NO171674B - PROCEDURE FOR REFORMING HYDROCARBONES, HOW THE HYDROCARBONS ARE CONTACTED WITH A CATALYST CONVERTER CONCERNING THE GREAT ZEOLITE CONTAINING A METAL OF GROUP VIII AND AN EARTHAL METAL METAL - Google Patents

PROCEDURE FOR REFORMING HYDROCARBONES, HOW THE HYDROCARBONS ARE CONTACTED WITH A CATALYST CONVERTER CONCERNING THE GREAT ZEOLITE CONTAINING A METAL OF GROUP VIII AND AN EARTHAL METAL METAL Download PDF

Info

Publication number
NO171674B
NO171674B NO830323A NO830323A NO171674B NO 171674 B NO171674 B NO 171674B NO 830323 A NO830323 A NO 830323A NO 830323 A NO830323 A NO 830323A NO 171674 B NO171674 B NO 171674B
Authority
NO
Norway
Prior art keywords
catalyst
zeolite
metal
hydrocarbons
platinum
Prior art date
Application number
NO830323A
Other languages
Norwegian (no)
Other versions
NO830323L (en
NO171674C (en
Inventor
Waldeen C Buss
Thomas R Hughes
Original Assignee
Chevron Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/344,572 external-priority patent/US4435283A/en
Priority claimed from US06/393,160 external-priority patent/US4631123A/en
Application filed by Chevron Res filed Critical Chevron Res
Publication of NO830323L publication Critical patent/NO830323L/en
Publication of NO171674B publication Critical patent/NO171674B/en
Publication of NO171674C publication Critical patent/NO171674C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/24Controlling or regulating of reforming operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Oppfinnelsen angår en fremgangsmåte ved reforming av hydrocarboner, hvor hydrocarbonene bringes i kontakt med en katalysator som omfatter en storporet zeolitt inneholdende et metall fra gruppe VIII og et jordalkalimetall. Fremgangsmåten er særlig anvendelig for dehydrosyklisering av acykliske forbindelser, spesielt dehydrosyklisering av alkaner inneholdende minst 6 carbonatomer under dannelse av de tilsvarende aromatiske hydrocarboner. The invention relates to a method for reforming hydrocarbons, where the hydrocarbons are brought into contact with a catalyst comprising a large-pore zeolite containing a metal from group VIII and an alkaline earth metal. The method is particularly applicable for dehydrocyclization of acyclic compounds, especially dehydrocyclization of alkanes containing at least 6 carbon atoms while forming the corresponding aromatic hydrocarbons.

Katalytisk omforming er velkjent innen petroleumindu-strien og refererer seg til behandling av nafthafraksjoner for forbedring av oktantallet. Blant de viktigere hydrocarbonreak-sjoner som finner sted under omformingsoperasjoner, er dehydro-genering av cyclohexaner til aromater, dehydroisomerisering av alkylcyclopentaner til aromater og dehydrosyklisering av paraffiner til aromatiske forbindelser. Hydrokrakkingreaksjoner som gir høyt utbytte av lette, gassformige hydrocarboner, f.eks. methan, ethan, propan og butan skal i særdeleshet minimali-seres under omforming, da disse nedsetter utbyttet av produkter som koker i bensinens kokeområde. Catalytic reforming is well known within the petroleum industry and refers to the treatment of naphtha fractions to improve the octane number. Among the more important hydrocarbon reactions that take place during conversion operations are dehydrogenation of cyclohexanes to aromatics, dehydroisomerization of alkylcyclopentanes to aromatics and dehydrocyclization of paraffins to aromatic compounds. Hydrocracking reactions that give high yields of light, gaseous hydrocarbons, e.g. methane, ethane, propane and butane must in particular be minimized during conversion, as these reduce the yield of products that boil in the petrol's boiling range.

Dehydrosyklisering er en av hovedreaksjonene i omformingspro-sessen. De konvensjonelle metoder for utførelse av disse dehydro-sykliseringsreaksjoner er basert på bruk av katalysatorer som består av et edelmetall på en bærer. Kjente katalysatorer av dette slag er basert på aluminiumoxyd med fra 0,2 til 0,8 Dehydrocyclization is one of the main reactions in the conversion process. The conventional methods for carrying out these dehydrocyclization reactions are based on the use of catalysts consisting of a precious metal on a support. Known catalysts of this kind are based on aluminum oxide with from 0.2 to 0.8

vekt% platina og fortrinnsvis også med et annet hjelpemetall. wt% platinum and preferably also with another auxiliary metal.

Muligheten for å bruke andre bærere enn aluminiumoxyd The possibility of using carriers other than aluminum oxide

er også blitt undersøkt, og det er blitt foreslått å bruke visse molekylsiler slik som X- og Y-zeolitter. Disse har vist seg å være egnede såfremt reaktant- og produktmolekylene er så små at de kan passere gjennom zeolittens porer. Imidlertid har katalysatorer basert på disse molekylsiler ikke vært kommersielt vellykkede. have also been investigated, and it has been proposed to use certain molecular sieves such as X and Y zeolites. These have proven to be suitable as long as the reactant and product molecules are so small that they can pass through the zeolite's pores. However, catalysts based on these molecular sieves have not been commercially successful.

Ifølge de konvensjonelle metoder for utførelse av foran-nevnte dehydrosyklisering blir paraffinene som skal omdannes, ført over katalysatoren, i nærvær av hydrogen, ved temperaturer av størrelsesorden 500°C og trykk på fra 5 til 30 bar. Paraffinene omdannes delvis til aromatiske hydrocarboner, og reaksjonen ledsages av isomeriserings- og krakkingreaksjoner som også omdanner paraffinene til isoparaffiner og lettere hydrocarboner. According to the conventional methods for carrying out the aforementioned dehydrocyclization, the paraffins to be converted are passed over the catalyst, in the presence of hydrogen, at temperatures of the order of 500°C and pressures of from 5 to 30 bar. The paraffins are partially converted into aromatic hydrocarbons, and the reaction is accompanied by isomerisation and cracking reactions which also convert the paraffins into isoparaffins and lighter hydrocarbons.

Reaksjonshastigheten for omdannelsen av hydrocarbonene til aromatiske hydrocarboner avhenger av reaksjonsbetingelsene og av typen katalysator. The reaction rate for the conversion of the hydrocarbons into aromatic hydrocarbons depends on the reaction conditions and the type of catalyst.

De hittil anvendte katalysatorer har gitt moderat tilfredsstillende resultater med tunge paraffiner, men mindre tilfredsstillende resultater med Cg-Cg-paraffiner, i særdeleshet Cg-paraffiner. Katalysatorer basert på en zeolitt av type L The catalysts used so far have given moderately satisfactory results with heavy paraffins, but less satisfactory results with Cg-Cg paraffins, in particular Cg paraffins. Catalysts based on a type L zeolite

er mer selektive med hensyn til dehydrosyklisering . Disse kan benyttes for å forbedre reaksjonshastigheten ved omdannelse til aromatiske hydrocarboner uten at høyere temperatur er nødvendig, idet høyere temperatur vanligvis nedsetter katalysatorens stabilitet og gir utmerkede resultater med Cg-Cg-paraffiner. Imidlertid er det problemer med bruks-tidens lengde og med regenereringsevnen, og tilfredsstillende regenereringsprosedyrer kjennes ikke. are more selective with respect to dehydrocyclization. These can be used to improve the reaction rate by conversion to aromatic hydrocarbons without the need for a higher temperature, since higher temperature usually reduces the stability of the catalyst and gives excellent results with Cg-Cg paraffins. However, there are problems with the length of the service life and with the regeneration ability, and satisfactory regeneration procedures are not known.

Ved en metode for dehydrosyklisering av alifatiske hydrocarboner som er beskrevet i US patentskrift nr. 4.104.320, blir hydrocarbonene i nærvær av hydrogen bragt i kontakt med en katalysator som i hovedsak består av en zeolitt av L-type med utbyttbare kationer, hvorav minst 90% er alkalimetaller valgt blant ioner av natrium, lithium, kalium, rubidium og cesium, og inneholdende minst ett metall valgt blant metaller fra gruppe VIII i det periodiske system, tinn og germanium, idet omtalte metall eller metaller inkluderer minst ett metall fra gruppe VIII i det periodiske system med dehydrogenerende effekt, for å omdanne i det minste en del av råmaterialet til aromatiske hydrocarboner. In a method for the dehydrocyclization of aliphatic hydrocarbons which is described in US Patent No. 4,104,320, the hydrocarbons are brought in the presence of hydrogen into contact with a catalyst which essentially consists of an L-type zeolite with exchangeable cations, of which at least 90 % are alkali metals selected from ions of sodium, lithium, potassium, rubidium and cesium, and containing at least one metal selected from metals from group VIII in the periodic table, tin and germanium, said metal or metals including at least one metal from group VIII in the periodic system with a dehydrogenating effect, to convert at least part of the raw material into aromatic hydrocarbons.

En særlig fordelaktig utførelse av denne metode inne-bærer anvendelse av en platina/alkalimetall-zeolittkatalysator av L-type, på grunn av dennes høye aktivitet og selektivitet ved omdannelse av hexaner og heptaner til aromater, men bruks-tiden for katalysatoren forblir et problem. A particularly advantageous embodiment of this method involves the use of an L-type platinum/alkali metal zeolite catalyst, due to its high activity and selectivity when converting hexanes and heptanes to aromatics, but the lifetime of the catalyst remains a problem.

Ved hjelp av den foreliggende oppfinnelse overvinnes manglene ved den kjente teknikk ved at det benyttes en katalysator bestående av en storporet zeolitt, et jordalkalimetall og et metall fra gruppe VIII for omforming av hydrocarboner med meget høy selektivitet med hensyn til omdannelse av alkaner til aromater. With the help of the present invention, the shortcomings of the known technique are overcome by using a catalyst consisting of a large-pore zeolite, an alkaline earth metal and a metal from group VIII for the transformation of hydrocarbons with very high selectivity with regard to the transformation of alkanes into aromatics.

Med oppfinnelsen tilveiebringes det således en fremgangsmåte ved reforming av hydrocarboner, hvilken fremgangsmåte er karakteristisk ved at hydrocarbonene bringes i kontakt med en katalysator som omfatter en storporet zeolitt med en effektiv porediameter på fra 6 til 15 Å inneholdende: The invention thus provides a method for reforming hydrocarbons, which method is characterized in that the hydrocarbons are brought into contact with a catalyst comprising a large-pore zeolite with an effective pore diameter of from 6 to 15 Å containing:

a) minst ett metall fra gruppe VIII og a) at least one metal from group VIII and

b) et jordalkalimetall valgt blant barium, strontium og b) an alkaline earth metal selected from barium, strontium and

kalsium, idet selektivitetsindeksen for katalysatoren er calcium, the selectivity index for the catalyst being

høyere enn 60 %, eller fremstillingsbetingelsene tilpasses slik at selektiviteten for N-hexan-dehydrosyklisering blir høyere enn 60 %, og hydrocarbonene først, samtidig eller til slutt eventuelt bringes i kontakt, ved reformingsbetingelser og i nærvær av hydrogen, med en katalysator som omfatter en metalloksydbærer i hvilken det er avsatt i intim blanding platina og rhenium. higher than 60%, or the manufacturing conditions are adapted so that the selectivity for N-hexane dehydrocyclization is higher than 60%, and the hydrocarbons are first, simultaneously or finally possibly brought into contact, under reforming conditions and in the presence of hydrogen, with a catalyst comprising a metal oxide carrier in which platinum and rhenium are deposited in an intimate mixture.

Katalysatoren som benyttes ved fremgangsmåten har en tilfredsstillende brukstid. The catalyst used in the process has a satisfactory service life.

Den storporede zeolitt er fortrinnsvis en zeolitt av L-type inneholdende fra 0,1 til 5 vekt% platina og fra 0,1 til 35 vekt% barium. Hydrocarbonene bringes i kontakt med den bariumutbyttede type zeolitt ved en foretrukken temperatur på fra 400°C til 600°C (fortrinnsvis fra 430°C til 550°C), en væskeromhastighet på fra 0,3 til 10, et trykk på fra 1 atm til 35,2 kg/cm<2> (fortrinnsvis fra 3,5 kg/cm<2> til 31,1 kg/cm<2>) og et H2/HC-forhold fra 1:1 til 10:1 (fortrinnsvis fra 2:1 til The large-pore zeolite is preferably an L-type zeolite containing from 0.1 to 5 wt% platinum and from 0.1 to 35 wt% barium. The hydrocarbons are contacted with the barium-exchanged type of zeolite at a preferred temperature of from 400°C to 600°C (preferably from 430°C to 550°C), a liquid space velocity of from 0.3 to 10, a pressure of from 1 atm to 35.2 kg/cm<2> (preferably from 3.5 kg/cm<2> to 31.1 kg/cm<2>) and an H2/HC ratio from 1:1 to 10:1 (preferably from 2:1 to

6:1). 6:1).

Uttrykket "selektivitet", som anvendt i tilknytning til foreliggende oppfinnelse, defineres som mengden av paraffin omdannet til aromater i prosent av antall mol omdannet til aromater og krakkingprodukter. The term "selectivity", as used in connection with the present invention, is defined as the amount of paraffin converted to aromatics as a percentage of the number of moles converted to aromatics and cracking products.

Isomeriseringsreaksjoner og alkylcyclopentandannelse tas ikke i betraktning ved bestemmelse av selektiviteten. Isomerization reactions and alkylcyclopentane formation are not taken into account when determining the selectivity.

Betegnelsen "selektivitet for n-hexan" defineres her som mengden av n-hexan omdannet til aromater, angitt i prosent av antall mol n-hexan omdannet til aromater og krakkingprodukter. The term "selectivity for n-hexane" is defined here as the amount of n-hexane converted to aromatics, expressed as a percentage of the number of moles of n-hexane converted to aromatics and cracking products.

Selektiviteten for omdannelse av paraffiner til aromater er et mål for prosessens effektivitet med hensyn til omdannelse av paraffiner til de ønskede og verdifulle produkter,aromater og hydrogen, i motsetning til de mindre ønskede produkter fra hydrokrakking. The selectivity for the conversion of paraffins to aromatics is a measure of the efficiency of the process with regard to the conversion of paraffins to the desired and valuable products, aromatics and hydrogen, as opposed to the less desirable products from hydrocracking.

Selektivitetsindeksen er en karakteristisk egenskap ved enhver dehydrosykliseringskatalysator. Selektivitetsindeksen er definert som "selektiviteten for n-hexan" ved bruk av n-hexan som føding og ved å arbeide ved 400°C, The selectivity index is a characteristic property of any dehydrocyclization catalyst. The selectivity index is defined as the "selectivity for n-hexane" using n-hexane as feed and by working at 400°C,

0,70 kg/cm 2, en væskeromhastighet pa 3 og 3 f^/HC etter 20 timer. 0.70 kg/cm 2 , a liquid space velocity of 3 and 3 f^/HC after 20 hours.

Katalysatorer med høy selektivitet produserer mer hydrogen enn mindre selektive katalysatorer, fordi hydrogen dannes når paraffiner omdannes til aromater,og hydrogen forbrukes når paraffiner omdannes til krakkingprodukter. En økning av prosessens selektivitet øker mengden av dannet hydrogen (mer aromatisering), og nedsetter mengden av forbrukt hydrogen (mindre krakking). Catalysts with high selectivity produce more hydrogen than less selective catalysts, because hydrogen is formed when paraffins are converted to aromatics, and hydrogen is consumed when paraffins are converted to cracked products. An increase in the selectivity of the process increases the amount of hydrogen formed (more aromatization), and decreases the amount of hydrogen consumed (less cracking).

En annen fordel ved bruk av katalysatorer med høy selektivitet er at det hydrogen som dannes, er renere enn det som dannes av mindre selektive katalysatorer. Denne høyere renhetsgrad skyldes at det dannes mer hydrogen mens det dannes mindre lavtkokende hydrocarboner (krakkingprodukter). Renheten av det hydrogen som dannes under omforming, er kritisk dersom - hvilket vanligvis er tilfellet i et integrert raffineri - det dannede hydrogen anvendes i slike prosesser som hydrobehandling og hydrokrakking, hvilke krever i det ,minste et visst minste partialtrykk for hydrogenet. Dersom renheten blir for lav, kan hydrogenet ikke lenger anvendes til dette formål og må brukes på en mindre verdifull måte, f.eks. som brenngass. Another advantage of using catalysts with high selectivity is that the hydrogen that is formed is cleaner than that formed by less selective catalysts. This higher degree of purity is due to the fact that more hydrogen is formed while less low-boiling hydrocarbons (cracking products) are formed. The purity of the hydrogen that is formed during reforming is critical if - which is usually the case in an integrated refinery - the formed hydrogen is used in such processes as hydrotreatment and hydrocracking, which require at least a certain minimum partial pressure for the hydrogen. If the purity becomes too low, the hydrogen can no longer be used for this purpose and must be used in a less valuable way, e.g. as fuel gas.

Ved fremgangsmåten ifølge foreliggende oppfinnelse består hydrocarbonene i fødingen fortrinnsvis av ikke-aromatiske hydrocarboner inneholdende minst 6 carbonatomer. Det er å foretrekke at fødingen i hovedsak er fri for svovel, nitrogen, metaller og andre kjente gifter for omformingskatalysatorer. In the method according to the present invention, the hydrocarbons in the feed preferably consist of non-aromatic hydrocarbons containing at least 6 carbon atoms. It is preferable that the feed is essentially free of sulphur, nitrogen, metals and other known poisons for reforming catalysts.

Dehydrosykliseringen utføres i nærvær av hydrogen ved et slik trykk at reaksjonen begunstiges termodynamisk og uønskede hydrokrakkingreaksjoner begrenses kinetisk. De anvendte trykk varierer fortrinnsvis fra 1 til 35,2 kg/cm<2>, helst fra 3,5 kg/cm<2> til 21,1 kg/cm<2>, mens molforholdet hydrogen til hydrocarboner fortrinnsvis varierer fra 1:1 til 10:1, og helst fra 2:1 til 6:1. The dehydrocyclization is carried out in the presence of hydrogen at such a pressure that the reaction is favored thermodynamically and unwanted hydrocracking reactions are limited kinetically. The pressures used preferably vary from 1 to 35.2 kg/cm<2>, preferably from 3.5 kg/cm<2> to 21.1 kg/cm<2>, while the molar ratio of hydrogen to hydrocarbons preferably varies from 1: 1 to 10:1, and preferably from 2:1 to 6:1.

I temperaturområdet fra 400°C til 600°C skjer dehydrc-sykliseringsreaksjonen med akseptabel fart og selektivitet. In the temperature range from 400°C to 600°C, the dehydrc-cyclization reaction takes place with acceptable speed and selectivity.

Dersom arbeidstemperaturen er under 4 00°C, er reaksjonshastigheten utilstrekkelig og utbyttet følgelig for lavt for industrielle formål. Likeledes er dehydrosykliseringslike-vektene ugunstige ved lave temperaturer. Når arbeidstemperaturen er over 600°C, inntrer interfererende, sekundære reak-sjoner slik som hydrokrakking og forkulling som i vesentlig grad reduserer utbyttet og øker katalysatorens deaktiverings-hastighet. Det er derfor ikke tilrådelig at temperaturen over-stiger 600°C. If the working temperature is below 400°C, the reaction rate is insufficient and the yield consequently too low for industrial purposes. Likewise, the dehydrocyclization equilibria are unfavorable at low temperatures. When the working temperature is above 600°C, interfering, secondary reactions such as hydrocracking and charring occur which significantly reduce the yield and increase the catalyst's deactivation rate. It is therefore not advisable for the temperature to rise above 600°C.

I det foretrukne temperaturområde (430 o C til 550 oC) In the preferred temperature range (430 o C to 550 o C)

for dehydrosyklisering er prosessen optimal med hensyn på katalysatorens aktivitet, selektivitet og stabilitet. for dehydrocyclization, the process is optimal with regard to the catalyst's activity, selectivity and stability.

Væskeromhastigheten pr. time for hydrocarbonene er fortrinnsvis mellom 0,3 og 10. The fluid space velocity per hour for the hydrocarbons is preferably between 0.3 and 10.

Blant de krystallinske storporede zeolitter som er blitt funnet å være anvendelige for oppfinnelsens formål, er zeolitter av L-typen og syntetiske zeolitter med faujasitt-struktur, slik som zeolittene X og Y, de viktigste. De har synbare porestørrelser av størrelsesordenen 7 til 9 Ångstrøm. Among the crystalline large-pore zeolites which have been found to be useful for the purposes of the invention, L-type zeolites and synthetic zeolites with faujasite structure, such as zeolites X and Y, are the most important. They have visible pore sizes of the order of 7 to 9 Angstroms.

Sammensetningen av L-type-zeolitter, uttrykt som molforholdet mellom oxydene, kan angis som følger: (0,9 - l,3)M2/nO:Al203(5,2 - 6,9)Si02:yH20 The composition of L-type zeolites, expressed as the molar ratio between the oxides, can be stated as follows: (0.9 - 1.3)M2/nO:Al2O3(5.2 - 6.9)Si02:yH20

hvor M betegner et kation, n betegner valensen av M og y kan ha enhver verdi fra 0 til 9. Zeolitt L, dens røntgen-diffraksjonsmønster, egenskaper og fremstillingsmetode er where M denotes a cation, n denotes the valence of M and y can have any value from 0 to 9. Zeolite L, its X-ray diffraction pattern, properties and method of preparation are

beskrevet i detalj i US patentskrift nr. 3 216 789. US patentskrift nr. 3 216 789 viser den zeolitt som foretrekkes ifølge foreliggende oppfinnelse. Formelen kan variere uten at krystallstrukturen forandres, f.eks. kan molforholdet silicium til aluminium (Si/Al) variere fra 1,0 til 3,5. described in detail in US Patent No. 3,216,789. US Patent No. 3,216,789 shows the zeolite which is preferred according to the present invention. The formula can vary without changing the crystal structure, e.g. the molar ratio of silicon to aluminum (Si/Al) can vary from 1.0 to 3.5.

Den kjemiske formel for zeolitt Y uttrykt som molforholdet mellom oxydene, kan angis som: The chemical formula for zeolite Y, expressed as the molar ratio between the oxides, can be stated as:

hvor x har en verdi større enn 3 og opp til ca. 6, og y kan ha en verdi opp til 9. Zeolitt Y har i pulverform et karakteristisk røntgendiffraksjonsmønster som, sammen med ovenstående formel, kan anvendes for identifikasjon. Zeolitt Y beskrives mer detaljert i US patentskrift nr. 3 130 007. where x has a value greater than 3 and up to approx. 6, and y can have a value up to 9. Zeolite Y in powder form has a characteristic X-ray diffraction pattern which, together with the above formula, can be used for identification. Zeolite Y is described in more detail in US Patent No. 3 130 007.

Zeolitt X er en syntetisk, krystallinsk, zeolittisk molekylsil som kan gis formelen: Zeolite X is a synthetic, crystalline, zeolitic molecular sieve which can be given the formula:

hvor M representerer et metall, spesielt alkali- og jordalkali-metaller, n er valensen av M og y kan ha enhver verdi opp til 8 avhengig av M og hydratiseringsgraden av den krystallinske zeolitt. Zeolitt X, dens røntgendiffraksjonsmønster, egenskaper og fremstillingsmetode er beskrevet i detalj i US patentskrift nr. 2 882 244. where M represents a metal, especially alkali and alkaline earth metals, n is the valence of M and y can have any value up to 8 depending on M and the degree of hydration of the crystalline zeolite. Zeolite X, its X-ray diffraction pattern, properties and method of preparation are described in detail in US Patent No. 2,882,244.

Den foretrukne katalysator ifølge oppfinnelsen er en L-type-zeolitt innsatt med én eller flere dehydrogenerende bestanddeler. The preferred catalyst according to the invention is an L-type zeolite inserted with one or more dehydrogenating components.

Et essensielt trekk ved den katalysatoren som anvendes ved fremgangsmåten ifølge oppfinnelsen er tilstedeværel-sen av et alkalisk jordalkalimetall i den storporede zeolitt. Jordalkalimetallet må være enten barium, strontium eller kalsium, fortrinnsvis barium. Jordalkalimetallet kan inkorporeres i zeolitten ved syntese, impregnering eller ione-utbytte. Barium foretrekkes fremfor de øvrige jordalkali- An essential feature of the catalyst used in the method according to the invention is the presence of an alkaline alkaline earth metal in the large-pore zeolite. The alkaline earth metal must be either barium, strontium or calcium, preferably barium. The alkaline earth metal can be incorporated into the zeolite by synthesis, impregnation or ion exchange. Barium is preferred over the other alkaline earth

i metaller fordi det resulterer i en noe mindre sur katalysator. En høy surhetsgrad er uønsket for katalysatoren, fordi det fremmer krakking, hvilket resulterer i lavere selektivitet. in metals because it results in a somewhat less acidic catalyst. A high acidity is undesirable for the catalyst, because it promotes cracking, resulting in lower selectivity.

I en utførelse utbyttes i det minste en del av alkali-metallet med barium ved bruk av kjente teknikker for ione-. bytting i zeolitter. Dette medfører at zeolitten bringes i kontakt med en oppløsning som inneholder et overskudd av Ba<++->ioner. Mengden av barium bør utgjøre fra 0,1% til 35% av zeolitten. In one embodiment, at least part of the alkali metal is replaced with barium using known techniques for ion-. exchange in zeolites. This means that the zeolite is brought into contact with a solution containing an excess of Ba<++> ions. The amount of barium should be from 0.1% to 35% of the zeolite.

Dehydrosykliseringskatalysatoren som anvendes ved fremgangsmåten ifølge oppfinnelsen inneholder ett eller flere metaller fra gruppen VIII, f.eks. nikkel, ruthenium, rhodium, palladium, iridium eller platina. The dehydrocyclization catalyst used in the method according to the invention contains one or more metals from group VIII, e.g. nickel, ruthenium, rhodium, palladium, iridium or platinum.

De foretrukne metaller fra gruppe VIII er iridium og spesielt platina, hvilke er mer selektive med hensyn til dehydrosyklisering og også er mer stabile under reaksjonsbetingelsene for dehydrosyklisering enn de øvrige metaller i gruppe VIII. The preferred metals from group VIII are iridium and especially platinum, which are more selective with regard to dehydrocyclization and are also more stable under the reaction conditions for dehydrocyclization than the other metals in group VIII.

Den foretrukne prosentandel av platina i katalysatoren The preferred percentage of platinum in the catalyst

ligger mellom 0,1% og 5%. lies between 0.1% and 5%.

Metallene i gruppe VIII introduseres i den storporede zeolitt ved syntese, impregnering eller utbytting i en vandig oppløsning av et egnet salt. Når det er ønskelig å introdusere to metaller fra gruppe VIII i zeolitten, kan operasjonen ut-føres samtidig eller i rekkefølge. The metals in group VIII are introduced into the large-pore zeolite by synthesis, impregnation or exchange in an aqueous solution of a suitable salt. When it is desired to introduce two metals from group VIII into the zeolite, the operation can be carried out simultaneously or in sequence.

Platina kan f.eks. introduseres ved å impregnere zeolitten med en vandig oppløsning av tetraminoplatina(II)nitrat, tetraminoplatina(II)hydroxyd, dinitrodiaminoplatina eller tetraminoplatina(II)klorid. Platina kan introduseres ved en ione-bytteprosess ved å bruke kationiske platinakomplekser, slik som tetraminplatina(II)nitrat. Platinum can e.g. is introduced by impregnating the zeolite with an aqueous solution of tetraminoplatinum(II) nitrate, tetraminoplatinum(II) hydroxide, dinitrodiaminoplatinum or tetraminoplatinum(II) chloride. Platinum can be introduced by an ion-exchange process using cationic platinum complexes, such as tetramineplatinum(II) nitrate.

Et uorganisk oxyd kan benyttes som bærer for å binde den storporede zeolitt inneholdende metallet fra gruppe VIII An inorganic oxide can be used as a carrier to bind the large-pore zeolite containing the metal from group VIII

og jordalkalimetallet. Bæreren kan være et naturlig eller syntetisk fremstilt uorganisk oxyd eller en kombinasjon av uorganiske oxyder. Typiske uorganiske bærere som kan anvendes, inkluderer leirarter, aluminiumoxyd og silika, hvori de sure sentere fortrinnsvis er utvekslet med kationer som ikke gir høy surhetsgrad (slik som Na, K, Rb, Cs, Sr eller Ba). and the alkaline earth metal. The carrier can be a natural or synthetically produced inorganic oxide or a combination of inorganic oxides. Typical inorganic supports that can be used include clays, aluminum oxide and silica, in which the acidic centers are preferably exchanged with cations that do not give a high degree of acidity (such as Na, K, Rb, Cs, Sr or Ba).

Katalysatoren kan anvendes i hvilken som helst av de konvensjonelle typer apparaturer som anvendes i faget. Den kan anvendes i form av piller, pellets, granulater, fragmenterte The catalyst can be used in any of the conventional types of apparatus used in the field. It can be used in the form of pills, pellets, granules, fragmented

.biter eller i andre spesielle former, anbragt som et .bits or in other special forms, placed as a

fast sjikt innen en reaksjonssone, og tilførselsmaterialet kan sendes gjennom dette i væskefase, dampfase eller blandet gjennom s.jiktet. Alternativt kan den fremstilles i en form som passer for bruk i et bevegelig s.jikt, eller i fast fase/væske-prosesser, hvori det tilførte materiale sendes oppover gjennom et turbulent s.jikt av fint oppdelt katalysator. solid layer within a reaction zone, and the feed material can be sent through this in liquid phase, vapor phase or mixed through the layer. Alternatively, it can be produced in a form suitable for use in a moving bed, or in solid phase/liquid processes, in which the added material is sent upwards through a turbulent bed of finely divided catalyst.

Etter at det eller de ønskede metaller er blitt inn-ført, behandles katalysatoren i luft ved ca. 260°C og reduseres så i hydrogengass ved temperaturer fra 200°C til 700°C, fortrinnsvis fra 400°C til 620°C. After the desired metal or metals have been introduced, the catalyst is treated in air at approx. 260°C and then reduced in hydrogen gas at temperatures from 200°C to 700°C, preferably from 400°C to 620°C.

På dette trinn er den klar til bruk i dehydrosykli-seringsprosessen. Imidlertid er det i noen tilfeller, f.eks. når metallet eller metallene er blitt innført ved en ionebytte-prosess', foretrukket å eliminere enhver gjenværende surhet i zeolitten ved å behandle katalysatoren med en vandig oppløs-ning av et salt eller hydroxyd av et passende alkali- eller jordalkalimetall for å nøytralisere hydrogenioner som måtte være dannet under reduksjon av metallioner med hydrogen. At this stage it is ready for use in the dehydrocyclization process. However, in some cases, e.g. when the metal or metals have been introduced by an ion exchange process, it is preferred to eliminate any residual acidity in the zeolite by treating the catalyst with an aqueous solution of a salt or hydroxide of a suitable alkali or alkaline earth metal to neutralize any hydrogen ions that may be formed during the reduction of metal ions with hydrogen.

For å oppnå optimal selektivitet bør temperaturen justeres slik at reaksjonshastigheten blir av en viss størrelse, men siden for høy temperatur og en reaksjon som er gått for langt, kan nedsette selektiviteten,holdes omdannelsen under 98%. Trykket bør også justeres innen et egnet område. For høyt trykk vil sette en termodynamisk (likevekts-) grense for den ønskede reaksjon, mens et for lavt trykk kan resultere i forkoksning og deaktivering. In order to achieve optimal selectivity, the temperature should be adjusted so that the reaction rate is of a certain magnitude, but since too high a temperature and a reaction that has gone too far can reduce the selectivity, the conversion is kept below 98%. The pressure should also be adjusted within a suitable range. Too high a pressure will set a thermodynamic (equilibrium) limit for the desired reaction, while too low a pressure can result in coking and deactivation.

Skjønt den fremste fordel ved oppfinnelsen består i en forbedring av selektiviteten ved omdannelse av paraffiner (særskilt Cg-Cg-paraffiner) til aromater, er det overraskende nok blitt fastslått at selektiviteten ved omdannelse av methyl-cyclopentan til benzen er utmerket. Denne reaksjon, som involverer et syrekatalysert isomeriseringstrinn når den ut-føres med konvensjonelle omformingskatalysatorer basert på klorert aluminiumoxyd, forløper ved anvendelse av den her foreslåtte katalysator med en selektivitet som er like god eller bedre enn for den kjente katalysator basert på klorert aluminiumoxyd. Således kan den foreliggende oppfinnelse også benyttes for å katalysere omdannelse til aromater av råmate-rialer med høyt innhold av 5-leddede ringalkylnafthener. Although the main advantage of the invention consists in an improvement of the selectivity when converting paraffins (especially Cg-Cg paraffins) to aromatics, it has surprisingly been determined that the selectivity when converting methylcyclopentane to benzene is excellent. This reaction, which involves an acid-catalyzed isomerization step when carried out with conventional conversion catalysts based on chlorinated aluminum oxide, proceeds using the catalyst proposed here with a selectivity that is as good or better than for the known catalyst based on chlorinated aluminum oxide. Thus, the present invention can also be used to catalyze the conversion to aromatics of raw materials with a high content of 5-membered ring alkylnaphthenes.

Nok en fordel ved denne oppfinnelse er at katalysatoren benyttet ved den foreliggende fremgangsmåte er mer stabil enn tidligere kjente zeolitt-katalysatorer. Katalysatorstabilitet, eller motstandsevne mot deaktivering, bestemmer dens effektive brukstid. Lengre brukstid gir færre avbrekk i prosessen og mindre utgifter til regenerering eller erstatning av katalysatoren. Another advantage of this invention is that the catalyst used in the present method is more stable than previously known zeolite catalysts. Catalyst stability, or resistance to deactivation, determines its effective service life. Longer service life results in fewer interruptions in the process and less expenditure on regeneration or replacement of the catalyst.

I en utførelse av fremgangsmåten ifølge oppfinnelsen bringes hydrocarbonene i fødingen først i kontakt med en første katalysator, som er en konvensjonell omformingskataly-sator, og deretter i kontakt med en andre katalysator, som er en dehydrosykliseringskatalysator bestående av en storporet zeolitt, et jordalkalimetall og et metall fra gruppe VIII. In one embodiment of the method according to the invention, the hydrocarbons in the feed are first brought into contact with a first catalyst, which is a conventional conversion catalyst, and then into contact with a second catalyst, which is a dehydrocyclization catalyst consisting of a large-pore zeolite, an alkaline earth metal and a metal from group VIII.

Bruk av en fordelaktig, konvensjonell reformingskataly-sator bestående av en aluminiumoxydbærer, platina og rhenium er utredet i US patentskrift nr. 3 415 737. Andre fordelaktige bimetalliske katalysatorer inkluderer platina-tinn, platina-germanium, platina-bly og platina-iridium. Use of an advantageous conventional reforming catalyst consisting of an alumina support, platinum and rhenium is discussed in US Patent No. 3,415,737. Other advantageous bimetallic catalysts include platinum-tin, platinum-germanium, platinum-lead and platinum-iridium.

Hydrocarbonene kan bringes i kontakt med de to kata-lysatorene i rekkefølge (serie), idet hydrocarbonene først bringes i kontakt med den første,konvensjonelle reformings-katalysator og så med den andre (dehydrosykliserings) katalysator, eller, slik at hydrocarbonene først bringes i kontakt med den andre katalysator og så med den første katalysator. Hydrocarbonene kan bringes i kontakt parallelt, slik at en fraksjon av hydrocarbonene bringes i kontakt med den første katalysator, og en annen fraksjon av hydrocarbonene bringes i kontakt med den andre katalysator. Hydrocarbonene kan også bringes i kontakt med begge katalysatorer samtidig i samme reaktor. The hydrocarbons can be brought into contact with the two catalysts in sequence (series), with the hydrocarbons first being brought into contact with the first, conventional reforming catalyst and then with the second (dehydrocyclization) catalyst, or, so that the hydrocarbons are first brought into contact with the second catalyst and then with the first catalyst. The hydrocarbons can be brought into contact in parallel, so that a fraction of the hydrocarbons is brought into contact with the first catalyst, and another fraction of the hydrocarbons is brought into contact with the second catalyst. The hydrocarbons can also be brought into contact with both catalysts simultaneously in the same reactor.

Oppfinnelsen belyses ytterligere ved følgende eksempler, som viser særlig fordelaktige utførelser av fremgangsmåten. The invention is further illustrated by the following examples, which show particularly advantageous embodiments of the method.

Eksempel I Example I

Et destillat av "Arabian Light", som var blitt hydroraffinert for å fjerne svovel, oxygen og nitrogen, ble omformet ved 7,0 kg/cm 2, en væskeromhastighet på 2 og H2/HC = 6 med 3 forskjellige katalysatorer. Fødingen inneholdt 80,2 volum% paraffiner, 16,7 volum% nafthener og 3,1 volum% aromater, og den inneholdt 21,8 volum% C5, 5 2,9 volum% Cg, 21,3 volum% C^ og 3,2 volum% Cg. An "Arabian Light" distillate, which had been hydrorefined to remove sulphur, oxygen and nitrogen, was reformed at 7.0 kg/cm 2 , a headspace velocity of 2 and H 2 /HC = 6 with 3 different catalysts. The feed contained 80.2 vol% paraffins, 16.7 vol% naphthenes and 3.1 vol% aromatics, and it contained 21.8 vol% C5, 5 2.9 vol% Cg, 21.3 vol% C^ and 3 .2 volume% Cg.

I det første forsøk ble "Arabian Light"-destillatet omformet ved 499°C ved bruk av en kommersiell sulfidert platina-rhenium-aluminiumoxyd-katalysator omtalt i US patentskrift nr. 3 415 737. In the first attempt, the "Arabian Light" distillate was reformed at 499°C using a commercial sulfided platinum-rhenium-alumina catalyst disclosed in US Patent No. 3,415,737.

I det annet forsøk ble "Arabian Light"-destillatet omformet ved 4 93°C ved bruk av en platina-kalium-type-L-zeolitt-katalysator fremstilt ved: (1) impregnering av en kalium-type-L-zeolitt med 0,8% platina ved bruk av tetraminplatina (II)nitrat, (2) tørking av katalysatoren, (3) kalsinering av katalysatoren ved 260°C og (4) reduksjon av katalysatoren ved 480°C til 500°C i 1 time. In the second experiment, the "Arabian Light" distillate was reformed at 493°C using a platinum-potassium L-type zeolite catalyst prepared by: (1) impregnating a potassium L-type zeolite with 0 .8% platinum using tetraamine platinum (II) nitrate, (2) drying the catalyst, (3) calcining the catalyst at 260°C and (4) reducing the catalyst at 480°C to 500°C for 1 hour.

I det tredje forsøk, utført ifølge foreliggende oppfinnelse, ble "Arabian Light"-destillatet omformet ved 4 93 QC ved bruk av en platina-barium-type-L-zeolitt-katalysator fremstilt ved: (1) ionebytting av en kalium-type-L-zeolitt med et volum 0,17 molar bariumnitratoppløsning tilstrekkelig stort til å gi et overskudd av barium sammenlignet med zeolittens ionebyttekapasitet, (2) tørking av den resulterende bariumutbyttede L-type-zeolittkatalysator, (3) kalsinering av katalysatoren ved 590°C, (4) impregnering av katalysatoren med 98% platina ved bruk av tetraminplatina(II)nitrat, (5) In the third experiment, carried out according to the present invention, the "Arabian Light" distillate was reformed at 4 93 QC using a platinum-barium-type L-zeolite catalyst prepared by: (1) ion exchange of a potassium-type L-zeolite with a volume of 0.17 molar barium nitrate solution large enough to provide an excess of barium compared to the ion exchange capacity of the zeolite, (2) drying the resulting barium-exchanged L-type zeolite catalyst, (3) calcining the catalyst at 590°C, (4) impregnation of the catalyst with 98% platinum using tetramine platinum(II) nitrate, (5)

tørking av katalysatoren, (6) kalsinering av katalysatoren ved 26 0°C og (7) reduksjon av katalysatoren i hydrogen ved 480°C til 500°C i 1 time. drying the catalyst, (6) calcining the catalyst at 260°C and (7) reducing the catalyst in hydrogen at 480°C to 500°C for 1 hour.

Resultatene av disse tre forsøk er vist i tabell I. The results of these three experiments are shown in Table I.

Denne serie forsøk viser at bruk av en platina-barium-type-L-zeolitt-katalysator i reformingsprosesser gir en selektivitet ved omdannelse av hexaner til benzen markert bedre enn hva tilfellet var for teknikkens stand. This series of experiments shows that the use of a platinum-barium-type-L-zeolite catalyst in reforming processes gives a selectivity when converting hexanes to benzene markedly better than what was the case for the state of the art.

Det skal bemerkes at det sammen med denne overlegne selektivitet foreligger en økning i dannelsen av hydrogengass som kan anvendes for andre prosesser. Bemerk også at renheten av hydrogengassen er høyere for Pt/Ba/L-forsøket siden det dannes mer hydrogen, mens mindre av pluss C2 blir dannet. It should be noted that along with this superior selectivity there is an increase in the formation of hydrogen gas which can be used for other processes. Note also that the purity of the hydrogen gas is higher for the Pt/Ba/L experiment since more hydrogen is formed, while less of plus C2 is formed.

Eksempel II Example II

En annen serie forsøk ble utført for å vise at den foreliggende fremgangsmåte også er effektiv med andre storporede zeolitter i tillegg til L-typen av zeolitter. Selektivitetsindeksen ble målt for fire katalysatorer. Another series of experiments was carried out to show that the present method is also effective with other large pore zeolites in addition to the L type of zeolites. The selectivity index was measured for four catalysts.

Denne andre serie forsøk ble utført med n-hexan som føding. Alle forsøk i denne serie ble utført ved 490°C, 7,0 kg/cm<2> og en romhastighet på 3 og H2/HC = 3. This second series of experiments was carried out with n-hexane as feed. All experiments in this series were performed at 490°C, 7.0 kg/cm<2> and a space velocity of 3 and H2/HC = 3.

I det første forsøk ble en platina-kaliuni-L-type-zeolitt anvendt. Denne ble fremstilt ved de fremgangsmåter som er vist i den andre prosess i eksempel I. In the first experiment, a platinum-potassium L-type zeolite was used. This was produced by the methods shown in the second process in example I.

I det andre forsøk ble en platina-barium-L-type-zeo- In the second experiment, a platinum-barium-L-type-zeo-

litt anvendt. Denne ble fremstilt etter de fremgangsmåter som er vist i den tredje prosess i eksempel I, med unntak av at bariumnitratoppløsningen var 0,3 molar i stedet for 0,7 molar. slightly applied. This was prepared according to the methods shown in the third process in example I, with the exception that the barium nitrate solution was 0.3 molar instead of 0.7 molar.

I det tredje forsøk ble det anvendt platina-natrium-zeolitt Y, som ble fremstilt ved å impregnere en natrium-zeolitt Y med Pt(NHg)4(N03)2. Dette gir et innhold på 0,8% platina. Deretter ble katalysatoren tørret, kalsinert ved 260°C og redusert i hydrogen ved 480°C - 500°C. In the third experiment, platinum sodium zeolite Y was used, which was prepared by impregnating a sodium zeolite Y with Pt(NHg) 4 (NO 3 ) 2 . This gives a content of 0.8% platinum. The catalyst was then dried, calcined at 260°C and reduced in hydrogen at 480°C - 500°C.

I det fjerde forsøk ble det anvendt en platina-barium-zeolitt Y som var blitt fremstilt ved ionebytting av en nat-riumzeolitt Y med 0,3 molart bariumnitrat ved 80°C, med påføl-gende tørring og kalsinering ved 590°C, hvoretter zeolitten ble impregnert med Pt(NH3 )4(N03 )2, hvilket ga 0,8% platina. Deretter ble katalysatoren tørret, kalsinert ved 260°C og redusert i hydrogen ved 480-500°C. Resultatene av disse forsøk er vist i tabell II. In the fourth experiment, a platinum barium zeolite Y was used which had been prepared by ion exchange of a sodium zeolite Y with 0.3 molar barium nitrate at 80°C, with subsequent drying and calcination at 590°C, after which the zeolite was impregnated with Pt(NH 3 ) 4 (NO 3 ) 2 , yielding 0.8% platinum. The catalyst was then dried, calcined at 260°C and reduced in hydrogen at 480-500°C. The results of these experiments are shown in Table II.

Således fører inkorporering av barium i en storporet zeolitt, slik som en zeolitt av Y-typen,til en dramatisk forbedring i selektiviteten for n-hexan. Bemerk at stabiliteten av platina-barium-L-type-zeolitten er utmerket. Det var ingen nedsettelse av omdannelsen etter 20 timers bruk da platina-barium-L-type -zeolitten ble anvendt som katalysator. Thus, incorporation of barium into a large-pore zeolite, such as a Y-type zeolite, leads to a dramatic improvement in selectivity for n-hexane. Note that the stability of the platinum-barium L-type zeolite is excellent. There was no reduction in conversion after 20 hours of use when the platinum barium L-type zeolite was used as catalyst.

Eksempel III Example III

En tredje serie forsøk ble utført for å vise effekten av å tilsette ytterligere ingredienser til katalysatoren. A third series of experiments was conducted to show the effect of adding additional ingredients to the catalyst.

Denne tredje serie av forsøk ble utført ved anvendelse av en føding som var blitt hydroraffinert for å fjerne svovel, oxygen og nitrogen; fødingen inneholdt 80,9 volura% paraffiner, 16,8 volum% nafthener og 1,7 volum% aromater. Fødingen inneholdt også 2,6 volum% , 47,6 volum% Cg, This third series of experiments was carried out using a feed that had been hydrorefined to remove sulphur, oxygen and nitrogen; the feed contained 80.9 vol.% paraffins, 16.8 vol.% naphthenes and 1.7 vol.% aromatics. The feed also contained 2.6 vol.%, 47.6 vol.% Cg,

43,4 volum% C^ og 6,3 volum% Cg. Alle forsøk i denne serie ble utført ved 4 90°C, 7,0 kg/cm<2>, en romhastighet på 2,0 og 6,0 H2/HC. 43.4 vol% C^ and 6.3 vol% Cg. All experiments in this series were performed at 490°C, 7.0 kg/cm<2>, a space velocity of 2.0 and 6.0 H2/HC.

I det første forsøk ble en platina-natrium-zeolitt Y fremstilt ved de fremgangsmåter som er vist i den tredje prosess i eksempel II. In the first experiment, a platinum-sodium zeolite Y was prepared by the methods shown in the third process in Example II.

I det annet forsøk ble en platina-barium-zeolitt Y fremstilt ved fremgangsmåten vist i den fjerde prosess i eksempel II. In the second experiment, a platinum-barium zeolite Y was prepared by the method shown in the fourth process in Example II.

I det tredje forsøk ble en platina-sjelden - jordart-zeolitt Y fremstilt ved å impregnere en kommersiell sjelden-jordart-zeclitt Y fra Strem Chemicals Inc. med platina til et innhold på 0,8% Pt ved anvendelse av Pt(NH3)4(N03)2; deretter ble zeolitten tørret, kalsinert ved 260 C og redusert ved 480 - 500°C. In the third experiment, a platinum-rare-earth zeolite Y was prepared by impregnating a commercial rare-earth zeolite Y from Strem Chemicals Inc. with platinum to a content of 0.8% Pt using Pt(NH3)4 (N03)2; then the zeolite was dried, calcined at 260°C and reduced at 480 - 500°C.

I det fjerde forsøk ble en platina-sjelden-jordart— barium-zeolitt Y fremstilt ved ionebytting, idet en kommersiell Strem Chemicals Inc. sjelden-jordart— zeolitt Y ble behandlet med en 0,3 molar Ba(N03)2 oppløsning ved 80°C, tørret og kalsinert ved 590°C. Impregnering av zeolitten med Pt(NH3) 4 (N03).-2 ga et innhold av platina på 0,8%; deretter ble zeolitten tørret, kalsinert ved 260 C og så redusert ved 480 - 500°C. Resultatene av disse forsøk er gitt i tabell In the fourth experiment, a platinum rare earth barium zeolite Y was prepared by ion exchange, treating a commercial Strem Chemicals Inc. rare earth zeolite Y with a 0.3 molar Ba(NO 3 ) 2 solution at 80° C, dried and calcined at 590°C. Impregnation of the zeolite with Pt(NH3) 4 (N03).-2 gave a platinum content of 0.8%; then the zeolite was dried, calcined at 260°C and then reduced at 480 - 500°C. The results of these tests are given in the table

III. III.

Denne forsøksserie viser at tilsetning av sjeldne jord-arter til katalysatoren har nedsettende effekt på selektiviteten. This series of experiments shows that the addition of rare earth species to the catalyst has a lowering effect on the selectivity.

Eksempel IV Example IV

En Arabian Naphtha, hydroraffinert for å fjerne svovel, oxygen og nitrogen ble utsatt for omforming ved 7,0 kg/cm 2, en væskeromhastighet på 3 og 3 H„/HC under dannelse av et Cg -produkt med et aromatinnhold på 82 vekt% ved to forskjellige prosesser. Fødingen var Arabian Naphtha behandlet med hydrogen som nevnt ovenfor, inneholdende 67,9% paraffiner, 23,7% nafthener og 8,4% aromater. Destillasjonsresultater ved D86-metoden var: start - 95°C, 5% - 103,9°C, 10% - 106,7°C, 30% - 120°C, 50% - 129°C, 70% - 144°C, 90% - 160,5°C, 95% - 168,5°C, sluttkokepunkt - 187, 8°C. An Arabian Naphtha, hydrorefined to remove sulphur, oxygen and nitrogen was subjected to reforming at 7.0 kg/cm 2 , a headspace velocity of 3 and 3 H„/HC to form a Cg product with an aromatics content of 82 wt% by two different processes. The feed was Arabian Naphtha treated with hydrogen as mentioned above, containing 67.9% paraffins, 23.7% naphthenes and 8.4% aromatics. Distillation results by the D86 method were: start - 95°C, 5% - 103.9°C, 10% - 106.7°C, 30% - 120°C, 50% - 129°C, 70% - 144° C, 90% - 160.5°C, 95% - 168.5°C, final boiling point - 187.8°C.

I det første forsøk ble Arabian Naphtha omformet ved 516°C i en reaktor ved bruk av en konvensjonell reformings-katalysator bestående av 0,3 Pt, 0,6 Re, 1,0 Cl (i vekt%) på aluminiumoxyd. Den ble avsvovlet separat. In the first trial, Arabian Naphtha was reformed at 516°C in a reactor using a conventional reforming catalyst consisting of 0.3 Pt, 0.6 Re, 1.0 Cl (wt%) on aluminum oxide. It was desulfurized separately.

I det andre forsøk ble Arabian Naphtha utsatt for omforming ved 4 93 Ci den samme reaktor, hvori den øverste halvdel av reaktoren inneholdt samme type katalysator som i første forsøk og den nederste halvdel av reaktoren inneholdt - en platina-barium-L-type-zeolitt- katalysator fremstilt etter de fremgangsmåter som er angitt i eksempel 1. In the second experiment, Arabian Naphtha was subjected to reforming at 4 93 Ci in the same reactor, in which the upper half of the reactor contained the same type of catalyst as in the first experiment and the lower half of the reactor contained - a platinum-barium-L-type zeolite - catalyst prepared according to the methods indicated in example 1.

Resultatene av disse to forsøk er i vist i tabell IV. The results of these two experiments are shown in Table IV.

Claims (9)

1. Fremgangsmåte ved reforming av hydrocarboner, karakterisert ved at hydrocarbonene bringes i kontakt med en katalysator som omfatter en storporet zeolitt med en effektiv porediameter på fra 6 til 15 Å inneholdende: a) minst ett metall fra gruppe VIII og b) et jordalkalimetall valgt blant barium, strontium og kalsium, idet selektivitetsindeksen for katalysatoren er høyere enn 60 %, eller fremstillingsbetingelsene tilpasses slik at selektiviteten for N-hexan-dehydrosyklisering blir høyere enn 60 %, og hydrocarbonene først, samtidig eller til slutt eventuelt bringes i kontakt, ved reformingsbetingelser og i nærvær av hydrogen, med en katalysator som omfatter en metalloksydbærer i hvilken det er avsatt i intim blanding platina og rhenium.1. Process for reforming hydrocarbons, characterized in that the hydrocarbons are brought into contact with a catalyst comprising a large-pore zeolite with an effective pore diameter of from 6 to 15 Å containing: a) at least one metal from group VIII and b) an alkaline earth metal selected from barium, strontium and calcium, the selectivity index for the catalyst being higher than 60%, or the production conditions are adapted so that the selectivity for N-hexane dehydrocyclization is higher than 60%, and the hydrocarbons are first, simultaneously or finally possibly brought into contact, under reforming conditions and in the presence of hydrogen, with a catalyst comprising a metal oxide support in which platinum and rhenium are deposited in intimate mixture. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det anvendes en katalysator hvor jordalkalimetallet er barium og metallet fra gruppe VIII er platina.2. Method according to claim 1, characterized in that a catalyst is used where the alkaline earth metal is barium and the metal from group VIII is platinum. 3. Fremgangsmåte ifølge krav 2, karakterisert ved at det anvendes en katalysator inneholdende fra 0,1 til 35 vekt% barium og fra 0,1 til 5 vekt% platina.3. Method according to claim 2, characterized in that a catalyst containing from 0.1 to 35% by weight of barium and from 0.1 to 5% by weight of platinum is used. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at det anvendes en katalysator hvor zeolitten har en tilsynelatende porestørrelse på fra 7 til 9 Å.4. Method according to claims 1-3, characterized in that a catalyst is used where the zeolite has an apparent pore size of from 7 to 9 Å. 5. Fremgangsmåte ifølge krav 1-4, karakterisert ved at det anvendes en katalysator hvor zeolitten er valgt blant zeolitt X, zeolitt Y og zeolitt av type L.5. Method according to claims 1-4, characterized in that a catalyst is used where the zeolite is selected from zeolite X, zeolite Y and zeolite of type L. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at det anvendes en katalysator hvor zeolitten er zeolitt Y.6. Method according to claim 5, characterized in that a catalyst is used where the zeolite is zeolite Y. 7. Fremgangsmåte ifølge krav 5, karakterisert ved at det anvendes en katalysator hvor zeolitten er en zeolitt av type L.7. Method according to claim 5, characterized in that a catalyst is used where the zeolite is a type L zeolite. 8. Fremgangsmåte ifølge krav 1-7, karakterisert ved at reformingen utføres ved en temperatur fra 400°C til 600°C, en væskeromhastighet pr. time på 0,3-5, et trykk på fra 1 til 35,2 kg/cm<2> og et forhold H2/HC på fra 1:1 til 10:1.8. Method according to claims 1-7, characterized in that the reforming is carried out at a temperature from 400°C to 600°C, a liquid space velocity per hour of 0.3-5, a pressure of from 1 to 35.2 kg/cm<2> and a ratio H2/HC of from 1:1 to 10:1. 9. Fremgangsmåte ifølge krav 8, karakterisert ved at reformingen utføres ved en temperatur fra 430°C til 550°C, et trykk på fra 3,5 til 21,1 kg/cm<2> og et forhold H2/HC på fra 2:1 til 6:1.9. Method according to claim 8, characterized in that the reforming is carried out at a temperature from 430°C to 550°C, a pressure of from 3.5 to 21.1 kg/cm<2> and a ratio H2/HC of from 2 :1 to 6:1.
NO830323A 1982-02-01 1983-01-31 PROCEDURE FOR REFORMING HYDROCARBONES, HOW THE HYDROCARBONS ARE CONTACTED WITH A CATALYST CONVERTER CONCERNING THE GREAT ZEOLITE CONTAINING A METAL OF GROUP VIII AND AN EARTHAL METAL METAL NO171674C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/344,572 US4435283A (en) 1982-02-01 1982-02-01 Method of dehydrocyclizing alkanes
US06/393,160 US4631123A (en) 1982-02-01 1982-06-28 Method of dehydrocyclizing alkanes
US42054082A 1982-09-20 1982-09-20

Publications (3)

Publication Number Publication Date
NO830323L NO830323L (en) 1983-08-02
NO171674B true NO171674B (en) 1993-01-11
NO171674C NO171674C (en) 1993-04-21

Family

ID=27407634

Family Applications (1)

Application Number Title Priority Date Filing Date
NO830323A NO171674C (en) 1982-02-01 1983-01-31 PROCEDURE FOR REFORMING HYDROCARBONES, HOW THE HYDROCARBONS ARE CONTACTED WITH A CATALYST CONVERTER CONCERNING THE GREAT ZEOLITE CONTAINING A METAL OF GROUP VIII AND AN EARTHAL METAL METAL

Country Status (20)

Country Link
KR (1) KR900005092B1 (en)
AU (1) AU560671B2 (en)
BR (1) BR8300400A (en)
CA (1) CA1196027A (en)
CH (1) CH655513B (en)
DE (1) DE3303121A1 (en)
DK (1) DK163803C (en)
ES (2) ES8406534A1 (en)
FI (1) FI71078C (en)
FR (1) FR2520749B1 (en)
GB (2) GB2114150B (en)
IL (1) IL67669A (en)
IT (1) IT1193653B (en)
MX (1) MX164962B (en)
NL (1) NL8300355A (en)
NO (1) NO171674C (en)
NZ (1) NZ202947A (en)
PH (2) PH19038A (en)
SE (1) SE457727B (en)
YU (1) YU43295B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648961A (en) * 1982-09-29 1987-03-10 Chevron Research Company Method of producing high aromatic yields through aromatics removal and recycle of remaining material
CA1231699A (en) * 1983-11-10 1988-01-19 Samuel J. Tauster Zeolite catalyst and process for using said catalyst
US4925819A (en) * 1983-11-10 1990-05-15 Exxon Research & Engineering Company Method of regenerating a deactivated catalyst
US4552856A (en) * 1983-11-10 1985-11-12 Exxon Research And Engineering Co. Zeolite catalyst and preparation thereof
US4595670A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Zeolite catalyst
US4595669A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Method of preparing an improved catalyst
US4595668A (en) * 1983-11-10 1986-06-17 Exxon Research And Engineering Co. Bound zeolite catalyst
GB2153840B (en) * 1984-02-07 1987-03-18 Chevron Res Hydrocarbon conversion process
US5242675A (en) * 1985-10-15 1993-09-07 Exxon Research & Engineering Company Zeolite L
US5486498A (en) * 1986-10-14 1996-01-23 Exxon Research & Engineering Company Zeolite L
US4830729A (en) * 1987-12-28 1989-05-16 Mobil Oil Corporation Dewaxing over crystalline indium silicates containing groups VIII means
US5013423A (en) * 1987-11-17 1991-05-07 Mobil Oil Corporation Reforming and dehydrocyclization
US4886926A (en) * 1988-06-24 1989-12-12 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over tin-containing crystalline microporous materials
US4935566A (en) * 1987-11-17 1990-06-19 Mobil Oil Corporation Dehydrocyclization and reforming process
US4868145A (en) * 1987-12-28 1989-09-19 Mobil Oil Corporation Dehydrogenation and dehydrocyclization catalyst
US4849567A (en) * 1987-12-28 1989-07-18 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over indium-containing crystalline microporous materials
US4990710A (en) * 1988-06-24 1991-02-05 Mobil Oil Corporation Tin-containing microporous crystalline materials and their use as dehydrogenation, dehydrocyclization and reforming catalysts
US4982028A (en) * 1987-12-28 1991-01-01 Mobil Oil Corporation Dehydrogenation and dehydrocyclization catalyst
US4822942A (en) * 1987-12-28 1989-04-18 Mobil Oil Corporation Styrene production
US4922050A (en) * 1987-12-28 1990-05-01 Mobil Oil Corporation Catalytic dehydrogenation of hydrocarbons over indium-containing crystalline microporous materials
GB8801067D0 (en) * 1988-01-19 1988-02-17 Exxon Chemical Patents Inc Zeolite l preparation
US4931416A (en) * 1988-06-24 1990-06-05 Mobil Oil Corporation Thallium or lead-containing microporous crystalline materials and their use as dehydrogenation dehydrocyclization and reforming catalysts
US4910357A (en) * 1988-06-24 1990-03-20 Mobil Oil Corporation Alkylate upgrading
US4892645A (en) * 1988-06-24 1990-01-09 Mobil Oil Corporation Dewaxing catalyst based on tin containing materials
US4882040A (en) * 1988-06-24 1989-11-21 Mobil Oil Corporation Reforming process
US5192728A (en) * 1988-06-24 1993-03-09 Mobil Oil Corporation Tin-colating microporous crystalline materials and their use as dehydrogenation, dehydrocyclization reforming catalysts
US4851599A (en) * 1988-06-24 1989-07-25 Mobil Oil Corporation Styrene production
US5124497A (en) * 1989-10-11 1992-06-23 Mobil Oil Corporation Production of mono-substituted alkylaromatics from C8 +N-paraffins
US5037529A (en) * 1989-12-29 1991-08-06 Mobil Oil Corp. Integrated low pressure aromatization process
US5122489A (en) * 1990-10-15 1992-06-16 Mobil Oil Corporation Non-acidic dehydrogenation catalyst of enhanced stability
US5147837A (en) * 1990-10-22 1992-09-15 Mobil Oil Corporation Titania containing dehydrogenation catalysts
AU645632B2 (en) * 1990-12-06 1994-01-20 Tosoh Corporation Catalyst for purifying exhaust gas
EP0519573B1 (en) * 1991-06-21 1995-04-12 Shell Internationale Researchmaatschappij B.V. Hydrogenation catalyst and process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1545411A1 (en) * 1951-01-28 1970-01-08 Union Carbide Corp Process for the catalytic conversion of hydrocarbons
NL259507A (en) * 1959-12-30 1900-01-01
GB1050385A (en) * 1963-06-28
DE1270212B (en) * 1964-03-26 1968-06-12 Union Oil Co Process for adjusting the aromatic content in hydrocracking processes
US3397137A (en) * 1965-07-16 1968-08-13 Union Carbide Corp Hydrocarbon reforming process and catalyst compositions therefor
FR1486871A (en) * 1965-07-16 1967-06-30 Union Carbide Corp Advanced process for reforming petroleum fractions
GB1161071A (en) * 1965-07-16 1969-08-13 Union Carbide Corp Catalyst Composition
US3707460A (en) * 1971-03-19 1972-12-26 Standard Oil Co Naphtha hydroforming process
JPS5744466B2 (en) * 1973-06-14 1982-09-21
US3871409A (en) * 1973-05-21 1975-03-18 Owens Corning Fiberglass Corp Reinforced synthetic pipe wall construction
JPS5016785A (en) * 1973-05-21 1975-02-21

Also Published As

Publication number Publication date
DK163803B (en) 1992-04-06
FI71078B (en) 1986-08-14
SE8300415D0 (en) 1983-01-27
NO830323L (en) 1983-08-02
PH19038A (en) 1985-12-06
MX164962B (en) 1992-10-09
CH655513B (en) 1986-04-30
FI71078C (en) 1986-11-24
GB2114150B (en) 1986-01-02
ES519449A0 (en) 1984-08-01
FI830346L (en) 1983-08-02
SE8300415L (en) 1983-08-02
NL8300355A (en) 1983-09-01
DE3303121A1 (en) 1983-08-04
IL67669A0 (en) 1983-05-15
ES532004A0 (en) 1985-08-01
KR900005092B1 (en) 1990-07-19
AU1007183A (en) 1983-08-11
FR2520749A1 (en) 1983-08-05
IT1193653B (en) 1988-07-21
DK163803C (en) 1992-08-31
FI830346A0 (en) 1983-02-01
NO171674C (en) 1993-04-21
SE457727B (en) 1989-01-23
NZ202947A (en) 1985-07-31
BR8300400A (en) 1983-10-25
GB2153384A (en) 1985-08-21
GB8302286D0 (en) 1983-03-02
GB8505626D0 (en) 1985-04-03
ES8406534A1 (en) 1984-08-01
GB2114150A (en) 1983-08-17
IL67669A (en) 1986-09-30
YU18583A (en) 1986-04-30
ES8506785A1 (en) 1985-08-01
GB2153384B (en) 1986-02-05
CA1196027A (en) 1985-10-29
DK37383A (en) 1983-08-02
YU43295B (en) 1989-06-30
IT8319360A0 (en) 1983-01-31
FR2520749B1 (en) 1987-07-17
AU560671B2 (en) 1987-04-16
KR840004150A (en) 1984-10-06
DK37383D0 (en) 1983-01-31
PH19412A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
NO171674B (en) PROCEDURE FOR REFORMING HYDROCARBONES, HOW THE HYDROCARBONS ARE CONTACTED WITH A CATALYST CONVERTER CONCERNING THE GREAT ZEOLITE CONTAINING A METAL OF GROUP VIII AND AN EARTHAL METAL METAL
US4435283A (en) Method of dehydrocyclizing alkanes
US4447316A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4517306A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4645586A (en) Reforming process
EP2155633B1 (en) Aromatization of alkanes using a germanium-zeolite catalyst
US4547472A (en) Method of adding an alkaline earth metal to a zeolitic catalyst
JPS5857408B2 (en) Method for producing aromatic hydrocarbons from aliphatic hydrocarbons
DK163571B (en) CATALYST CONTAINING A TYPE OF L ZEOLITE AND AT LEAST ONE GROUP VIII METAL AND USE THEREOF
EP0524956A1 (en) Dehydrocyclization or catalytic reforming using sulfur tolerant zeolite catalyst
US5013423A (en) Reforming and dehydrocyclization
CA1295984C (en) Uhp-y-containing reforming catalysts and processes
WO2013165471A1 (en) Catalyst for light naphtha aromatization
US4935566A (en) Dehydrocyclization and reforming process
US4627912A (en) Reforming process having a high selectivity and activity for dehydrocyclization, isomerization, and dehydroisomerization
US4882040A (en) Reforming process
US5328595A (en) Reforming naphtha with large-pore zeolites
US5028312A (en) Method of dehydrocyclizing alkanes
US3436335A (en) Serial reforming with a rare earth metal in all but last stage
US4636298A (en) Reforming process
US4645588A (en) Reforming with a platinum-barium-zeolite of L family
US4721695A (en) Platinum-barium-zeolite of L family
JPH0227013B2 (en)
CA2356632C (en) Dehydrocyclization process with downstream dimethylbutane removal
US4631123A (en) Method of dehydrocyclizing alkanes