DK156814B - PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR - Google Patents

PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR Download PDF

Info

Publication number
DK156814B
DK156814B DK234879AA DK234879A DK156814B DK 156814 B DK156814 B DK 156814B DK 234879A A DK234879A A DK 234879AA DK 234879 A DK234879 A DK 234879A DK 156814 B DK156814 B DK 156814B
Authority
DK
Denmark
Prior art keywords
reactor
air
catalyst
adsorbent
conduit
Prior art date
Application number
DK234879AA
Other languages
Danish (da)
Other versions
DK156814C (en
DK234879A (en
Inventor
Peter Carl Sehestedt Schoubye
Original Assignee
Topsoe Haldor As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topsoe Haldor As filed Critical Topsoe Haldor As
Priority to DK234879A priority Critical patent/DK156814C/en
Priority to SE8003958A priority patent/SE8003958L/en
Priority to FR8011902A priority patent/FR2458308A1/en
Priority to DE19803021174 priority patent/DE3021174A1/en
Priority to GB8018433A priority patent/GB2051761A/en
Priority to NL8003288A priority patent/NL8003288A/en
Priority to JP7567480A priority patent/JPS55165131A/en
Publication of DK234879A publication Critical patent/DK234879A/en
Publication of DK156814B publication Critical patent/DK156814B/en
Application granted granted Critical
Publication of DK156814C publication Critical patent/DK156814C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

DK 156814 BDK 156814 B

Den foreliggende opfindelse angâr et anlaeg af den i krav 1's indledning angivne art til fjernelse af oxiderbare, navnlige gasformige bestanddele fra forurenede gasser, især forurenet luft. Anlægget bestâr af mindst en reaktor med et 5 materiale der er virksomt sorti adsorbent og ved forhojet tempe-ratur tillige sorti oxidationskatalysator samt en ledning til at fore den forurenede gas til reaktoren og en ledning til at fore renset gas bort fra reaktoren.The present invention relates to an installation of the kind specified in the preamble of claim 1 for the removal of oxidizable, particularly gaseous constituents from polluted gases, especially polluted air. The plant consists of at least one reactor with an active sort adsorbent and at elevated temperature as well as an oxidation catalyst as well as a conduit for feeding the contaminated gas to the reactor and a conduit for purifying gas away from the reactor.

I en række industrier sâsom trykkerier, farve- og lak-10 fabrikker, polymerforarbejdende virksomheder, levnedsmiddel-og foderforarbejdende virksomheder, kemiske virksomheder og en lang række mindre værksteder opstâr der under produktionen oxiderbare svævestoffer og gasarter der kan være ildelugtende, brandfarlige og/eller giftige. Disse stoffer fjernes med luft-15 str0mme og sendes af 0konomiske grunde ofte uden forudgâende rensning direkte ud i atmosfæren. Stadig skarpere regler fra myndigheder og stigende krav fra offentligheden n0dvendigg0r imidlertid i stigende grad rensning ar saaanne luftstr0mme, ogsâ i tilfælde hvor det ikke f0r har været n0dvendigt. Rens-20 ning af sâdanne luftstr0mme er dyr og teknisk vanskelig fordi der ofte er taie om store mængder, helt op til 100.000 3In a number of industries such as printing plants, color and varnish-10 factories, polymer processing companies, food and feed processing companies, chemical companies and a large number of smaller workshops, oxidable sulfur and gases that can be odorous, flammable and / or toxic can be produced during production. . These substances are removed with air-15 currents and, for economic reasons, are often sent directly into the atmosphere without prior purification. However, increasingly stringent regulations from authorities and increasing demands from the public are increasingly necessitating the purification of such airflows, even in cases where this has not been necessary. Purification of such air streams is expensive and technically difficult because there is often a lot of volume, up to 100,000 3

Nm pr. time, der sorti regel indeholder smâ mængder, under ca.Nm pr. hour, which usually contains small quantities, less than approx.

3 1,5 g pr. Nm af de stoffer der skal fjernes.1.5 g per Nm of the substances to be removed.

De kendte fremgangsmâder til rensning af Îuftstr0mme 25 kan groft deles i fire kategorier: udvaskning, adsorption, termisk oxidation og katalytisk oxidation.The known methods for purifying air stream 25 can be roughly divided into four categories: leaching, adsorption, thermal oxidation and catalytic oxidation.

Udvaskning foretages typisk med vand, ofte tilsat ke-mikalier der reagerer med de u0nskede stoffer i luftstr0mmen. Ulempen ved denne fremgangsmâde er, udover at den er dyr, at 30 det virkelige problem, uskadeligg0relse af de u0nskede stoffer kun 10ses delvis, idet de blot overf0res til vandet.Washing out is typically done with water, often with chemicals that react with the undesirable substances in the air stream. The disadvantage of this method is, besides being expensive, that the real problem is that damage to the undesirable substances is only partially solved, simply transferring it to the water.

Adsorption foretages oftest pâ aktive kul. Det st0rste problem ved denne fremgangsmâde er at den regenerering af de aktive kul, der er n0dvendig for at g0re fremgangsmâden til-35 strækkelig 0konomisk, ikke kan foretages fuldt tilfredsstil-lende. Ârsagen hertil er at regenereringen skal foretages i oxygenfri atmosfære, hvilket typisk vil være en atmosfære afAdsorption is most often carried out on activated charcoal. The main problem with this process is that the regeneration of the active coal necessary to make the process sufficiently economical cannot be fully satisfactory. The reason for this is that the regeneration must be carried out in an oxygen-free atmosphere, which will typically be an atmosphere of

DK 156814 BDK 156814 B

2 overophedet damp. Mange af de stoffer der skal fjernes fra kullet er tilb0jelige til at danne polymerisationsprodukter, soin tilstopper kulpartiklernes porer. En delvis fjernelse af disse polymerisationsprodukter kan foretages ved at holde 5 temperaturer i den oxygenfrie atmosfære i omrâdet 700-800°C, men ved sâ h0je temperaturer sker der en nedbrydning af det aktive kul. André adsorbenter sâsom molekylsier og ildfaste keramiske oxider, fx alumina, A^O^, kan ogsâ anvendes. Molekylsier er dog betydeligt dyrere end aktive kul, og ildfaste 10 keramiske oxider har mindre adsorptionskapacitet end aktive kul. En fordel ved disse ikke brændbare adsorbenter er at de kan regenereres med luft.2 superheated steam. Many of the substances to be removed from the coal tend to form polymerization products, which clog the pores of the coal particles. Partial removal of these polymerization products can be accomplished by keeping 5 temperatures in the oxygen-free atmosphere in the range 700-800 ° C, but at such high temperatures, decomposition of the activated carbon occurs. Other adsorbents such as molecular sieves and refractory ceramic oxides, e.g. alumina, A ^ O ^, can also be used. Molecules, however, are significantly more expensive than activated charcoal, and refractory 10 ceramic oxides have less adsorption capacity than activated charcoal. An advantage of these non-combustible adsorbents is that they can be regenerated with air.

Termisk oxidation udmærker sig ved at være en simpel og relativ driftsikker fremgangsmâde, Ulempen ved fremgangs-15 mâden er, at opvarmningen af de store luftmængder til 700-800°C i et brændkammer kræver store mængder energi, Alminde-ligvis opvarmes luften ved direkte fyring med olie eller even-tuelt gas. Selv om det er muligt at udnytte en del af den var-me, der befinder sig i de store luftmængder, er fremgangsmâ- 20 den dog dyr i drift.Thermal oxidation is characterized by being a simple and relatively reliable process. The disadvantage of the method is that heating the large volumes of air to 700-800 ° C in a combustion chamber requires large amounts of energy. Generally the air is heated by direct firing. with oil or any gas. However, while it is possible to utilize a portion of the heat contained in the large volumes of air, the process is expensive to operate.

Katalytisk oxidation adskiller sig fra termisk oxidation ved at selve oxidationen ikke foregâr i et brændkammer, men i et katalysatorleje. Fordelen ved denne fremgangsmâde er at den katalytiske oxidation kan foregâ ved en tempera-25 tur pâ 250-35Q°C, hvorved energiforbruget nedsættes væsentligt. Det er en ulempe ved den katalytiske oxidation, at visse ka-talysatortyper bliver forgiftet ved kontakt med stoffer sâsom hydrogensulfid og svovldioxyd SC^ · Af særlig vigtighed er det at selv om energiforbruget ved katalytisk oxidation er 30 væsentlig mindre end ved termisk oxidation, er det dog be-tragteligt nâr store luftmasser skal opvarmes. Ved de nævnte smâ forureningsmængder er oxidationen af forureningerne ikke tilstrækkelig til levering af den til opvarmningen af luft-masserne tilstrækkeligt energimængde.Catalytic oxidation differs from thermal oxidation in that the oxidation itself takes place not in a combustion chamber but in a catalyst bed. The advantage of this process is that the catalytic oxidation can take place at a temperature of 250-35 ° C, thereby substantially reducing energy consumption. It is a disadvantage of the catalytic oxidation that certain catalyst types are poisoned by contact with substances such as hydrogen sulfide and sulfur dioxide SC 2. Of particular importance is that although the energy consumption of catalytic oxidation is substantially less than that of thermal oxidation, it is however, considerable when large air masses are to be heated. At the said small amounts of pollution, the oxidation of the pollutants is not sufficient to supply the sufficient amount of energy for heating the air masses.

35 Fra dansk patentansogning nr. 3698/68, der svarer til US patentskrift nr. 3.548.728, kendes der en fremgangs-màde til fjernelse af uonskede gasformige komponenter fra35 From Danish Patent Application No. 3698/68, corresponding to US Patent No. 3,548,728, there is known a method for removing unwanted gaseous components from

DK 156814 BDK 156814 B

3 effluentgasser; den bestâr i at man adsorberer disse kom- ponenter pâ et fast adsorbens med stort overfladeareal, tilf0rer varme til adsorbensstoffet til afdrivning af de uonskede komponenter og bringer disse i kontakt med en oxi- 5 dationskatalysator inkorporeret i og anbragt pâ adsorbenset for at omdanne dem til kuldioxid og vand. Adsorbenset er fast og porost og udgores af aktivkul, pimpsten, bauximt molekylsigtemateriale og/eller et eller flere oxider af Si,3 effluent gases; it consists in adsorbing these components on a solid surface area adsorbent, applying heat to the adsorbent to striate the undesired components and contacting them with an oxidation catalyst incorporated in and placed on the adsorbent to convert them into carbon dioxide and water. The adsorbent is solid and porous and is made up of activated charcoal, pumice, bauxite molecular sieve material and / or one or more oxides of Si,

Al, jordalkali- og de sjældne jordarters metaller og Ce, 2 10 og dets overfladeareal er > 100 m /g. Der beskrives îkke noget anlæg til udovelse af fremgangsmâden, der horer til de forannævnte kategorier.Al, alkaline earth and rare earth metals and Ce, 2 10 and its surface area are> 100 m / g. No system for the practice of the above categories is described.

US patentskrift nr. 3.150.922 angâr en fremgangsmâde til rensning af udblæsningsgasser fra forbrændingsmotorer, 15 ved hvilken gasserne fores gennem lejer indeholdende ens katalysatorer af aluminiumoxidkorn imprægneret manganoxid og kobberoxid. Denne fremgangsmâde er ikke beregnet til og kan ikke bruges i et stationært anlæg som angivet i nærvæ-rende beskrivelses indledningsafsnit.U.S. Patent No. 3,150,922 discloses a process for purifying exhaust gases from internal combustion engines in which the gases are passed through bearings containing similar alumina-grain impregnated manganese oxide and copper oxide catalysts. This method is not intended for and cannot be used in a stationary system as set forth in the preamble of this specification.

20 Fra dansk patentskrift nr. 145.817 kendes der et apparat til kombineret varmeveksling og katalytisk forbræn-ding, hvor harpiksholdige afgangsgasser forvarmes ved hjælp af en roterende varmeveksler der indeholder et porost mate-riale imprægneret med oxidationskatalytisk aktive stoffer.Danish Patent No. 145,817 discloses an apparatus for combined heat exchange and catalytic combustion in which resinous exhaust gases are preheated by means of a rotary heat exchanger containing a porous material impregnated with oxidation catalytically active substances.

25 Der er sâledes ikke taie om en katalytisk efterrensning af de afgâende gasser under indvinding af yderligere reaktions-varme som beskrevet i nærværende beskrivelse.Thus, there is no mention of a catalytic post-purification of the exhaust gases to obtain additional heat of reaction as described herein.

Fra FR patentskrift nr. 1.527.897, der svarer til US patentskrift nr. 4.025.505 og GB nr. 1.527.827, kendes en 30 fremgangsmâde til fjernelse af (lave koncentrationer af) oxiderbare organiske bestanddele, navnlig vinylkloridmono-merer, fra en oxygenholdig inertgas, ved at man i) adsorberer bestanddelene pâ et sorptionsmateriale i en reaktor indeholdende en oxidationskatalysator af platin, 35 palladium eller salte deraf; ii) fjerner den rensede gas fra reaktorens udgang og samtidigt i en anden reaktor;From U.S. Patent No. 1,527,897, which corresponds to U.S. Patent No. 4,025,505 and GB No. 1,527,827, a method for removing (low concentrations of) oxidizable organic constituents, especially vinyl chloride monomers, is known from a oxygen-containing inert gas by i) adsorbing the components on a sorption material in a reactor containing an oxidation catalyst of platinum, palladium or salts thereof; ii) removing the purified gas from the reactor exit and simultaneously in another reactor;

DK 156814 BDK 156814 B

4 iii) afbryder gennemstr0mning af den oxygenholdige inert-gas germera sorptionsmaterialet, idet reaktorens indgangs-del og udgangsdel lukkes nâr koncentrationen af organi-ske bestanddele opnâr et 0nsket niveau; og 5 iv) oxiderer de desorberede organiske bestanddele i nær-værelse af oxidationskatalysatoren og oxygen i den oxygenholdige inertgas ved at hæve temperaturen til fortrins-vis ca 120°-180°C ved hjælp af et udefra tilf0rt opvarm-ningsmedium, fx damp, varme gasser eller varmt vand, hvor-10 ved der i reaktoren opbygges et overtryk/ der udlignes ved udluftning af reaktionsprodukterne fra reaktoren di-rekte til omgivelserne og k0le reaktionszonen til omgi-velsestemperatur.Iii) interrupts the flow of the oxygen-containing inert gas into the sorption material, closing the reactor's inlet and outlet portions when the concentration of organic constituents reaches a desired level; and iv) oxidizing the desorbed organic constituents in the vicinity of the oxidation catalyst and oxygen in the oxygen-containing inert gas by raising the temperature to preferably about 120 ° -180 ° C by an externally heated heating medium, e.g., steam, heat gases or hot water, whereby an overpressure is built up in the reactor / which is offset by venting the reaction products from the reactor directly to the environment and cooling the reaction zone to ambient temperature.

Endvidere fremgâr det af disse patentbeskrivelser 15 at fremgangsmâden gennemf0res i et anlæg der i det mind-ste bestâr af to reaktorer forsynet med organer til k0-ling og opvarmning, idet reaktorerne arbejder skiftevis i sorptions- og desorptionsfasen.Furthermore, it is apparent from these patent specifications 15 that the process is carried out in a plant comprising at least two reactors equipped with cooling and heating means, the reactors operating alternately in the sorption and desorption phase.

Dette kendte anlæg kræver tilforsel udefra af energi 20 til gennemforelse af desorptionen og den katalytiske omsæt-ning, hvilket ait andet lige forsyrer gasrensningen.This known plant requires external energy supply 20 to effect the desorption and catalytic reaction, which otherwise acidifies the gas purification.

Det er opfindelsens formai at tilvejebringe et anlæg som afhjælper især denne ulempe og som ifolge opfindel-sen er ejendommeligt ved det i krav l's kendetegnende del an-25 givne. Udover det indledningsvis angivne indeholder det sâ-ledes organer, der fortrinsvis udgores af et brændkammer med en brænder, til intermitterende régénération af katalysatoren i reaktoren samt organer til efterrensning af den fra reaktoren udgâende gas.It is the object of the invention to provide a system which, in particular, alleviates this disadvantage and which, according to the invention, is characterized by the characterizing part of claim 1. In addition to the preamble stated, it thus contains means, preferably formed by a combustion chamber with a burner, for intermittent regeneration of the catalyst in the reactor as well as means for purifying the gas emitted from the reactor.

30 Det foreliggende anlæg er sâledes opbygget pâ en mâde der pâ væsentlige punkter adskiller sig fra det kendte. Den desorberede og katalytisk delvis rensede luft, der forlader adsorbentkatalysatorlejet ved regenereringen, underkastes en katalytisk efterrensning i en efterrensningssektion. Udover 35 miljomæssige fordele sâsom renere udblæsningsluft opnâs her-ved ganske betydelige energimaessige fordele.30 The present plant is thus constructed in a manner which differs in material respects from the known. The desorbed and catalytically partially purified air leaving the adsorbent catalyst bed during regeneration is subjected to a catalytic post-purification in a post-purification section. In addition to 35 environmental benefits such as cleaner exhaust air, hereby quite significant energy benefits are obtained.

DK 156814 BDK 156814 B

55

Den i adsorptionslejerne opnâede varme luft repræ-senteres sammen med de uomsatte oxiderbare luftbestanddele der frigores ved begyndelsen af lejets opvarmning f0r den katalytiske omsætning er sat ind, en brændværdi der bortset 5 fra startfasen dækker hele anlæggets energibehov, og som derudover kan udnyttes efter yderligere katalytisk omsætning i efterrensningssektionen til uden for systemet værende en-heder, fx torovne eller dampkedler.The hot air obtained in the adsorption beds is represented together with the unreacted oxidizable air components which are released at the beginning of the heating of the bed before the catalytic reaction is set, a calorific value which, apart from the start-up phase, covers the entire system's energy requirements, and which can further be utilized after further catalytic turnover in the post-cleaning section to units outside the system, eg stoves or boilers.

En del af den efterrensede opvarmede luft fra efter-10 rensningsreaktoren fores tilbage til adsorptionsreaktorerne, hvor den udnyttes til opvarmning af katalysatorlejet under regenereringsfasen. Ved det foreliggende anlæg er der sâ-ledes overraskende taie om et autotermt eller i ait væsent-ligt exotermt anlæg, hvilket adskiller det væsentligt fra det 15 der er kendt fra PR patentskrift nr. 2.310.150, hvor der til desorption og katalytisk omsætning kræves energi der mâ til-fores systemet udefra.Part of the post-purified heated air from the post-purification reactor is fed back to the adsorption reactors where it is utilized to heat the catalyst bed during the regeneration phase. Thus, at the present plant, there is surprisingly little concern for an autothermal or substantially exothermic plant, which differs substantially from that known from PR patent no. 2,310,150 where desorption and catalytic reaction are required. energy that must be fed to the system from the outside.

Under anlæggets drift sker regenerationen ved at man med brænderen hæver temperaturen intermitterende til en tem-20 peratur ved hvilken der sker katalytisk oxidation: hensigts-mæssigt ledes den forurenede gas gennem adsorptionslejet ved en temperatur pâ 0-250°C.During the operation of the plant, regeneration is effected by raising the temperature intermittently to a temperature at which catalytic oxidation occurs: conveniently the contaminated gas is passed through the adsorption bed at a temperature of 0-250 ° C.

Ved anvendelse af anlægget opnâr man den fordel at man kan tage den forurenede luft med den temperatur, den 25 faktisk har,, og uden forvarmning lede den til behandlingen.By using the system, the advantage is obtained of taking the contaminated air at the temperature it actually has and, without preheating, direct it to the treatment.

Hovedparten af de til rensning værende luftmængder passerer gennem lejet af adsorbenten som ved forhojet temperatur som oxidationskatalysator - den betegnes for korthe-dens skyld i det folgende adsorbent-katalysator - ved sin 30 dannelsestemperatur eller eventuelt lidt lavere temperatur pâ grund af varmetab, og der bruges ikke nogen energi til opvarmning af dem. Om 0nsket kan man udnytte gas-sernes varme inden adsorptionen ved at lade dem passere en varmeveksler. Under passage adsorberes de forurenende stoffer 35 eller hovedparten af dem pâ adsorbent-katalysatoren, og luf-ten kan ledes bort til omgivelserne i. i hovedsagen renset til-stand. Efterhânden som adsorbent-katalysatoren bliver mere og 6Most of the air volumes to be purified pass through the bed of the adsorbent, which at elevated temperature as the oxidation catalyst - it is referred for the briefness of the following adsorbent catalyst - at its formation temperature or possibly slightly lower temperature due to heat loss and is used. not any energy to heat them. If desired, the heat of the gases can be utilized prior to adsorption by passing them through a heat exchanger. During passage, the pollutants 35 or most of them are adsorbed on the adsorbent catalyst and the air can be diverted to the surroundings in substantially purified condition. As the adsorbent catalyst becomes more and more 6

DK 156 814 BDK 156 814 B

mere mættet med forureningerne, vil der ske gennembrud af sâ-danne til omgivelserne, og nâr koncentrationen af u0nskede stof-fer har nâet den tilladte eller acceptable maximumsværdi, rege-nererer man adsorbent-katalysatoren ved at hæve temperaturen 5 til den til katalytisk oxidation n0dvendige, hyppigst i omrâdet 250-350°C.more saturated with the pollutants, breakthroughs of such to the environment will occur and when the concentration of undesirable substances has reached the permissible or acceptable maximum value, the adsorbent catalyst is regenerated by raising the temperature 5 to the catalytic oxidation required. , most frequently in the range of 250-350 ° C.

Varmetilf0rsel beh0ves sâledes kun i de perioder hvor der skal ske régénération, hvilket selvsagt er en meget væsent-lig besparelse. Tilmed kan der under visse omstændigheder, 10 bortset fra igangsætning, Relt undværes varmetilfcrsel eller endog opnâs en varmegevinst,.. som det skal forklares.senere. i beskrivelsen.Heat supply is thus only needed during the periods of regeneration, which is of course a very significant saving. In addition, under certain circumstances, except for start-up, heat supply or even a heat gain can be avoided, which must be explained later. in the description.

Som adsorbent-katalysatoren er for- trinsvis en por0s keramisk bærer med stor indre overflade og 15 imprægneret med et ved forh0jet temperatur som oxidationskata- lysator virksomt stof. Den por0se bærer vil i sig selv virké som adsorbent, men ikke eller kun i ringe grad som oxidations- katalysator. Særlig velegnet er en række keramiske materialer i form af oxider, navnlig af grundstofferne i gruppe II, III og 20 IV i det periodiske System. Eksempler pâ velegnede materialer er aluminiumoxid, A^O^, i det f01gende betegnet alumina, mag- nium-aluminiumspinel, MgA^O^, og kiselsyreanhydrid, SiC^, i det f0lgende betegnet silika. Det har vist sig at γ-alumina er et særlig velegnet materiale, men ogsâ oxyder af Ti og Zr og 25 Ügnende keramiske oxyder kan komme pâ taie. Bæreren kan bestâ • af en blanding af to eller flere af de nævnte materialer.As the adsorbent catalyst, preferably a porous ceramic carrier having a large internal surface and impregnated with an elevated temperature as the oxidation catalyst is impregnated. The porous support will itself act as an adsorbent, but not or only to a small extent as an oxidation catalyst. Particularly suitable are a number of ceramic materials in the form of oxides, in particular of the elements of groups II, III and 20 IV of the Periodic Table. Examples of suitable materials are alumina, A₂O ^, hereinafter referred to as alumina, magnesium-aluminum spinel, MgA ^O ^, and silicic anhydride, SiC₂, hereinafter referred to as silica. It has been found that γ-alumina is a particularly suitable material, but also oxides of Ti and Zr and 25 increasing ceramic oxides can be found. The carrier may consist of a mixture of two or more of said materials.

Bæreren er imprægneret med et ved forh0jet temperatur oxidationskatalytisk materiale.The carrier is impregnated with an oxidized catalytic material at elevated temperature.

Som sâdant kan metaller af gruppe VIII i det periodiske System 30 og deres forbindelser, især oxider komme pâ taie, specielt platinmetallerne. André egnede metaller er kobber samt dem af gruppe Va, Via og Vlla og oxider deraf, og især skal fremhæves oxider af kobber, krom, mangan, jern, vanadium og cérium.As such, Group VIII metals in the Periodic Table 30 and their compounds, especially oxides, can come in handy, especially the platinum metals. Other suitable metals are copper as well as those of Group Va, Via and Vlla and their oxides, and especially oxides of copper, chromium, manganese, iron, vanadium and cérium should be emphasized.

De nævnte katalysatorer har udmærket katalytisk aktivi-.35 tet og tâler godt regenerering. Det har imidlertid overrasken-de vist sig at kobberkromit, Cu0.Cr203, forener hcj adsorp-The catalysts mentioned have excellent catalytic activity and can withstand good regeneration. However, it has surprisingly been found that copper chromite, CuO.Cr203, unites h

DK 156814BDK 156814B

7 tionsevne for de oxiderbare luftforureninger, der i prak-sis vil komme pâ taie, med hoj oxidationskatalytisk aktivi-tet. Ifolge opfindelsen kan en særlig udforelsesform for anlægget derfor med fordel indeholde en oxidationskataly-5 sator bestâende af γ-alumina imprægneret med kobberkromit.7, the ability to oxidize air pollutants that will come to fruition with high oxidation catalytic activity. According to the invention, therefore, a particular embodiment of the plant may advantageously contain an oxidation catalyst consisting of γ-alumina impregnated with copper chromite.

En speciel fordel ved denne adsorbent-katalysator er at den har evne til at adsorbere store mængder polymeriser-bare stoffer soin fx styren. Mange forurenende stoffer soin fx styren vil undergâ en delvis polymérisation efter adsorptio-10 nen pâ adsorbent-katalysatoren, og kobberkromit har evne til at fremskynde denne polymérisation. En sâdan polymérisation vil medvirke til at for0ge adsorptionskapaciteten og vil der-med forlænge de perioder, adsorptionen kan finde sted uden re-generering.A particular advantage of this adsorbent catalyst is that it has the ability to adsorb large amounts of polymerizable substances such as styrene. Many pollutants such as styrene, for example, will undergo partial polymerization following the adsorption of the adsorbent catalyst, and copper chromite has the ability to accelerate this polymerization. Such polymerization will help increase the adsorption capacity and thereby extend the periods of adsorption without re-generation.

15 Nâr adsorbent-katalysatoren i sin egenskab af adsor- bent er ved at være mættet med forureningerne, hvilket let konstateres ved at rensningen bliver mindre effektiv, hæves temperaturen sâledes at der sker katalytisk oxidation af de adsorberede forureninger. Den omstændighed at en del af de 20 adsorberede stoffer eventuelt er polymeriseret, vil ikke van-skeligg0re regenereringen.When the adsorbent catalyst, in its capacity as the adsorbent, is saturated with the contaminants, which is readily found to be less effective in purification, the temperature is raised so as to catalytically oxidize the adsorbed contaminants. The fact that some of the 20 adsorbed substances may be polymerized will not complicate regeneration.

Ved regenereringen kan temperaturen hæves til fortrinsvis 250-350°C pâ en hvilken som helst hensigts-mæssig mâde. Sâledes kan man recirkulere varm gas fra regene-25 reringen, eller man kan direkte, fx ved hjælp af elektriske varmelegemer f0re varme til adsorbent-katalysatorlejet, men i almindelighed vil det være mest hensigtsmæssigt foran dette, regnet i str0mningsretningen for den forurenede luft, at ind-skyde et brændkammer med en brænder der fyres med fx olie el-30 1er gas.In regeneration, the temperature may be raised to preferably 250-350 ° C in any convenient manner. Thus, hot gas can be recirculated from the regeneration, or directly, for example, by means of electric heaters, can be fed to the adsorbent catalyst bed, but in general it will be most convenient to do so, calculated in the direction of flow of the polluted air. fire a combustion chamber with a burner that is fired with, for example, oil or gas.

Den luft der forlader adsorbent-katalysatorlejet under regenereringen vil i almindelighed, i modsætning til den der forlader det under adsorptionen, indeholde u0nskede komponen- ter. Det kan derfor. if0lge opfindelsen være hensigtsmæssigt 35 at underkaste denne luft en efterrensning. Efterrensningen kan ske ved en hvilken som helst af de ovenfor nævnte hoved-metoder udvaskning, adsorption, termisk eller katalytiskGenerally, the air leaving the adsorbent catalyst bed during regeneration, as opposed to leaving it during adsorption, will contain undesirable components. It can therefore. According to the invention, it is appropriate to subject this air to a post-purification. The post-purification can be by any of the above-mentioned main methods of leaching, adsorption, thermal or catalytic

DK 156814 BDK 156814 B

8 oxidation, bl.a. i afhængighed af de u0nskede stoffer der forlader lejet under regenerationen. Hvis disse er oxiderba-re stoffer er det fordelagtigt at udfore efterrensningen ved katalytisk oxidation. Man kan herved bruge en anden kataly-5 sator end den der bruges som adsorbent-katalysator, men af hensyn til at gore anlægget og driften simplest mulig er det mest praktisk som katalysator at bruge samme materiale som den adsorbent-katalysator der bruges ved adsorptionen, jf. krav 4.8 oxidation, i.a. depending on the unwanted substances leaving the bed during regeneration. If these are oxidizable substances, it is advantageous to carry out the post-purification by catalytic oxidation. One can use a catalyst other than the one used as an adsorbent catalyst, but for the sake of making the plant and operation simplest possible it is most practical as a catalyst to use the same material as the adsorbent catalyst used in the adsorption. cf. requirement 4.

10 Ifolge opfindelsen er organerne til efterrensning af gas der udgâr fra reaktoren under regenerering af adsorbent-katalysatoren fortrinsvis som angivet i krav 2, altsâ et yderligere brændkammer med en brænder, indskudt i en afgre-ning af afgangsledningen og forbundet med en yderligere re-15 aktor med en oxidationskatalysator, sâledes at den herfra udgâende gas gâr enten til skorsten eller til afgangsledningen fra den forste reaktor.According to the invention, the means for purifying gas emanating from the reactor during regeneration of the adsorbent catalyst are preferably as defined in claim 2, i.e. an additional combustion chamber with a burner is interconnected in a branch of the discharge line and connected to an additional re-15. reactor with an oxidation catalyst such that the gas emanating therefrom goes either to the chimney or to the discharge line from the first reactor.

Under visse omstændigheder kan anlægget være indret-tet sâ en del af den efterrensede luft fores til reaktoren 20 med adsorbent-katalysatoren. Dette gælder hvis anlægget som angivet i krav 3 har et antal reaktorer med adsorbent-katalysator og drives sâledes at adsorbent-katalysatoren i én af disse stedse er under regenerering, mens de ovrige ad-sorberer forureningerne. Et sâdant anlæg er særlig fordel-25 agtigt ved indhold pâ over ca. 0,5 g organisk stof pr. m^ varm gas, idet den muliggor udnyttelse af de oxiderbare stof-fers brændværdi, til fx opvarmningsformâl, hvorved hele anlægget bliver autotermt eller endog exotermt. De nærmere omstændigheder herved forklares i de detaljerede dele af nær-30 værende beskrivelse.Under certain circumstances, the plant may be arranged so that a portion of the purified air is fed to the reactor 20 with the adsorbent catalyst. This applies if the plant as claimed in claim 3 has a number of reactors with adsorbent catalyst and is operated so that the adsorbent catalyst in one of these sites is under regeneration, while the other adsorb the pollutants. Such a system is particularly advantageous for contents of more than approx. 0.5 g of organic matter per m ^ hot gas, enabling the burning value of the oxidizable substances, for example for heating purposes, whereby the whole system becomes autothermal or even exothermic. The details of this are explained in the detailed parts of the present description.

Anlægget ifolge opfindelsen skal i det folgende be-lyses nærmere ved hjælp af tegningen og nogle eksempler. Pâ tegningen viser fig. 1 og 2 principskemaer for to forskellige udfo-35 relsesformer for et anlæg ifolge opfindelsen, fig. 3 et forsogsanlæg i hvilket visse forsog til belysning af anlæggets virkning er udfort, ogThe plant according to the invention will now be described in more detail with the aid of the drawing and some examples. In the drawing, FIG. 1 and 2 are schematic diagrams of two different embodiments of a plant according to the invention; 3 shows a test plant in which certain attempts to illuminate the effect of the plant have been made; and

DK 156814 BDK 156814 B

9 fig. 4-5 kurver der belyser resultaterne af sâdanne forsog.9 FIG. 4-5 curves illustrating the results of such experiments.

I det i fig. 1 (hvor hjælpeorganer som pumper, ventiler og kontrolorganer for overskuelighedens skyld er udeladt), 5 anskueliggjorte anlæg kommer den forurenede luft via en led-ning 10 ind i rensningsanlægget og passerer et kammer 12, hvor der er tilsluttet en brænder 14. Brænderen 14 er det me-ste af tiden, nemlig nâr de u0nskede stoffer adsorberes pâ ad-sorbenten, ikke i funktion og tændes kun, nâr adsorbenten skal 10 regenereres. Herefter kommer luften ind i et reaktionskammer 16, hvor der er en adsorbent-katalysator 18. Mâden, hvorpâ adsorbent-katalysatoren 18 er anbragt udg0r ikke en del af opfindelsen. Det er dog altid onskværdigt at anbringe den sâledes, at trykfaldet i reaktoren 16 bliver mindst muligt.In the embodiment of FIG. 1 (where auxiliary means such as pumps, valves and control means have been omitted for the sake of clarity), 5 illustrated plants enter the polluted air via a conduit 10 and pass through a chamber 12 where a burner 14. A burner 14 is connected. most of the time, when the unwanted substances are adsorbed on the adsorbent, do not function and only turn on when the adsorbent is to be regenerated. Thereafter, the air enters a reaction chamber 16 where there is an adsorbent catalyst 18. The manner in which the adsorbent catalyst 18 is disposed does not form part of the invention. However, it is always desirable to arrange it so that the pressure drop in the reactor 16 is minimized.

15 Luftstrommen ledes bort fra reaktionskammeret 16 via et ror 20, der deles sig i to; dels et ror 22 der forer til en skorsten, og dels et r0r 30 der forer til en efterrensningssektion. Ved normal drift, dvs. under adsorption, sendes den rensede gas direkte 20 fra reaktoren 16 via r0rene 20,22 til skorstenen. Under rege-nereringen sættes brænderen 14 i gang og opvarmer den ind-gâende luft i kammeret 12, fortrinsvis til en temperatur pâ 250.-450°C, sâ le jet 18 af adsorbent-katalysator, fortrinsvis kobberkromit imprægneret pâ por0se legemer af γ-alumina, vil 25 blive oxidationskatalytisk aktivt og bortbrænde de adsorbere-de, oxiderbare forureninger. Herunder kan afgangsluften fra reaktoren 16 ogsâ bortledes til skorsten via r0rene 20,22, men fortrinsvis ledes luftstr0mmene via r0ret 30 til efter-rensningssektionen, hvorfra den rensede luftstr0m via et r0r 30 4Q ledes til et r0r 42 der f0rer til ir0ret 22 eller skorstenen. Efterrensningen pâ fig. 1 er en katalytisk oxidation. Luftstr0mmen opvarmes direkte i et brændkammer 32 ved hjælp af en brænder 34 til den 0nskede temperatur og ledes derefter til et reaktionskammer 36, hvor en katalysator 38 er placeret.The air stream is discharged from the reaction chamber 16 via a rudder 20 divided into two; partly a pipe 22 which leads to a chimney and partly a pipe 30 which leads to a post-cleaning section. In normal operation, ie. during adsorption, the purified gas is sent directly from the reactor 16 via the pipes 20, 22 to the chimney. During regeneration, burner 14 is started and heats the incoming air in chamber 12, preferably to a temperature of 250 DEG-450 DEG C., as well as jet 18 of adsorbent catalyst, preferably copper chromite impregnated on porous bodies of γ. alumina, will become oxidation catalytically active and burn away the adsorbed oxidizable contaminants. Below, the exhaust air from the reactor 16 can also be discharged to the chimney via the pipes 20,22, but preferably the air streams are passed through the pipe 30 to the post-cleaning section, from which the purified air stream is passed through a pipe 30 4Q to a pipe 42 leading to the pipe 22 or chimney. The post-cleaning of FIG. 1 is a catalytic oxidation. The air stream is heated directly in a combustion chamber 32 by means of a burner 34 to the desired temperature and then conducted to a reaction chamber 36, where a catalyst 38 is located.

35 Ved hjælp af oxidationskatalysatoren 38 fjernes u0nskede be-standdele i luftstr0mmen til det 0nskede niveau. Oxidationskatalysatoren 38 i reaktionskammeret 36 kan vælges uafhængigt35 By means of the oxidation catalyst 38, unwanted components in the air stream are removed to the desired level. The oxidation catalyst 38 in the reaction chamber 36 can be independently selected

DK 156814 BDK 156814 B

10 af adsorbent-katalysatoren 18 i reaktoren 16, men af prakti-ske grunde er det særlig fordelagtigt at anvende den tidlige-re omtalte kobberkromit/alumina adsorbent-katalysator bâde i reaktor 16 og reaktionskammeret 36.10 of the adsorbent catalyst 18 in the reactor 16, but for practical reasons it is particularly advantageous to use the previously mentioned copper chromite / alumina adsorbent catalyst both in reactor 16 and the reaction chamber 36.

5 Et regneeksempel, anf0rt som omstâende eksempel 1, tjener til grundigere uddybning af gasrensningen sker i et anlæg sorti vistl i fig. 1.5 A calculation example, cited as Example 1, serves to more thoroughly elaborate the gas purification in a system similar to that shown in FIG. First

En anden udf0relsesform for anlægget if0lge opfindelsen er vist i fig. 2 der ligeledes er meget simplificeret, idet 10 en række genstande sâsom diverse blæsere, pumper, ventiler samt hele kontrolteknikken, der ikke direkte vedr0rer opfindelsen og hvis anvendelse og funktion vil være indlysende for en fagmand, er udeladt.Another embodiment of the system according to the invention is shown in FIG. 2, which is also very simplified in that 10 a number of objects such as various blowers, pumps, valves and the whole control technique which does not directly relate to the invention and whose use and function will be obvious to one skilled in the art are omitted.

Den forurenede luft kommer ind i anlægget via en led-15 ning 10, der er delt i to ledninger 42 og 44. En mindre del af luftmængden ledes via ledningen 42 til efterrensningssek-tionen. Hovedmængden ledes fra ledningen 44 gennera afgrenin-ger 461, 4611 ... til et antal reaktorer indeholdende adsorbent-katalysatoren 18. Anlægget pâ figuren har seks reakto-20 rer betegnet 481, 4811, 48111, 48IV, 48V og 48VI. Antallet af reaktorer bestemmer længden af regenereringsperioden i forhold til længden af adsorptionsperioden i reaktorerne.The polluted air enters the system via a conduit 10 which is divided into two conduits 42 and 44. A smaller portion of the air flow is conducted via conduit 42 to the post-purge section. The bulk is passed from line 44 through branches 461, 4611 ... to a number of reactors containing the adsorbent catalyst 18. The plant in the figure has six reactors designated 481, 4811, 48111, 48IV, 48V and 48VI. The number of reactors determines the length of the regeneration period relative to the length of the adsorption period in the reactors.

Antallet af reaktorer 461---- vil bl.a. afhænge af mængden af luft til behandling og dens forureningsgrad.The number of reactors 461 ---- will include e.g. depend on the amount of air for treatment and its degree of pollution.

25 Den rensede luft ledes fra reaktorerne via ledninger25 The purified air is conducted from the reactors via wires

I III II

50 , 50 ..., der aile samles i et fælles r0r 22, der leder den rensede luft til en skorsten. ünder drift er i praksis stedse fem reaktorer i adsorptionsfasen og én under regenere-ring.50, 50 ..., all of which are assembled in a common pipe 22 which directs the purified air to a chimney. In practice, in practice, five reactors are in the adsorption phase and one is under regeneration.

30 Luften til regenereringen f0res til reaktorerne 481...The air for regeneration is fed to reactors 481 ...

fra en ledning 52 med afgreninger 54 , 54 ... til de enkel- te reaktorer. En anden række r0r 561, 56^1... f0rer luften bort fra reaktorerne til en fælles ledning 58, der leder luften til efterrensningssektionen.from a line 52 with branches 54, 54 ... to the individual reactors. A second row of tubes 561, 56 ^ 1 ... directs the air away from the reactors to a common conduit 58 which conducts the air to the post-purge section.

35 Fra ledningen 58 gâr den luft, der udgâr fra en reak tor hvor adsorbent-katalysatoren 18 er under regenerering, til et i ledningen 58 indskudt brændkammer 60 hvortil der er35 From the conduit 58, the air emanating from a reactor where the adsorbent catalyst 18 is under regeneration goes to a combustion chamber 60 inserted in the conduit 58

DK 156814 BDK 156814 B

11 tilsluttet en brænder 62; disse to organer er normalt kun i funktion ved anlæggets start, og luften gâr lige igennem dem uden opvarmning nâr anlægget er i fuld drift. Fra brændkam-meret 60, der under normal drift sâledes funktiohelt blot er 5 en del af ledningen 58, gâr luften videre gennem resten af ledningen 58 til et samlingspunkt 64, hvor en 0nsket mængde varm recirkulationsluft tilf0res fra en ledning 66. Pâ denne mâde dannes med en 0nsket temperatur i en ledning 68 en ind-gangsstr0m til et reaktionskammer 76 med en oxidationskataly-10 sator. Den rensede luftstr0m ledes fra kammeret 76 via en ledning 70 til et samlingspunkt 72. Forinden bortledes den omtalte recirkulationsstr0m gennem ledningen 66 samt en del-str0m gennem en ledning 74. Den rensede luftstr0m fra kammeret 76 vil hâve en betragtelig temperatur (400-500°C), hvor-15 for den delmængde, der ledes bort via ledningen 74, alminde-ligyis vil blive udnyttet til opvarmningsformâl. I samlings-punktet 72 blandes den varme rensede luft med forurenet luft fra ledningen 42 til dannelse af den luftstr0m, der via ledningen 52 ledes til en af reaktorerne 481... for at blive 20 anvendt under regenereringen.11 connected to a burner 62; these two organs are normally in operation only at the start of the system and the air passes straight through them without heating when the system is in full operation. From the combustion chamber 60, which in normal operation is thus functionally just a part of the conduit 58, the air passes through the remainder of the conduit 58 to a junction 64 where a desired amount of hot recirculating air is supplied from a conduit 66. In this way, with a desired temperature in a conduit 68 an input stream to a reaction chamber 76 with an oxidation catalyst. The purified air stream is conducted from the chamber 76 via a conduit 70 to a junction 72. Prior, the said recirculation stream is discharged through the conduit 66 as well as a subcurrent through a conduit 74. The purified air stream from the chamber 76 will have a considerable temperature (400-500 ° C), for which the subset diverted via line 74 will generally be utilized for heating purposes. At the junction 72, the hot purified air is mixed with polluted air from line 42 to form the air stream which is passed through line 52 to one of reactors 481 ... to be used during regeneration.

En væsentlig fordel ved anlægget i fig. 2 er, at bræn-deren 62 kun benyttes ved igangsætning af anlægget. Under normal industriel drift er der sâledes ikke nôget energiforbrug i brænder en, eller i det hele taget i anlægget. Tværtimod er det imi-25 ligt i anlægget at udnytte brændværdien af stofferne i den forurenede luft, idet varmemængden i luftstr0mmen 72 typisk yil blive udnyttet, enten soin varm luft til t0rreovne eller til opvarmning af vand.A significant advantage of the system of FIG. 2 is that burner 62 is used only when the system is started. Thus, during normal industrial operation, there is no energy consumption in the burner, or at all in the plant. On the contrary, it is impracticable in the plant to utilize the calorific value of the substances in the polluted air, with the amount of heat in the air stream 72 typically being utilized, either as hot air for drying ovens or for heating water.

Recirkulationsledningen 66 har i 0vrigt særlig betyd-30 ning. Hvis den ikke fanâtes, ville temperaturen i reaktions- kammeret (hvor katalysatoren kan være en oxydationskatalysator og hensigtsmæssigt den samme som anvendt soin adsorbent-kata-lysator 18) svinge stærkt og pâ kompliceret mâde, som det skal belyses nærmere senere i beskrivelsen. Ved passende regulering 35 af mængden af recirkulationsluft i ledningen 66 og af mængden af luft til den under régénération værende reaktor, fx 4811, kan temperaturen i reaktionskammeret 76 holdes ret konstant, 12Otherwise, the recirculation line 66 is of particular importance. If not found, the temperature of the reaction chamber (where the catalyst may be an oxidation catalyst and suitably the same as used soin adsorbent catalyst 18) would fluctuate strongly and in a complicated manner, as will be elucidated later in the description. By appropriate regulation 35 of the amount of recirculating air in conduit 66 and of the amount of air to the reactor under regeneration, e.g., 4811, the temperature of the reaction chamber 76 can be kept fairly constant, 12

DK 156 814 BDK 156 814 B

hvilket dels har interesse i forbindelse med udnyttelse af luften i ledningen 74 til opvarmningsformâl, dels kan hâve be-tydning for katalysatoren; visse katalysator- og især bærer-materialer vil kunne sintre eller pâ anden mâde fâ nedsat akti-5 vitet hvis temperaturen stiger for h0jt, men det kan effektivt hindres ved at regulere recirkulationsmængden. Omvendt kan ef-terrensningen i kammeret 76 blive utilfredsstillende hvis tem-peraturen bliver for lav, i hvilket tilfælde man ligeledes kan regulere recirkulationsmængden.which is of interest in connection with the utilization of the air in conduit 74 for heating purposes, and may have an impact on the catalyst; certain catalyst and especially carrier materials may sinter or otherwise reduce activity if the temperature rises too high, but this can be effectively prevented by regulating the amount of recirculation. Conversely, the purge in the chamber 76 may become unsatisfactory if the temperature becomes too low, in which case the amount of recirculation can also be adjusted.

10 Et regneeksempel til belysning af driften af det i fig. 2 anskueliggjorte anlæg er givet i omstâende eksempel 2.10 A calculation example for illustrating the operation of the device shown in FIG. 2 illustrated systems are given in Example 2 below.

Et lille pilotanlæg, hvori der udf0rtes nogle fors0g med forurenet luft, er skitseret i fig. 3. Atmosfærisk luft ledes ind i anlægget via en ledning 90. I et flowmeter 78 15 mâles luftmængden, der reguleres ved hjælp af en ventil 80.A small pilot plant in which some contaminated air tests are carried out is outlined in FIG. 3. Atmospheric air is fed into the system via a conduit 90. In a flowmeter 78 15, the amount of air that is regulated by a valve 80 is measured.

Fra flowmeteret f0res luften via en ledning 82 ind i en cy- ’ lindrisk forvarmer 84, hvori der befinder sig et elektrisk varmelegeme. Ved régulering af den i varmelegemet afsatte ef-fekt kan man indstille temperaturen i en ledning 10, der f0-20 rer den opvarmede luft bort fra forvarmeren, til en 0nsket værdi. En ledning 88 leder forurenende væske til en pumpe 92, der via en ledning 94 f0rer væsken til ledningen 10, hvor en fordampning finder sted. Ledningen 10 leder den nu forurenede luft til en reaktor 16. I reaktorens 0vre del er anbragt et 25 varmelegeme 96, ved hjælp af hvilket det er muligt at indstille temperaturen i den forurenede gas. I den nedre del af reak-toren er en adsorbent-katalysator 18 anbragt i et indtil 450 mm hojt cylindrisk lerje 18 med en diameter pâ 73 mm, svarende til reaktorens indre diameter. I lejets akse er der en termolomme 30 98 strækkende sig fra lejets bund til lejets top. I termolom- men er der et forskydeligt termoelement, hvormed man kan be-stamme temperaturen i forskellige dybder af katalysatorlejet. Udgangsstr0mmen fra katalysatorlejet ledes fra reaktoren via ledning 20. Ved hjælp af en ledning 22 samt en regulerings-35 ventil 100 er det muligt at lede en delstr0m til analyse pâ en kontinuerligt arbejdende kulbrinteanalysator 102. Den be-nyttede kulbrinteanalysator var en flammeionisationsanalysa-tor af typen Beckmann Model 400 Hydrocarbon Analyser.From the flow meter, the air is fed via a conduit 82 into a cylindrical preheater 84 in which is located an electric heater. By regulating the power deposited in the heater, the temperature of a conduit 10 which feeds 20-20 of the heated air away from the preheater can be set to a desired value. A conduit 88 conducts pollutant liquid to a pump 92 which, via conduit 94, feeds the liquid to conduit 10 where an evaporation takes place. The conduit 10 conducts the now contaminated air to a reactor 16. In the upper part of the reactor is arranged a heating element 96, by means of which it is possible to adjust the temperature of the contaminated gas. In the lower part of the reactor, an adsorbent catalyst 18 is placed in a cylindrical clay 18 up to 450 mm high, with a diameter of 73 mm, corresponding to the inner diameter of the reactor. In the bearing axis there is a thermal pocket 30 98 extending from the bottom of the bearing to the top of the bearing. In the thermocouple there is a displaceable thermocouple, which allows the temperature to be determined at different depths of the catalyst bed. The output stream from the catalyst bed is fed from the reactor via line 20. By means of a line 22 and a control valve 100, it is possible to conduct a partial stream for analysis on a continuously working hydrocarbon analyzer 102. The hydrocarbon analyzer used was a flame ionization analyzer of type Beckmann Model 400 Hydrocarbon Analyzes.

DK 156814 BDK 156814 B

1313

Eksempel 1Example 1

Dette er et regneeksempel i hvilket et rensningsanlæg soin vist i fig. 1 anvendes til rensning af en afgas fra frem-stilling af styrenholdige polymerer. I reaktionskammeret 16 3 5 er installeret 22 m adsorbent i form af 3-6 mm store partik-ler, Adsorbenten bestâr af γ-aluminiumoxyd imprægneret med 20% CuQ.C^O^. Katalysatormængden i reaktoren 36 afhænger af luftmængdens st0rrelse under regenereringen. I dette eksempel stipuleres det muligt at nedsætte luftmængden til 10-20% 10 af mængden under normalt drift. Pâ denne mâde reduceres kata- 3 lysatormængden i reaktoren 36 til 3 m . Katalysatoren er iden-tisk med adsorbent-katalysatoren 18 i reaktoren 16.This is a calculation example in which a treatment plant shown in FIG. 1 is used to purify an exhaust gas from the production of styrene-containing polymers. In the reaction chamber 16 3 5 are installed 22 m of adsorbent in the form of 3-6 mm particles, the adsorbent consisting of γ-alumina impregnated with 20% CuQ.C ^ O ^. The amount of catalyst in reactor 36 depends on the amount of air flow during regeneration. In this example, it is stipulated that the air volume can be reduced to 10-20% 10 of the volume during normal operation. In this way, the amount of catalyst in the reactor is reduced to 3 to 3 m. The catalyst is identical to the adsorbent catalyst 18 in the reactor 16.

3 45.0Q0 Nm pr. time af afgassen med et indhold af sty-3 ren pâ 0,25 g pr. Nm ledes til rensningsanlægget, Styrenind-15 holdet i den rensede gas, der ledes bort gennem skorstenen, vil fra en begyndelsesværdi pâ omkring 0 langsomt stige med tiden, og efter ca. 40 timers drift vil styrenindholdet i den rensede gas være steget til ca. 10 mg pr. Nm . Pâ dette tids-punkt er der adsorberêt ca. 20 g styren pr, kg adsorbent. Re-20 genereringen vil typisk vare 2-3 timer. Det adsorberede styren har en vis brændværdi, hvilket bevirker, at temperaturen i adsorbenten stiger under regenereringen. I ekstreme tilfæl-de kan temperaturen blive sâ h0j at adsorbenten mister sine adsorptive egenskaber, fx pâ grund af tab af overflade; og/el-25 1er mister sine katalytiske egenskaber, fx pâ grund af sin-tring. En effektiv regenerering der sikrer at temperaturen i adsorbenten ikke overstiger 850°C, kan foretages ved at redu- 3 cere luftmængden til 6.00Q Nm pr. time. Luftstr0mmen ledes til efterrensningssektionen gennem ledningen 30. Temperaturen 30 i brændkammeret 12 holdes pâ 250°C ved hjælp af brænderen 14.3 45.0Q0 Nm per per hour of the exhaust gas with a content of the controller of 0.25 g per hour. Nm is passed to the purification plant, the Styrene content of the purified gas passed through the chimney will slowly increase with time from about an initial value of about 0, and after approx. After 40 hours of operation, the styrene content of the purified gas will have increased to approx. 10 mg per Nm. At this point, approx. 20 g of styrene per kg of adsorbent. The re-generation will typically take 2-3 hours. The adsorbed styrene has a certain calorific value, which causes the temperature of the adsorbent to rise during regeneration. In extreme cases, the temperature may become so high that the adsorbent loses its adsorptive properties, for example due to surface loss; and / or 25 1 lose their catalytic properties, for example due to sintering. An efficient regeneration which ensures that the temperature of the adsorbent does not exceed 850 ° C can be done by reducing the air volume to 6.00Q Nm per minute. hour. The air stream is conducted to the post-cleaning section through line 30. The temperature 30 in the combustion chamber 12 is maintained at 250 ° C by the burner 14.

33

Efter 45 minutter 0ges luftmængden til 10.000 Nm pr. time, og temperaturen hæves til 270°C. Efter yderligere 45 minut- 3 ter slukkes brænderen 14 og luftmængden 0ges til 20.000 Nm / time. 45 minutter herefter mâ regenereringen betragtes som 35 tilendebragt. Luftstr0mmen 0ges til 45.000 Nm /time og ledes via ledningerne 40,42 til skorsten. Under hele regenereringenAfter 45 minutes, the air volume is increased to 10,000 Nm per hour. and the temperature is raised to 270 ° C. After a further 45 minutes the burner 14 is switched off and the airflow is increased to 20,000 Nm / hour. 45 minutes thereafter, the regeneration must be considered 35 completed. The air flow is increased to 45,000 Nm / h and is routed through the wires 40.42 to the chimney. Throughout the regeneration

DK 156814 BDK 156814 B

14 holdes indgangstemperaturen til reaktoren 36 pâ 300°C, éventuel t ved hjælp af brænderen 34. En adsorptions- og regenere-ringscyklus varer ca. 42 1/4 time, og det samlede energifor-brug svarer til 35Q kg olie fordelt med 110 kg olie pâ brænde-5 ren 14 og 240 kg olie pâ brænderen 34, hvorved beiaærkes at af-gangsluften fra reaktoren 16 under regenereringen repræsente-rer en vis brændværdi.14, the inlet temperature of the reactor 36 is maintained at 300 ° C, possibly by means of the burner 34. An adsorption and regeneration cycle lasts for approx. 42 1/4 hour, and the total energy consumption corresponds to 35 kg of oil distributed with 110 kg of oil on the burner 14 and 240 kg of oil on the burner 34, which means that the exhaust air from the reactor 16 during the regeneration represents some calorific value.

Eksempel 2Example 2

1Q1Q

Dette er et regneeksempel med anvendelse af det i fig.This is a calculation example using the one shown in FIG.

2 viste ànlæg. 25.000 Niri /h af en luftstr0m hidr0rende fra et offsettrykkeris t0rreovne ledes til anlægget. Den forurenede 3 luft indeholder 1,5 g kulbrinter pr. Nm og har en temperatur pâ 130°C. Kulbrinterne, der har været benyttet som opl0snings-middel for trykfarver, bestâr af ca. 20% aromatiske kulbrinter og 80% alifatiske kulbrinter og har et kogepunktsinterval pâ ca. 240 til ca. 27Q°C. Den samlede forurenede t0rreluft 3 ledes til anlægget via ledningen 10. En delstr0m pâ vq Nm pr. time til brug ved regenereringen bortledes via ledningen 20 3 42. De resterende 25,OÜO-vq Nm /h ledes gennem ledning 44 til af reaktorerne 48, der befinder sig i adsorptionsfasen, 3 og fordeles med £5.000-vQ)/5 Nm /h til hver af de fem reakto- rer. Hver af reaktorerne 48 indeholder 1500 kg af samme ad-2 sorbent-katalysator som i eksempel 1. Efterrensnings-reakto-ren 76 indeholder ligeledes 1500 kg af samme adsorbent-kataly-sator.2. 25,000 Niri / h of an air stream from the dry furnaces of an offset printing press is fed to the plant. The contaminated 3 air contains 1.5 g of hydrocarbons per liter. Nm and has a temperature of 130 ° C. The hydrocarbons, which have been used as a solvent for printing inks, consist of approx. 20% aromatic hydrocarbons and 80% aliphatic hydrocarbons and has a boiling range of approx. 240 to approx. 27Q ° C. The total contaminated dry air 3 is fed to the system via line 10. A partial flow of Nq per meter. hour for use in the regeneration is discharged via line 20 3 42. The remaining 25, OÜO-vq Nm / h is passed through line 44 to the reactors 48, which are in the adsorption phase, 3 and distributed at £ 5,000-vq) / 5 Nm / h to each of the five reactors. Each of the reactors 48 contains 1500 kg of the same ad-2 sorbent catalyst as in Example 1. The post-purification reactor 76 also contains 1500 kg of the same adsorbent catalyst.

Adsorptionsperiodens længde begrænses af to hensyn. For det f0rste mâ den ikke vare sâ lang, at kulbrintekoncentratio-nen i luftstr0mmen fra adsorptionen bliver st0rre end den til-ladte værdi. For det andet b0r der ikke adsorberes mere end ca. 15 g kulbrinter pr. kg adsorbent-katalysator. Denne værdi vil bevirke, at den maksimale temperatur i adsorbent-katalysa-toren under regenereringen ikke overstiger 800-850°C.The length of the adsorption period is limited for two reasons. First, it must not be so long that the hydrocarbon concentration in the air stream from the adsorption becomes greater than the allowable value. Second, no more than approx. 15 g of hydrocarbons per kg of adsorbent catalyst. This value will cause the maximum temperature of the adsorbent catalyst during regeneration not to exceed 800-850 ° C.

^ Idet adsorptionsperiodens længde fastsættes til 175 mi- nutter, vil der adsorberes 12,8 g kulbrinte pr. kg adsorbent-katalysator svarende til, at den maksimale temperatur i adsorbent-katalysator en ikke overskrider den 0nskede værdi under re-^ As the length of the adsorption period is set at 175 minutes, 12.8 g of hydrocarbon per day will be adsorbed. kg of adsorbent catalyst corresponding to the maximum temperature of the adsorbent catalyst not exceeding the desired value below the re-

DK 156814 BDK 156814 B

15 genereringen, neznlig en værdi der med sikkerhed ikke 0delægger katalysatoren. Under adsorptionen vil kulbrintekoncentrationen 3 i den rensede gas, der ledes til skorstenen, være ca. 2 mg/Nm 3 i de f0rste 100 minutter og stige til 5 mg/Nm ved slutningen 5 af adsorptionen. Da antallet af reaktorer er seks, bliver re-genereringstiden 35 (175:5), minutter.15, especially a value which does not destroy the catalyst. During the adsorption, the hydrocarbon concentration 3 in the purified gas fed to the chimney will be approx. 2 mg / Nm 3 for the first 100 minutes and rise to 5 mg / Nm at the end 5 of the adsorption. Since the number of reactors is six, the re-generation time becomes 35 (175: 5), minutes.

Idet v^ betegner den luftmængde, der i ledningen 52 ledes til regenereringen, v2 betegner den luftmængde, der i ledningen 66 recirkuleres over reaktoren 76, betegner tempera-10 turen i ledningen 52 til reaktorerne 48, T2 betegner tempera-turen i ledningen 58 fra reaktorerne 48, T3 betegner tempera-turen i ledningen 68 til reaktoren 76, viser nedenstâende tabel 1 hvorledes regenereringen af adsorbenten i en reak-tor 48 forl0ber.V v denotes the amount of air in conduit 52 directed to regeneration, v reactors 48, T3 denote the temperature in line 68 of reactor 76, Table 1 below shows how the regeneration of the adsorbent in a reactor 48 proceeds.

15 I de f0rste 12 minutter af regenereringen opnâs en temperatur i vedkommende ledning 54 pâ ca. 318°C ved at man 3 blander 1000 Nm /h (v ) forurenet luft fra ledningen 42 med 3 ° 2000 Nm /h (v^-v ) renset varm luft fra ledning 70 i sam-lingspunktet 72. Ved den opnâede temperatur vil de adsorbe-20 rede kulbrinter i vedkommende reaktor 48's indgangslag tak-ket være katalysator-adsorbentens katalytiske egenskaber an-tændes og forbrænde. Kulbrinterne fra den forurenede gas, der benyttes ved regenereringen vil blive oxyderet sammen med en del af de adsorberede kulbrinter. Resten af de adsorberede 25 kulbrinter vil pâ grund af temperaturstigningen blive desor-beret og f0res med luftstr0mmen til reaktoren 76, hvor der sker en oxydation. 5-10 minutter efter regenereringens be-gyndelse er kulbrintekoncentrationen i luftstr0mmen vokset til et maksimum pâ 2-3 g/Nm . I de f0rste 15-20 minutter, 30 hvor kulbrinteindholdet i luften i ledningen 58 er stort, vil temperaturen være relativt lav. For at sikre tilstrækkelig oxydation i reaktoren 76, mâ luftstr0mmen opvarmes til mindst 260°C, hvilket opnâs ved at recirkulere varm luft over reaktoren via ledningen 66. Temperaturen i luftstr0ramen fra reak-35 toren 76 vil holde en konstant værdi pâ ca. 418°C til trods for temperaturvariationerne i ledningen 58. Dette skyldes del-vis at katalysatoren i reaktoren 76 har en vis kapacitet som 16In the first 12 minutes of regeneration, a temperature in the conduit 54 is reached at approx. 318 ° C by mixing 1000 Nm / h (v) of polluted air from conduit 42 with 3 ° 2000 Nm / h (v ^ -v) purified hot air from conduit 70 at the junction 72. At the temperature reached, the adsorbed hydrocarbons in the input layer of the reactor 48 thanks to the catalytic properties of the catalyst adsorbent are ignited and burned. The hydrocarbons from the contaminated gas used in the regeneration will be oxidized along with some of the hydrocarbons adsorbed. The remainder of the adsorbed 25 hydrocarbons will, due to the rise in temperature, be desorbed and fed with the air stream to the reactor 76, where oxidation takes place. 5-10 minutes after the start of regeneration, the hydrocarbon concentration in the air stream has grown to a maximum of 2-3 g / Nm. In the first 15-20 minutes, when the hydrocarbon content of air in conduit 58 is large, the temperature will be relatively low. To ensure sufficient oxidation in the reactor 76, the air stream must be heated to at least 260 ° C, which is obtained by recirculating hot air over the reactor via line 66. The temperature of the air stream from the reactor 76 will maintain a constant value of approx. 418 ° C despite the temperature variations in line 58. This is partly because the catalyst in reactor 76 has a certain capacity as 16

DK 156814 BDK 156814 B

varmepuffer og delvis at varm luft recirkuleres via ledningen 66. Temperaturen i ledningen 74 vil derfor ogsâ være næsten konstant 418°C. Mængden af renset luft i ledningen 74 vil være identisk med v .heat buffer and partly that hot air is recirculated via conduit 66. The temperature of conduit 74 will therefore also be almost constant 418 ° C. The amount of purified air in conduit 74 will be identical to v.

o 5 12 xninutter efter regenereringens begyndelse standses tilf0rslen af varm luft fra ledningen 70 til samlingspunktet 72, og samtidig 0ges mængden af forurenet luft i ledningen 42.12 minutes after the start of regeneration, the supply of hot air from the conduit 70 to the junction 72 is stopped, and at the same time the amount of polluted air in the conduit 42 is increased.

Resten af regenereringen foretages med 130°C varm, forurenet 3 luft i en mængde pâ 4000 Nm /h. Recirkulationen over reaktoren 3 10 76 kan nedsættes til 3500 Nm /h, idet temperaturen af luften i udgangen af vedkommende reaktor 48 er begyndt at stige. Den-ne temperatur vil nâ et maksimum pâ ca. 600°C ca. 25 minutter efter regenereringens begyndelse. Samtidig vil ogsâ temperaturen af den rensede luftstr0m fra reaktoren 76 nâ et maksi-15 mum pâ ca. 600°C. Kulbrinteindholdet i ledningen 58 vil efter 3 15-20 minutters régénération være faldet til under 20 mg/Nm .The rest of the regeneration is carried out with 130 ° C hot, polluted 3 air in an amount of 4000 Nm / h. Recirculation over reactor 3 10 76 can be reduced to 3500 Nm / h as the temperature of the air at the outlet of the reactor 48 has begun to rise. This temperature will reach a maximum of approx. 600 ° C approx. 25 minutes after the start of regeneration. At the same time, the temperature of the purified air stream from the reactor 76 will also reach a maximum of approx. 600 ° C. The hydrocarbon content of line 58 will have dropped to below 20 mg / Nm after 3 15-20 minutes of regeneration.

Brænderen 62 kommer ikke i brug under regenereringen, men bruges kun ved anlæggets start og der er sâledes intet forbrug af energi til opvarmning af luftstr0mme under anlæg-20 gets normale drift, hvilket er en stor fordel ved konstruk-tionen. I den varme rensede luftstr0m, der bortledes via ledningen 74, befinder der sig som omtalt store varmemængder.The burner 62 does not come into operation during regeneration, but is only used at the start of the plant and thus there is no consumption of energy for heating air currents during the normal operation of the plant, which is a great advantage in the design. In the hot purified air stream discharged via conduit 74 there are, as mentioned, large quantities of heat.

Ved afk0ling af luftstr0mmen til 130°C udnyttes en varmemæng-de svarende til brændværdien af 27 kg olie pr. time.When cooling the air stream to 130 ° C, a heat quantity corresponding to the calorific value of 27 kg oil is used. hour.

25 30 3525 30 35

DK 156814 BDK 156814 B

1717

Tabel 1Table 1

Antal minutter fra regenere-ringsperiodens begyndelse 0-12 12-20 20-25 25 25-30 30-35 5 Vq (Nm3/h) 1000 4000 4000 4000 4000 4000 νχ (Nm3/h) 3000 4000 4000 4000 4000 4000 v2 (Nm3/h) 4000 3500 3500 3500 3500 3500 Τχ (°C) 318 130 130 130 130 130 T2 (°C) 130 200 450 600 450 350 10 T3 (°C) 290 300 450 600 450 350Number of minutes from the start of the regeneration period 0-12 12-20 20-25 25 25-30 30-35 5 Vq (Nm3 / h) 1000 4000 4000 4000 4000 4000 νχ (Nm3 / h) 3000 4000 4000 4000 4000 4000 v2 ( Nm3 / h) 4000 3500 3500 3500 3500 3500 Τχ (° C) 318 130 130 130 130 130 T2 (° C) 130 200 450 600 450 350 10 T3 (° C) 290 300 450 600 450 350

Kulbrintekon-centrationen i ledning 58 (g/Νπι ) max 2-3 1-0,02 <0,01 <0,01 <0,01 <0,01 15Hydrocarbon concentration in line 58 (g / Νπι) max 2-3 1-0.02 <0.01 <0.01 <0.01 <0.01

Eksempel 3Example 3

Ved et f0rste fors0g med det i fig. 3 viste fors0gsan-læg anvendtes luft forurenet med styren. Adsorbent-katalysato-ren var den foran omtalte kobberkromit-Y-aluinina adsorbent-ka- 20 talysator, i form af kugler med en diameter pa 3-6 mm.In a first attempt with the one shown in FIG. 3 experiments, air contaminated with styrene was used. The adsorbent catalyst was the aforementioned copper chromite Y-alumina adsorbent catalyst, in the form of spheres having a diameter of 3-6 mm.

4,4 Nm^ pr. time luft indeholdende 0,22 g styren pr.4.4 Nm per hour of air containing 0.22 g styrene per hour.

Nm3 blev med en temperatur pâ 50°C ledt ind i adsorbent-ka-talysatorlejet. Mængden af adsorbent-katalysator var 1,67 kg svarende til 1,8 liter. Styrenindholdet i udgangsstr0mmen fra 25 reaktoren blev pâ kulbrinteanalysatoren malt som volumen-ppm metanækvivalenter, i. det f01gende betegnet C,. Det kan nævnes, 3 1 at 100 mg styren pr. Nm svarer til 179 vol.-ppm C^. I ad- sorptionsperiodens f0rste 30 timer blev styrenindholdet i den rensede luft mâlt til under 20 vol.-ppm C,. Efter 40 timers 30 1 drift steg indholdet til 3Q vol.-ppm C^, og efter 45 timer var styrenindholdet steget til 50 vol.-ppm C^. Adsorptionspe- rioden var derved forbi, og regenereringen betyndte. Luftstr0m- 3 men blev reduceret til 1,1 Nm pr» time samtidig med at tem- peraturen i luftstr0mmen til katalysatorlejet blev hævet til 35 n 300 C. Det adsorberede stof ved lejets indgang blev antændt ved ca. 280°C, og en varm zone bevægede sig derefter ned gen-Nm3 was fed into the adsorbent catalyst bed at a temperature of 50 ° C. The amount of adsorbent catalyst was 1.67 kg, corresponding to 1.8 liters. The styrene content of the starting stream from the reactor was painted on the hydrocarbon analyzer as volume ppm methane equivalents, i. It may be mentioned, 3 l at 100 mg styrene per day. Nm corresponds to 179 vol.-ppm C During the first 30 hours of the adsorption period, the styrene content of the purified air was measured below 20 vol. Ppm C After 40 hours of 30 liters of operation, the contents increased to 3Q vol.-ppm C 2, and after 45 hours the styrene content had increased to 50 vol.-ppm C 2. The adsorption period was thus over, and the regeneration was imminent. The air stream 3 was reduced to 1.1 Nm per hour while raising the temperature of the air stream to the catalyst bed to 35 n 300 C. The adsorbed substance at the bed entrance was ignited at approx. 280 ° C and a hot zone then moved down again.

DK 156814 BDK 156814 B

18 nem lejet. Den varme zone nâede sin h0jeste temperatur pâ 700°C ca. 150 mm nede i lejet. Den varme zone nâede reakto-rens udgang efter ca. 1 time. Styrenindholdet i udgangsluften fra reaktoren var ved regenereringens begyndelse 5 30 vol.-ppm C-^. I 10bet af de f0rste ca. 17 minutter af rege- nereringsperioden steg styrenindholdet til over 1000 vol.-ppm C1, der er den 0vre grænse for, hvad kulbrinteanalysatoren kunne mâle. Efter ca. 40 minutters forl0b faldt styrenindholdet igen til under 1000 vol.-ppm Cog i 10bet af de efter-10 f01gende 10 minutter faldt styrenindholdet til 20 vol.-ppm . Regenereringen varede sâledes ialt 50 minutter. Fors0get blev gentaget 3 gange, og résultatet var i det væsentlige som ovenfor beskrevet. Beregninger over fors0gsdataene viser, at adsorptionsevnen ved de benyttede dirftsbetingelser er ca.18 easy to rent. The hot zone reached its highest temperature of 700 ° C approx. 150 mm down in the bearing. The hot zone reached the reactor exit after approx. 1 hour. At the beginning of regeneration, the styrene content of the starting air from the reactor was 30 vol.-ppm C In the 10th of the first approx. 17 minutes of the regeneration period, the styrene content increased to over 1000 vol.-ppm C1, which is the upper limit of what the hydrocarbon analyzer could measure. After approx. After 40 minutes, the styrene content again dropped to below 1000 vol. Ppm. Cog. In the 10th of the following 10 minutes, the styrene content dropped to 20 vol. Ppm. The regeneration thus lasted a total of 50 minutes. The experiment was repeated 3 times and the result was essentially as described above. Calculations of the experimental data show that the adsorption capacity under the used air conditions is approx.

15 25 g styren pr. kg af adsorbent-katalysatoren..25 g of styrene per kg of the adsorbent catalyst ..

Efter 45 timers adsorptionsdrift blev en pr0ve pâ nogle gram adsorbent-katalysator udtaget og analyseret. Pr0ven inde-holdt 33 g organisk kulstof pr. kg. Pr0ven blev derefter var-mebehandlet ved 20Q°C i nitrogen. Efter ophold ved denne tem-20 peratur i 2 timer blev pr0ven pâ ny analyseret. Indholdet af organisk kulstof blev bestemt til 15 g pr. kg adsorbent-katalysator. Det ma formodes, at denne mængde organisk kulstof svarer til styren adsorberet i mere eller mindre polymeriseret form.After 45 hours of adsorption operation, a sample of a few grams of adsorbent catalyst was taken and analyzed. The sample contained 33 g of organic carbon per day. kg. The sample was then heat treated at 20 ° C in nitrogen. After staying at this temperature for 2 hours, the sample was re-analyzed. The organic carbon content was determined to be 15 g per liter. kg of adsorbent catalyst. It is believed that this amount of organic carbon corresponds to styrene adsorbed in more or less polymerized form.

2525

Eksempel 4 I denne forsçôgsserie, der bestod af fire enkeltfors0g, indeholdt reaktoren 1,6 liter (1,5 kg) af adsorbent-katalysatoren placeret i et leje med h0jden 40 cm. Luftstr0mmen til 30 adsorbent-katalysatorlejet var ved samtlige fors0g 4,0 Nm /h. Luftstr0mmen blev forurenet med en kulbrinteblanding med et kogepunktsinterval 240-270°C, der typisk anvendes som opl0s-ningsmiddel ved heatset-offset trykning.Example 4 In this test series, which consisted of four single experiments, the reactor contained 1.6 liters (1.5 kg) of the adsorbent catalyst placed in a bed 40 cm high. The air flow to the 30 adsorbent catalyst bed was 4.0 Nm / h in all experiments. The air stream was contaminated with a hydrocarbon mixture having a boiling range of 240-270 ° C, typically used as a solvent in heatset offset printing.

Temperaturen og kulbrinteindholdet i luftstr0mmen ved 35 indgangen (Z=0) til adsorbent-katalysatorlejet fremgâr af nedenstâende tabel 2.The temperature and hydrocarbon content of the air stream at the inlet (Z = 0) of the adsorbent catalyst bed is shown in Table 2 below.

DK 156814 BDK 156814 B

1919

Tabel 2Table 2

Fors0g nr. Temperatur, °C Kulbrinteindhold, g pr. Nm^ ,1 — . M ........... .I — ' » ' ' — * — ' " ----— " " ' * ...... ' 1 155 1,40 2 125 1,40 5 3 122 0,78 4_100_0,91_Test No. Temperature, ° C Hydrocarbon content, g per Nm ^, 1 -. M ........... .I - '»' '- * -'" ----— "" '* ......' 1 155 1.40 2 125 1.40 5 3 122 0.78 4_100_0.91_

Kulbrintekoncentrationen i udgangsstr0iranen fra reakto-ren blev pâ kulbrinteanalysatoren malt som volumen-ppm C,.The hydrocarbon concentration in the starting reactor from the reactor was ground on the hydrocarbon analyzer as volume ppm C

1010

Fig. 4 viser grafisk kulbrintekoncentrationen i vol.-ppm C-^ som funktion af. tiden i timer for de fire fors0g. I figuren er indlagt en linie, der angiver koncentrationen 20 mg C pr.FIG. 4 shows graphically the hydrocarbon concentration in vol. Ppm C time in hours for the four trials. In the figure is a line indicating the concentration of 20 mg C per day.

33

Nm , som ofte er den tilladte maksimalgrænse for émission til atmosfæren.Nm, which is often the maximum allowable emission limit for the atmosphere.

1 R1 R

Af fig. 4 fremgâr det, at adsorptionskapaciteten i det unders0gte temperaturomrâde er meget temperaturafhængig, idet en ringe temperaturfor0gelse eller temperatursænkning vil medf0re henholdsvis en stærk formindskelse eller for0gelse af adsorptionskapaciteten.In FIG. 4 it appears that the adsorption capacity in the temperature range investigated is very temperature dependent, since a slight increase in temperature or a decrease in temperature will result in a sharp decrease or increase in the adsorption capacity respectively.

20 Adsorbent-katalysatoren havde inden fors0gsserien væ- ret benyttes i 1Q adsorptions- og regenereringscykler, hvor den maksimale temperatur under regenereringerne var i omrâdet 9QQ-920°C; den foran ansatte grænse pâ 800-850°C giver altsâ en god sikkerhedsmargin. Under yderligere 10 adsorptions- og o c regenereringskredsl0b blev adsorptionskapaciteten malt. Der var ikke tegn pâ nogen signifikant formindskelse af adsorptionskapaciteten .The adsorbent catalyst had, before the test series, been used in 1Q adsorption and regeneration cycles, the maximum temperature during the regenerations being in the range 9QQ-920 ° C; the front-mounted limit of 800-850 ° C thus provides a good safety margin. During a further 10 adsorption and o c regeneration circuits, the adsorption capacity was ground. There was no evidence of any significant decrease in adsorption capacity.

I fors0g 2 blev adsorptionsperioden tilendebragt efter 6 1/2 time, og regenereringen pâbegyndtes. Pâ dette tidspunkt 30 havde adsorbent-katalysatoren if0lge beregninger adsorberet ialt 39 g kulbrinte syarende til 26 g pr. kg. Forl0bet af regenereringen, der blev foretaget med ren luft, er vist i fig. 5. Tiden fra regenereringens begyndelse er angivet i minutter ad abscissen. Venstre ordinat angiver indholdet af 35 metan-ækvivalenter i luftstr0mmen fra reaktoren, h0jre ordinat temperaturen mâlt i forskellige dybder (Z) i adsorbent-katalysatorlejet. Da lejets længde er 40 cm, svarer Z=0 til 20In Experiment 2, the adsorption period was completed after 6 1/2 hours and regeneration commenced. By this time, according to calculations, the adsorbent catalyst had adsorbed a total of 39 g of hydrocarbon acid to 26 g per liter. kg. The process of regeneration performed with clean air is shown in FIG. 5. The time from the beginning of regeneration is indicated in minutes along the abscissa. The left ordinate indicates the content of 35 methane equivalents in the air stream from the reactor, the higher ordinate temperature measured at various depths (Z) in the adsorbent catalyst bed. Since the length of the bed is 40 cm, Z = 0 to 20

DK 156814 BDK 156814 B

indgangslaget i lejet, og Z=40 svarer til udgangslaget i lej-et. Temperaturen i Z=Q er identisk med temperaturen i den luftstr0m, der benyttes ved regenereringen; temperaturen i Z=4Q er identisk med temperaturen i den luftstr0m, der ledes 5 fra reaktoren.the input layer in the bearing, and Z = 40 corresponds to the output layer in the bearing. The temperature in Z = Q is identical to the temperature of the air stream used in the regeneration; the temperature of Z = 4Q is identical to the temperature of the air stream conducted from the reactor.

Af fig. 5 fremgâr det, at regenereringsluftens temperatur i de f0rste ca. 10 minutter var ca. 290°C, og at temperaturen i den resterende del af regenereringen var ca. 100°C.In FIG. 5 it appears that the temperature of the regeneration air in the first approx. 10 minutes was approx. 290 ° C and the temperature of the remaining part of the regeneration was approx. 100 ° C.

Af figuren fremgâr det, at den h0jeste temperatur i lejet, 10 nemlig ca. 930°C, konstateredes i 10 cm's dybde.It can be seen from the figure that the highest temperature in the bearing, namely approx. 930 ° C, was found at a depth of 10 cm.

Tilsvarende regenereringer med mindre mængder adsorbat viser, at ca. 15 g kulbrinte pr. kg adsorbent vil give en maksimal temperatur i lejet pâ ca. 825°C.Corresponding regenerations with smaller amounts of adsorbate show that ca. 15 g of hydrocarbon per liter kg of adsorbent will give a maximum temperature in the bed of approx. 825 ° C.

Kulbrintekoncentrationen i udgangsluften faldt, som 15 det ogsâ fremgâr af figuren, til under 10 vol.-ppm efter ca. 2Q minutter. Regenereringen var tilendebragt efter 30 minutter. I de sidste 10 minutter af regenereringen blev adsor-batet oxyderet fuldstændigt pâ adsorbent-katalysatoren. Almin-deligvis vil i 10bet af hele regenereringsperioden ca. halv-20 delen af adsorbatet blive oxyderes pâ adsorbent-katalysatoren mens resten vil blive f0rt med luftstr0mmen til efterrensnings-sektionen.The hydrocarbon concentration in the exhaust air, as also shown in the figure, decreased to below 10 vol. Ppm after approx. 2Q minutes. The regeneration was completed after 30 minutes. For the last 10 minutes of regeneration, the adsorbate was completely oxidized on the adsorbent catalyst. Generally, in the 10th of the entire regeneration period, approx. half of the adsorbate will be oxidized on the adsorbent catalyst while the remainder will be fed with the air stream to the post-purification section.

25 30 3525 30 35

Claims (6)

1. Anlæg til fjernelse af oxiderbare bestanddele fra forurenede gasser, især forurenet luft, og bestâende af mindst én reaktor (16) med et soin adsorbent og ved for- 5 h0jet temperatur tillige som oxidationskatalysator virk-somt materiale (18), en ledning (10) til at f0re den til behandling værende gas til reaktoren og en ledning (20, 22. til at f0re renset gas bort fra reaktoren, kende-t e g n e t ved,at det tillige indeholder organer (12,14), 10 fortrinsvis i form af et brændkammer (12) med en brænder (14), til intermitterende régénération af katalysatoren i reaktoren (16) og organer (32-42) til efterrensning af fra reaktoren udgâende gas.An installation for the removal of oxidizable constituents from polluted gases, especially polluted air, and consisting of at least one reactor (16) with a soin adsorbent and at elevated temperature, also as an oxidation catalyst material (18), a conduit ( 10) for conveying the gas under treatment to the reactor and a conduit (20,22) for conveying purified gas away from the reactor, characterized in that it also contains means (12,14), preferably in the form of of a combustion chamber (12) with a burner (14), for intermittent regeneration of the catalyst in the reactor (16) and means (32-42) for purifying gas from the reactor. 2. Anlæg if0lge krav 1, kendetegnet ved, at 1. organerne til efterrensning af gas udgâende fra reaktoren (16) under régénération udg0res af et med en afgrening (30) fra afgangsledningen (20) forbundet, med en brænder (34) forsynet yderligere brændkammer (32), en efterf0l-gende reaktor (36) med en oxidationskatalysator (38) og 20 en ledning (42) fra denne til skorsten eller afgangsled-ningen (22) fra den f0rste reaktor (16).Installation according to claim 1, characterized in that 1. the means for the post-purification of gas from the reactor (16) during regeneration are constituted by a burner (34) connected to a branch (30) from the discharge line (20). combustion chamber (32), a subsequent reactor (36) with an oxidation catalyst (38) and a conduit (42) thereof to the chimney or outlet conduit (22) of the first reactor (16). 3. Anlæg if0lge krav 1, kendetegnet ved, at det har (i) mindst to parallelforbundne reaktorer (48*, II 48 ..) med adsorbent/katalysatormateriale Π8) , (ii) en 25 tilf0rselsledning (10) med afgrening dels (42) til en I II efterrensningssektion, dels (44; 46 , 46 ...) til reak- torerne (48*, 48**...), og (iii) afgangsledninger fra disse dels (50*, 50**...; 22) til skorsten, dels (56*, 56 ...; 58) til efterrensningssektionen der bestâr af 2. et brændkammer (6 0) med en brænder (62) , en ledning fra dette brændkammer (60) til en reaktor (76) med en oxidationskatalysator og en afgangsledning (70) fra reaktoren (76) med afgreninger dels (74) via ledninger ud af anlæg-get, dels (52; 54*, 54**...) til reaktorerne (48*, 48**..) 35 og dels en tilbagel0bsledning (66) til ledningen (56,68) mellem efterrensningssektionens brændkammer (60) eg sam-mes reaktor (76). DK 156 814 BInstallation according to claim 1, characterized in that it has (i) at least two parallel connected reactors (48 *, II 48 ..) with adsorbent / catalyst material Π8), (ii) a branching supply line (10) and (42) ) to an I II post-purification section, partly (44; 46, 46 ...) to the reactors (48 *, 48 ** ...), and (iii) discharge lines from these (50 *, 50 **). ..; 22) to the chimney, partly (56 *, 56 ...; 58) to the post-cleaning section consisting of 2. a combustion chamber (60) with a burner (62), a conduit from this combustion chamber (60) to a reactor (76) with an oxidation catalyst and a discharge line (70) from the reactor (76) with branches (74) via wiring out of the system and (52; 54 *, 54 ** ...) to the reactors (48 35, and partly a return line (66) to the line (56.68) between the after-cleaning section's combustion chamber (60) and the reactor (76) together. DK 156 814 B 4. Anlæg if0lge krav 3, kendetegnet ved, at oxidationskatalysatoren i reaktoren (76) i efterrensnings-sektionen omfatter det samme materiale, som den adsorbent/ katalysator, der er til stede i de parailelforbundne reak- 5 torer (48^, 481^..)·Plant according to claim 3, characterized in that the oxidation catalyst in the reactor (76) in the post-purification section comprises the same material as the adsorbent / catalyst present in the parallel connected reactors (48 ^, 481 ^). .) · 5. Anlæg if0lge krav 3, kendetegnet ved, at afgreningsledningen (42) til efterrensningssektionen m0-des med afgangsledningen (70) fra reaktoren (76) i efterrensningssektionen i et samlingspunkt (72) fra hvilket 10 ogsâ afgreningen (52) til de parailelforbundne reaktorer (48^, 4811...) udgâr.Installation according to claim 3, characterized in that the branch line (42) for the post-cleaning section is met with the outlet line (70) from the reactor (76) in the post-cleaning section at a junction (72) from which also the branch (52) for the parallel connected reactors. (48 ^, 4811 ...) is deleted. 6. Anlæg if0lge krav 3, kendetegnet ved, at oxidationskatalysatoren bestâr af gamma-aluminiumoxid im-prægneret med kobberkromit. 15 20 25 30 35Installation according to claim 3, characterized in that the oxidation catalyst consists of gamma-alumina impregnated with copper chromite. 15 20 25 30 35
DK234879A 1979-06-06 1979-06-06 PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR DK156814C (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK234879A DK156814C (en) 1979-06-06 1979-06-06 PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR
SE8003958A SE8003958L (en) 1979-06-06 1980-05-28 PROCEDURES AND PLANT FOR DISPOSAL OF OXIDIZABLE POLLUTANEOUS INGREDIENTS FROM GASES, IN PARTICULAR AIR
FR8011902A FR2458308A1 (en) 1979-06-06 1980-05-29 PROCESS AND INSTALLATION FOR REMOVING OXIDABLE COMPONENTS OR POLLUTANTS FROM GASES, IN PARTICULAR AIR
DE19803021174 DE3021174A1 (en) 1979-06-06 1980-06-04 METHOD FOR REMOVING OXIDIZABLE COMPONENTS FROM POLLUTED GASES
GB8018433A GB2051761A (en) 1979-06-06 1980-06-05 Method and apparatus for the removal of oxidizable pollutants from gases
NL8003288A NL8003288A (en) 1979-06-06 1980-06-05 METHOD AND APPARATUS FOR REMOVING OXIDIZABLE POLLUTANTS FROM GASES, ESPECIALLY AIR.
JP7567480A JPS55165131A (en) 1979-06-06 1980-06-06 Method and device for removing oxidizing pollutant from gas* particularly* air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK234879 1979-06-06
DK234879A DK156814C (en) 1979-06-06 1979-06-06 PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR

Publications (3)

Publication Number Publication Date
DK234879A DK234879A (en) 1980-12-07
DK156814B true DK156814B (en) 1989-10-09
DK156814C DK156814C (en) 1990-02-26

Family

ID=8111760

Family Applications (1)

Application Number Title Priority Date Filing Date
DK234879A DK156814C (en) 1979-06-06 1979-06-06 PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR

Country Status (7)

Country Link
JP (1) JPS55165131A (en)
DE (1) DE3021174A1 (en)
DK (1) DK156814C (en)
FR (1) FR2458308A1 (en)
GB (1) GB2051761A (en)
NL (1) NL8003288A (en)
SE (1) SE8003958L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK167910B1 (en) * 1991-05-24 1994-01-03 Topsoe Haldor As PROCEDURE FOR THE REMOVAL OF Sulfur Oxides From Exhausts
FR2687330B1 (en) * 1992-02-18 1994-09-09 Inst Francais Du Petrole PROCESS FOR TREATING VENTILATION AIR CONTAINING STYRENE.
DE4420224C2 (en) * 1993-06-24 1996-09-26 Mannesmann Ag Process for removing undesirable gas admixtures
DE19652403B4 (en) * 1996-12-17 2004-05-27 Jenoptik Katasorb Gmbh Device and method for oxidative exhaust gas purification
JP5935726B2 (en) * 2013-03-07 2016-06-15 マツダ株式会社 Deodorizing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150922A (en) * 1961-01-16 1964-09-29 Calumet & Hecla Method of purifying exhaust gases of internal combustion engines
FR2310150A1 (en) * 1975-05-07 1976-12-03 Air Prod & Chem PROCESS FOR REMOVING, FROM AN INERT GAS CONTAINING OXYGEN, LOW CONCENTRATIONS OF OXIDABLE ORGANIC IMPURITIES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1400504A (en) * 1964-04-14 1965-05-28 Texaco Development Corp Improvements to catalysts and processes for treating engine exhaust gases
GB1120070A (en) * 1965-01-08 1968-07-17 Grace W R & Co Improvements in or relating to the oxidation of exhaust gases from internal combustion engines
JPS5065465A (en) * 1973-10-15 1975-06-03
GB1582441A (en) * 1976-04-09 1981-01-07 Lamberg Ind Res Ass Treatment of gaseous effluent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150922A (en) * 1961-01-16 1964-09-29 Calumet & Hecla Method of purifying exhaust gases of internal combustion engines
FR2310150A1 (en) * 1975-05-07 1976-12-03 Air Prod & Chem PROCESS FOR REMOVING, FROM AN INERT GAS CONTAINING OXYGEN, LOW CONCENTRATIONS OF OXIDABLE ORGANIC IMPURITIES

Also Published As

Publication number Publication date
NL8003288A (en) 1980-12-09
GB2051761A (en) 1981-01-21
DE3021174A1 (en) 1980-12-11
JPS55165131A (en) 1980-12-23
JPH0347884B2 (en) 1991-07-22
SE8003958L (en) 1980-12-07
DK156814C (en) 1990-02-26
FR2458308A1 (en) 1981-01-02
FR2458308B1 (en) 1985-02-22
DK234879A (en) 1980-12-07

Similar Documents

Publication Publication Date Title
KR100417938B1 (en) How to reduce volatile chemical emissions
KR101249299B1 (en) System and methods for removing materials from flue gas via regenerative selective catalytic reduction
CN108273358B (en) Organic waste gas treatment system and treatment method thereof
WO1986000389A1 (en) Process for combustion or decomposition of pollutants and equipment therefor
CN110124440B (en) VOCs comprehensive treatment process of coking chemical production system
CN101415479A (en) Method and apparatus for processing gaseous containing factitious air
US20060144224A1 (en) Regenerable purification system for removal of siloxanes and volatile organic carbons
JPH10267248A (en) Catalyst type exhaust gas processor
SK182789A3 (en) Apparatus for catalytic combustion of organic compounds
DK156814B (en) PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR
JP2012040479A (en) Wastewater treatment system
KR100331034B1 (en) Configuration and operating method of RCO system for waste gas purification
KR20010045069A (en) Catalytic Incinerator with Dual-function Catalysts of Adsorption and Oxidation for VOCs Removal
CN111457401A (en) RCO waste gas treatment multipoint distributed combustion system and use method thereof
PL77605B1 (en)
KR100561253B1 (en) A system for catalytic oxidation of vocs
JP3819587B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN207849405U (en) Device for purifying petrochemical industry organic exhaust gas
CN113713764A (en) Energy-saving active carbon desorption processing system
JP3544442B2 (en) Catalyst purification device
SUDNICK et al. VOC control techniques
US3402015A (en) Multiple stage treatment of a noxious stream with cyclic high quantities of nitrogen oxides
TW201924769A (en) Regenerative catalytic oxidizer for the abatement of VOCs laden gases
EP1709364B1 (en) System for treating organic materials to reduce them to inorganic components and methods for treating organic materials to reduce them to inorganic components
CN212299030U (en) RCO exhaust-gas treatment multiple spot distributing type combustion system

Legal Events

Date Code Title Description
PUP Patent expired