringen af trimethylbenzen med 15 toluen til opnåelse af xylen.is essentially due to its use in the preparation of terephthalic acid or dimethyl terephthalate, which in turn is reacted with ethylene glycol and polymerized to obtain polyester fibers. Substantial demand for benzene is also due to its use in the production of aniline, nylon, maleic anhydride, solvents and similar petrochemicals. Toluene, on the other hand, at least compared to benzene and Cg aromatics is not much in demand in the 10 petrochemical industry as a basic building block chemical. Accordingly, substantial amounts of toluene are hydrodalkylated to benzene or disproportionate to benzene and xylene. Another use of toluene is associated with the transalkylation of trimethylbenzene with toluene to give xylene.

Son svar på denne efterspørgsel for disse aromatiske produkter har teknikken udviklet, og industrien anvendt en række alternative metoder til at fremstille dem i kommercielle mængder. Et forsøg har været fremstillingen af et 20 betydeligt antal katalytiske reformere til fremstilling af aromatiske carbonhydrider til brug som udgangsmaterialer ved fremstilling af kemikalier. Som det er tilfældet med de fleste katalytiske processer involverer det væsentligste mål for effektivi-25 teten ved katalytisk reformering processens evne til at omdanne udgangsmaterialerne til de ønskede produkter over længere tidsrum med minimal påvirkning fra bireaktioner.In response to this demand for these aromatic products, the technique has evolved and the industry has used a variety of alternative methods to produce them in commercial quantities. One attempt has been the preparation of a considerable number of catalytic reformers for the production of aromatic hydrocarbons for use as starting materials in the preparation of chemicals. As is the case with most catalytic processes, the main goal of the efficiency of catalytic reforming involves the ability of the process to convert the starting materials into the desired products over extended periods of time with minimal impact from side reactions.

Dehydrogeneringen af cyclohexan og alkylcyclo-30 hexaner til benzen og alkylbenzener er den termodynamisk mest gunstige type af aromatiseringsreaktion ved katalytisk reformering. Dette betyder, at dehydrogene-ring af cyclohexaner kan give et større forhold mellem aromatisk produkt og ikke aromatisk reaktant end nogen 35 af de to andre typer aromatiseringsreaktioner ved en given reaktionstemperatur og -tryk. Endvidere er de-hydrogenering af cyclohexaner den hurtigste af de tre aromatiseringsreaktioner. Som en følge af disse termo- 4The dehydrogenation of cyclohexane and alkylcyclohexanes to benzene and alkylbenzenes is the thermodynamically most favorable type of aromatization reaction in catalytic reforming. This means that dehydrogenation of cyclohexanes can give a greater ratio of aromatic product to non-aromatic reactant than any of the other two types of aromatization reactions at a given reaction temperature and pressure. Furthermore, dehydrogenation of cyclohexanes is the fastest of the three aromatization reactions. As a result of these thermo- 4

DK 163571 BDK 163571 B

dynamiske og kinetiske betragtninger er selektiviteten for dehydrogenering af cyclohexaner højere end for de-hydroisomer i sering eller dehydrocycl i sering. Dehydro- isomerisering af alkylcyclopentaner er noget mindre 5 begunstiget både termodynamisk og kinetisk. Dens selek7 tivitet er, skønt den i almindelighed er høj , lavere end selektiviteten for dehydrogenering. Dehydrocyclise-ring af paraffiner er meget mindre begunstiget både termodynamisk og kinetisk. Ved konventionel reformering 10 er dens selektivitet meget lavere end selektiviteten for de to andre aromatiseringsreaktioner.For dynamic and kinetic considerations, the selectivity for dehydrogenation of cyclohexanes is higher than for dehydroisomer in series or dehydrocycl in series. Dehydroisomerization of alkylcyclopentanes is somewhat less favored both thermodynamically and kinetically. Its selectivity, although generally high, is lower than the selectivity for dehydrogenation. Dehydrocyclization of paraffins is much less favored both thermodynamically and kinetically. In conventional reforming 10, its selectivity is much lower than the selectivity of the other two aromatization reactions.

Selektivitetsulempen ved paraffindehydrocyclisering er særligt stor for aromatiseringen af forbindelser med et lille antal carbonatomer pr. molekyle. Dehydro-15 cycliseringsselektiviteten ved konventionel reformering er meget lav for Cg-carbonhydrider. Den stiger med antallet af carbonatomer pr. molekyle, men forbliver væsentligt lavere end aromatiseringsselektiviteten for dehydrogenering eller dehydroisomerisering af 20 naphthener med det samme antal carbonatomer pr. molekyle. En væsentlig forbedring i den katalytiske reformeringsproces vil fremfor alt kræve en drastisk forbedring i déhydrocycliseringsselektiviteten under - samtidig opretholdelse af tilstrækkelig 25 katalysatoraktivitet og -stabilitet.The disadvantage of selectivity in paraffin hydrocyclization is particularly great for the aromatization of compounds having a small number of carbon atoms per minute. molecule. The dehydrocyclization selectivity of conventional reforming is very low for C 6 hydrocarbons. It increases with the number of carbon atoms per but remains substantially lower than the aromatization selectivity for dehydrogenation or dehydroisomerization of 20 naphthenes with the same number of carbon atoms per molecule. Above all, a significant improvement in the catalytic reforming process will require a drastic improvement in dehydrocyclization selectivity while maintaining sufficient catalyst activity and stability.

Ved dehydrocycliseringsreaktionen både ringsluttes og dehydrogeneres acycliske carbonhydrider til fremstilling af aromater. De konventionelle metoder til at udføre disse dehydrocycliseringsreaktioner er 30 baseret på anvendelsen af katalysatorer omfattende et ædelmetal på en bærer. Kendte katalysatorer af denne type er baseret på aluminiumoxid som bærer for 0,2 til 0,8 vægt% platin og fortrinsvis et andet hjælpemetal.In the dehydrocyclization reaction, both acyclic hydrocarbons are cyclized and dehydrogenated to produce aromatics. The conventional methods for carrying out these dehydrocyclization reactions are based on the use of catalysts comprising a noble metal on a support. Known catalysts of this type are based on alumina which supports 0.2 to 0.8% by weight of platinum and preferably another auxiliary metal.

En ulempe ved konventionelle naphthareformerings-35 katalysatorer er, at de i almindelighed for Cg-Cg-paraf-finer er mere selektive for andre reaktioner (såsom hydrokrakning) end de er for dehydro cyclisering. En væsentlig fordel ved katalysatoren ifølge opfindelsen 5A disadvantage of conventional naphtha resin catalysts is that they are generally more selective for Cg-Cg paraffins than other reactions (such as hydrocracking) than they are for dehydro cyclization. A significant advantage of the catalyst of the invention 5

DK 163571 BDK 163571 B

er dens høje selektivitet for dehydrocyclisering.is its high selectivity for dehydrocyclization.

Muligheden for at anvende andre bærere end aluminium-oxid er også blevet undersøgt, og det er blevet foreslået at anvende visse molekylsigter såsom X- og Y-zeo-5 litter, der har porer, der er store nok til at carbon-hydrider i benzinkogeområdet kan passere. Katalysatorer på basis af disse molekylsigter har imidlertid ikke været kommercielt vellykkede.The possibility of using carriers other than aluminum oxide has also been investigated and it has been proposed to use certain molecular sieves such as X and Y zeolites which have pores large enough for hydrocarbons in the gasoline boiling range can pass. However, catalysts based on these molecular sieves have not been commercially successful.

Ved den konventionelle fremgangsmåde til at 10 udføre den tidligere nævnte dehydrocyclisering føres acycliske carbonhydrider, der skal omdannes, henover katalysatoren i nærværelse af hydrogen ved temperaturer af størrelsesordenen 500°C og tryk på fra 0,5 til 3 MPa.In the conventional process for carrying out the aforementioned dehydrocyclization, acyclic hydrocarbons to be converted are passed over the catalyst in the presence of hydrogen at temperatures of about 500 ° C and pressures from 0.5 to 3 MPa.

En del af carbonhydriderne omdannes til aromatiske 15 carbonhydrider, og reaktionen ledsages af isomeriserings-og krakningsreaktioner, der også omdanner paraffinerne til isoparaffiner og lettere carbonhydrider.Part of the hydrocarbons are converted to aromatic hydrocarbons and the reaction is accompanied by isomerization and cracking reactions which also convert the paraffins to isoparaffins and lighter hydrocarbons.

Omdannelseshastigheden for de acycliske carbonhydrider til aromatiske carbonhydrider varierer med 20 antallet af carbonatomer pr. reaktantmolekyle, reaktions-, betingelserne og katalysatorens art.The rate of conversion of the acyclic hydrocarbons to aromatic hydrocarbons varies by 20 the number of carbon atoms per reactant molecule, the reaction, the conditions and the nature of the catalyst.

De katalysatorer, der hidtil er blevet anvendt, har givet jævnt tilfredsstillende resultater med tunge paraffiner, men mindre tilfredsstillende resultater 2 5 med Cg-Cg-paraffiner ,især Cg-paraffiner. Katalysatorer på basis af en type L-zeolit er mere selektive med hensyn til dehydro cycliseringsreaktionen og kan anvendes til at forbedre omdannelseshastigheden til aromatiske carbonhydrider uden at kræve større temperaturer end 30 de, der kræves efter termodynamiske overvejelser (højere temperaturer har i almindelighed en betydelig negativ virkning på katalysatorens stabilitet), og de giver fremragende resultater med Cg-Cg-paraffiner, men katalysatorer på basis af type L-zeolit har ikke opnået 35 kommerciel anvendelse,øjensynlig på grund af utilstrækkelig stabilitet.The catalysts used so far have yielded evenly satisfactory results with heavy paraffins, but less satisfactory results with Cg-Cg paraffins, especially Cg paraffins. Catalysts based on a type L zeolite are more selective in the dehydro cyclization reaction and can be used to improve the rate of conversion to aromatic hydrocarbons without requiring higher temperatures than those required by thermodynamic considerations (higher temperatures generally have a significant negative effect on the stability of the catalyst), and they give excellent results with Cg-Cg paraffins, but type L zeolite catalysts have not achieved commercial use, apparently due to insufficient stability.

Ved en anden kendt fremgangsmåde til dehydrocyclisering af alifatiske carbonhydrider bringes carbonhydrider i 6In another known method for dehydrocyclization of aliphatic hydrocarbons, hydrocarbons are introduced into 6

DK 163571 BDK 163571 B

nærværelse af hydrogen i kontakt med en katalysator, der i det væsentlige består af en type L-zeolit med udbyttelige kationer, hvoraf mindst 90% er alkalimetalioner valgt fra gruppen bestående af lithium-, natrium-, 5 kalium-, rubidium- og cæsiumioner og som indeholder mindst ét metal valgt fra gruppen bestående af metaller fra gruppe VIII i det periodiske system, tin og germanium, idet nævnte metal eller metaller inkluderer i det mindste ét metal fra gruppe VIII i det periodiske 10 system med en dehydrogenerende virkning, således at i det mindste en del af udgangsmaterialet omdannes til aromatiske carbonhydrider.the presence of hydrogen in contact with a catalyst consisting essentially of a type L zeolite with exchangeable cations, at least 90% of which are alkali metal ions selected from the group consisting of lithium, sodium, potassium, rubidium and cesium ions; containing at least one metal selected from the group consisting of Group VIII metals in the periodic table, tin and germanium, said metal or metals including at least one Group VIII metal of the Periodic Table having a dehydrogenating effect, so that at least a portion of the starting material is converted to aromatic hydrocarbons.

Ved en særlig fordelagtig udførelsesform for denne fremgangsmåde anvendes en platin/alkalimetal/type L-15 zeolitkatalysator indeholdende cæsium eller rubidium på grund af dens fremragende aktivitet og selektivitet til omdannelse af hexaner og heptaner til aromater, men stabiliteten forbliver et problem.In a particularly advantageous embodiment of this process, a platinum / alkali metal / type L-15 zeolite catalyst containing cesium or rubidium is used because of its excellent activity and selectivity to convert hexanes and heptanes to aromatics, but stability remains a problem.

Manglerne ved den kendte teknik overvindes ved 20 hjælp af katalysatoren ifølge opfindelsen,omfattende en type L-zeolit og mindst et gruppe VIII metal, hvilken katalysator er ejendommelig ved, at den desuden omfatter et jordalkalimetal fra gruppen barium, strontium og calcium.The deficiencies of the prior art are overcome by the catalyst of the invention comprising a type L zeolite and at least one group VIII metal, the catalyst being characterized in that it further comprises an alkaline earth metal from the group barium, strontium and calcium.

25 Denne katalysator giver en overlegen selektivi tet med hensyn til omdannelse af acycliske carbonhydrider til aromater sammenlignet med den selektivitet, som fås ved kendte fremgangsmåder. Katalysatoren giver også tilfredsstillende levealder.This catalyst provides a superior selectivity for the conversion of acyclic hydrocarbons to aromatics compared to the selectivity obtained by known methods. The catalyst also provides a satisfactory service life.

30 Der kan benyttes forskellige hensigtsmæssige udførelsesformer for katalysatoren ifølge opfindelsen som angivet i krav 2-7.Various suitable embodiments of the catalyst according to the invention can be used as set forth in claims 2-7.

Katalysatoren indeholder fortrinsvis (a) en type L-zeolit indeholdende fra 0,1 til 5 vægt% platin, for-35 trinsvis fra 0,1 til 1,5 vægt% platin, og 0,1 til 40 vægt% barium, fortrinsvis fra 0,1 til 35 vægt% barium, og mere foretrukket fra 1 til 20 vægt% barium, og (b) et uorganisk bindemiddel. Over 50% af type L-zeolitkrystal- 7The catalyst preferably contains (a) a type of L-zeolite containing from 0.1 to 5% by weight of platinum, preferably from 0.1 to 1.5% by weight of platinum, and 0.1 to 40% by weight of barium, preferably from 0.1 to 35 wt% barium, and more preferably 1 to 20 wt% barium, and (b) an inorganic binder. Over 50% of type L zeolite crystal 7

DK 163571 BDK 163571 B

lerne er fortrinsvis større end 500 Å, mere foretrukket større end 1000 Å. I den mest foretrukne udførelsesform er mindst 80% af type L zeolitkrystallerne større end 1000 Å. Det uorganiske bindemiddel er fortrinsvis enten 5 et siliciumdioxid, aluminiumoxid, aluminosilikat eller en lerart. Carbonhydriderne bringes i kontakt med den bariumudbyttede type zeolit ved en temperatur på fra 400 til 600°C (fortrinsvis 430 til 550°C) en LHSV på fra 0,1 til 10 (fortrinsvis fra 0,3 til 5), et manometer-10 tryk på fra 0 til 3,45 MPa (fortrinsvis fra 0,35 til 2,07 MPa), og et t^/HC-forhold på fra 1:1 til 10:1 (fortrinsvis fra 2:1 til 6:1).The clays are preferably greater than 500 Å, more preferably greater than 1000 Å. In the most preferred embodiment, at least 80% of the type L zeolite crystals are greater than 1000 Å. The inorganic binder is preferably either a silica, alumina, aluminosilicate or a clay. The hydrocarbons are contacted with the barium-exchanged type of zeolite at a temperature of from 400 to 600 ° C (preferably 430 to 550 ° C) an LHSV of from 0.1 to 10 (preferably from 0.3 to 5), a manometer-10 pressures of from 0 to 3.45 MPa (preferably from 0.35 to 2.07 MPa), and a t 2 / HC ratio of from 1: 1 to 10: 1 (preferably from 2: 1 to 6: 1) .

Rent generelt angår den foreliggende opfindelse en katalysator omfattende en type L-zeolit, et jord-15 alkalimetal som nærmere angivet og et gruppe VIII metal, og opfindelsen angår desuden anvendelse af katalysatoren til reformering af carbonhydrider, især dehydrocyclisering af acycliske carbonhydrider med stor selektivitet, og endvidere dehydroisomerisering af alkylcyclopentaner, 20 samt dealkylering af toluen til fremstilling af benzen.In general, the present invention relates to a catalyst comprising a type L zeolite, an alkaline earth metal as specified and a Group VIII metal, and the invention further relates to the use of the catalyst for reforming hydrocarbons, in particular dehydrocyclization of acyclic hydrocarbons having high selectivity, and further, dehydroisomerization of alkylcyclopentanes, and dealkylation of toluene to produce benzene.

Udtrykket "selektivitet" som det anvendes ved den omhandlede opfindelse er defineret som den procentdel af mol acycliske carbonhydrider, der omdannes til aro-mater, i forhold til antallet af mol, der omdannes til 25 aromater og krakkede produkter, dvs.The term "selectivity" as used in the present invention is defined as the percentage of moles of acyclic hydrocarbons converted to aromatics to the number of moles converted to 25 aromatics and cracked products, i.e.

100 x mol acycliske carbonhydrider selektivitet = omdannet til aromater_ mol acycliske carbonhydrider omdannet til aromater og krakkede produkter100 x moles of acyclic hydrocarbons selectivity = converted to aromatics_ moles of acyclic hydrocarbons converted to aromatics and cracked products

Isomerisering af paraffiner og indbyrdes omdan-30 nelse af paraffiner og alkylcyclopentaner med samme antal carbonatomer pr. molekyle tages ikke 'i betragtning ved bestemmelse af selektiviteten.Isomerization of paraffins and the mutual conversion of paraffins and alkylcyclopentanes with the same number of carbon atoms per molecule is not considered when determining the selectivity.

Udtrykket "selektivitet for n-hexan" som det anvendes ved den omhandlede opfindelse er defineret som 35 den procentdel af mol n-hexan, der omdannes til aromater i forhold til antallet af mol, der omdannes til aromater og krakkede produkter.The term "n-hexane selectivity" as used in the present invention is defined as the percentage of moles of n-hexane converted to aromatics relative to the number of moles converted to aromatics and cracked products.

Selektiviteten for omdannelse af acycliske carbonhydrider til aromater er et mål for processens 8The selectivity for converting acyclic hydrocarbons to aromatics is a measure of process 8

DK 163571 BDK 163571 B

effektivitet til omdannelse af acycliske carbonhvdrider til de ønskede og værdifulde produkter, dvs. aromater og hydrogen,i modsætning til de mindre ønskede produkter fra hydrokrakning.efficiency of converting acyclic hydrocarbons into the desired and valuable products, i.e. aromatics and hydrogen, unlike the less desirable products of hydrocracking.

5 Yderst selektive katalysatorer frembringer mere hydrogen end mindre selektive katalysatorer, da der dannes hydrogen, når acycliske carbonhydrider omdannes til aromater, og hydrogen forbruges, når acycliske carbonhydrider omdannes til krakkede produkter.5 Extremely selective catalysts produce more hydrogen than less selective catalysts as hydrogen is formed when acyclic hydrocarbons are converted to aromatics and hydrogen is consumed when acyclic hydrocarbons are converted into cracked products.

10 En forøgelse af processens selektivitet forøger den dannede mængde hydrogen (mere aromatisering) og nedsætter den forbrugte hydrogen (mindre krakning).An increase in the selectivity of the process increases the amount of hydrogen formed (more aromatization) and decreases the hydrogen consumed (less cracking).

En anden fordel ved at anvende yderst selektive katalysatorer er, at det hydrogen, der fremstilles, 15 med yderst selektive katalysatorer, er renere end det, der fremstilles med mindre selektive katalysatorer.Another advantage of using highly selective catalysts is that the hydrogen produced with highly selective catalysts is cleaner than that produced with less selective catalysts.

Denne større renhed fremkommer på grund af, at der produceres mere hydrogen, mens der produceres mindre af lavtkogende carbonhydrider (krakkede produkter). Det ved 20 reformering producerede hydrogens renhed er kritisk, såfremt hydrogenet, hvilket i almindelighed er tilfældet i et integreret raffinaderi, anvendes ved processer såsom hydrobehandling og hydrokrakning, der kræ ver i det mindste visse minimale partialtryk af hydro-25 gen. Såfremt renheden bliver for lille, kan hydrogenet ikke længere anvendes til dette formål og må anvendes på en mindre værdifuld måde, f.eks. som brændselsgas.This greater purity results from more hydrogen being produced, while less boiling hydrocarbons (cracked products) are produced. The purity of the hydrogen produced by reforming is critical if the hydrogen, as is generally the case in an integrated refinery, is used in processes such as hydrotreating and hydrocracking which require at least some minimum partial pressure of the hydrogen. If the purity becomes too low, the hydrogen can no longer be used for this purpose and must be used in a less valuable way, e.g. such as fuel gas.

Angående de acycliske carbonhydrider, der kan dehydrocycliseres ved anvendelsen ifølge opfindelsen, 30 er de for det meste paraffiner, men kan i almindelighed være ethvert acyclisk carbonhydrid, der er i stand til at undergå ringslutning til dannelse. af et aromatisk carbonhydrid. Det vil sige, at den omhandlede opfindelse også tager sigte på at dehydrocyclisere 35 ethvert acyclisk carbonhydrid, der er i stand til at undergå ringslutning til fremstilling af et aromatisk carbonhydrid, og som er i stand til at blive fordampet ved de her anvendte dehydrocycliseringstemperaturer.Regarding the acyclic hydrocarbons which can be dehydrocyclized by the use of the invention, they are mostly paraffins, but can generally be any acyclic hydrocarbon capable of cyclization to form. of an aromatic hydrocarbon. That is, the present invention also aims to dehydrocyclize any acyclic hydrocarbon capable of undergoing cyclization to produce an aromatic hydrocarbon capable of being evaporated at the dehydrocyclization temperatures used herein.

99

DK 163571 BDK 163571 B

Nærmere betegnet omfatter egnede acycliske carbonhy-drider acycliske carbonhydrider, der indeholder 6 eller flere carbonatomer pr. molekyle såsom Cg-C2Q-paraf-finer og ε6-Ο20·“θ1θ£iner. Specifikke eksempler på egne-5 de acycliske carbonhydrider er: (1) paraffiner såsom n-hexan, 2-methylpentan, 3-methylpentan, n-heptan, 2-methylhexan, 3-methylhexan, 3-ethylpentan, 2,5-dime-thylhexan, n-octan, 2-methylheptan, 3-methylheptan, 4-methylheptan, 3-ethylhexan, n-nonan, 2-methyloctan, 10 3-methyloctan, n-decan og lignende forbindelser samt (2) olefiner såsom 1-hexen, 2-methyl-l-penten, 1-hepten, 1-octen, 1-nonen og lignende forbindelser.More particularly, suitable acyclic hydrocarbons comprise acyclic hydrocarbons containing 6 or more carbon atoms per liter. molecules such as Cg-C2Q paraffins and ε6-Ο20 · “θ1θ £ iner. Specific examples of their own acyclic hydrocarbons are: (1) paraffins such as n-hexane, 2-methylpentane, 3-methylpentane, n-heptane, 2-methylhexane, 3-methylhexane, 3-ethylpentane, 2,5-dimethane thylhexane, n-octane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 3-ethylhexane, n-nonane, 2-methyloctane, 3-methyloctane, n-decane and similar compounds as well as (2) olefins such as 1-hexene , 2-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene and similar compounds.

Ved en foretrukken udførelsesform er det acycliske carbonhydrid et paraffinisk carbonhydrid med 15 6 til 10 carbonatomer pr. molekyle. Det bemærkes, at de ovenfor specielt nævnte acycliske carbonhydrider kan føres til den omhandlede anvendelse individuelt, i blanding med en eller flere af de andre acycliske carbonhydrider eller i blanding med andre carbonhydri-20 der såsom naphthener, aromater og lignende. Således er blandede carbonhydridfraktioner, der indeholder betydelige mængder acycliske carbonhydrider,og som er almindeligt tilgængelige i et typisk raffinaderi, egnede tilfør-. selsmaterialer for den omhandlede katalysator, 25 f.eks. stærkt paraffiniske "straight-run" naphthaer, paraffiniske raffinater fra aromatisk ekstraktion eller adsorption, Cg-Cg- paraffinrige strømme og lignende raffinaderistrømme. En særlig foretrukken udførelsesform gælder anvendelse af et udgangsmateriale, der er en 30 paraffinrig naphthafraktion, der koger i området fra 60 til 177°C. I almindelighed opnås de bedste resultater med et udgangsmateriale bestående af en blanding af Cg-C^0-paraffiner, især Cg-Cg-paraffiner.In a preferred embodiment, the acyclic hydrocarbon is a paraffinic hydrocarbon having 15 to 10 carbon atoms per minute. molecule. It should be noted that the above-mentioned acyclic hydrocarbons may be applied to the present application individually, in admixture with one or more of the other acyclic hydrocarbons, or in admixture with other hydrocarbons such as naphthenes, aromatics and the like. Thus, mixed hydrocarbon fractions containing significant amounts of acyclic hydrocarbons and commonly available in a typical refinery are suitable additives. sealing materials for the catalyst in question, e.g. highly paraffinic "straight-run" naphthas, paraffinic refiners from aromatic extraction or adsorption, Cg-Cg paraffin-rich streams and similar refinery streams. A particularly preferred embodiment relates to the use of a starting material which is a paraffin-rich naphtha fraction boiling in the range of 60 to 177 ° C. Generally, the best results are obtained with a starting material consisting of a mixture of Cg-C20 paraffins, especially Cg-Cg paraffins.

Udgangsmaterialet er fortrinsvis i det væsent-35 lige fri for svovl, nitrogen, metaller og andre kendte gifte for reformeringskatalysatorer. Denne katalysator er særligt følsom overfor svovl. Udgangsmaterialet kan gøres i det væsentlige fri for svovl, nitrogen, metallerThe starting material is preferably substantially free of sulfur, nitrogen, metals and other known toxins for reforming catalysts. This catalyst is particularly sensitive to sulfur. The starting material can be made substantially free of sulfur, nitrogen, metals

DK 163571BDK 163571B

10 og andre kendte gifte ved konventionelle hydrorensnings-metoder og ved anvendelse af sorbenser, der fjerner svovlforbindelser.10 and other known poisons by conventional hydro-purification methods and using sorbents which remove sulfur compounds.

I tilfælde af et udgangsmateriale, der ikke 5 allerede har ringe svovlindhold, kan acceptable niveauer opnås' · ved at hydrorense udgangsmaterialet i en forbehandlingszone, hvor naphthaaibringes i kontakt med en hydrorensningskatalysator, der er modstandsdygtig overfor svovlforgiftning. En egnet katalysator til denne 10 hydroafsvovlningsproces er f.eks. en katalysator med en aluminiumoxidholdig bærer og en mindre andel molybden-oxid, cobaltoxid og/eller nikkeloxid. Hydroafsvovlningen udføres i almindelighed ved 315 til 455°C ved et manometertryk på fra 1,38 til 13,8 MPa, og en LHSV på 1 til 5.In the case of a starting material that does not already have low sulfur content, acceptable levels can be obtained by hydrating the starting material in a pretreatment zone where naphtha is contacted with a hydrogen purification catalyst resistant to sulfur poisoning. A suitable catalyst for this hydrodesulfurization process is e.g. a catalyst with an alumina-containing support and a minor proportion of molybdenum oxide, cobalt oxide and / or nickel oxide. Hydro desulphurization is generally carried out at 315 to 455 ° C at a pressure gauge of from 1.38 to 13.8 MPa and an LHSV of 1 to 5.

15 Svovlet og nitrogenet, der er indeholdt i naphthaen, omdannes til henholdsvis hydrogensulfid og ammoniak, der kan fjernes inden reformering ved passende konventionelle processer.The sulfur and nitrogen contained in the naphtha are converted into hydrogen sulfide and ammonia, respectively, which can be removed prior to reforming by appropriate conventional processes.

Ifølge et aspekt ved den omhandlede opfindelse 20 bringes det acycliske carbonhydrid i kontakt med katalysatoren i en dehydrocycl-i-seringszone,. der holdes under dehydrocycliseringsbetingelser . Denne bringen i kontakt kan udføres ved at anvende katalysatoren i et system med fast lag, bevæget lag, et fluidiseret 25 system eller i portionsvis drift, I betragtning af faren for slidtab af den værdifulde katalysator og velkendte driftsfordele, foretrækkes det imidlertid at anvende enten et system med fast lag eller et system med et bevæget lag med høj densitet. Det tages også i 30 betragtning, at kontakttrinet kan udføres i nærværelse af en fysisk blanding, som omfatter partikler af en konventionel dobbeltfunktionskatalysator af kendt art. I et system med fast lag foropvarmes det acyclisk carbonhy-dridholdige udgangsmateriale ved hjælp af enhver egnet 35 opvarmningsmetode til den ønskede reaktionstemperatur og føres derefter ind i dehydrocycliseringszonen, der indeholder et fast lag af katalysatoren. Det bemærkes, at dehydrocycliseringszonen naturligvis kan være en ellerAccording to one aspect of the present invention, the acyclic hydrocarbon is contacted with the catalyst in a dehydrocyclization zone. which are kept under dehydrocyclization conditions. This contacting can be accomplished by using the catalyst in a solid-layer, moving-layer system, a fluidized system, or in batch operation. However, given the danger of loss of the valuable catalyst and well-known operating advantages, it is preferred to use either a a solid-layer system or a high-density moving layer system. It is also contemplated that the contacting step may be carried out in the presence of a physical mixture which comprises particles of a conventional dual-function catalyst of known type. In a solid-layer system, the acyclic hydrocarbon-containing starting material is preheated by any suitable heating method to the desired reaction temperature and then introduced into the dehydrocyclization zone containing a solid layer of the catalyst. It should be noted that the dehydrocyclization zone may, of course, be one or

DK 163571 BDK 163571 B

1 1 flere separate reaktorer med egnede midler derimellem, der sikrer at den ønskede omdannelsestemperatur opretholdes ved indgangen til hver reaktor. Det er også vigtigt at bemærke, at reaktanterne kan bringes i kon-5 takt med katalysatorlaget på enten opadgående, nedadgående- eller radial strømningsmåde. Derudover kan reaktanterne være i væskefase, blandet væske-daiflpfase eller dampfase, når de bringesi kontakt med katalysatoren, idet de bedste resultater opnås i dampfasen. Dehydrocycli-10 seringssystemet omfatter da fortrinsvis en dehydrocycli-seringszone, der indeholder et eller flere faste lag eller bevægede lag med høj densitet af katalysatoren.1 1 several separate reactors with suitable means therebetween, ensuring that the desired conversion temperature is maintained at the entrance to each reactor. It is also important to note that the reactants can be contacted with the catalyst layer in either upward, downward or radial flow modes. In addition, the reactants may be in liquid phase, mixed liquid phase or vapor phase when contacted with the catalyst, with the best results being obtained in the vapor phase. The dehydrocyclization system then preferably comprises a dehydrocyclization zone containing one or more solid or high density moving layers of the catalyst.

I et system med flere lag er det naturligvis indenfor den omhandlede opfindelses rammer at anvende den omhandlede 15 katalysator i færre end alle lagene, idet en konventionel dobbeltfunktionskatalysator anvendes i resten af lagene. Dehydrocycliseringszonen kan være en eller flere separate reaktorer med passende opvarmningsmidler derimellem til at kompensere for det varmetab, der 20 finder sted i hvert katalysatorlag på grund af dehydro-cycliseringsreaktionens endoterme natur.Of course, in a multi-layer system, it is within the scope of the present invention to use the present catalyst in fewer than all the layers, with a conventional dual-function catalyst being used in the rest of the layers. The dehydrocyclization zone may be one or more separate reactors with suitable heaters therebetween to compensate for the heat loss occurring in each catalyst layer due to the endothermic nature of the dehydrocyclization reaction.

Skønt hydrogen er det foretrukne fortyndingsmiddel til brug ved den beskrevne dehydrocycliserings-metode, kan der i nogle tilfælde med fordel anvendes 25 andre indenfor teknikken kendte fortyndingsmidler enten _ alene eller i blanding med hydrogen,såsom C^-Cj--paraffiner såsom methan, ethan, propan, butan og pentan og lignende fortyndingsmidler samt blandinger deraf. Hydrogen foretrækkes på grund af, at det tjener 30 den dobbelte funktion ikke blot at sænke partialtrykket af det acycliske carbonhydrid, men også at undertrykke dannelsen af hydrogenfattige carbonholdige aflejringer (normalt benævnt koks) på katalysatorkompositten.Although hydrogen is the preferred diluent for use in the dehydrocyclization method described, in some cases advantageous other diluents known in the art may be used either alone or in admixture with hydrogen such as C C-C₂ paraffins such as methane, ethane. , propane, butane and pentane and similar diluents and mixtures thereof. Hydrogen is preferred because it serves the dual function of not only lowering the partial pressure of the acyclic hydrocarbon, but also suppressing the formation of hydrogen-poor carbonaceous deposits (usually referred to as coke) on the catalyst composite.

I almindelighed anvendes hydrogen i mængder, der er 35 tilstrækkelige til at sikre et molforhold mellem hydrogen og carbonhydrid på fra 1:1 til 10:1, idet de bedste resultater opnås i området fra 2:1 til 6:1. Det hydrogen, der tilføres dehydrocycliseringszonen vil typisk være iIn general, hydrogen is used in amounts sufficient to ensure a hydrogen to hydrocarbon molar ratio of from 1: 1 to 10: 1, with the best results being obtained in the range of 2: 1 to 6: 1. The hydrogen supplied to the dehydrocyclization zone will typically be in

DK 163571BDK 163571B

12 en hydrogenrig gasstrøm, der recirkuleres fra afgangsstrømmen fra denne zone efter et passende gas/væske-se-pareringstrin.12 is a hydrogen-rich gas stream which is recycled from the outlet stream from this zone after a suitable gas / liquid seep stage.

De carbonhydriddehydrocycliseringsbetingelser, ' 5 der anvendes ved udførelse af den foreliggende anvendel se, inkluderer et reaktortryk, der er valgt i området fra 0 til 3,45 MPa overtryk, idet det foretrukne tryk er 0,35 til 2,07 MPa overtryk. Temperaturen ved dehydro-cycliseringen er fortrinsvis fra 430 til 550°C. Som det 10 er velkendt for fagmanden,udføres det første valg af temperaturen indenfor dette brede område primært som funktion af det ønskede omdannelsesniveau for det acyc-liske carbonhydrid under hensyntagen til egenskaberne af udgangsmaterialet og katalysatoren. I almindelighed 15 forøges temperaturen derefter langsomt under kørslen for at kompensere for den uundgåelige deaktivering, der finder sted, således at der opnås en relativt konstant værdi for omdannelsen.The hydrocarbon hydrocyclization conditions used in carrying out the present application include a reactor pressure selected in the range of 0 to 3.45 MPa overpressure, the preferred pressure being 0.35 to 2.07 MPa overpressure. The temperature of the dehydrocyclization is preferably from 430 to 550 ° C. As is well known to those skilled in the art, the first choice of temperature within this wide range is performed primarily as a function of the desired level of conversion of the acyclic hydrocarbon, taking into account the properties of the starting material and the catalyst. In general, the temperature is then slowly increased during the run to compensate for the inevitable deactivation that occurs so as to obtain a relatively constant value for the conversion.

Den specifikke volumetriske væsketilførsels-20 hastighed (LHSV), der anvendes ved den foreliggende dehydrocycliseringsmetode, vælges i området fra 0,1 til 10 time ^ , idet en værdi i området fra 0,3 til 5 time-1 foretrækkes.The specific volumetric liquid delivery rate (LHSV) used in the present dehydrocyclization method is selected in the range of 0.1 to 10 hours, with a value in the range of 0.3 to 5 hours -1 being preferred.

Reformering resulterer i almindelighed i dannelse 25 af hydrogen. Således behøver der ikke nødvendigvis at tilsættes exogent hydrogen til reformeringssystemet bortset fra til forreduktion af katalysatoren, og når fødestrømmen først indføres. Når reformeringen først er igang, recirkuleres en del af det frembragte 30 hydrogen i almindelighed henover katalysatoren. Tilstedeværelsen af hydrogen tjener til at reducere dannelsen af koks, der har tendens til at forgifte katalysatoren. Hydrogen tilføres fortrinsvis reformeringsreaktoren i en mængde, der varierer fra 1 til 10 35 mol hydrogen pr. mol fødemaberiale. Hydrogenet kan være i blanding med lette gasformige carbonhydrider.Reformation generally results in the formation of hydrogen. Thus, exogenous hydrogen need not necessarily be added to the reforming system except for pre-reduction of the catalyst and once the feed stream is introduced. Once the reforming is underway, a portion of the hydrogen produced is generally recycled across the catalyst. The presence of hydrogen serves to reduce the formation of coke that tends to poison the catalyst. Hydrogen is preferably supplied to the reforming reactor in an amount ranging from 1 to 10 35 moles of hydrogen per liter. moles of feed material. The hydrogen may be in admixture with light gaseous hydrocarbons.

Såfremt katalysatoren efter en vis driftsperiode er blevet deaktiveret ved tilstedeværelsen af carbon- 13If, after a certain period of operation, the catalyst has been deactivated by the presence of carbon

DK 163571 BDK 163571 B

holdige aflejringer, kan disse aflejringer fjernes fra katalysatoren ved at føre en oxygenholdig gas såsom fortyndet luft til kontakt med katalysatoren ved forhøjet temperatur for at bortbrænde de carbonholdige aflej-5 ringer frakatalysatoren. Regenereringen kan enten udføres på den semiregenerative måde,ved hvilken reformeringsprocessen afbrydes efter et kortere eller længere tidsrum,og katalysatorregenereringen udføres,eller på den løbende regenerative måde, ved hvilken en del 10 af katalysatoren regenereres, mens reformeringsproces-sen fortsættes over resten af katalysatoren. Der kendes to typer løbende regenerering indenfor teknikken, dvs. cyclisk og kontinuerlig reformering. Ved cyclisk reformering regenereres katalysatoren i en af en række reak-15 torer, mens reformeringen .-fortsættes i resten af anlægget.containing deposits, these deposits can be removed from the catalyst by passing an oxygen-containing gas such as diluted air into contact with the catalyst at elevated temperature to burn away the carbonaceous deposits from the catalyst. The regeneration can either be carried out in the semi-regenerative manner in which the reforming process is interrupted after a shorter or longer period of time and the catalyst regeneration is carried out, or in the continuous regenerative manner in which part 10 of the catalyst is regenerated while the reforming process is continued over the rest of the catalyst. There are two types of continuous regeneration known in the art, viz. cyclical and continuous reform. In cyclic reforming, the catalyst is regenerated in one of a number of reactors, while the reforming is continued in the rest of the plant.

Ved kontinuerlig : reformering' fjernes en del af den deaktiverede katalysator fra anlægget og regenereres i et separat regenereringssystem, mens reformeningen fortsættes i anlægget, og den regenererede katalysator føres tilbage til anr 20 lægget. Den måde, hvorpå katalysatoren regenereres, vil afhænge af om der er tale om drift med et fast lag, bevæget lag eller fluidiseret lag. Regenereringsmetoder og -betingelser er velkendte indenfor teknikken.On continuous: reforming, part of the deactivated catalyst is removed from the plant and regenerated in a separate regeneration system while the reforming unit is continued in the plant and the regenerated catalyst is returned to the annulus. The manner in which the catalyst is regenerated will depend on whether it is operating with a solid layer, moving layer or fluidized layer. Regeneration methods and conditions are well known in the art.

Katalysatoren ifølge opfindelsen er en type L-25 zeolit, der er tilført et gruppe VIII metal og et jord-alkalimetal.The catalyst according to the invention is a type L-25 zeolite which is supplied with a Group VIII metal and an alkaline earth metal.

Type L-zeolitter er syntetiske zeolitter. En teoretisk formel er Mg^n [ (Alt^) g (SiC^^yl / hvori M er en kation med valensen n.Type L zeolites are synthetic zeolites. A theoretical formula is Mg ^ n [(Alt ^) g (SiC ^^ yl / wherein M is a cation with the valence n.

30 Den virkelige formel kan variere uden at den krystallinske struktur ændres, f.eks. kan molforholdet mellem silicium og aluminium (Si/Al) variere fra 1,0 til 3,5.The real formula may vary without changing the crystalline structure, e.g. For example, the molar ratio of silicon to aluminum (Si / Al) may range from 1.0 to 3.5.

Skønt der findes et antal kationer, der kan 35 være til stede i L-zeolitten, foretrækkes det i én udførelsesform at syntetisere kaliumformen af zeolitten, dvs. den form, hvori de tilstedeværende udskiftelige kationer i det væsentlige alle er kaliumioner. De reaktanter, 14Although there are a number of cations that may be present in the L zeolite, it is preferred in one embodiment to synthesize the potassium form of the zeolite, ie. the form in which the interchangeable cations present are essentially all potassium ions. The reactants, 14

DK 163571 BDK 163571 B

der følgeligt anvendes, er let tilgængelige og i almindelighed vandopløselige. De i zeolitten tilstedeværende udskiftelige kationer kan derefter bekvemt erstattes med andre udskiftelige kationer, som det vil fremgå 5 nedenfor, og derved give isomorfe former for zeolit L.as a result, are readily available and generally water soluble. The interchangeable cations present in the zeolite can then conveniently be replaced by other interchangeable cations, as will be seen below, thereby providing isomorphic forms of zeolite L.

Ved en fremgangsmåde til fremstilling af zeolit L fremstilles kaliumformen af zeolit L ved passende opvarmning af en vandig metalaluminiumsilikatblanding, hvis sammensætning udtrykt ved molforholdene mellem 10 oxiderne falder indenfor området: ^0/.....fra ca. 0,33 til ca. 1 /SiC>2 .....fra ca. 0,35 til ca. 0,5In a process for preparing zeolite L, the potassium form of zeolite L is prepared by appropriately heating an aqueous metal-aluminum silicate mixture, the composition of which is expressed in the molar ratios of the oxides falling within the range: 0.33 to approx. 1 / SiC> 2 ..... from approx. 0.35 to approx. 0.5

SiC^/A^Og ......... fra ca. 10 til ca. 28 H2O/...... fra ca. 15 til ca. 41 15 Det ønskede produkt udkrystalliseres herved relativt fri for zeolitter med forskellig krystalstruktur.SiC ^ / A ^ And ......... from approx. 10 to approx. 28 H2O / ...... from approx. 15 to approx. 41 15 The desired product is thereby crystallized relatively free of zeolites of different crystal structure.

Kaliumformen for zeolit L kan også fremstilles ved en anden fremgangsmåde sammen med andre zeolitforbindelser ved at anvende en reaktionsblanding, hvis 20 sammensætning,udtrykt ved molforholdene mellem oxider, ligger indenfor det følgende område: ^0/(^0+^20) .....fra ca. 0,26 til ca. 1 (K20+Na20)/Si02 .... fra ca. 0,34 til ca. 0,5The potassium form of zeolite L may also be prepared by another process together with other zeolite compounds by using a reaction mixture whose composition, expressed by the molar ratios of oxides, is within the following range: ^ 0 / (^ 0 + ^ 20) ... ..from approx. 0.26 to approx. 1 (K 2 O + Na 2 O) / SiO 2 .... from ca. 0.34 to approx. 0.5

SiC^/A^O^ ......... fra ca. 15 til ca. 28 25 H2O/(^OHS^O) .....fra ca. 15 til ca. 51SiC ^ / A ^ O ^ ......... from ca. 15 to approx. 28 25 H2O / (^ OHS ^ O) ..... from ca. 15 to approx. 51

Det bemærkes, at tilstedeværelsen af natrium i reaktionsblandingen ikke er kritisk for den foreliggende opfindelse.It is noted that the presence of sodium in the reaction mixture is not critical to the present invention.

Når zeolitten fremstilles ud fra reaktions-30 blandinger, der indeholder natrium, inkluderes natriumioner i almindelighed i produktet som en del af de udskiftelige kationer sammen med kaliumionerne. Det produkt, der opnås fra de ovennævnte molforholdsområder, har en sammensætning, der udtrykt som mol oxider 35 svarer til formlen: 0,9-1,3 [ (l-x)K20, xNa20] :A1203 :5,2-6,9 SiC^ryl^O hvori x kan have en vilkårlig værdi fra 0 til 0,75,og y kan have en vilkårlig værdi fra 0 til 9.When the zeolite is prepared from sodium-containing reaction mixtures, sodium ions are generally included in the product as part of the replaceable cations along with the potassium ions. The product obtained from the above molar ratio ranges has a composition expressed as moles of oxides 35 corresponding to the formula: 0.9-1.3 [(1x) K 2 O, xNa 2 O]: Al 2 O 3: 5.2-6.9 SiC ^ ryl ^ O in which x may have any value from 0 to 0.75 and y may have any value from 0 to 9.

1515

DK 163571 BDK 163571 B

Ved fremstilling af zeolit L er repræsentative reaktanter aktiveret aluminiumoxid, γ-aluminiumoxid, aluminiumoxidtrihydrat og natriumaluminat som kilde for aluminiumoxid. Siliciumdioxid kan opnås fra natrium-5 eller kaliumsilikat, silicageler, kiselsyre, vandige kolloide siliciumdioxidsoler og reaktive amorfe faste siliciumdioxider. Fremstillingen af typiske siliciumdioxidsoler, der er egnede til brug til den foreliggende fremgangsmåde, er beskrevet i US-patentskrift nr.In the preparation of zeolite L, representative reactants are activated alumina, γ-alumina, alumina trihydrate and sodium aluminate as the source of alumina. Silica can be obtained from sodium or potassium silicate, silica gels, silicic acid, aqueous colloidal silica sols and reactive amorphous solid silica. The preparation of typical silica sols suitable for use in the present process is described in U.S. Pat.

10 2.574.-902 og US-patentskrift nr. 2.597.872. Typiske for gruppen af reaktive amorfe faste siliciumdioxider, der fortrinsvis har en største partikelstørrelse på mindre end 1 ym, er sådanne materialer som siliciumdioxidrøg og kemisk udfældede og udfældede siliciumdioxidsoler. Kalium-15 og natriumhydroxid kan tilføre metalkationen og hjælpe med til at regulere pH.10 2,574,890 and US Patent No. 2,597,872. Typical of the group of reactive amorphous solid silica, which preferably has a larger particle size of less than 1 µm, are such materials as silica fumes and chemically precipitated and precipitated silica sols. Potassium-15 and sodium hydroxide can supply the metal cation and help regulate the pH.

Ved fremstilling af zeolit L består den sædvanlige fremgangsmåde i, at kalium- eller natriumaluminat og alkali, f.eks. kalium- eller natriumhydroxid, 20 opløses i vand. Denne opløsning blandes med en vandig opløsning af natriumsilikat eller fortrinsvis med en vand-silikatblanding, der i det mindste delvis stammer fra en vandig kolloid siliciumdioxidsol. Den resulterende reaktionsblanding anbringes i en beholder, der f.eks.In the preparation of zeolite L, the usual process consists in the fact that potassium or sodium aluminate and alkali, e.g. potassium or sodium hydroxide, 20 dissolved in water. This solution is mixed with an aqueous solution of sodium silicate or preferably with a water-silicate mixture which is at least partially derived from an aqueous colloidal silica sol. The resulting reaction mixture is placed in a container which e.g.

25 er fremstillet af metal eller glas. Beholderen bør være lukket for at undgå tab af vand. Reaktionsblandingen omrøres derefter for at sikre homogenitet.25 is made of metal or glass. The container should be closed to prevent water loss. The reaction mixture is then stirred to ensure homogeneity.

Zeolitten kan fremstilles tilfredsstillende ved temperaturer på fra . 90 til 200°C, idet trykket 30 er atmosfæretryk eller mindst et tryk, der svarer til damptrykket af vand i ligevægt med blandingen af reaktanter ved den højere temperatur. Der kan anvendes ethvert egnet opvarmningsapparat, f.eks. en ovn, et sandbad, et oliebad eller en med kappe forsynet autoklav. Opvarmnin-35 gen fortsættes, indtil det ønskede krystallinske zeolitprodukt er dannet. Zeolitkrystallerne filtreres derefter fra og vaskes for at adskille dem fra reaktantmodervæsken. Zeolitkrystallerne bør vaskes med fortrinsvis destilleret 16The zeolite can be prepared satisfactorily at temperatures of from. 90 to 200 ° C, the pressure 30 being atmospheric pressure or at least a pressure corresponding to the vapor pressure of water in equilibrium with the mixture of reactants at the higher temperature. Any suitable heater may be used, e.g. an oven, a sand bath, an oil bath, or a sheathed autoclave. The heating is continued until the desired crystalline zeolite product is formed. The zeolite crystals are then filtered off and washed to separate them from the reactant mother liquor. The zeolite crystals should be washed with preferably distilled 16

DK 163571 BDK 163571 B

vand, indtil det afgående vaskevand, i ligevægt med produktet, har en pH på mellem 9 og 12. Mens zeolitkrystallerne vaskes, kan den udskiftelige kation i zeolitten delvis blive fjernet, og det antages, at den erstattes 5 med hydrogenkationer. Såfremt vaskningen afbrydes, når det bortløbne vaskevand har en pH på mellem 10 og 11, vil (K20+Na20)/Al203 molforholdet for det krystallinske produkt være ca. 1,0. Derefter kan zeolitkrystallerne tørres, bekvemt i en ventileret ovn.water until the outgoing wash water, in equilibrium with the product, has a pH of between 9 and 12. While the zeolite crystals are washed, the interchangeable cation in the zeolite may be partially removed and it is assumed to be replaced by hydrogen cations. If washing is interrupted when the run-off wash water has a pH of between 10 and 11, the (K 2 O + Na 2 O) / Al 2 O 3 molar ratio of the crystalline product will be about 1.0. Then the zeolite crystals can be dried, conveniently in a ventilated oven.

10 Zeolit L er blevet beskrevet i "Zeolite Mole cular Sieves" af Donald W. Breck, John Wiley &Sons, 1974, som havende et gitter bestående af 18 tetraederenhedsbure af cancrinit-typen, der er forbundet med dobbelte 6-ringe i søjler og tværbundet med enkelt-15 oxygenbroer til dannelse af plane 12-rledede ringe.10 Zeolite L has been described in "Zeolite Mole cular Sieves" by Donald W. Breck, John Wiley & Sons, 1974, as having a lattice consisting of 18 cancrinite-type tetrahedral cages connected to double 6-column columns and cross-linked with single-15 oxygen bridges to form planar 12-membered rings.

Disse 12-ledede ringe frembringer brede kanaler parallelt med c-aksen uden stablingsfejl. Til forskel fra erionit og cancrinit er cancrinitburene anbragt symmetrisk henover de dobbelte 6-ringsenheder. Der 20 findes fire typer kationspositioner: A)i dobbelt-6-rin-gene, B)i cancrinittypeburene, C) mellem cancrinittype-burene og D) på kanalvæggen. Kationerne i positionen D synes at være de eneste udskiftelige kationer ved stuetemperatur. Under dehydratisering .flytter · kat ioner i 25 position D sig sandsynligvis fra kanalvæggene til en femte position, position E, der findes mellem A-positio-nerne. Carbonhydridsorptionsporerne har en diameter på ca. 7 til 8 Å.These 12-membered rings produce wide channels parallel to the c-axis without stacking errors. Unlike erionite and cancrinite, the cancrinite cages are arranged symmetrically across the double 6-ring units. There are four types of cation positions: A) in the double-6-ring gene, B) in the cancrinite-type cages, C) between the cancrinite-type cages, and D) on the duct wall. The cations at position D appear to be the only interchangeable cations at room temperature. During dehydration, cations in position D probably move from the channel walls to a fifth position, position E, found between the A positions. The hydrocarbon sorption pores have a diameter of approx. 7 to 8 Å.

En mere fuldstændig beskrivelse af disse zeo-30 litter er angivet i f.eks. US-patentskrift nr.A more complete description of these zeolites is given in e.g. U.S. Pat.

3.216.789, der mere detaljeret giver en konventionel beskrivelse af disse zeolitter.3,216,789, which provides a more detailed description of these zeolites in more detail.

Forskellige faktorer har indvirkning på en zeolits røntgendiffraktionsmønster. Sådanne faktorer 35 inkluderer temperatur, tryk, krystalstørrelse, urenheder og typen af tilstedeværende kationer. F.eks. bliver røntgendiffraktionsmønsteret bredere og mindre nøjag- 17Various factors influence the X-ray diffraction pattern of a zeolite. Such factors include temperature, pressure, crystal size, impurities and the type of cations present. Eg. the X-ray diffraction pattern becomes wider and less accurate 17

DK 163571 BDK 163571 B

tigt, når type L zeolittens krystalstørrelse bliver mindre. Udtrykket "zeolit L" inkluderer således enhver zeolit, der består af cancrinitbure med et røntgendiffraktionsmønster, der i det væsentlige svarer til de 5 røntgendiffraktionsmønstre , der er anført i US-patent-skrift nr. 3.216.789.thick as the crystal size of the type L zeolite becomes smaller. Thus, the term "zeolite L" includes any zeolite consisting of cancrinite cages having an X-ray diffraction pattern substantially similar to the 5 X-ray diffraction patterns set forth in U.S. Patent No. 3,216,789.

Krystalstørrelsen har også en virkning på katalysatorens stabilitet. Af årsager, der endnu ikke er fuldt ud forstået, giver katalysatorer med mindst 10 80% af type L zeolitkrystallerne større end 1000 Å, længere driftstider end katalysatorer med i det væsentlige alle type L zeolitkrystallerne mellem 200 og 500 Å.The crystal size also has an effect on the stability of the catalyst. For reasons not yet fully understood, catalysts with at least 10 80% of the type L zeolite crystals greater than 1000 Å give longer operating times than catalysts with substantially all type L zeolite crystals between 200 and 500 Å.

De større blandt disse krystalstørrelser af type L zeolit er således det foretrukne bæremateriale.The larger among these crystal sizes of type L zeolite is thus the preferred support material.

15 Type L zeolitter syntetiseres konventionelt hovedsagelig i kaliumformen, dvs. at i den tidligere anførte teoretiske formel er de fleste af M-kationerne kalium. M-Kat-ionerne er udskiftelige, således at en given type L zeolit, f.eks. en type L zeolit i kaliumformen, kan anvendes 20 til at opnå type L zeolitter, der indeholder andre kationer ,ved at underkaste type L zeolitten ionbytningsbehandling i en vandig opløsning af passende salte. Det er imidlertid vanskeligt at udskifte alle de oprindelige kationer, f.eks. kalium, eftersom nogle 25 udskiftelige kationer i zeolitten findes på positioner, der er vanskeligt tilgængelige for reagenserne.Type L zeolites are conventionally synthesized mainly in the potassium form, ie. that in the previously stated theoretical formula most of the M cations are potassium. The M-Cat ions are interchangeable, so that a given type of L zeolite, e.g. a potassium type L zeolite, may be used to obtain type L zeolites containing other cations by subjecting the type L zeolite ion exchange treatment to an aqueous solution of appropriate salts. However, it is difficult to replace all the original cations, e.g. potassium, since some interchangeable cations in the zeolite are found at positions that are difficult to reach for the reagents.

Andre zeolitter, der ville kunne anvendes ifølge opfindelsen, er "zeolitter af L familien". Udtrykket "zeolit af L familien" er defineret som en vilkårlig 30 zeolit, der består af cancrinitbure til opnåelse af en porestruktur, hvis porer er begrænset af en 12-sidet ring, hvori zeolitten har dehydrocycliseringsaktivitet, såfremt et gruppe VIII metal indføres i zeolitten. Zeolitter, der er repræsentative for en "zeolit af L familien" inkluderer type L zeolit som beskrevet i US-patentskrift nr. 3.216.789, AGI som beskrevet i GB-patentskrift nr. 1.393.365, AG4 som beskrevet i GB-patentskrift nr. 1.394.163, AG5 som beskrevet i US-pa- 18Other zeolites which could be used according to the invention are "zeolites of the L family". The term "zeolite of the L family" is defined as any zeolite consisting of cancrinite cages to obtain a pore structure whose pores are limited by a 12-sided ring wherein the zeolite has dehydrocyclization activity if a group VIII metal is introduced into the zeolite. Zeolites representative of a "zeolite of the L family" include type L zeolite as described in U.S. Patent No. 3,216,789, AGI as disclosed in GB Patent No. 1,393,365, AG4 as described in GB Patent No. 1,394,163, AG5, as described in U.S. Pat

DK 163571 BDK 163571 B

tentskrift nr. 3.298.780 og K, Ba-G zeolit.tent publication no. 3,298,780 and K, Ba-G zeolite.

Et væsentligt træk ved den foreliggende opfindelse er tilstedeværelsen af et jordalkalimetal i type L zeolitten. Dette jordalkalimetal skal enten være 5 barium, strontium eller calcium. Jordalkalimetallet er fortrinsvis barium. Jordalkalimetallet kan indføres i zeolitten ved syntese, imprægnering eller ionbytning.An essential feature of the present invention is the presence of an alkaline earth metal in the Type L zeolite. This alkaline earth metal must be either 5 barium, strontium or calcium. The alkaline earth metal is preferably barium. The alkaline earth metal can be introduced into the zeolite by synthesis, impregnation or ion exchange.

Barium foretrækkes fremfor de andre jordålkalimetaller på grund af, at den resulterende katalysator har stor 10 aktivitet, stor selektivitet og stor stabilitet.Barium is preferred over the other ground-eel potassium metals because the resulting catalyst has high activity, high selectivity and high stability.

Ved en udførelsesform udskiftes i det mindste en del af alkalimetallet med barium ved anvendelse af metoder, der er kendte til ionbytning af zeolitter.In one embodiment, at least a portion of the alkali metal is replaced by barium using methods known for ion exchange of zeolites.

Dette involverer, at zeolitten bringes i kontakt med 15 en opløsning, der indeholder et overskud af Ba++-ioner. Bariumet bør fortrinsvis udgøre fra 0,1 til 35% af zeolittens vægt, mere foretrukket fra.1 til 20 vægt%.This involves contacting the zeolite with a solution containing an excess of Ba ++ ions. The barium should preferably be from 0.1 to 35% by weight of the zeolite, more preferably from 1 to 20% by weight.

Katalysatoren ifølge opfindelsen indeholder et eller flere gruppe VIII metaller, f.eks. nikkel, ruthe-20 nium, rhodium, palladium, iridium eller platin.The catalyst of the invention contains one or more Group VIII metals, e.g. nickel, ruthenium, rhodium, palladium, iridium or platinum.

De foretrukne gruppe VIII metaller er iridium, palladium og især platin, da disse er mere selektive med hensyn til dehydrocvclisering og også er mere stabile under dehydrocycliserihgsreak'tionsbetingelserne end 25 andre gruppe VIII metaller.The preferred Group VIII metals are iridium, palladium and especially platinum as these are more selective in dehydrocyclization and are also more stable under the dehydrocyclic reaction conditions than other Group VIII metals.

Den foretrukne procentdel platin i katalysatoren ligger mellem 0,1 og 5%, mere foretrukket fra 0,1 til 1,5%.The preferred percentage of platinum in the catalyst is between 0.1 and 5%, more preferably from 0.1 to 1.5%.

Gruppe VIII metaller indføres i L-zeolitten ved 30 syntese, imprægnering eller udbytning i en vandig opløsning af- et passende salt. Når det ønskes at indføre to gruppe VIII metaller i zeolitten, kan dette udføres samtidigt eller i rækkefølge.Group VIII metals are introduced into the L zeolite by synthesis, impregnation or exchange in an aqueous solution of a suitable salt. When it is desired to introduce two Group VIII metals into the zeolite, this can be done simultaneously or sequentially.

F.eks. kan platin indføres ved at imprægnere 35 zeolitten med en vandig opløsning af tetraminplatin- 19Eg. platinum can be introduced by impregnating the zeolite with an aqueous solution of tetramine platinum.

DK 163571 BDK 163571 B

(Il)-nitrat, tetraaminplatin-(II)-hydroxid, dinitrodiami-noplatin- eller tetraminplatin-(II)-chlorid. Ved en ionbytterproces kan platin indføres ved at anvende kationiske platinkomplekser såsom tetraaminplatin-(II)-5 nitrat.(II) nitrate, tetraamine platinum (II) hydroxide, dinitrodiami noplatin or tetramine platinum (II) chloride. In an ion exchange process, platinum can be introduced using cationic platinum complexes such as tetraamine platinum (II) -5 nitrate.

Et uorganisk oxid kan anvendes som bærer til at binde type L zeolitten, der indeholder gruppe VIII metallet og jordalkalimetallet/Og give katalysatoren yderligere styrke. Bæreren kan være et naturligt 10 eller syntetisk uorganisk oxid eller kombination af uorganiske oxider. Foretrukne indhold af uorganisk oxid ligger fra 5 til 25 vægt% af katalysatoren. Typiske uorganiske oxidbærere, der kan anvendes, inkluderer aluminosilikater (såsom lerarter), aluminiumoxider 15 og siliciumdioxider, hvori sure positioner fortrinsvis er udbyttet med kationer, der ikke tilfører stærk acidi-tet.An inorganic oxide can be used as a carrier to bind the type L zeolite containing the Group VIII metal and the alkaline earth metal / And give the catalyst additional strength. The carrier may be a natural or synthetic inorganic oxide or combination of inorganic oxides. Preferred content of inorganic oxide is from 5 to 25% by weight of the catalyst. Typical inorganic oxide carriers which may be used include aluminosilicates (such as clays), alumina and silica, wherein acidic positions are preferably exchanged with cations which do not provide strong acidity.

Et foretrukket uorganisk oxidbæremateriale er "Ludox", der er en kolloid suspension af siliciumdioxid 20 i vand, stabiliseret med en lille mængde alkali.A preferred inorganic oxide carrier is "Ludox", which is a colloidal suspension of silica 20 in water, stabilized with a small amount of alkali.

Når et uroganisk oxid anvendes som bæremateriale er der to foretrukne fremgangsmåder, hvorved katalysatoren kan fremstilles, skønt andre udførelsesformer også kan anvendes.When a urogenic oxide is used as a carrier, there are two preferred methods by which the catalyst can be prepared, although other embodiments may also be used.

25 Ved den første foretrukne udførelsesform fremstilles type L zeolitten, derefter ionbyttes type L zeolitten med en bariuraopløsning, separeres fra bariumopløsningen, tørres og calcineres, imprægneres med platin, calcineres og blandes derefter med det 30 uorganiske oxid og ekstruderes gennem en dyse til dannelse af cylindriske pellets. Fordelaatige metoder til at separere type L zeolitten fra barium- og platinopløsningerne er med en portionscentrifuge eller et pressefilter. Denne udførelsesform har den fordel, at 35 al barium og platin optages i type L zeolitten, og at intet optages i det uorganiske oxid. Den har den ulempe, at type L zeolitten har en lille størrelse og er vanskelig at separere fra bariumopløsningen og 20In the first preferred embodiment, the Type L zeolite is prepared, then the Type L zeolite is ion exchanged with a barium solution, separated from the barium solution, dried and calcined, impregnated with platinum, calcined and then mixed with the inorganic oxide and extruded through a nozzle to form cylindrical pellets. Advantageous methods for separating the type L zeolite from the barium and platinum solutions are with a batch centrifuge or a press filter. This embodiment has the advantage that 35 al of barium and platinum are taken up in the type L zeolite and that nothing is absorbed in the inorganic oxide. It has the disadvantage that the type L zeolite has a small size and is difficult to separate from the barium solution and

DK 163571 BDK 163571 B

platinopløsningen.platinum solution.

Ved den anden foretrukne udførelsesform blandes type L zeolitten med det uorganiske oxid og ekstruderes gennem dysen til dannelsen af cylindriske pellets, og 5 derefter ionbyttes disse pellets med en bariumopløsning, separeres fra bariumopløsningen, imprægneres med platin, separeres fra platinopløsningen o? calcineres. Denne udførelsesform har den fordel, at pelletene er lette at separere fra barium- og platinopløsningerne, men 10 den har den ulempe, at barium og platin også kan afsættes på det uorganiske oxidbæremateriale og - kan katalysere uønskede reaktioner. Valget af den udførelsesform, der anvendes, afhænger således af ·en afvejning mellem katalysatorselektiviteten og den lethed, 15 hvormed katalysatoren separeres fra barium- og platinopløsningerne .In the second preferred embodiment, the type L zeolite is mixed with the inorganic oxide and extruded through the nozzle to form cylindrical pellets, and then these pellets are ion exchanged with a barium solution, separated from the barium solution, impregnated with platinum, separated from the platinum solution and separated. calcined. This embodiment has the advantage that the pellets are easily separable from the barium and platinum solutions, but it has the disadvantage that barium and platinum can also be deposited on the inorganic oxide support material and can catalyze unwanted reactions. Thus, the choice of the embodiment used depends on a balance between the catalyst selectivity and the ease with which the catalyst is separated from the barium and platinum solutions.

Ved en tredje mulig udførelsesform ionbyttes type L zeolitten med en bariumopløsning, tørres og calcineres, blandes med det uorganiske oxid og ekstru-20 deres gennem dysen til dannelse af cylindriske pellets, derefter imprægneres disse pellets med platin, separeres fra platinopløsningen og calcineres.In a third possible embodiment, the Type L zeolite is ion exchanged with a barium solution, dried and calcined, mixed with the inorganic oxide and extruded through the nozzle to form cylindrical pellets, then impregnated with platinum, separated from the platinum solution and calcined.

Ved ekstruderingen af type L zeolit kan der tilsættes forskellige ekstruderingshjælpemidler og 25 poredannelsesmidler. Eksempler på egnede ekstruderingshjælpemidler er ethylenglycol og stearinsyre. Eksempler på egnede poredannelsesmidler er træmel, cellulose og polyethylenfibre.In the extrusion of type L zeolite various extrusion aids and 25 pore forming agents can be added. Examples of suitable extrusion aids are ethylene glycol and stearic acid. Examples of suitable pore forming agents are wood flour, cellulose and polyethylene fibers.

Efter at det ønskede gruppe VIII metal eller 30 metaller er blevet indført, behandles katalysatoren i luft eller fortyndet C>2 ved 260 til 500°C og reduceres derefter i hydrogen ved temperaturer på fra 200 til 700°C, fortrinsvis 480 til 620°C,og mere foretrukket 530 til 620°C.After the desired Group VIII metal or 30 metals has been introduced, the catalyst is treated in air or diluted C> 2 at 260 to 500 ° C and then reduced in hydrogen at temperatures of 200 to 700 ° C, preferably 480 to 620 ° C. , and more preferably 530 to 620 ° C.

35 På dette trin er katalysatoren klar til brug i dehydrocycliseringsprocessen. I nogle tilfælde, f.eks. når metallet eller metallerne er blevet indført ved en ionbytterproces, er det imidlertid at foretrække 21At this stage, the catalyst is ready for use in the dehydrocyclization process. In some cases, e.g. however, when the metal or metals have been introduced by an ion exchange process, 21 is preferred

DK 163571 BDK 163571 B

at fjerne enhver resterende aciditet i zeolitten ved at behandle katalysatoren med eh vandig opløsning af et salt eller hydroxid af et passende alkali- eller jordalkalimetal for at neutralisere eventuelle 5 hydrogenioner, der er dannet under reduktionen af metalionerne med hydrogen.removing any residual acidity in the zeolite by treating the catalyst with an aqueous solution of a salt or hydroxide of an appropriate alkali or alkaline earth metal to neutralize any hydrogen ions formed during the reduction of the metal ions with hydrogen.

For at opnå optimal selektivitet bør temperaturen reguleres således, at reaktionshastigheden er betydelig, men omdannelsen er mindre end 98%, da for 10 høj temperatur og for vidtgående - reaktion kan have en skadelig virkning på selektiviteten. Trykket bør også reguleres indenfor et passende område. Et for højt tryk vil medføre en termodynamisk (ligevægtsmæssig) begrænsning. for den ønskede reaktion især for hexanaromatisering, 15 og et for lavt tryk kan resultere i tilkoksning og deaktivering.In order to achieve optimum selectivity, the temperature should be regulated so that the reaction rate is significant, but the conversion is less than 98%, as too high a temperature and too far - reaction can have a detrimental effect on the selectivity. The pressure should also be regulated within an appropriate range. Excessive pressure will result in a thermodynamic (equilibrium) constraint. for the desired reaction especially for hexane aromatization, and too low a pressure can result in coking and deactivation.

Skønt den primære fordel ved opfindelsen er en forbedring i selektiviteten for omdannelse af acyc-liske carbonhydrider (især Cg-Cg-paraffiner) til aroma-20 ter, har det også overraskende vist sig, at selektiviteten for omdannelse af methylcyclopentan til benzen er fremragende. Denne omsætning, der på konventionelle reformeringskatalysatorer på basis af chloreret aluminiumoxid, involverer et syrekatalyseret isomerise-25 ringstrin, sker på katalysatoren ifølge opfindelsen med en selektivitet, der er ligeså god som eller bedre end på de chlorerede aluminiumoxidbaserede katalysatorer, der er kendte. Den foreliggende opfindelse kan således også anvendes til at katalysere omdannelsen 30 af udgangsmaterialer med stort indhold af alkylnaphthe-ner med 5-leddet ring til aromater.Although the primary advantage of the invention is an improvement in the selectivity for converting acyclic hydrocarbons (especially Cg-Cg paraffins) to flavorings, it has also surprisingly been found that the selectivity for conversion of methylcyclopentane to benzene is excellent. This reaction, involving conventional reformed catalysts based on chlorinated alumina, involves an acid-catalyzed isomerization step, occurring on the catalyst of the invention with a selectivity as good as or better than on the chlorinated alumina-based catalysts known. Thus, the present invention can also be used to catalyze the conversion of high starting materials of 5-membered alkyl naphthene to aromatics.

Dehydroisomeriseringen af alkylcyclopentaner udføres fortrinsvis ved en temperatur på fra 426 til 538°C, mere foretrukket fra 437 til 510°C, en LHSV på 35 fra 0,1 til 20, mere foretrukket fra 0,3 til 10, et tryk på fra 0 til 3,45 MPa overtryk, mere foretrukket fra 1 atmosfære til 2,07 MPa overtryk og et K^/HC-forhold 22The dehydroisomerization of alkylcyclopentanes is preferably carried out at a temperature of from 426 to 538 ° C, more preferably from 437 to 510 ° C, an LHSV of 35 from 0.1 to 20, more preferably from 0.3 to 10, a pressure of from 0 to 0. to 3.45 MPa overpressure, more preferably from 1 atmosphere to 2.07 MPa overpressure, and a K

DK 163571 BDK 163571 B

på fra O til 20:1, mere foretrukket fra 1:1 til 10:1.of from 0 to 20: 1, more preferably from 1: 1 to 10: 1.

Det har også overraskende vist sig, at selek-.viteten for omdannelse af toluen til benzen også er fremragende. Dealkyleringen af toluen udføres fortrins-5 vis ved en temperatur på fra 426 til 649°C, mere foretrukket fra 454 til 593°C, en LHSV på fra 0,1 til 20, mere foretrukket fra 0,3 til 10, et tryk på fra 0 til 20,7 MPa overtryk, mere foretrukket fra 1,38 til 13,8 MPa overtryk,og et I^/HC-forhold på fra 0 til 20:1, 10 mere foretrukket fra 1:1 til 10:1.It has also been surprisingly found that the selectivity for converting toluene to benzene is also excellent. The dealkylation of toluene is preferably carried out at a temperature of from 426 to 649 ° C, more preferably from 454 to 593 ° C, an LHSV of from 0.1 to 20, more preferably from 0.3 to 10, a pressure of from 0 to 20.7 MPa overpressure, more preferably from 1.38 to 13.8 MPa overpressure, and an I / HC ratio of from 0 to 20: 1, 10 more preferably from 1: 1 to 10: 1.

En anden fordel ved opfindelsen er, at katalysatoren ifølge opfindelsen er mere stabil end kendte zeolitkatalysatorer. Katalysatorens stabilitet eller modstandsdygtighed overfor deaktivering bestemmer dens 15 anvendelige levetid. Længere levetider resulterer i mindre stilstandstid og færre omkostninger til regenerering eller erstatning af katalysatorladningen.Another advantage of the invention is that the catalyst of the invention is more stable than known zeolite catalysts. The stability or resistance of the catalyst to deactivation determines its useful life. Longer service life results in less downtime and less cost of regenerating or replacing the catalyst charge.

Opfindelsen beskrives nærmere i de følgende eksempler, der angiver særligt fordelagtige fremgangs-20 måder og kompositioner.The invention is described in more detail in the following examples which indicate particularly advantageous methods and compositions.

Eksempel 1Example 1

En Arabian Light såkaldt "straight run" naphtha, der var hydrorenset for at fjerne svovl, oxygen og 25 nitrogen reformedes ved 0,69 MPa overtryk, en LHSV på 2 og et ^/HC-forhold på 6 med tre forskellige katalysatorer. Føde strømmen indeholdt 80,2 rumfangsprocent paraffiner, 16,7 rumfangsprocent naphthener og 3,1 rumfangsprocent aromater, og den indeholdt 21,8 rumfangsprocent C^, 30 52,9 rumfangsprocent Cg, 21,3 rumfangsprocent og 3,2 rumfangsprocent Cg.An Arabian Light so-called "straight run" naphtha, which was hydro-purified to remove sulfur, oxygen, and nitrogen was reformed at 0.69 MPa overpressure, a LHSV of 2 and an H / HC ratio of 6 with three different catalysts. The feed stream contained 80.2 volume percent paraffins, 16.7 volume percent naphthenes and 3.1 volume percent aromatics, and it contained 21.8 volume percent C 2, 30 52.9 volume percent C 9, 21.3 volume percent and 3.2 volume percent C 9.

Ved det første forøg reformedes naphthaen ved 499°C under anvendelse af en kommerciel sulfideret platin-rhenium-aluminiumoxidkatalysator fremstillet 35 som beskrevet i US-patentskrift nr. 3.415.737.In the first, the naphtha was reformed at 499 ° C using a commercial sulphided platinum-rhenium alumina catalyst prepared as described in U.S. Patent No. 3,415,737.

Ved det andet forsøg reformedes naphthaen ved 493°C under anvendelse af en platin-kalium-type L zeolitkatalysator fremstillet ved: (1) imprægnering af en kalium-type L zeolit med krystalstørrelser fra ca.In the second experiment, the naphtha was reformed at 493 ° C using a platinum-potassium-type L zeolite catalyst prepared by: (1) impregnating a potassium-type L zeolite with crystal sizes from ca.

2323

DK 163571 BDK 163571 B

1000 til 4000 Å indeholdende 0,8% platin imprægneret som tetraminplatin-(II)-nitrat; (2) tørring af katalysatoren; (3) calcinering af katalysatoren ved 260°C og (4) reduktion af katalysatoren i hydrogen ved 480°C 5 til 500°C i 1 time.1000 to 4000 Å containing 0.8% platinum impregnated as tetramine platinum (II) nitrate; (2) drying the catalyst; (3) calcining the catalyst at 260 ° C and (4) reducing the catalyst in hydrogen at 480 ° C 5 to 500 ° C for 1 hour.

Ved det tredje forsøg udført ifølge den foreliggende opfindelse reformeredes naphthaen ved 493°C under anvendelse af en platin-barium-type L zeolitkatalysator fremstillet ved: (1) ionbytning af en kalium-type L zeo-10 lit med krystalstørrelser på fra 1000 til 4000 Å med et tilstrækkeligt rumfang af 0,17 molær bariumnitrat-opløsning til at opnå et overskud af barium i for hold til zeolittens ionbytterkapacitet; (2) tørring af den resulterende bariumudbyttede type L zeolitkatalysa-15 tor; (3) calcinering af katalysatoren ved 590°C; (4) imprægnering af katalysatoren med 0,8% platin under anvendelse af tetraminplatin-(II)-nitrat; (5) tørring af katalysatoren; (6) calcinering af katalysatoren ved 260°C og (7) reduktion af katalysatoren i hydrogen ved 20 480 til 500°C i 1 time.In the third experiment performed according to the present invention, the naphtha was reformed at 493 ° C using a platinum-barium-type L zeolite catalyst prepared by: (1) ion exchange of a potassium-type L zeolite with crystal sizes of 1000 to 4000 Å with a sufficient volume of 0.17 molar barium nitrate solution to obtain an excess of barium relative to the ion exchange capacity of the zeolite; (2) drying the resulting barium-exchanged type L zeolite catalyst; (3) calcining the catalyst at 590 ° C; (4) impregnating the catalyst with 0.8% platinum using tetramine platinum (II) nitrate; (5) drying the catalyst; (6) calcining the catalyst at 260 ° C and (7) reducing the catalyst in hydrogen at 20 480 to 500 ° C for 1 hour.

Resultaterne af disse tre forsøg er anført i tabel I.The results of these three experiments are listed in Table I.

DK 163571 BDK 163571 B

2424

Tabel ITable I

499° 493° 493°499 ° 493 ° 493 °

Pt/Re/ Pt/K/L Pt/Ba/LPt / Re / Pt / K / L Pt / Ba / L

Fødestrøm aluminiumoxid_ _ 5 vægt% fødestrøm 2,8 5,5 3,6 C2 6,6 2,5 1,3 C3 9,3 3,2 1,5 iC4 0,1 5,8 0,9 0,5 KC4 0,5 6,8 · 3,8 2,4 10 iC5 5,1 13,6 6,7 5,6 NC5 11,3 9,8 12,6 12,6 C6+ P+N 81,3 13,4 7,8 9,3Feed stream alumina 5% by weight feed stream 2.8 5.5 3.6 C2 6.6 2.5 1.3 C3 9.3 3.2 1.5 iC4 0.1 5.8 0.9 0.5 KC4 0.5 6.8 · 3.8 2.4 10 iC5 5.1 13.6 6.7 5.6 NC5 11.3 9.8 12.6 12.6 C6 + P + N 81.3 13.4 7.8 9.3

Benzen 1,5 15,1 40,6 43,8 C^+ aromater 0,8 15,8 12,7 15,0 15 C5+ LV % udbytte 63 69,9 74,4Benzene 1.5 15.1 40.6 43.8 C + Aromatics 0.8 15.8 12.7 15.0 15 C5 + LV% yield 63 69.9 74.4

Hydrogen, SCF/B 470 1660 2050Hydrogen, SCF / B 470 1660 2050

Selektivitet, mol% 20 72 87Selectivity, mole% 20 72 87

Cg+ P — > aromaterCg + P -> aromatics

Denne forsøgsrække viser, at anvendelsen af 20 en platin-barium-type L zeolitkatalysator ved reformering giver en selektivitet for omdannelse af hexaner til benzen, der er tydeligt bedre end selektiviteten ved den kendte teknik. Det bemærkes, at der sammen med denne bedre selektivitet opnås en forøget produktion af 25 hydrogengas, der kan anvendes i andre processer. Det bemærkes også, at hydrogenrenheden er større ved . Pt/Ba/L-forsøget, eftersom der produceres mere hydrogen og mindre plus C2- 30 Eksempel 2This series of experiments shows that the use of a platinum-barium type L zeolite catalyst in reforming provides a selectivity for converting hexanes to benzene which is clearly better than the selectivity of the prior art. It should be noted that, together with this better selectivity, an increased production of 25 hydrogen gas can be obtained which can be used in other processes. It is also noted that the hydrogen purity is greater by. The Pt / Ba / L test, as more hydrogen and less plus C 2 are produced. Example 2

Der udførtes en anden forsøgsrække under anvendelse af hydrorenset n-hexan som fødestrøm. Alle forsøgene i denne række udførtes ved 490°C, 0,69 MPa overtryk, en LHSV på 3 og et H2/HC-forhold på 3.A second series of experiments was carried out using hydro-purified n-hexane as feed stream. All the experiments in this series were performed at 490 ° C, 0.69 MPa overpressure, a LHSV of 3 and a H2 / HC ratio of 3.

I det første forsøg anvendtes en platin-kalium-type L zeolit, der var fremstillet efter proceduren, der er anført ved det andet forsøg i eksempel 1.In the first experiment, a platinum-potassium type L zeolite was used which was prepared following the procedure set forth in the second experiment in Example 1.

Ved det andet forsøg anvendtes en platin-barium- 25In the second experiment, a platinum-barium 25 was used

DK 163571 BDK 163571 B

type L zeolit,der var fremstillet efter proceduren, der er angivet i det tredje forsøg i eksempel 1, bortset fra at bariumnitratopløsningen var 0,3 molær i stedet for 0,17 molær. Resultaterne af disse forsøg er angivet 5 nedenfor i tabel II.type L zeolite prepared following the procedure set forth in the third experiment of Example 1 except that the barium nitrate solution was 0.3 molar instead of 0.17 molar. The results of these experiments are given below in Table II.

Tabel IITable II

Omdannelsesgrad Selektivitet for _ n-hexan_ 5 timer 20 timer 5 timer 20 timerConversion rate Selectivity for _ n-hexane_ 5 hours 20 hours 5 hours 20 hours

Pt/K/L 70 59 76 79 10 Pt/Ba/L 85 85 89 92Pt / K / L 70 59 76 79 10 Pt / Ba / L 85 85 89 92

Ved drift forårsager indføringen af barium i type L zeolitten således en dramatisk forbedring i selektiviteten for n-hexan. Bemærk at stabiliteten af platin-barium-type L zeolitten er fremragende. Efter 15 20 timer var der intet fald i omdannelsesgrad ved anvendelse af platin-barium-type L zeolitten.Thus, in operation, the introduction of barium into the type L zeolite causes a dramatic improvement in the selectivity for n-hexane. Note that the stability of the platinum-barium type L zeolite is excellent. After 15 h, there was no decrease in conversion rate using the platinum-barium type L zeolite.

Eksempel 3 I en tredje række forsøg anvendtes forskellige 20 kationudskiftninger. Alle forsøgene i denne række udførtes ved 490°C, 0,69 MPa overtryk og et H2/HC-forhold på 6. Føde-strørrmen var hydrorenset, indeholdt 80,9 rumfangsprocent paraffiner, 16,8 rumfangsprocent naphthener, 1,7 rumfangsprocent aromater, 0,4 rumfangsprocent olefiner, og den inde-25 holdt 2,6 rumfangsprocent Cg-, 47,6 rumfangsprocent Cg-, 43,4 rumfangsprocent C^- og 6,3 rumfangsprocent Cg-car-bonhydrider.Example 3 In a third series of experiments, various 20 cation replacements were used. All experiments in this series were performed at 490 ° C, 0.69 MPa overpressure and a H2 / HC ratio of 6. The feed stream was hydro-purified, containing 80.9% by volume paraffins, 16.8% by volume naphthenes, 1.7% by volume aromatics , 0.4 vol% olefins, and contained 2.6 vol% Cg, 47.6 vol% Cg, 43.4 vol% C 2 and 6.3 vol% C 6 carbohydrates.

Ved det første forsøg anvendtes en platin-barium-type L zeolit, der var fremstillet efter proceduren, 30 der er anført i det andet forsøg i eksempel 2. Den afprøvedes med en LHSV på 2,0.In the first experiment, a platinum-barium type L zeolite prepared according to the procedure used in the second experiment of Example 2. was used. It was tested with an LHSV of 2.0.

I det andet forsøg anvendtes en platin-calcium-type L zeolit, der var fremstillet efter den samme procedure, bortset fra at der anvendtes en 0,3 molær cal-35 ciumnitratopløsning. Den afprøvedes ved en LHSV på 2,0.In the second experiment, a platinum-calcium type L zeolite was prepared following the same procedure except for a 0.3 molar calcium nitrate solution. It was tested at a LHSV of 2.0.

I det tredje forsøg anvendtes en platin-stron-tium-type L zeolit, der var fremstillet efter den samme 26In the third experiment, a platinum-strontium-type L zeolite was used which was made after the same

DK 163571 BDK 163571 B

procedure, bortset fra at der anvendtes en 0,3 molær strontiumnitratopløsning ved udbytningen. Den afprøvedes ved en LHSV på 2,0.except a 0.3 molar strontium nitrate solution was used in the exchange. It was tested at a LHSV of 2.0.

I det fjerde forsøg anvendtes en platin-cæsium-5 type L zeolit, der var fremstillet efter den samme procedure, bortset fra at der ved udbytningen anvendtes en 0,3 molær cæsiumnitratopløsning. Den afprøvedes ved en LHSV på 2,0.In the fourth experiment, a platinum-cesium 5 type L zeolite prepared according to the same procedure was used except that in the exchange a 0.3 molar cesium nitrate solution was used. It was tested at a LHSV of 2.0.

I det femte forsøg anvendtes en platin-barium-10 type L zeolit, der var fremstilles efter den samme procedure som i det første forsøg. Den afprøvedes ved en LHSV på 6,0.In the fifth experiment, a platinum-barium-10 type L zeolite was used which was prepared by the same procedure as in the first experiment. It was tested at an LHSV of 6.0.

I det sjette forsøg anvendtes en platin-kalium-type L zeolit, der var fremstillet efter proceduren, 15 der er angivet i det andet forsøg i eksempel 1. Den afprøvedes ved en LHSV på 6,0.In the sixth experiment, a platinum-potassium-type L zeolite was prepared following the procedure set forth in the second experiment in Example 1. It was tested at an LHSV of 6.0.

I det syvende forsøg anvendtes en platin-rubi-dium-type L zeolit, der var fremstillet efter proceduren i det første forsøg, bortset fra at der anvendtes en 20 0,3 molær rubidiumnitratopløsning ved udbytningen. Den afprøvedes ved en LHSV på 6,0.In the seventh experiment, a platinum-rubidium-type L zeolite was prepared following the procedure of the first experiment, except that a 0.3 molar rubidium nitrate solution was used in the exchange. It was tested at an LHSV of 6.0.

I det ottende forsøg anvendtes en platin-lanthan-type L zeolit, der var fremstillet efter proceduren i det første forsøg, bortset fra at der ved udbytningen 25 anvendtes en 0,3 molær lanthannitratopløsning. Den afprøvede ved en LHSV på 6,0.In the eighth experiment, a platinum-lanthan-type L zeolite prepared according to the procedure of the first experiment was used, except that in yield 25 a 0.3 molar lanthanum nitrate solution was used. It was tested at an LHSV of 6.0.

I det niende forsøg anvendtes en platin-magne-sium-type L zeolit, der var fremstillet efter proceduren i det første forsøg, bortset fra at der ved ud-30 skiftningen anvendtes en 0,3 molær magnesiumnitratopløsning. Den afprøvedes ved ai LHSV på 6,0.In the ninth experiment, a platinum-magnesium-type L zeolite was prepared following the procedure of the first experiment, except that at the replacement a 0.3 molar magnesium nitrate solution was used. It was tested at a LHSV of 6.0.

I det tiende forsøg anvendtes en platin-lithium-type L zeolit, der var fremstillet efter proceduren i det første forsøg, bortset fra at der ved udbytningen 35 anvendtes en 0,3 molær lithiumnitratopløsning. Den afprøvede ved en LHSV på 6,0.In the tenth experiment, a platinum-lithium-type L zeolite was prepared following the procedure of the first experiment, except that in yield 35 a 0.3 molar lithium nitrate solution was used. It was tested at an LHSV of 6.0.

I det elvte forsøg anvendtes en platin-natrium-type L zeolit, der var fremstillet efter proceduren i 27In the eleventh experiment, a platinum-sodium type L zeolite was used which was prepared according to the procedure of 27

DK 163571 BDK 163571 B

det første forsøg, bortset fra at der anvendtes en 0,3 molær natriumnitratopløsning ved udskiftningen.the first experiment, except that a 0.3 molar sodium nitrate solution was used in the replacement.

Den afprøvedes ved en LHSVpå 6,0. Resultaterne fra alle elleve forsøg er angivet i tabel III.It was tested at a LHSV of 6.0. The results from all eleven trials are given in Table III.

5 ’ Tabel III5 'Table III

Paraffinomdan- Selektivitet Aroma ter nelsesgrad mol% mol% fødestrøm 3 timer 20 timer 3 timer 20 timer 3 timer 20 timerParaffinoma Formation - Selection Aroma degree of mole% mole% feed stream 3 hours 20 hours 3 hours 20 hours 3 hours 20 hours

2.0 LHSV2.0 LHSV

Pt/Ba/L 87 87 83 85 75 76Pt / Ba / L 87 87 83 85 75 76

Pt/Ca/L 96 93 63 70 65 70 10 Pt/Sr/L 92 83 61 69 62 63Pt / Ca / L 96 93 63 70 65 70 10 Pt / Sr / L 92 83 61 69 62 63

Pt/Cs/L 84 73 73 75 66 61Pt / Cs / L 84 73 73 75 66 61

6.0 LHSV6.0 LHSV

Pt/Ba/L 73 63 80 83 64 59Pt / Ba / L 73 63 80 83 64 59

Pt/K/L 75 66 71 75 60 57Pt / K / L 75 66 71 75 60 57

Pt/Rb/L 84 74 72 77 65 63 15 Pt/La/L 63 55 63 58 50 48Pt / Rb / L 84 74 72 77 65 63 15 Pt / La / L 63 55 63 58 50 48

Pt/Mg/L 23 <5 23 - 22 14Pt / Mg / L 23 <5 23 - 22 14

Pt/Li/L 77 72 70 74 61 60Pt / Li / L 77 72 70 74 61 60

Pt/Na/L 74 67 72 75 60 58Pt / Na / L 74 67 72 75 60 58

Ved drift medfører indføringen af barium i type L zeolitter således en dramatisk forbedring i selekti-20 viteten i forhold til type L zeolitter med andre kationer (mere end 25%'s reduktion i mængden af fremstillede krakkede produkter for en L zeolit med enhver anden kation).Thus, in operation, the introduction of barium into type L zeolites results in a dramatic improvement in selectivity over type L zeolites with other cations (more than 25% reduction in the amount of manufactured cracked products for an L zeolite with any other cation ).

Eksempel 4 25 En platin-barium-type L zeolit fremstillet efter proceduren, der er angivet i det andet forsøg i eksempel 2, anvendtes ved to forsøg. I det første forsøg var L-zeolitkrystallitstørrelsen 1000 til 2000 Å ifølge transmissionselektronmikroskopi. I det andet for-30 søg var L-zeolitkrystallitstørrelsen ca. 400 Å. Føde-strømmen ved begge forsøg indeholdt 70,2 rumfangsprocent paraffiner, 24,6 rumfangsprocent naphthener, 5,0 rumfangsprocent aromater og 29,7 rumfangsprocent C,., 43,4 rumfangsprocent C^, 21,2 rumfangsprocent , 5,0 rum-35 fangsprocent Cg og 0,6 rumfangsprocent C^."Research octane clear" i fødestrømmen var 71,4. Katalysatoren tilExample 4 A platinum-barium type L zeolite prepared following the procedure set forth in the second experiment in Example 2 was used in two experiments. In the first experiment, the L-zeolite crystallite size was 1000 to 2000 Å according to transmission electron microscopy. In the second experiment, the L-zeolite crystallite size was approx. 400 Å. The feed stream in both experiments contained 70.2% by volume paraffins, 24.6% by volume naphthenes, 5.0% by volume aromatics, and 29.7 by volume C1, 43.4% by volume C1, 21.2% by volume, 5.0% by volume. 35 octane percent Cg and 0.6 ounce C3. "Research octane clear" in the feed stream was 71.4. The catalyst for

DK 163571BDK 163571B

28 det første forsøg reduceredes i hydrogen i 20 timer ved 566°C. Katalysatoren til det andet forsøg reduceredes i hydrogen i 2 timer ved 1050°F. Forsøgsbetingelserne var 0,69 MPa overtryk, en LHSV på 1,5 og I^/HC 5 recirkulation på 6,0. Temperaturen reguleredes til at give 50 vægt% aromater i det flydende C^+ produkt, hvilket svarer til 89 "research octane clear". Resultaterne af det første forsøg er anført i tabel IV.28 the first experiment was reduced in hydrogen for 20 hours at 566 ° C. The catalyst for the second experiment was reduced in hydrogen for 2 hours at 1050 ° F. The test conditions were 0.69 MPa overpressure, a LHSV of 1.5 and 1 H / HC 5 recirculation of 6.0. The temperature was adjusted to give 50% by weight of aromatics in the liquid C2 + product, which corresponds to 89 "research octane clear". The results of the first experiment are listed in Table IV.

10 Tabel IVTable IV

Forsøgstid, timer Til 50 vægt% aromater C^+ udbytte _ temperatur °C_ væskevol% 500 459 86,4 1000 464 86,2 2000 469 86,1 15 2500 471 86,2Test time, hours To 50 wt.% Aromatics C + + yield - temperature ° C_ liquid vol% 500 459 86.4 1000 464 86.2 2000 469 86.1 15 2500 471 86.2

Resultaterne af det andet forsøg er anført i tabel V.The results of the second experiment are listed in Table V.

2020

Tabel VTable V

Forsøgstid, timer Til 50 vægt% aromater C^+ udbytte _ temperatur °C_ væskevol% 100 466 87 200 472 86 25 400 478 85Test time, hours To 50 wt.% Aromatics C + yield - temperature ° C_ liquid vol% 100 466 87 200 472 86 25 400 478 85

Ved drift giver katalysatoren ifølge opfindelsen med stor krystalstørrelse usædvanlig lang forsøgstid, hvorimod katalysatoren med den lille krystalstørrelse 30 meget hurtigere deaktiveres.In operation, the large crystal size catalyst of the invention provides an unusually long test time, whereas the small crystal size 30 catalyst is deactivated much faster.

Eksempel 5Example 5

Der udførtes en femte forsøgsrække for at vise virkningerne af reduktionstemperaturen. Den anvendte 35 fødestrøm var den samme som i eksempel 1. Forsøgsbetingelserne var 490°C, 0,69 MPa overtryk, en LHSV på 2,0, og et H2/HC-forhold på 6,0.A fifth series of experiments was performed to show the effects of the reduction temperature. The 35 feed stream used was the same as in Example 1. The test conditions were 490 ° C, 0.69 MPa overpressure, a LHSV of 2.0, and a H2 / HC ratio of 6.0.

2929

DK 163571 BDK 163571 B

Den katalysator, der anvendtes ved de første to forsøg var en Pt/Ba/K/L fremstillet som ved det tredje forsøg i eksempel 1, bortset fra at bariumudskiftningen udførtes tre gange med en 1 molær bariumnitratopløsning; 5 dette gav kun en lille forøgelse i bariumindholdet.The catalyst used in the first two experiments was a Pt / Ba / K / L prepared as in the third experiment of Example 1, except that the barium replacement was performed three times with a 1 molar barium nitrate solution; This gave only a slight increase in the barium content.

Katalysatoren i de to sidste forsøg var en Pt/K/L fremstillet som i det andet forsøg i eksempel 1.The catalyst in the last two experiments was a Pt / K / L prepared as in the second experiment in Example 1.

De efter tre timers drift opnåede resultater er anført i tabel VI.The results obtained after three hours of operation are listed in Table VI.

1010

Tabel VITable VI

Reduktionsbetingelser Arcmater Selektivitet _ mol% fødestrøm mol%_Reducing conditions Arcmater Selectivity _ mol% feed stream mol% _

Pt/Ba/K/L 490°C, 1 time 59 78Pt / Ba / K / L 490 ° C, 1 hour 59 78

Pt/Ba/K/L 620°C, 20 timer 60 89Pt / Ba / K / L 620 ° C, 20 hours 60 89

IDID

Pt/K/L 490 C, 1 time 55 66Pt / K / L 490 C, 1 hour 55 66

Pt/K/L 620°C, 20 timer 23 23Pt / K / L 620 ° C, 20 hours 23 23

Resultaterne viser en stor og overraskende forskel i fremstillingens indvirkning på de to katalysa- 20 torer. Selektiviteten af den bariumholdige katalysator forbedredes væsentligt, mens selektiviteten af katalysatoren uden barium nedsattes meget betydeligt.The results show a large and surprising difference in the effect of the preparation on the two catalysts. The selectivity of the barium-containing catalyst improved significantly, while the selectivity of the barium-free catalyst was greatly reduced.

Eksempel 6 25 En methylcyclopentanfødestrøm, der var blevet hydrorenset for at fjerne svovl, oxygen og nitrogen, de-nydroisomeriseredes ved 493°C, 0,69 MPa overtryk, en LHSV på 2 og et H2/HC-forhold på 6 med en dehydroisomeri-seringskatalysator. Denne katalysator fremstilledes ved 30 (1) ionbytning af en kalium-barium-type L zeolit med et tilstrækkeligt rumfang af 0,17 molær bariumnitratopløsning til, at den indeholdt et overskud af barium i forhold til zeolittens ionbytterkapacitet; (2) tørring af den resulterende bariumbyttede type L zeolitkatalysator; 35(3) calcinering af katalysatoren ved 590°C; (4) imprægnering af katalysatoren med 0,8% platin ved brug af tetramin-platin-(II)-nitrat; (5) tørring af katalysatoren; (6) calcinering af katalysatoren ved 260°C og (7) reduktion af katalysatoren i hydrogen ved 480 til 500°C.Example 6 A methylcyclopentane feed stream which had been hydro-purified to remove sulfur, oxygen and nitrogen was dehydroisomerized at 493 ° C, 0.69 MPa overpressure, a LHSV of 2 and a H2 / HC ratio of 6 with a dehydroisomeric acid. seringskatalysator. This catalyst was prepared by 30 (1) ion exchange of a potassium barium type L zeolite with a sufficient volume of 0.17 molar barium nitrate solution to contain an excess of barium relative to the ion exchange capacity of the zeolite; (2) drying the resulting barium-exchanged type L zeolite catalyst; (3) calcining the catalyst at 590 ° C; (4) impregnating the catalyst with 0.8% platinum using tetramine-platinum (II) nitrate; (5) drying the catalyst; (6) calcining the catalyst at 260 ° C and (7) reducing the catalyst in hydrogen at 480 to 500 ° C.

3030

DK 163571 BDK 163571 B

Fødestrømmen indeholdt 73 vægt% methylcyclopen-tan. Destillationsdataene for fødestrømmen var start: 64°C, 5%: 68°C, 10%: 69°C, 30%: 70,6°C, 50%: 71°C, 70%: 72°C, 90%: 74°C, 95%: 78°C og slutpunkt: 106°C.The feed stream contained 73% by weight of methylcyclopentan. The feed flow distillation data was start: 64 ° C, 5%: 68 ° C, 10%: 69 ° C, 30%: 70.6 ° C, 50%: 71 ° C, 70%: 72 ° C, 90%: 74 ° C, 95%: 78 ° C and end point: 106 ° C.

5 Fødestrømmen indeholdt 10 rumfangsprocent paraffiner, 80 rumfangsprocent naphthener og 10 rumfangsprocent aro-mater. Omdannelsesgraden var 78% efter 3 timer og 32% efter 20 timer. Selektiviteten for dehydroisomerisering var 82 mol% efter 3 timer og 86% efter 20 timer.5 The feed stream contained 10% by volume paraffins, 80% by volume naphthenes and 10% by volume aro-mater. The conversion rate was 78% after 3 hours and 32% after 20 hours. The selectivity for dehydroisomerization was 82 mol% at 3 hours and 86% at 20 hours.

1010

Eksempel 7Example 7

En Arabian såkaldt "straight run" fødestrøm, der var blevet hydrorenset for at fjerne svovl, oxygen og nitrogen,dealkyleredes ved 566°C, 0,69 MPa overtryk, 15 en LHSV på 4 og et I^/HC-forhold på 3 med en dealkyle-ringskatalysator. Denne katalysator fremstilledes ved (1) ionbytning af en kalium-barium-type L zeolit med et tilstrækkeligt rumfang af 0,17 molær bariumopløsning til, at den indeholdt et overskud af barium i forhold til zeolittens 20 ionbytterkapacitet; (2) tørring af den resulterende bariumudbyttede type L zeolitkatalysator; (3) calcine-ring af katalysatoren ved 590°C; (4) imprægnering af katalysatoren med 0,8% platin ved anvendelse af tetra-minplatin-(II)—nitrat; (5) tørring af katalysatoren; 25 (6) calcinering af katalysatoren ved 260°C og (7) re duktion af katalysatoren i hydrogen ved 480°C til 500°C.An Arabian so-called "straight run" feed stream which had been hydro-purified to remove sulfur, oxygen and nitrogen was dealkylated at 566 ° C, 0.69 MPa overpressure, an LHSV of 4 and an I / HC ratio of 3 with a dealkylation catalyst. This catalyst was prepared by (1) ion exchange of a potassium barium type L zeolite with a sufficient volume of 0.17 molar barium solution to contain an excess of barium relative to the ion exchange capacity of the zeolite; (2) drying the resulting barium-exchanged type L zeolite catalyst; (3) calcining the catalyst at 590 ° C; (4) impregnating the catalyst with 0.8% platinum using tetraminplatin (II) nitrate; (5) drying the catalyst; (6) calcination of the catalyst at 260 ° C and (7) reduction of the catalyst in hydrogen at 480 ° C to 500 ° C.

Fødestrømmen indeholdt 1 rumfangsprocent C^-, 22 rumfangsprocent C^-, 53 rumfangsprocent Cg-, 21 rum-30 fangsprocent C^- og 3 rumfangsprocent Cg-carbonhydrider, 78 rumfangsprocent paraffiner, 19 rumfangsprocent naphthener og 3 rumfangsprocent aromater. Resultaterne fra dette forsøg er angivet i tabellen nedenfor (alle procentdelene er i vægt%). Omdannelsen af Cg+paraffiner 35 var 96,04 mol%, og selektiviteten for aromatisering var 84,02.The feed stream contained 1 volume percent C 2, 22 volume percent C 2, 53 volume percent C 2, 21 volume 30 percent C 2 The results of this experiment are given in the table below (all percentages are by weight%). The conversion of Cg + paraffins 35 was 96.04 mol% and the selectivity for aromatization was 84.02.

DK 163571 BDK 163571 B

3131

Tabel VIITable VII

Fødestrøm ProduktFeed stream Product

Methan 0 7,66Methane 0. 7.66

Ethan 0 5,66 5 Propan 0 6,49 iC4 0,08 1,55 nC4 0,52 6,49 iC5 5,88 3,26 nC5 12,61 2,81 10 C5+ 80,91 70,34 H2 0 2,91Ethane 0 5.66 5 Propane 0 6.49 iC4 0.08 1.55 nC4 0.52 6.49 iC5 5.88 3.26 nC5 12.61 2.81 10 C5 + 80.91 70.34 H2 0 2 , 91

Benzen 1,69 51,10 C^+ aromater 1,62 10,92Benzene 1.69 51.10 C + Aromatics 1.62 10.92

Claims (9)

2. Katalysator ifølge krav 1, kendeteg net ved, at jordalkalimetallet er barium, og at gruppe VIII metallet er platin.Catalyst according to claim 1, characterized in that the alkaline earth metal is barium and the group VIII metal is platinum. 3. Katalysator ifølge krav 2, kendetegnet ved, at den indeholder 0,1 til 35 vægt% barium 10 og 0,1 til 5 vægt% platin.Catalyst according to claim 2, characterized in that it contains 0.1 to 35% by weight of barium 10 and 0.1 to 5% by weight of platinum. 4. Katalysator ifølge krav 2 eller 3, kendetegnet ved, at den indeholder 1 til 20 vægt% barium og 0,1 til 1,5 vægt% platin.Catalyst according to claim 2 or 3, characterized in that it contains 1 to 20 wt% barium and 0.1 to 1.5 wt% platinum. 5. Katalysator ifølge krav 1-4, kendeteg- 15. e t ved, at over 50% af type L zeolitkrystallerne er større end 500 Å.Catalyst according to claims 1-4, characterized in that more than 50% of the type L zeolite crystals are greater than 500 Å. 6. Katalysator ifølge krav 1-5, kendetegnet ved, at over 50% af type L zeolitkrystallerne er større end 1000 Å.Catalyst according to claims 1-5, characterized in that more than 50% of the type L zeolite crystals are greater than 1000 Å. 7. Katalysator ifølge krav 1-6, kendeteg net ved, at mindst 80% af type L zeolitkrystallerne er større end 1000 Å.Catalyst according to claims 1-6, characterized in that at least 80% of the type L zeolite crystals are greater than 1000 Å. 8. Anvendelse af katalysatoren ifølge krav 1-7 til reformering af carbonhydrider.Use of the catalyst according to claims 1-7 for hydrocarbon reforming. 9. Anvendelse ifølge krav 8 til dehydrocyclise- ring af acycliske carbonhydrider.Use according to claim 8 for dehydrocyclization of acyclic hydrocarbons. 10. Anvendelse ifølge krav 8 til dehydroisomeri-sering af alkylcyclopentaner. II. Anvendelse ifølge krav 8 til dealkylering 30 af toluen til fremstilling af benzen.Use according to claim 8 for dehydroisomerization of alkylcyclopentanes. II. Use according to claim 8 for dealkylation of toluene for the production of benzene.
DK037283A 1982-02-01 1983-01-31 CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL, AND USE THEREOF DK163571C (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US34457082A 1982-02-01 1982-02-01
US34457182 1982-02-01
US06/344,571 US4447316A (en) 1982-02-01 1982-02-01 Composition and a method for its use in dehydrocyclization of alkanes
US34457082 1982-02-01
US06/392,907 US4645588A (en) 1982-02-01 1982-06-28 Reforming with a platinum-barium-zeolite of L family
US39290782 1982-06-28
US06/405,837 US4634518A (en) 1982-02-01 1982-08-06 Platinum-barium-type L zeolite
US40583782 1982-08-06
US42054182 1982-09-20
US06/420,541 US4434311A (en) 1982-02-01 1982-09-20 Conversion of alkycyclopentanes to aromatics
US42279882A 1982-09-24 1982-09-24
US42279882 1982-09-24

Publications (4)

Publication Number Publication Date
DK37283D0 DK37283D0 (en) 1983-01-31
DK37283A DK37283A (en) 1983-08-02
DK163571B true DK163571B (en) 1992-03-16
DK163571C DK163571C (en) 1992-08-03

Family

ID=27559792

Family Applications (1)

Application Number Title Priority Date Filing Date
DK037283A DK163571C (en) 1982-02-01 1983-01-31 CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL, AND USE THEREOF

Country Status (16)

Country Link
AU (1) AU559929B2 (en)
BR (1) BR8300467A (en)
CH (1) CH658603A5 (en)
DE (2) DE3348504C2 (en)
DK (1) DK163571C (en)
FI (1) FI830345L (en)
FR (1) FR2520636B1 (en)
GB (1) GB2116450B (en)
IL (1) IL67727A (en)
MX (2) MX166695B (en)
NL (1) NL191730C (en)
NO (1) NO157768C (en)
NZ (1) NZ203006A (en)
SE (1) SE454089B (en)
TR (1) TR23020A (en)
YU (1) YU43649B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648961A (en) * 1982-09-29 1987-03-10 Chevron Research Company Method of producing high aromatic yields through aromatics removal and recycle of remaining material
US4456527A (en) * 1982-10-20 1984-06-26 Chevron Research Company Hydrocarbon conversion process
CA1231699A (en) 1983-11-10 1988-01-19 Samuel J. Tauster Zeolite catalyst and process for using said catalyst
US4595668A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Bound zeolite catalyst
US4552856A (en) * 1983-11-10 1985-11-12 Exxon Research And Engineering Co. Zeolite catalyst and preparation thereof
US4595669A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Method of preparing an improved catalyst
US4595670A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Zeolite catalyst
US4925819A (en) * 1983-11-10 1990-05-15 Exxon Research & Engineering Company Method of regenerating a deactivated catalyst
US4568656A (en) * 1984-12-07 1986-02-04 Exxon Research & Engineering Co. Process for loading platinum into Zeolite-L
EP0202797B1 (en) * 1985-05-14 1993-01-27 Mobil Oil Corporation A method for the synthesis of zeolites
US5242675A (en) * 1985-10-15 1993-09-07 Exxon Research & Engineering Company Zeolite L
US5486498A (en) * 1986-10-14 1996-01-23 Exxon Research & Engineering Company Zeolite L
US4868145A (en) * 1987-12-28 1989-09-19 Mobil Oil Corporation Dehydrogenation and dehydrocyclization catalyst
US4849567A (en) * 1987-12-28 1989-07-18 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over indium-containing crystalline microporous materials
US4830729A (en) * 1987-12-28 1989-05-16 Mobil Oil Corporation Dewaxing over crystalline indium silicates containing groups VIII means
US4990710A (en) * 1988-06-24 1991-02-05 Mobil Oil Corporation Tin-containing microporous crystalline materials and their use as dehydrogenation, dehydrocyclization and reforming catalysts
GB8801067D0 (en) * 1988-01-19 1988-02-17 Exxon Chemical Patents Inc Zeolite l preparation
US4888105A (en) * 1988-02-16 1989-12-19 Mobil Oil Corporation Process for the dehydrocyclization of acyclic hydrocarbons and catalyst composition therefor
DE68917627T2 (en) * 1988-03-31 1995-01-26 Exxon Chemical Patents Inc Process for reforming a hydrocarbon fraction free of dimethylbutane.
US5192728A (en) * 1988-06-24 1993-03-09 Mobil Oil Corporation Tin-colating microporous crystalline materials and their use as dehydrogenation, dehydrocyclization reforming catalysts
US5124497A (en) * 1989-10-11 1992-06-23 Mobil Oil Corporation Production of mono-substituted alkylaromatics from C8 +N-paraffins
US5122489A (en) * 1990-10-15 1992-06-16 Mobil Oil Corporation Non-acidic dehydrogenation catalyst of enhanced stability
US5147837A (en) * 1990-10-22 1992-09-15 Mobil Oil Corporation Titania containing dehydrogenation catalysts
US5103066A (en) * 1990-12-10 1992-04-07 Mobil Oil Corp. Dehydrogenation of alcohols over non-acidic metal-zeolite catalysts
WO1996040842A1 (en) * 1995-06-07 1996-12-19 Chevron Chemical Company Process for maximizing xylene production
US5879538A (en) * 1997-12-22 1999-03-09 Chevron Chemical Company Zeolite L catalyst in conventional furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1545411A1 (en) * 1951-01-28 1970-01-08 Union Carbide Corp Process for the catalytic conversion of hydrocarbons
NL238183A (en) 1962-08-03
GB1058190A (en) * 1963-06-28 1967-02-08 Mobil Oil Corp Catalytic cracking of hydrocarbons
DE1270212B (en) * 1964-03-26 1968-06-12 Union Oil Co Process for adjusting the aromatic content in hydrocracking processes
US3397137A (en) * 1965-07-16 1968-08-13 Union Carbide Corp Hydrocarbon reforming process and catalyst compositions therefor
FR2323664A1 (en) * 1975-09-10 1977-04-08 Erap PROCESS FOR DEHYDROCYCLIZATION OF ALIPHATIC HYDROCARBONS

Also Published As

Publication number Publication date
GB2116450B (en) 1985-06-05
SE8300485D0 (en) 1983-01-31
FR2520636A1 (en) 1983-08-05
NL8300356A (en) 1983-09-01
DE3348504C2 (en) 2003-06-26
DK37283D0 (en) 1983-01-31
NO157768B (en) 1988-02-08
CH658603A5 (en) 1986-11-28
IL67727A0 (en) 1983-05-15
IL67727A (en) 1986-10-31
AU559929B2 (en) 1987-03-26
DE3303120C2 (en) 1997-07-24
YU18683A (en) 1986-02-28
TR23020A (en) 1989-01-24
FR2520636B1 (en) 1988-05-13
SE454089B (en) 1988-03-28
NL191730B (en) 1996-01-02
MX166695B (en) 1993-01-28
BR8300467A (en) 1983-11-01
DK163571C (en) 1992-08-03
NZ203006A (en) 1985-08-16
FI830345L (en) 1983-08-02
FI830345A0 (en) 1983-02-01
NO830322L (en) 1983-08-02
MX9206280A (en) 1994-04-29
GB2116450A (en) 1983-09-28
DE3303120A1 (en) 1983-09-01
AU1037083A (en) 1983-08-11
YU43649B (en) 1989-10-31
DK37283A (en) 1983-08-02
NO157768C (en) 1988-05-25
SE8300485L (en) 1983-08-02
GB8302287D0 (en) 1983-03-02
NL191730C (en) 1996-05-03

Similar Documents

Publication Publication Date Title
DK163571B (en) CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL AND USE THEREOF
US4456527A (en) Hydrocarbon conversion process
US4634518A (en) Platinum-barium-type L zeolite
US4443326A (en) Two-step reforming process
US4435283A (en) Method of dehydrocyclizing alkanes
JP2986541B2 (en) Petroleum hydrocarbon feedstock reforming method
US4517306A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4447316A (en) Composition and a method for its use in dehydrocyclization of alkanes
SE457727B (en) SET TO REFORM THE PULP WATER USING A LARGE ZEOLITE CATALYST
JPH05506044A (en) Dehydrocyclization or catalytic reforming using sulfur-resistant zeolite catalysts
US5013423A (en) Reforming and dehydrocyclization
US4458025A (en) Method of zeolitic catalyst manufacture
US4721694A (en) Platinum-barium-type L zeolite
US4434311A (en) Conversion of alkycyclopentanes to aromatics
US4650565A (en) Dehydrocyclization process
US5182012A (en) Crystalline silicate catalyst and processes using the catalyst
US4882040A (en) Reforming process
US4579831A (en) Method of zeolitic catalyst manufacture
US5052561A (en) Crystalline silicate catalyst and a reforming process using the catalyst
US4680280A (en) Sulfur tolerance of zeolitic reforming catalysts
JPH0227013B2 (en)
US4645588A (en) Reforming with a platinum-barium-zeolite of L family
US4721695A (en) Platinum-barium-zeolite of L family
US4631123A (en) Method of dehydrocyclizing alkanes
CA1182798A (en) Platinum-barium-type l zeolite

Legal Events

Date Code Title Description
PBP Patent lapsed